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Abstract: 
We discuss the evidential paradigm as we see it currently developing.  We characterize 
evidential statistics as an epistemological tool and provide a list of qualities we feel would make 
this tool most effective.  Evidentialism is often equated with likelihoodism, but we see 
likelihoodism as only an important special case of broader class of evidential statistics.  Our 
approach gives evidentialism a theoretical foundation which likelihoodism lacked and allows 
extensions which solve a number of statistical problems.  We discuss the role of error 
probabilities in evidential statistics, and develop several new error probability measures.  These 
measures are likely to prove useful in practice and they certainly help to clarify the relationship 
between evidentialism and Neyman-Pearson style error statistics2

                                                 
1 E-Mail: markltaper@msn.com 

 

2 We thank the editors Malcolm R. Forster and Prasanta S. Bandyopadhyay for critical comments that have greatly 
improved this work. 
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Introduction:  
In a recent paper Malcolm Forster has stated a common understanding regarding modern 

statistics: 

"Contemporary statistics is divided into three camps; classical Neyman-Pearson statistics (see 
Mayo 1996 for a recent defense), Bayesianism (e.g., Jefferys 1961, Savage 1976, Berger 1985, 
Berger and Wolpert 1988), and third, but not last, Likelihoodism (e.g., Hacking 1965, Edwards 
1987, and Royall 1997)." 

Forster 2006 
 

We agree with this division of statistics into three camps, but feel that Likelihoodism is only an 

important special case of what we would like to call evidential statistics.  In the sequel, we will 

try justify our expansion of evidential statistics beyond the likelihood paradigm and to relate 

evidentialism to classical epistemology3

For at least the last three quarters of a century a fierce battle has raged regarding 

foundations for statistical methods.  Statistical methods are epistemological methods, that is, 

methods for gaining knowledge.  What needs to be remembered is that epistemological methods 

are technological devices – tools.  One does not ask if a tool is true or false, or right or wrong.  

One judges a tool as effective or ineffective for the task to which it will be applied.  In this 

article, we are interested in statistics as a tool for the development of scientific knowledge. We 

develop our desiderata for knowledge developing tools in science and show how far the 

evidential statistical paradigm goes towards meeting these objectives.  We also relate evidential 

statistics to the competing paradigms of Bayesian statistics and error statistics. 

, and to classical statistics. 

Richard Royall (1997, 2004) focuses attention on three kinds of questions:  “What should 

I believe?", "What should I do?", and “How should I interpret this body of observations as 

                                                 
3 We have tried to frame our discussion for a philosophical audience, but we are scientists and statisticians.  
Omission of any particular citation to the philosophical literature will most likely represent our ignorance not a 
judgment regarding the importance of the reference. 
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evidence.”  Royall says that these questions “define three distinct problem areas of statistics.”  

But, are they the right questions for science?  Science and scientists do many things.   

Individual scientists have personal beliefs regarding the theories and even the 

observations of science. And yes, these personal beliefs are critical for progress in science.  

Without as yet unjustified belief, what scientist would stick his or her neck out to drive a 

research program past the edge of the known?  In a more applied context, scientists are often 

called to make or advise on decisions large and small.  It is likely that this decision making 

function pays the bills for the majority of scientist.  But, perhaps the most important activity that 

scientists aspire to is augmenting humanity’s accumulated store of scientific knowledge.  It is in 

this activity that we believe Royall’s third question is critical. 

Our thinking regarding the importance and nature of statistical evidence develops from 

our understanding (however crude) of a number of precepts drawn from the philosophy of 

science.  We share the view, widely held since the eighteenth century, that science is a collective 

process carried out by vast numbers of researchers over long stretches of time (Nisbet, 1980).   

Personally, we hold the view that models carry the meaning in science (Frigg 2006; Giere 

2004, 2008).  This is, perhaps, a radical view, but an interest in statistical evidence can be 

motivated by more commonplace beliefs regarding models such as that they represent reality 

(Cartwright (1999), Giere (1988; 1999; 2004), Hughes (1997), Morgan  (1999), Psillos (1999),  

Suppe (1989), van Fraassen (1980; 2002) or serve as tools for learning about reality (Giere, 

1999; Morgan, 1999).  

We are strongly skeptical about the “truth” of any models or theories proposable by 

scientists (Miller 2000).  We mean by this that although we believe there is a reality, which we 

refer to as "truth", no humanly constructed model or theory completely captures it, and thus all 
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models are necessarily false.  Nevertheless, some models are better approximations of reality 

than other models (Lindsay, 2004), and some models are even useful (Box 1979).  In the light of 

these basal concepts, we believe that growth in scientific knowledge can be seen as the continual 

replacement of current models with models that approximate reality more closely.  

Consequently, the question “what methods to use when selecting amongst models?” is perhaps 

the most critical one in developing a scientific method. 

Undoubtedly the works that most strongly influenced 20th century scientists in their 

model choices were Karl Popper’s 1934 (German) and 1959 (English) versions of his book Logic 

of Scientific Discovery.  Nobel Prize winning scientist Sir Peter Medawar called this book “one 

of the most important documents of the twentieth century.”  Popper took the fallacy of affirming 

the consequent4

Another difficulty with the falsificationist approach is the fact that not only can you not 

prove hypotheses, you can’t disprove them.  This was recognized by Quine (1951); his 

discussion of the under-determination of theory by data concludes that a hypothesis

 seriously, stating that the fundamental principle of science is that hypotheses and 

theories can never be proved but only disproved.  Hypotheses and theories are compared by 

comparing deductive consequences with empirical observations. This hypothetico-deductive 

framework for scientific investigation was popularized in the scientific community by Platt’s 

(1964) article on Strong Inference.  Platt’s important contribution was his emphasis on multiple 

competing hypotheses.   

5

                                                 
4 The logical fallacy that is made according to the following faulty reasoning 1) If A then B, 2) B, 3) Therefore A. 

 is only 

testable as a bundle with all of the background statements on which it depends.  Another block to 

disproving hypotheses is the modern realization that the world and our observation of it are 

awash with stochastic influences including process variation and measurement error.  When 

5 A scientific hypothesis is a conjecture as to how the world is or operates. 
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random effects are taken into consideration, we frequently find that no data set is impossible 

under a model, only highly improbable.   

Therefore, "truth" is inaccessible to scientist either because the models required to 

represent "truth" are complex beyond comprehension, or because so many elements are involved 

in a theory that might represent "truth" fully that an infinite number of experimental 

manipulations would be required to test such a theory.  Finally, even if two full theories could be 

formulated and probed experimentally, it is not likely that either will be unequivocally excluded 

because in a stochastic world all outcomes are likely to be possible even if unlikely.  What are 

we as scientists to do?  We do not wish to lust after an unattainable goal; we are not so 

adolescent.  Fortunately, there are several substitute goals that may be attainable.  First, even if 

we can’t make true statements about reality, it would be nice to be able to make true statements 

about the state of our knowledge of reality. Second, if our models are only approximations, it 

would be nice to be able to assess how close to truth they are (Forster 2002). 

Popper (1963) was the first to realize that although all theories are false, some might be 

more truthlike than others and proposed his concept of verisimilitude to measure this property.  

Popper’s exact formulation was quickly discredited (Harris, 1974; Miller, 1974; Tichy, 1974), 

but the idea of verisimilitude continues to drive much thought in the philosophy of science (see 

Niiniluoto, 1998; Zwart, 2001; and Oddie 2007 for reviews).  The results of this research have 

been mixed (Gemes 2007).  The difficulty for the verisimilitude project is that, philosophically, 

theories are considered as sets of linguistic propositions.  Ranking the overall truthlikeness of 

different theories on the basis of the truth values and content of their comprised propositions is 

quite arbitrary.  Is theory A, with only one false logical consequence, truer than theory B, with 

several false consequences?  Does it make a difference if the false proposition in A is really 



Taper&Lele                                                  Evidence, Evidence Functions, and Error Probabilities 
 

Handbook for Philosophy of Statistics  Preprint     6 
 

important, and the false propositions in B are trivial?  Fortunately, as Popper noted (1976) 

verisimilitude is possible with numerical models where the distance of a model to truth can be 

represented by a single value.   

We take evidence to be a three-place relation between data and two alternate models6

We term the quantitative measure of relative distance of models to truth an evidence 

function (Lele 2004, Taper & Lele 2004).  There will be no unique measure or the divergence 

between models and truth so a theory of evidence should guide the choice of measures in a 

useful fashion.  To facilitate the use of statistical evidence functions as a tool for the 

accumulation of scientific knowledge we believe that a theory of evidence should have the 

following desiderata: 

.  

Evidence quantifies the relative support for one model over the other and is a data based estimate 

of the relative distance from each of the models to reality.  Under this conception, to speak of 

evidence for a model does not make sense.   This then is what we call the evidential approach, to 

compare the truthlikeness of numerical models.  The statistical evidence measures the 

differences of models from truth in a single dimension and consequently may flatten some of the 

richness of a linguistic theory. While statistical evidence is perhaps not as ambitious as Popper’s 

verisimilitude, it is achievable and useful. 

D1) Evidence should be a data based estimate of the relative distance between two models 
and reality. 

D2) Evidence should be a continuous function of data.  This means that there is no 
threshold that must be passed before something is counted as evidence.  

D3) The reliability of evidential statements should be quantifiable. 
D4) Evidence should be public not private or personal. 
D5) Evidence should be portable that is it should be transferable from person to person. 

                                                 
6 A reviewer has suggested that background information may be a necessary fourth part, but background information 
will enter the formalization either as part of the data, or as part of one or more of the models. 
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D6) Evidence should be accumulable: If two data sets relate the same pair of models, then 
the evidence should be combinable in some fashion, and any evidence collected 
should bear on any future inferences regarding the models in question. 

D7) Evidence should not depend on the personal idiosyncrasies of model formulation.  By 
this we mean that evidence functions should be both scale and transformation 
invariant7

 
. 

 
We do not claim that inferential methods lacking some of these characteristics cannot be useful. 

Nor do we claim that evidential statistics is fully formulated.  Much work needs to be done, but 

these are the characteristics that we hope a mature theory of evidence will contain. 

Glossed over in Platt is the question of what to do if all of your hypotheses are refuted.  

Popper acknowledges that even if it is refuted, scientists need to keep their best hypothesis until 

a superior one is found (Popper, 1963).  Once we recognize that scientists are unwilling to 

discard all hypotheses (Thompson, 2007) then it is easy to recognize that the falsificationist 

paradigm is really a paradigm of relative confirmation – the hypothesis least refuted is most 

confirmed. Thus, the practice of science has been cryptically evidential for at least half a century. 

We believe that it is important to make this practice more explicit. 

Quantifying evidence, likelihood ratios and evidence functions: 
 

The issue of quantifying evidence in the data has always vexed statisticians. The 

introduction of the concept of the likelihood function8

                                                 
7 An example of scale invariance is that whether one measures elevation in feet or meters should not influence the 
evidence that one mountain is higher than another.  An example of transformation invariance is that it should not 
matter in conclusions regarding spread whether spread is measured as a standard deviation or as a variance. 

 (Fisher, 1912, 1921, 1922) was a major 

advance in this direction. However, how should one use the likelihood function? The main uses 

of the likelihood function have been in terms of point estimation of the parameters of the 

8 The likelihood is numerically the probability of the observations (data) under a model and is considered a function 
of the parameters, that is:  L(θ|x)=f(x|θ). Here L is the likelihood function, θ is the parameter or parameter vector, x 
is the datum or data vector, and f is a probability distribution function. The likelihood is not a probability, as it does 
not integrate to one over the parameter space. 
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statistical model and testing of statistical hypotheses9 (Neyman and Pearson, 1933). Neyman and 

his associates couched statistical inference as a dichotomous decision making problem (violating 

D2) whereas Fisher seems to have been much more inclined to look at statistical inference in 

terms of quantification of evidence for competing models10. The use of significance tests and the 

associated p-values11 as a measure of evidence is most popular in applied sciences. However, 

their use is not without controversy (Royall, 1986). The main problem with the use of p-values as 

a measure of evidence is that they are not comparative measures (violating D1). There is no 

explicit alternative against which the hypothesis of interest is being compared with (Royall, 

1992). Similarly, the use of Bayesian posterior probabilities as a measure of evidence is 

problematic leading to a number of contradictions. Posterior probabilities are not invariant to 

parameterization making them an unsatisfactory measure of evidence (by violating D7).  Many 

Bayesian formulations involve subjective prior probabilities there by violating D4.  The 

likelihood ratio (LR) is a measure of evidence with a long history.  LRs explicitly compare the 

relative support for two models given a set of observations (D1) and are invariant to parameter 

transformation and scale change (D7).  Barnard (1949) is one of the earliest explicit expositions. 

Hacking (1965) made it even more explicit in his statement of the law of the likelihood12

                                                 
9 A statistical hypothesis is a conjecture that the data are drawn from a specified probability distribution.  
Operationally, one tests scientific hypotheses by translating them into statistical hypotheses and then testing the 
statistical hypotheses (see Pickett et al. 1994 for a discussion) 

. 

Edwards (1992) is another exposition that promoted the law of the likelihood and the likelihood 

function. Royall (1997) perhaps makes the best pedagogic case for the law of the likelihood and 

expands its scope in many significant ways. In particular, his introduction of error probabilities 

10 "A likelihood based inference is used to analyze, summarize and communicate statistical evidence… " (Fisher 
1973, page 75) 
11 the p-value is the probability (under a null hypothesis) of observing a result as or more extreme than the observed 
result. 
12 According to the law of likelihood model, 1 is supported over model 2 if based on the same data the likelihood of 
model 1 is greater the likelihood of model 2. 
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and their use in designing experiments is extremely important. Further, his promotion and 

justification of profile likelihood and robust likelihood as a measure of evidence is a significant 

development.  

Although, in the first part of his book Royall strongly emphasizes the likelihood 

principle13

Royall and others take the law of likelihood as a given and then try to justify why it 

makes sense in terms of the adherence to the likelihood principle, universal bound for probability 

of misleading evidence and other intuitive criteria. On the other hand, when faced with the 

problem of nuisance parameters

 (which is different than the law of likelihood) his use of ad hoc adjustments to 

likelihoods such as the profile likelihood in the presence of nuisance parameters clearly violate 

the likelihood principle because consideration beside just the likelihoods influence the 

inference(Fraser, 1963; Berger and Wolpert, 1988).  Similarly, the consideration of error 

probabilities depends on the sample space and hence they violate the likelihood principle as well 

(Boik, 2004). It is clear the error probabilities, if taken as part of the evidence evaluation, violate 

the likelihood principle. We hasten to point out that Royall does not suggest using error 

probabilities as part of evidence. We agree that error probabilities are not evidence, but feel that 

they can play an important role in inference.  We expand on this discussion in the next section.  

14 or or the desire for model robustness15

                                                 
13 The likelihood principle states that all evidential meaning in the data is contained in the likelihood function. 

, they propose the use of 

other ad hoc methods but their justifications do not carry through. Nevertheless, in many 

practical situations, one may not want to specify the model completely and use methods based on 

mean and variance function specification alone such as the Generalized Linear Models 

14 Nuisance parameters are parameters that must be included in the model for scientific reality, but are not 
themselves the entities on which inference are desired.  Nuisance parameters are discussed in more detail in the 
section on multiplicities. 
15 Model robust techniques are designed so that inference on the model elements of interest can be made even if 
nuisance portions of the model may be somewhat incorrect. 
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(McCullogh and Nelder, 1989).  A further problem is that the error probabilities are computed 

assuming one of the hypotheses is in fact true (violating D1). To circumvent these issues and to 

try to give a fundamental justification for the use of the likelihood ratio as a measure of evidence, 

Lele (2004) introduced the concept of evidence functions.  

The first question that Lele (2004) poses is: what happens to the likelihood ratio when 

true distribution is different than either of the competing hypotheses? A simple application of the 

law of large numbers shows that as the sample size increases, the log-likelihood ratio converges 

to the difference between the Kullback-Leibler divergence16

This result holds provided full specification of the probabilistic model is available, there 

are no outliers in the data and the true model is one of the competing hypotheses.  However, one 

can make quantification of evidence robust against outliers, an important practical consideration, 

 between the true distribution and 

hypothesis A and Kullback-Leibler divergence between the true distribution and hypothesis B. If 

hypothesis A is closer to the truth than hypothesis B is, the likelihood ratio leads us to hypothesis 

A. Thus, it follows that strength of evidence is a relative measure that compares distances 

between the true model and the competing models (Lele, 2004). Immediate consequences of this 

observation are the questions: 1) Can we use divergence measures other than Kullback-Leibler to 

measure strength of evidence? 2) Is there anything special about Kullback-Leibler divergence? A 

study of these two questions led Lele (2004) to following conclusions: First, different divergence 

measure based quantification may be compared in terms of the rate at which the probability of 

strong evidence converges to one.  And second, the Kullback-Leibler divergence measure has the 

best rate of convergence among all other measures of evidence.  

                                                 
16 The Kullback-Leibler divergence is one of the most commonly used measure of the difference of one distribution 
from another.  If f(x) and g(x) are probability distributions, then KL(f,g) is the average for observations, x, drawn 
from f(x) of log(f(x)/g(x)).  KL(f,g) is 0 when f and g are the same distribution and is always greater than 0 if the 
two distributions differ.  Technically KL(f,g) is a divergence not a distance because KL(f,g) need not equal KL(g,f).   
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by using divergences other than Kullback-Leibler divergence17

Other notable conclusions that follow from the generalization of the law of likelihood in 

terms of divergence measures are: 1) The design of experiment and stopping rules do matter in 

the quantification of evidence if divergences other than Kullback-Leibler divergence are used 

(Lele, 2004, discussion). This goes against the pre-eminence of the likelihood principle in the 

development of Royall (1997) but criticized by Cox (2004).  And 2), the concept of error 

probabilities needs to be extended to allow for the fact that the class of hypothesized models 

seldom contains the true model. In the following, we suggest how the second issue could be 

addressed. It also leads to quantifying post-data reliability measures for the strength of evidence. 

.  Further, one can quantify 

strength of evidence in situations where one may not want to specify the full probabilistic model 

but may be willing to specify only mean and variance functions by using Jeffrey’s divergence 

measure. One may also use an empirical likelihood ratio or other divergence measures based on 

an estimating function.  Thus, one can justify the use of a variety of modified forms for the 

likelihood ratio such as conditional likelihood ratios, profile likelihood ratios, and composite 

likelihood ratios as measures of evidence because they correspond to some form of relative 

divergence from "truth".  

The probability of misleading evidence and inference reliability: 
 
Richard Royall’s introduction of the concepts of the probability of misleading evidence (M) and 

the probability of weak evidence (W) constituted a major advance in evidential thinking. 

Misleading evidence is defined as strong evidence for a hypothesis that is not true.  The 

probability of misleading evidence is denoted by M or by M(n,k) to emphasize that the 

                                                 
17 Other common divergences/distances between statistical distributions are the Pearson chi-squared distance, the 
Neyman chi-squared distance, the symmetric chi-squared distance, and the Hellinger distance (Linhart & Zucchini 
1986, Lindsay 2004, Lindsay et al. 2007). 
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probability of misleading evidence is a function of both sample size and the threshold, k, for 

considering evidence as strong.  The probability of weak evidence is the probability that an 

experiment will not produce strong evidence for either hypothesis relative to the other. When one 

has weak evidence, on cannot say that the experiment distinguishes between the two alternative 

hypothese in any meaningful way.  These probabilities link evidential statistics to the error 

statistical thread in classical frequentist analysis.  As experimental design criteria, M and W are 

superior to the type I (design based probability of rejecting a true null hypothesis = α) and type II 

(design based probability of failing to detect a true alternative hypothesis = β) error rates of 

classical frequentist statistics because both M and W can be simultaneously brought to zero by 

increasing sample size (Royall 1997, 2004, Blume 2002).  

For Royall and his adherents there are three quantities of evidential interest:  1) the 

strength of evidence (likelihood ratio), 2) the probability of observing misleading evidence18 

(M), and 3) the probability that observed evidence is misleading19.  This last is not the same as M 

and it requires prior probabilities for the two alternative hypotheses20

                                                 
18 Given two statistical hypotheses (H1 and H2) the probability of misleading evidence for H2 over H1 is 
M=P1([L(x|H2)/L(x|H1)]>k); where M is the probability of misleading evidence, P1(.) is the probability of the 
argument under hypothesis 1, and k is an a priori boundary demarcating the lower limit of strong evidence.  

.  Royall claims that M is 

irrelevant post data and that M is for design purposes only. In common scientific practice, all 

three measure have often been freighted on the p-value. There are a vast number of papers 

discussing common misconceptions on the interpretation of p-value (e.g. Blume &Peipert. 

2003; Goodman 2008).  The strength of Royall’s approach is that these three quantities are split 

apart and can be thought about independently.  

19 The probability that observed evidence is misleading = π(H1)P1([L(x|H2)/L(x|H1)]=LRob), where π(H1) is the prior 
probability of H1 and LRob is the observed likelihood ratio. 
20 We do not attach much importance to this third quantity, meaningful priors are rarely available, its primary 
purpose in its presentation is to clarify that it is indeed distinct from M. 



Taper&Lele                                                  Evidence, Evidence Functions, and Error Probabilities 
 

Handbook for Philosophy of Statistics  Preprint     13 
 

Global & Local reliability 
 
There is a deep reason why M and other flavors of error statistics are important in statistical 

approaches to scientific problems. We strongly believe that one of the foundations of effective 

epistemology is some form of reliabilism. Under reliabilism, a belief (or inference) is justified if 

it is formed from a reliable process (Goldman 1986, 2008, Roush 2006) 

Reliability has two flavors, global reliability and local reliability.  Global reliability 

describes the truth-tracking or error avoidance behavior of an inference procedure over all of its 

potential applications.  Examples of global reliability measures in statistics are Neyman/Pearson 

test sizes (α and β) and confidence interval levels. These measures describe the reliability of the 

procedures not individual inferences.  Individual inferences are deemed good if they are made 

with reliable procedures.  For example if α=0.05 the scientist can feel comfortable saying:  “Only 

in 5% of the cases would this procedure reject a null hypothesis in error, so I can have 

confidence in the rejection that I have currently observed."  Royall’s probability of misleading 

evidence M is this global kind of a measure and hereafter we will refer to it as the global 

reliability of the design or MG. 

Local reliability on the other hand is the "truth-acquisition or error avoidance in scenarios 

linked to the actual scenario in question. " (Goldman 2008). Fisherian p-values and Mayo’s test 

severity (Mayo 2004, Mayo and Cox, 2006) are local reliability measures.  It is easy to see that 

the p-value is a local reliability measure because the error probabilities are calculated relative to 

the specific observed results. Both local and global reliability are useful in generating scientific 

knowledge (Goldman, 1986).  A local reliability measure or measures would be useful within the 

context of the evidential paradigm.   
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Local Reliability and the Evidential Paradigm 

Local reliability under the alternatives 

We define the local reliability of the evidence, ML, as the probability that evidence for 

one model is strong as or stronger than the evidence actually observed could have been generated 

under the alternative.  As a post data measure, ML is not the same as MG conceptually or 

quantitatively.  ML is also distinct from the probability that the observed evidence is misleading 

in several aspects.  First, ML involves a tail sum and the probability that the evidence is 

misleading does not, and second, the probability that the evidence is misleading depends on the 

prior probability of the two models, while ML does not.   

Royall (1997) presents a surprising but powerful and simple result that sets bounds on the 

magnitude of MG.  He shows that  

( )
( ) ,1Pr qqXp

Xp
B

A
B ≤





 ≥  

where q is any constant21
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A
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



 ≥=

.  In particular if q=k, the threshold for strong evidence, we see that the 

probability of misleading evidence, MG, must be less than 1/k.  Royall calls this the universal 

bound on the probability of misleading evidence.  The actual probability of misleading evidence 

may often be much lower.  Further, as the likelihood ratio of observed strong evidence (LRob) is 

by definition greater than or equal to k, the local probability of misleading evidence, ML, must be 

less than or equal to the global probability of misleading evidence.  That is: 

 

                                                 
21 One proof follows directly from substitution into a classic theorem in probability called Markov's inequality 
which states that if Y is a nonnegative random variable then P(Y≥q) ≤ E(Y)/q where E(.) denotes expectation. 
Substituting the likelihood ratio for Y we have PB(PA(x)/PB(x)>q)≤EB(PA(x)/PB(x))/q. By definition, 
EB(PA(x)/PB(x))=∫PB(x)(PA(x)/PB(x))dx.  This last integral simplifies to ∫PA(x)dx which integrates to 1 because PA(x) 
is a probability distribution.  Thus, PB(PA(x)/PB(x)>q)≤ 1/q as claimed. 
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One question that springs to mind is why was a post data reliability measure not included 

in Royall’s original formulation of the evidential paradigm?  While only Royall could really 

answer this question, should he choose to break his silence, but it is easy to see that within 

Royall’s context there is no need for an explicit measure of local reliability.  Royall’s work was 

focused on the comparison of simple or point models.  In the comparison of simple models, the 

likelihood ratio and the p-value contain the same information allowing one to transform from one 

to the other (Sellke et al. 2001) and ML is redundant.  However, when one begins to expand the 

evidential approach, as one must to develop a complete statistical toolkit, ML does seem to 

become an interesting and useful evidential quantity. 

Local reliability under the unknown truth 

The likelihood ratio or any other measure of strength of evidence is a point estimate of 

the difference between divergences from truth to A and truth to B. The first issue we need to 

address is to quantify the distribution of the strength of evidence under hypothetical repetition of 

the experiment. In Royall’s formulation, this is done under either hypothesis A or hypothesis B. 

But as we have noted, neither of these hypotheses need be the true distribution. Royall’s 

formulation is useful for pre-data, sample size determination or optimal design issues.  The local 

reliability ML defined in the previous section is potentially a useful post data quantity, but it is 

still calculated under the explicit alternative hypotheses and not the underlying true distribution. 

Once the experiment is conducted or the observations made, a non-parametric estimate of 

the true distribution accessible. One can conduct a non-parametric bootstrap22

                                                 
22The bootstrap is one of the profound statistical developments fo the last quarter centuary.  The unknown 
distribution of a statistic can be estimated non-parametrically by repeatedly resampling data sets from the observed 
data set and recalculating the statistic for each (see Efron & Tibshirani, 1993).  

 to obtain an 
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estimate of the distribution of the strength of the evidence under this true distribution. This can 

be used inferentially in several different ways:  

First, one can obtain a bootstrap based confidence interval for the likelihood ratio: This 

tells us if the experiment is repeated infinitely often (under the true model), what would be the 

distribution of likelihood ratios?  This information could be presented either as intervals, as a 

curve that represents a post data measure of the reliability of the estimated strength of evidence, 

or transformed to a support curve (Davison and Hinkley, 1992; Davison and Hinkley 1997, 

Sellke et al. 2001).  Both the upper and lower confidence limits are informative.  The lower limit 

says "it is not likely that the true divergence is less than this", while the upper limit says that it is 

not likely that the true divergence is greater than this." A second alternative measure that can be 

calculated using a bootstrap is the proportion of times hypothesis A will be chosen over 

hypothesis B (proportion of times LR>1).  This measure can be interpreted as a post data 

reliability of model choice.  Although the bootstrap quantities defined above involve tail-sums, 

they are quite distinct from either the global or local probabilities of misleading evidence 

discussed in the previous section.  Whereas MG or ML. are counter-factual, answering the 

question if the correct model was the one not indicated by the evidence how probable is a 

mistaken evidential assessment as strong as the one observed, the bootstrap tail-sum is a direct 

assessment of the reliability of the observed evidence.  Furthermore, this assessment is made 

under truth, and not under either model. 
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Evidence and composite hypotheses 

The evidential approach has been criticized (e.g. Mayo and Spanos, 2006) as a toy approach 

because the LR can’t compare composite hypotheses23

                                                 
23Composite hypotheses are hypotheses that subsume multiple hypotheses. 

.  This criticism is simultaneously true, a 

straw man, a good thing, and false.  It is true because one can only strictly rank composite 

hypotheses if every member of one set is greater than every member of the other (Royall 1997, 

Blume 2002, Forster and Sober 2004).  But, the statement is also a strawman because it implies 

that the evidential paradigm isn’t able to do the statistical and scientific work done using 

composite hypotheses, which is patently false.  Classically, composite hypotheses are used to 

determine if a point null is statistically distinguishable from the best alternative, or to determine 

if the best supported alternative lies on a specified side of the point null.  Royall (1997) chapter 6 

give a number of sophisticated examples of doing real scientific work using the tools of the 

support curve, the likelihood ratio, and the support interval.  Further, the inability of the LR to 

compare composite hypotheses is a good thing because Royall is correct in that the composite H 

can lead to some ridiculous situations.  Consider the comparison of hypotheses regarding the 

mean of a normal distribution with a known standard deviation of 2 as in Mayo and Cox 2006. 

H0: μ <= 12 vs: H1: μ > 12.  A μ of 15 and a μ of 10,000 are both in H1.  But, if 15 is the true 

mean, a model with μ = 0 (an element of H0) will describe data generated by the true model 

much better than will μ = 10,000 (an element of H1).  This contradiction will require some 

awkward circumlocution by Neman/Pearson adherents.  Finally, the statement is false if under 

the evidence function concept discussed above we expand the evidential paradigm to include 
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model selection using information criteria.  Comparing composite hypotheses using information 

criteria is discussed in more detail in the next section. 

Selecting between Composite Hypotheses 

We suggest that, under the evidential paradigm, the composite hypothesis problem be recast as a 

model selection problem among models with different numbers of free parameters.  In the simple 

example given above H0  is a model with no free parameters while H1 is a family of models 

indexed by the free parameter μ. Model selection using information criteria24

                                                 
24 Information criteria are a class of measures for estimating the relative KL distance of models to "truth".  In 
general information criteria include both the number of parameters and the number of data points in their 
calculation.  Information criteria attempt (with varying degrees of success) to overcome the problems of overfitting 
that would result if comparisons were made on the basis of likelihoods alone. 

 compares models 

by estimating from data their relative Kulback-Leibler distance to truth (Burnham and Anderson 

2002).  This is a reasonable evidence function.  With multiple models, all models are compared 

to the model with the lowest estimated KL distance to truth.  The model selection procedures are 

blind to whether the suite of candidate models is partitioned into composite hypotheses.  One can 

consider that the hypothesis that contains the best supported model is the hypothesis best 

supported by the data. No longer comparing all points in one hypothesis to all points in another, 

but in effect, comparing the best to the best.  Where best is defined as the model with the lowest 

information criterion value.  This solution is neither ad hoc (to the particular case) nor post hoc 

(after the fact/data). The comparison of composite hypotheses using information criteria is not a 

toy procedure, and can do real scientific work. Taper and Gogan (2002) in their study of the 

population dynamics of the Yellowstone Park northern elk herd were interested in discerning 

whether population growth was density dependent or density independent.  They fitted 15 

population dynamic models to the data and selected amongst them using the Schwarz 
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information criterion (SIC).  The best model by this criterion was a density dependent population 

growth model and difference between the SIC value for this model and that of the best density 

independent model was more than 5, a very highly significant difference (Burnham and 

Anderson 2002).   There were a number of statistically indistinguishable density dependent 

models that all fit the data well, making identifying the best model difficult.  Nevertheless, it is 

clear that the best model is in the composite hypothesis of density dependence, not the composite 

hypothesis of density independence.   

Evidence and the challenges of multiplicities 

As pointed out by Donald Berry (2007) multiplicities are the bane of all statistics.  By 

multiplicities we mean the vague class of problem that are not simple, including multiple 

hypotheses, multiple comparisons, multiple parameters, multiple tests, and multiple looks at the 

data. Evidential statistics is not immune to the effects of multiplicities, but the evidential 

paradigm does have approaches to tackling these problems, which are in some cases superior to 

classical approaches. 

Nuisance parameters:  

Nuisance parameters occur when reality and data are complex enough to require models with 

multiple parameters, but inferential interest is confined to a reduced set of parameters.  Making 

inferences on the parameters of interest that isn’t colored by the nuisance parameters is difficult.  

Marginal or conditional likelihoods can be used.  These are proper likelihoods25

                                                 
25 A proper likelihood is directly associated with and numerically equal to some probability distribution function for 
the observations.  Proper likelihoods are often referred to in the literature as "true likelihoods." 

 so all the 

likelihood ratio based evidential techniques can be employed. Unfortunately, marginal and 

conditional likelihoods are not always obtainable.    
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Royall (2000) recommends the use of profile likelihood26

Sequential analyses – multiple tests of the same hypothesis 

 ratio as a general solution.  

Royall feels that the profile likelihood ratio is an ad hoc solution because true likelihoods are not 

being compared.  Nevertheless, he finds the performance of the profile likelihood ratio to be very 

satisfactory.  In our expanded view of evidence, the profile likelihood ratio is not ad hoc because 

the profile likelihood ratio can be shown to be an evidence function.  Royall (2000) shows that 

the probability of misleading evidence from a profile likelihood ratio is not constrained by the 

universal bound, and can exceed 1/k.  Thus, even in this first expansion of the concept of 

evidence from the likelihood ratio of two simple hypotheses we see that ML is decoupled from 

the likelihood ratio and contains distinct information.  

Another multiplicity that the evidential approach handles nicely is sequential analysis.  Multiple 

looks at data while it is accumulating does not diminish the strength of evidence of the ultimate 

likelihood ratio, unlike p-value based approaches, which must carefully control the spending of 

test size in multiple analyses (Demets and Lan 1994). Further, the universal bound that MG <= 

1/k is still maintained.  This subject is developed in detail by Blume (2008). Under a sequential 

sampling design, observations will be terminated as soon as the likelihood ratio passes the 

threshold k.  Consequently, the local probability of misleading evidence will only be slightly 

lower than the global probability of misleading evidence. 

                                                 
26 Profile likelihoods are functions of the data and the parameter or parameters of interest (i.e. not the nuisance 
parameters).  The value of the profile likelihood is the maximum value the full likelihood could take under all 
possible values of the nuisance parameters. 
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Multiple comparisons: Many tests of different hypotheses 

Multiple comparisons place a heavy burden on scientists.  Scientists are bursting with questions, 

and design experiments and surveys to answer many questions simultaneously.  As a classical 

error statistical analysis sets an a priori level of type I error on each test, increasing the number 

of tests increases the probability that at least one of them will be significant by chance alone.  To 

control the family wide error rate, scientists have been forced to decrease the size of individual 

tests using lower type I error rates.  The price of this move is that the power of the individual 

tests to detect small but real differences is diminished.  The scientist makes fewer errors, but gets 

fewer things right as well. 

An evidential analysis is not immune to the increase in the family wide probability of 

error with an increasing number of tests.  If we define MG(n,N,k) as the pre-experiment  

probability of at least 1 misleading result at level k amongst N comparisons with ni observations 

each, then 
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So the global probability of misleading evidence increases with the number of comparisons in 

the same fashion that the family wide type I error does.  As the local probability of misleading 

evidence of a comparison is always less than or equal to the global probability of misleading 

evidence for the comparison, the local family wide probability of misleading evidence will also 

be less than the global family wide probability of misleading evidence.   

Although multiple comparisons lays a burden on evidential analysis similar to that laid on 

a classical error statistical analysis, the evidential approach has more flexible ways of mitigating 

this burden.  The ways family wide misleading evidence can be controlled depends on whether 
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sample size is constrained or if it can be increased, either before or after the initial experiment is 

conducted.  If the sample sizes in the comparisons are fixed, then the only control strategy is to 

increase the strong evidence threshold k, in direct analogy to the test size adjustment of classical 

multiple comparisons.  This will decrease MG(n,N,k), but with the cost that the probability of 

weak evidence (W) will increase for all comparisons, similar to the classical decrease in power 

resulting from test size adjustment.   

However, if sample size is flexible then several alternative strategies become available.  

Strug and Hodge (2006) give a clear description of three scenarios for controlling the global 

family wide misleading evidence in multiple comparisons by adjusting sample size.  Strategy 1: 

Increase sample size in all comparisons before the experiment.  MG(ni,k) can be brought to any 

desired level without changing the strong evidence threshold k for each comparison by 

increasing sample size.  Consequently, MG(n,N,k) can also be brought to any desired level.  This 

strategy has the advantage that W will be simultaneously decreased for all comparisons, but the 

cost in terms of increased sample size is high.  Strategy 2: Increase sample size for only those 

comparisons exhibiting strong evidence.  This is requires an analysis of interim data, but we have 

seen that has little untoward influence in an evidential analysis.  MG(n,N,k) can be brought to any 

desired level, but W will remain unaltered.  The sample size cost is less than Strategy 1.  Finally, 

in Strategy 3, the scientist would increase sample size for comparisons with interim strong or 

weak evidence, but not strong opposing evidence.  MG(n,N,k) is controllable at any desired level, 

W is reduced, and sample size costs are intermediate between Strategies 1 and 2..     
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Multiple candidate models 

One of the problems of multiplicities that the evidential paradigm is most susceptible to is the 

difficulty caused by too many candidate models.  One of the great strengths of the evidential 

paradigm is that it allows and encourages the comparison of multiple models.  This allows a 

more nuanced and accelerated investigation of nature.  However, the risk is that, if too many 

models are considered with a single data set, a model that is not really very good will be favored 

by chance alone.  This has been called model selection bias (Zucchini, 2000; Taper, 2004). 

The problem of model selection bias has led Burnham and Anderson and their acolytes 

strongly and repeatedly argue against “data dredging” and for compact candidate model sets 

defined by a priori scientific theory (e.g. Anderson et al., 2000; Anderson and Burnham, 2002, 

Burnham and Anderson, 2002).  There is considerable merit to these recommendations, but the 

cost is that ability to broadly explore model space is reduced.  As with multiple comparisons, 

several alternatives are possible for an evidential analysis, each with costs and benefits.  One 

suggestion made by Taper and Lele (2004) is to increase k, the threshold for strong evidence. 

This would decrease the probability of misleading evidence over the entire analysis, but at the 

cost of potentially ending with a large number of indistinguishable models.  Another alternative 

suggested (Bai et al., 1999; Taper, 2004) is to increase the parameter penalty in coordination 

with the increase in the number of candidate models.  If effects are tapered, these procedures 

select models with large effects of each parameter.  Here the ability to detect model fine structure 

is traded for the ability to investigate a broad number of models. 
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Discusion  

Evidentialism is an adolescent statistical paradigm, neither infantile nor mature.  It is capable of 

much scientific work, but with considerable scope for technical improvement.  Strict Royallist 

evidentialism is rapidly gaining adherents in epidemiology and medical genetics, while 

information criteria based inference is a major force in ecological statistics. 

The elevation of evidentialism to a practical statistical approach is due to Royall’s 

introduction of the concepts of weak and strong evidence and of misleading evidence. The 

introduction in this paper of local reliability (post data) currently serves to clarify the epistemic 

standing of evidential practices.  The warrant for post data inference using the likelihood ratio as 

the strength of evidence is the local reliability of the evidence.  The reliability of the evidence is 

a function of the local probability of misleading evidence, ML, which is directly linked to LR.  

One interesting observation is that local reliability is in general much greater than NP error rates 

indicate.  Further, local reliability is in general greater than global probability of misleading 

evidence, MG (a priori evidential error rate), indicates.   

We have also suggested several measures local reliability that do not develop their 

probability assessments from the explicit alternative models under consideration but instead use 

a non-parametric bootstrap to estimate local reliability under the unknown true distribution.  All 

of these are valid assessments of post data error probabilities.  Which of them proves most 

helpful in constructing scientific arguments will become clear through time and use.  Together 

with ML these bootstrap methods provide the evidential approach a rich suite of tools for post-

data assessment of error probabilities that are uncoupled from the estimation of the strength of 

evidence. 
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Science needs mechanisms for the accumulation of sound conclusions (sensu Tukey 

1960).  A major rival for Evidentialism as a philosophically sound (in our eyes) system for the 

advancement of science is the “Error Statistical” brand of Neyman-Pearson analysis promoted by 

Deborah Mayo.  

We dismiss Bayesianism for its use of subjective priors and a probability concept that 

conceives of probability as a measure of personal belief.  Bayesianism is held by many 

philosophers as the most appropriate method of developing personal knowledge.  This may be, 

but is irrelevant to the task at hand.  Science depends on a public epistemology not a private one.  

The Bayesian attempts to bridge the gap between private and the public have been tortured. 

It is not that we believe that Bayes' rule or Bayesian mathematics is flawed, but that from 

the axiomatic foundational definition of probability Bayesianism is doomed to answer questions 

irrelevant to science.  We do not care what you believe, we barely care what we believe, what we 

are interested in is what you can show.  Bayesian techniques that successfully eliminate the 

influence of the subjective prior (Boik, 2004), such as the Bayesian Information Critierion 

(Schwarz, 1978) or data cloning (Lele et al. 2007; Ponciano et al. 2009), may be useful. 

Our difficulties with Mayo’s Error Statistical approach are didactic.  Mayo speaks of 

probing a hypothesis.  In our radical falabist view of science models or hypotheses can only be 

supported relative to other models or hypotheses.  Certainly, there actually is a cryptic alternative 

hypothesis in Mayo’s calculations, but we believe that the linguistic suppression of the 

alternative is counterproductive.  A probed hypothesis is smugly self-congratulatory where a pair 

of hypotheses compared evidentially invites scientist to throw new hypotheses into the mix. 

Fundamentally, Mayo’s approach represents a fusion of Fisher’s significance test, a post 

data error calculation, with Neyman-Pearson hypothesis testing.  We think that the use of post 
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data error as the strength of evidence and the shift in emphasis from inductive decision to 

inductive inference are both helpful steps. However, scientists have struggled with logics of both 

Fisherian significance tests and Neyman-Pearson tests.  For generations, it has been a cottage 

industry for statisticians to write white papers trying to explain these concepts to working 

scientists.  Nothing in Mayo’s reformulation will ease these difficulties.  On the other hand, the 

evidential paradigm presents scientists with powerful tools to design and analyze experiments 

and to present results with great clarity and simplicity.  This is because the evidential paradigm is 

designed around the single task that scientist most need to do: That is to objectively compare the 

support for alternative models.  Master statisticians can, with their decades of training in classical 

statistics, successfully navigate the conceptual pitfalls of Mayo’s recasting of the Fisher and 

Neyman-Pearson methods, but for working scientists such as us, the evidential paradigm should 

be a great relief.   
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