#ifndef TQLI_H
#define TQLI_H
//----------------------------------------------------------------------------
#include "../matrixdouble/squaredmatrix.h"
#include <iostream>
using namespace std;
#include <cmath>
#define NRANSI
#include "nrutil.h"
void tqli(SquaredMatrix &d, SquaredMatrix &e, int n, SquaredMatrix &z)
// QL algorithm with implicit shifts, to determine the eigenvalues and eigenvectors of a real, sym-
// metric, tridiagonal matrix, or of a real, symmetric matrix previously reduced by tred2 x 11.2. On
// input, d[1..n] contains the diagonal elements of the tridiagonal matrix. On output, it returns
// the eigenvalues. The vector e[1..n] inputs the subdiagonal elements of the tridiagonal matrix,
// with e[1] arbitrary. On output e is destroyed. When finding only the eigenvalues, several lines
// may be omitted, as noted in the comments. If the eigenvectors of a tridiagonal matrix are de-
// sired, the matrix z[1..n][1..n] is input as the identity matrix. If the eigenvectors of a matrix
// that has been reduced by tred2 are required, then z is input as the matrix output by tred2.
// In either case, the kth column of z returns the normalized eigenvector corresponding to d[k].
{
// { Logica
d.setLogic(1);
e.setLogic(1);
z.setLogic(1);
// } Logica
double pythag(double a, double b);
int m,l,iter,i,k;
double s,r,p,g,f,dd,c,b;
for (i=2;i<=n;i++) e[i-1]=e[i]; // Convenient to renumber the elements of e.
e[n]=0.0;
for (l=1;l<=n;l++) {
iter=0;
do {
for (m=l;m<=n-1;m++) { // Look for a single small subdiagonal element to split the matrix.
dd=fabs(d[m])+fabs(d[m+1]);
if ((double)(fabs(e[m])+dd) == dd) break;
}
if (m != l) {
if (iter++ == 30) printf("Too many iterations in tqli");
g=(d[l+1]-d[l])/(2.0*e[l]); // Form shift.
r=pythag(g,1.0);
g=d[m]-d[l]+e[l]/(g+SIGN(r,g)); // This is dm - ks.
s=c=1.0;
p=0.0;
for (i=m-1;i>=l;i--) { // A plane rotation as in the original QL,
// followed by Givens rotations to restore tridiagonal form.
f=s*e[i];
b=c*e[i];
e[i+1]=(r=pythag(f,g));
if (r == 0.0) { // Recover from underflow.
d[i+1] -= p;
e[m]=0.0;
break;
}
s=f/r;
c=g/r;
g=d[i+1]-p;
r=(d[i]-g)*s+2.0*c*b;
d[i+1]=g+(p=s*r);
g=c*r-b;
/* Next loop can be omitted if eigenvectors not wanted */
for (k=1;k<=n;k++) { // Form eigenvectors.
f=z[k][i+1];
z[k][i+1]=s*z[k][i]+c*f;
z[k][i]=c*z[k][i]-s*f;
}
}
if (r == 0.0 && i >= l) continue;
d[l] -= p;
e[l]=g;
e[m]=0.0;
}
} while (m != l);
}
}
#undef NRANSI
/* (C) Copr. 1986-92 Numerical Recipes Software #)]4. */
//----------------------------------------------------------------------------
#endif
// Fin------------------------------------------------------------------------