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Abstract

We prove that the upward ladder height subordinator H associated to a real valued
Lévy process ξ has Laplace exponent ϕ that varies regularly at ∞ (resp. at 0) if and only if
the underlying Lévy process ξ satisfies Sinǎı’s condition at 0 (resp. at∞). Sinǎı’s condition
for real valued Lévy processes is the continuous time analogue of Sinǎı’s condition for
random walks. We provide several criteria in terms of the characteristics of ξ to determine
whether or not it satisfies Sinǎı’s condition. Some of these criteria are deduced from
tail estimates of the Lévy measure of H, here obtained, and which are analogous to the
estimates of the tail distribution of the ladder height random variable of a random walk
which are due to Veraverbeke and Grübel.

Résumé

Nous montrons que l’exposant de Laplace du subordinateur d’echelle H, associé à un
processus de Lévy ξ, à valeurs réeles, est à variation régulière à l’infini (respectivement,
en 0) si et seulement si le processus de Lévy sous-jacent vérifie la condition de Sinǎı en 0
(respectivement, en +∞). Cette dernière est l’analogue pour les processus de Lévy de la
condition de Sinǎı pour les marches aléatoires. Nous obtenons des estimations de la mesure
de Lévy de H qui nous permetent d’établir des critères, en termes des caractéristiques de
ξ, pour déterminer quand celui-ci vérifie la condition de Sinǎı. Certaines de ces estimations
sont l’analogue de celles obtenues par Veraverbeke et Grübel pour la queue de la fonction
de repartition de la variable aléatoire d’echelle d’une marche aléatoire.

Key words: Lévy processes, Fluctuation theory, Regular Variation, long tailed Lévy measures.
MSC: 60 G 30 (60 G 51).

1 Introduction and main results

Let ξ = {ξt, t ≥ 0} be a real valued Lévy process, S = (St, t ≥ 0) its current supremum and L =
(Lt, t ≥ 0) the local time at 0 of the strong Markov process ξ reflected at its current supremum,
that is to say (St − ξt, t ≥ 0). The first purpose of this work is to obtain some asymptotic
properties of the ascending ladder height subordinator H associated to ξ (that is, the current
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supremum of ξ evaluated at the inverse of the local time at 0, i.e. L−1, H ≡ (SL−1
t

, t ≥ 0)).
According to Fristedt [11] the ascending ladder process (L−1, H) is a bivariate subordinator,
that is, a Lévy process in R2 with increasing paths (coordinatewise) whose bivariate Laplace
exponent κ,

e−κ(λ1,λ2) ≡ E(e−λ1L−1
1 −λ2H1), λ1, λ2 ≥ 0,

with the assumption e−∞ = 0, is given by

κ(λ1, λ2) = k exp

{∫ ∞
0

dt

t

∫
[0,∞[

(e−t − e−λ1t−λ2x)P(ξt ∈ dx)

}
, λ1, λ2 ≥ 0,

with k a constant that depends on the normalization of the local time. (See Doney [7], for a
survey, and Bertoin [2] VI, for a detailed exposition of the fluctuation theory of Lévy processes
and Vigon [24] for a description of the Lévy measure of H.)

The fact that the ladder process (L−1, H) is a bivariate subordinator is central in the fluctu-
ation theory of Lévy processes because it enables to obtain several properties of the underlying
Lévy process using results for subordinators, which are objects simpler to manipulate. Among
the various properties that can be obtained using this fact, there is a well known arc-sine law
in the time scale for Lévy processes, see Theorem VI.3.14 in Bertoin’s book [2] for a precise
statement. That result tell us that Spitzer’s condition is a condition about the underlying Lévy
process ξ which ensures that the Laplace exponent κ(·, 0) of the ladder time subordinator L−1

is regularly varying and which in turn permits to obtain an arc-sine law in the time scale for
Lévy processes. Now, if we want to establish an analogous result in the space scale we have to
answer the question: What is the analogue of Spitzer’s condition for the upward ladder height
process H? or put another way: What do we need to assume about ξ to ensure that the Laplace
exponent

ϕ(λ) ≡ κ(0, λ) = k exp

{∫ ∞
0

dt

t

∫
[0,∞[

(e−t − e−λx)P(ξt ∈ dx)

}
, λ ≥ 0,

of H varies regularly?
A now classical limit theorem for random walks due to Greennwood, Omey and Teugels [15],

Dynkin [9] and Rogozin [20] tell us that for random walks the answer to these questions is
Sinǎı’s condition; see also [4] Theorem 8.9.17. So given that the fluctuation theory for Levy
processes mirrors that of random walks, it is natural to hope that the answer to the questions
posed above is the continuous time version of Sinǎı’s condition. We will say that a Lévy process
ξ satisfies Sinǎı’s condition at ∞ (resp. at 0) if

(Sinǎı) There exists a 0 ≤ β ≤ 1 such that∫ ∞
0

dt

t
P(z < ξt ≤ λz) −→ β log(λ) as z → +∞ (resp. z → 0+), ∀λ > 1.

The term β will be called Sinǎı’s index of ξ.
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Example 1. A Lévy process, ξ, which satisfies Sinǎı’s condition is the strictly stable process
with index 0 < α ≤ 2. Indeed, for every z > 0 and λ > 1 we have by the scaling property of ξ
that ∫ ∞

0

dt

t
P (z < ξt ≤ λz) =

∫ ∞
0

dt

t
P
(
z < t1/αξ1 ≤ λz

)
= E

(
1{ξ1>0}

∫ ∞
0

dt

t
1{(z/ξ1)α<t≤(zλ/ξ1)α}

)
= E

(
1{ξ1>0} log(λα)

)
= αP(ξ1 > 0) log(λ).

Thus any stable process ξ does satisfies Sinǎı’s condition at infinity and at 0 with index αρ,
where ρ is the positivity parameter of ξ, ρ = P(ξ1 ≥ 0).

We recall that a measurable function f : [0,∞[→ [0,∞[ varies regularly at infinity (resp. at
0) with index α ∈ R, f ∈ RV ∞α (resp. ∈ RV 0

α ), if for any λ > 0,

lim
f(λx)

f(x)
= λα at ∞ (resp. at 0).

We have all the elements to state our main result, which provides an answer to the questions
above.

Theorem 1. For β ∈ [0, 1], the following are equivalent

(i) The Lévy process ξ satisfies Sinaı̌’s condition at ∞ (resp. at 0) with index β.

(ii) The Laplace exponent of the ladder height subordinator H varies regularly at 0 (resp. at
∞) with index β.

Proof. By the fluctuation identity of Bertoin and Doney [3] we have that for any z > 0, λ > 1,∫ ∞
0

dt

t
P(z < ξt ≤ λz) =

∫ ∞
0

dt

t
P(z < Ht ≤ λz).

As a consequence, Sinǎı’s condition is satisfied by the Lévy process ξ if and only if it is satisfied
by the ascending ladder height subordinator H. The result then follows from Theorem 4, which
establishes that the Laplace exponent φ of any given subordinator, say σ, varies regularly if
and only if σ satisfies Sinǎı’s condition.

Assuming that the Lévy process ξ satisfies Sinǎı’s condition and applying known results for
subordinators, when its Laplace exponent is regularly varying, we can deduce the behavior at
0 or ∞ of ξ from that of H. (See Bertoin [2] Ch. III for an account on the short and long time
behavior of subordinators.) The following spatial arc-sine law for Lévy processes is an example
of the results that can be obtained.

Corollary 1. For r > 0, denote the first exit time of ξ out of ] − ∞, r] by Tr = inf{t >
0 : ξt > r}, the undershoot and overshoot of the supremum of ξ by U(r) = r − STr− and
O(r) = STr − r = ξTr − r. For any β ∈ [0, 1], the conditions (i) and (ii) in Theorem 1 are
equivalent to the following conditions:
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(iii) The random variables r−1(U(r), O(r)) converge in distribution as r → ∞ (respectively,
as r → 0).

(iv) The random variables r−1O(r) converge in distribution as r →∞ (respectively, as r → 0).

(v) The random variables r−1STr− converge in distribution as r →∞ (respectively, as r → 0).

(vi) lim r−1 E (STr−) = β ∈ [0, 1] as r →∞ (respectively, as r → 0).

In this case, the limit distribution in (iii) is determined as follows: if β = 0 (resp. β = 1), it
is the Dirac mass at (1,∞) (resp. at (0, 0)). For β ∈]0, 1[, it is the distribution with density

pβ(u, w) =
β sin βπ

π
(1− u)β−1(u + w)−1−β, 0 < u < 1, w > 0.

In particular, the limit law in (v) is the generalized arc-sine law of parameter β.

Proof. We recall that for every r > 0, the random variables (U(r), O(r)) are almost surely equal
to the undershoot and overshoot, (UH(r), OH(r)), of the ladder height subordinator H. Thus the
result is a straightforward consequence of the Dynkin-Lamperti arc-sine law for subordinators,
Theorem III.3.6 in [2], using the elementary relations: for every r > 0

P(UH(r) > y) = P(OH(r − y) > y), r > y > 0,

P(OH(r) > x,UH(r) > y) = P(OH(r − y) > x + y), r > y > 0, x > 0.

To summarize, in Theorem 1 we provided a necessary and sufficient condition in terms of the
marginal laws of ξ which completely answers the questions posed at the beginning of this work.
However, the possible drawback of this result is that in most of the cases we only know the
characteristics of the Lévy process ξ, that is, its linear and Gaussian terms and Lévy measure,
and so it would be suitable to have a condition in terms of the characteristics of the process.
That is the purpose of the second part of this work.

One case at which Sinǎı’s condition can be verified using the characteristics of the process is
the case at which the underlying Lévy process belongs to the domain of attraction at infinity
(respectively, at 0) of a strictly stable law of index 0 < α ≤ 2, and which does not require
a centering function. That is, whenever there exists a deterministic function b :]0,∞[→]0,∞[
such that

ξt

b(t)

D−→ X(1), as t →∞ (respectively, as t → 0), (1)

with X(1) a strictly stable random variable of parameter 0 < α ≤ 2. It is well known that if such
a function b exists, it is regularly varying at infinity (respectively, at 0) with index β = 1/α.
Plainly, the convergence in (1) can be determined in terms of the characteristic exponent Ψ of
ξ, i.e. E(eiλξt) = exp{tΨ(λ)}, λ ∈ R, since the latter convergence in distribution is equivalent
to the validity of the limit

lim tΨ

(
λ

b(t)

)
= Ψα(λ), as t →∞, (respectively, as t → 0 ) for λ ∈ R, (2)
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where Ψα is the characteristic exponent of a strictly stable law and is given by

Ψα(λ) =


−c|λ|α (1− iδsgn(λ) tan(πα/2)) 0 < α < 1 or 1 < α < 2;

−c|λ|α (1− iδsgn(λ) tan(πα/2) ln(|λ|)) , α = 1;

−q2λ2/2, α = 2;

for λ ∈ R, where c > 0 and the term δ ∈ [−1, 1] is the so called skewness parameter. We have
the following theorem whose proof will be given in Section 3.

Theorem 2. Let 0 < α ≤ 2 and δ ∈ [−1, 1]. Assume that there exists a function b :]0,∞[→
]0,∞[ such that the limit in equation (2) holds as t goes to infinity (resp. as t → 0). Then
the Lévy process ξ satisfies Sinai’s condition at ∞ (respectively, at 0) with index αρ, where ρ
is given by ρ = 1/2 + (πα)−1 arctan(δ tan (απ/2)).

The converse of this theorem is not true in general, see Remark 2 below.
With the aim of providing some other criteria in terms of the characteristics of the underlying

Lévy process ξ to determine whether or not it satisfies Sinǎı’s condition we recall that the regular
variation of the Laplace exponent, ϕ, of H is closely related to the regular variation of the right
tail of its Lévy measure, cf. [2] pp. 82. Owing to this, we will next restrict ourselves to studying
the behavior of the right tail of the Lévy measure of H, say po. To that end, we should be able
to control the behavior of the dual ladder height subordinator Ĥ, that is, the ladder height
subordinator of the dual Lévy process ξ̂ = −ξ. This is due to the fact, showed by Vigon [24],
that the Lévy measure of the ladder height subordinator H is determined by the Lévy measure
of ξ and the potential measure of Ĥ. (See the Lemma 1 below for a precise statement.)

Thus, under some assumptions on the dual ladder height process, that can be verified directly
from the characteristics of ξ, below we will provide some tail estimates of the right tail of the
Lévy measure of H which in turn will allow us to furnish some nasc for the regular variation,
at infinity or 0, of the Laplace exponent of the ladder height subordinator H. But first we need
to introduce some supplementary notation.

We will assume hereafter that the underlying Lévy process is not spectrally negative, that
is Π]0,∞[> 0, since in that case the ladder height process H is simply a drift, Ht = dt, t ≥ 0.

We will denote by (k0, d, po) (resp. (k̂0, d̂, ne)) the characteristics of the subordinator H (resp.
Ĥ) that is, its killing term, drift and Lévy measure, respectively. Let V̂ be the potential
measure of Ĥ, that is V̂ (dx) = E(

∫∞
0

1{ bHt∈dx}dt). Furthermore, we will denote by (a, q, Π) the

characteristics of the Lévy process ξ. Finally, by the symbols po, ne, Π
+
, we denote the right

tail of the Lévy measures of H, Ĥ and ξ respectively, that is

po(x) = po]x,∞[, ne(x) = ne]x,∞[, Π
+
(x) = Π]x,∞[, x > 0,

and by Π+ the restriction of Π to ]0,∞[, Π+ = Π|]0,∞[.
As we mentioned before, Vigon [24] established some identities “equations amicales” relying

the Lévy measures po, ne and Π; these are quoted below for ease of reference.

Lemma 1 (Vigon [24], Equations amicales). We have the following relations
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(EAI) po(x) =

∫ ∞
0

V̂ (dy)Π(x + y), x > 0.

(EA) Π
+
(x) =

∫
]x,∞[

po(dy)ne(y−x)+ d̂p(x)+ k̂0po(x), for any x > 0; where p(x) is the density

of the measure po, which exists if d̂ > 0.

We will say that a measure M on [0,∞[ belongs to the class L0 of long tailed measures if its
tail M (x) = M ]x,∞[, is such that 0 < M (x) < ∞ for each x > 0 and

lim
x→∞

M (x + t)

M (x)
= 1, for each t ∈ R .

It is well known that this family includes the subexponential measures and the cases at which
M is regularly varying.

We have now all the elements to state our results that relate the behavior of Π
+ with that

of po at infinity, they are the continuous time analogue of the result of Veraverbeke [22] and
Grübel [16] for random walks.

Theorem 3. (a) Assume that the dual ladder height subordinator has a finite mean µ =

E(Ĥ1) < ∞, which implies that ξ does not drifts to ∞. The following are equivalent

(a-1) The measure Π+
I on [0,∞[ with tail Π

+

I (x) =
∫∞

x
Π

+
(z)dz, x ≥ 0, belongs to L0.

(a-2) po ∈ L0.

(a-3) po(x) ∼ 1

µ
Π

+

I (x), as x →∞.

(b) Assume that the dual ladder height subordinator Ĥ has killing term k̂0 > 0 or equivalently
that ξ drift to ∞. The following are equivalent

(b-1) Π+ = Π|]0,∞[ ∈ L0.

(b-2) po ∈ L0,

d̂p(x)

po(x)
−→ 0 and

∫ 1

0

(
po(x)− po(x + y)

po(x)

)
ne(dy) −→ 0, as x →∞. (3)

(b-3) po(x) ∼ 1

k̂0

Π
+
(x), as x →∞.

In Remark 3 & 4 below we make some comments on NASC for the assumptions in Theorem 3
and on some related results, respectively.

As a corollary of the previous Theorem we have the following criterions to determine whether
or not the tail of the Lévy measure of H is regularly varying.
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Corollary 2. (a) Under the assumptions of (a) in Theorem 3 and for any α ∈]0, 1] we have
that Π

+ ∈ RV ∞−1−α if and only if po ∈ RV ∞−α. Both imply that

po(x) ∼ 1

αµ
xΠ

+
(x), x →∞.

(b) Under the assumptions of (b) in Theorem 3 and for any α ∈]0, 1[ we have that Π
+ ∈ RV ∞−α

if and only if po ∈ RV ∞−α and∫ 1

0

(
po(x)− po(x + y)

po(x)

)
ne(dy) −→ 0, as x →∞.

Proof. The proof of (a) in Corollary 2 follows from the fact that under these hypotheses

xΠ
+
(x)∫∞

x
Π

+
(z)dz

−→ α, as x →∞,

which is a consequence of Theorem 1.5.11 in [4]. The proof of (b) is straightforward.

The behavior at 0 of po was studied by Vigon in [23] Theorems 6.3.1 and 6.3.2. He obtained
several estimations that we will use here to provide an analogue of Corollary 2 for the behavior
at 0 of po. (Vigon’s estimates are more general than needed, see the proof of Proposition 1.)

Proposition 1. (a) Assume that Ĥ has a drift d̂ > 0. For any α ∈]0, 1] we have that po ∈
RV 0
−α if and only if Π

+ ∈ RV 0
−α−1.

(b) Assume that Ĥ has a drift d̂ = 0 and that the total mass of the measure ne is finite,
equivalently, limx→0+ ne(x) < ∞. Then for any α ∈]0, 1] we have that po ∈ RV 0

−α if
and only if Π

+ ∈ RV 0
−α. Moreover, the same assertion holds if furthermore α = 0 and

limx→0+ po(x) = ∞.

Cf. [24] and [23] Chapter 10 for NASC for the assumptions in Proposition 1.
Before finishing this section we would like to make some remarks.

Remark 1. As a consequence to Theorem 1, in the case where Sinǎı’s condition hold for ξ with
index β = 1 at ∞ (resp. at 0) we have that r−1ξTr converges in law to 1 as r → ∞ (resp. to
0). The almost sure convergence of this random variable was studied by Doney and Maller [8].
Precisely, Theorem 8 of Doney and Maller [8] provide necessary and sufficient conditions, on
the characteristics of ξ, according to which r−1ξTr converges a.s. to 1 as r → ∞. Moreover,
Corollary 1 in [8] establish that the latter r.v. converge a.s. to 1 as r → 0 if and only if ξ creeps
upward.

Remark 2. Observe that if ξ satisfies the hypotheses of Theorem 2 at infinity so it does ξ̂ = −ξ
and as a consequence ξ̂ satisfies Sinǎı’s condition. Thus, given that the downward ladder height
subordinator, Ĥ, associated to ξ is the upward ladder height subordinator associated to ξ̂,
then under the hypotheses of Theorem 2 the Laplace exponent of H and Ĥ, respectively, is
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regularly varying at 0 with index αρ and α(1 − ρ), respectively. This fact allow us to realize
that the reciprocal of Theorem 2 is not true in general. To construct a counterexample, let
h = {ht, t ≥ 0} be a stable subordinator with parameter α ∈]0, 1[, and ĥ = {ĥt, t ≥ 0}, be
a subordinator with infinite lifetime, without drift, such that its Lévy measure is absolutely
continuous with a decreasing density and assume that its Laplace exponent is not regularly
varying at 0. Observe that according to Theorem 4, h satisfies Sinǎı’s condition at infinity
but ĥ does not. According to the results in Section 7.3 in [23] there exists a real valued Lévy
process, say ξ̃, such that its upward and downward ladder height subordinators are equal in
law to h and ĥ, respectively. Thus the process ξ̃ satisfies Sinǎı’s condition at infinity, since h
does, but there does not exists any function such that the limit in equation (2) holds as t goes
to infinity, because if this were indeed the case it would imply that ĥ satisfies Sinǎı’s condition
at infinity, which is a contradiction.

Remark 3. The assumptions in Theorem 3 can be verified using only the characteristics of
the underlying Lévy process ξ. According to a result due to Chow [5] necessary and sufficient
conditions on ξ to be such that E(Ĥ1) < ∞, are either 0 < E(−ξ1) ≤ E |ξ1| < ∞ or 0 =
E(−ξ1) < E |ξ1| < ∞ and∫

[1,∞[

(
xΠ
−
(x)

1 +
∫ x

0
dy
∫∞

y
Π

+
(z)dz

)
dx < ∞ with Π

−
(x) = Π]−∞,−x[, x > 0.

Observe that under such assumptions the Lévy process ξ does not drift to∞, i.e. lim inft→∞ ξt =
−∞, P–a.s. The case where the Lévy process ξ drift to ∞, limt→∞ ξt = ∞, P–a.s. or equiva-
lently k̂0 > 0 is considered in (b). Kesten and Erickson’s criteria state that ξ drift to ∞ if and
only if∫

]−∞,−1[

(
|y|

Π
+
(1) +

∫ |y|
1

Π
+
(z)dz

)
Π(dy) < ∞ =

∫ ∞
1

Π
+
(x)dx or 0 < E(ξ1) ≤ E |ξ1| < ∞,

cf. [17] and [10]. (Actually, Chow, Kesten and Erickson proved the results above for random
walks, its translation for real valued Lévy processes can be found in [8] and [23].)

Remark 4. The results in Theorem 3 are close in spirit to those obtained by Klüppelberg,
Kyprianou and Maller [19]. In that work the authors assume that the Lévy process ξ drifts
to −∞, i.e. limt→∞ ξt = −∞, P–a.s. and obtain several asymptotic estimates of the function
po in terms of the Lévy measure Π. In our setting we permit any behavior of ξ at the price of
making some assumptions on the dual ladder height subordinator. Furthermore, the results in
Theorem 3 concern only the case at which the underlying Lévy process does not has exponential
moments and so it extends to Lévy processes the Theorem 1-(B,C) of Veraverbeke [22]. The
case at which the Lévy process has exponential moments has been considered by Klüppelberg
et al. [19] Proposition 5.3 under the assumption that the underlying Lévy process has positive
jumps and drifts to −∞, but actually the latter hypothesis is not used in their proof, and so
their result is still true in this more general setting, which extends Theorem 1-A in [22].

Remark 5. The estimate of po obtained in Theorem 3-a holds whenever the function Π
+

I

belongs to the class L0, but it is known that it occurs even if Π+ /∈ L0, see e.g. Klüppelberg [18].
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A question arises: Is it possible to sharpen the estimate of po provided in Theorem 3-(a) when
moreover Π+ ∈ L0? The following result answers this question in affirmatively and will be
proved below.

Proposition 2. Assume that µ = E(Ĥ1) < ∞. The following are equivalent

(i) Π+ ∈ L0.

(ii) For any g : R+ → R+ directly Riemman integrable,

lim
x→∞

1

Π
+
(x)

∫ ∞
x

po(dy)g(y − x) =
1

µ

∫ ∞
0

g(z)dz.

To our knowledge the discrete time analogue of this result, that we state below, is unknown,
although it can be easily deduced from the arguments in Asmussen et al. [1] Lemma 3.

Proposition 3. Let X1, X2, . . . be a sequence of independent and identically distributed random
variables, Z its associated random walk Z0 = 0, Zn =

∑n
k=1 Xk, n > 0 and define th pair of

random variables (N, ZN) where N is the first ladder epoch of the random walk Z, N = min{k :
Zk > 0}, and ZN , is the position of Z at the instant N. Assume that m = E(Z bN) < ∞, where
N̂ = inf{n > 0 : Zn ≤ 0} and that the law of X1 is non-lattice. The following are equivalent

(i) The law of X1 belongs to the class L0.

(ii) For any g : R+ → R+ directly Riemman integrable,

lim
x→∞

1

F (x)

∫ ∞
x

g(y − x)P(ZN ∈ dy) =
1

m

∫ ∞
0

g(z)dz,

where F (x) = P(X1 > x), x > 0.

The proof of this result is quite similar to that of Proposition 2 and so we will omit it.

The forthcoming sections are organized as follows. In Section 2, we focus all our efforts into
prove an equivalent form of the Dynkin & Lamperti’s theorem for subordinators (see e.g. [2]
Theorem III.6) which is one of the key tools in the proof of Theorem 1 and it is interesting in
itself. In Section 3, we prove Theorem 2. Finally, Section 4 is devoted to the proof of Theorem 3
and Propositions 1 & 2

2 A result for subordinators

In the proof of Theorem 1 we have seen that a fluctuation identity due to Bertoin and Doney
allows us to simplify our problem for general Levy processes into one for subordinators. Namely,
that for subordinators Sinǎı’s condition is equivalent to the regular variation of the associated
Laplace exponent. The purpose of this Section is to prove the latter assertion, and so throughout
this Section we will only deal with subordinators.
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Let σ = (σt, t ≥ 0) be a subordinator, possibly killed, with life time ζ, and denote by φ its
Laplace exponent,

φ(λ) ≡ − log E(e−λσ1 , 1 < ζ), λ ≥ 0.

It is well known that the Laplace exponent φ can be represented as

φ(λ) = κ + λd +

∫
]0,∞[

(1− e−λy)ν(dy), λ ≥ 0,

where κ, d ≥ 0 are the killing rate and drift coefficient of σ, respectively, and ν is the Lévy
measure of σ, that is, a measure on ]0,∞[ such that

∫
]0,∞[

min{1, y}ν(dy) < ∞.

The main result of this section is the following equivalent form of the Dynkin & Lamperti’s
theorem for subordinators (see e.g. [2] Theorem III.6, see also page 82 therein for an account on
necessary and sufficient conditions according to which a subordinator has a Laplace exponent
that is regularly varying either at infinity or at 0).

Theorem 4. For β ∈ [0, 1], the following are equivalent:

(i) The subordinator σ satisfies Sinaı̌’s condition at 0+ (resp. at +∞) with index β.

(ii) The Laplace exponent φ is regularly varying at +∞ (resp. at 0+) with index β.

The proof of this result relies on the following elementary remark.

Remark 6. Write
φ(θ) = (1 + φ(θ))

φ(θ)

1 + φ(θ)
, θ ≥ 0. (4)

The first (resp. second) factor in the right hand term of the previous equality can be used to
determine the behavior at infinity (resp. at 0) of φ. More precisely, φ ∈ RV ∞β , (resp. ∈ RV 0

β )
if and only

1 + φ(·) ∈ RV ∞β , (resp.
φ(·)

1 + φ(·)
∈ RV 0

β ).

This is based on the fact that for λ > 1,∫ ∞
0

dt

t
P (z < σt ≤ λz) ∼

∫ ∞
0

dt

t
e−t P (z < σt ≤ λz)

∼
∫ 1

0

dt

t
P (z < σt ≤ λz) , z → 0+,

and ∫ ∞
0

dt

t
P (z < σt ≤ λz) ∼

∫ ∞
0

dt

t

(
1− e−t

)
P (z < σt ≤ λz)

∼
∫ ∞

1

dt

t
P (z < σt ≤ λz) , z →∞,
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since only the small time (resp. long time) behavior of σ is relevant to estimate the value at
0 (resp. at ∞) of the leftmost integral in the former (resp. latter) equation. In general, for
studying properties related to the small time behavior of σ it may be useful to consider∫ ∞

0

dt

t
e−t P (σt ∈ dz) or

∫ 1

0

dt

t
P (σt ∈ dz) ,

instead of
∫∞

0
dt
t
P (σt ∈ dz). The analogous holds also for large time behavior.

The proof of Theorem 4 will be given using the previous remark and via three lemmas whose
proof will be given at the end of this section. The first of them will enable us to relate the
factors in equation (4) with a transformation of the type Mellin’s convolution.

Lemma 2. We have that

(i) 1 + φ(θ) = exp{Ĝ1(θ)}, for θ > 0; where the function Ĝ1 is the Mellin convolution of the
non-decreasing function

G1(y) =

∫ ∞
0

dt

t
e−t P(σt > 1/y), y > 0,

and the kernel k(x) = xe−x, x > 0; that is,

Ĝ1(θ) = kM ∗G1(θ) :=

∫ ∞
0

dx

x
k(θ/x)G1(x), θ > 0.

(ii)
φ(θ)

1 + φ(θ)
= exp

{
−Ĝ2(θ)

}
, for θ > 0; where Ĝ2 is the Laplace transform of the measure

G2(dx) =

∫ ∞
0

dt

t
(1− e−t)P(σt ∈ dx), x > 0;

which is in fact the harmonic renewal measure associated to the law F (dx) = P(σΘ ∈ dx)
with Θ an independent random variable with exponential law of parameter 1.

A consequence of Lemma 2 is that 1 + φ ∈ RV ∞β if and only if

lim
θ→∞

Ĝ1(λθ)− Ĝ1(θ) = β log λ, ∀λ > 0. (5)

Moreover, φ(·)/(1 + φ(·)) ∈ RV 0
β if and only if

lim
θ→0

Ĝ2(λθ)− Ĝ2(θ) = −β log λ, ∀λ > 0. (6)

The second of these Lemmas enable us to relate Sinai’s condition with the behavior at infinity
of the differences of the function G1, and those of the function G2(x) ≡ G2[0, x], x > 0.

Lemma 3. Let β ∈ [0, 1].

11



(i) Sinaı̌’s condition holds at 0 with index β if and only if

lim
z→∞

G1(λz)−G1(z) = β log(λ), ∀λ > 1.

(ii) Let G2(z) := G2[0, z], z > 0. Sinaı̌’s condition holds at infinity with index β if and only if

lim
z→∞

G2(λz)−G2(z) = β log(λ), ∀λ > 1.

The last ingredient to achieve the proof of Theorem 4 is an Abelian–Tauberian type result
relating the behavior of the differences of G1 (resp. G2) with those of the functions Ĝ1 (resp.
Ĝ2).

Lemma 4. (i) The following are equivalent

lim
y→∞

G1(λy)−G1(y) = β log(λ), ∀λ > 0. (7)

lim
θ→∞

Ĝ1(λθ)− Ĝ1(θ) = β log(λ), ∀λ > 0. (8)

Both imply that
G1(θ)− Ĝ1(θ) −−−→

θ→∞
βγ.

(ii) The following are equivalent

lim
y→∞

G2(λy)−G2(y) = β log(λ), ∀λ > 0. (9)

lim
θ→0

Ĝ2(λθ)− Ĝ2(θ) = −β log(λ), ∀λ > 0. (10)

Both imply that
G2(θ)− Ĝ2(1/θ) −−−→

θ→∞
βγ.

Where γ is Euler’s constant γ =
∫∞

0
e−v log(v)dv.

Tacking for granted Lemmas 2, 3 & 4 the proof of Theorem 4 is straightforward.
A consequence of Lemma 4 is that quantities related to Sinǎı’s condition can be used to

determine whether or not σ has finite lifetime or is a compound Poisson process or has finite
expectation or a strictly positive drift. That is the content of the following corollary.

Corollary 3. (i) σ has a finite lifetime a.s. if and only if

r ≡ lim
θ→∞

G2(θ) < ∞.

In this case, φ(0) = (er − 1)−1.

12



(ii) σ is a compound Poisson process if and only if

r̃ ≡ lim
θ→∞

G1(θ) < ∞.

In this case, ν]0,∞[= eer − 1.

(iii) Assume that Sinǎı’s condition holds at infinity with index β = 1. Then σ has a finite
mean if and only if

R ≡ lim
θ→∞

log(θ)−G2(θ) < ∞.

In this case, E(σ1) = eγ+R.

(iv) Assume that Sinaı̌’s condition holds at 0 with index β = 1. Then σ has a strictly positive
drift d if and only if

R̃ ≡ lim
θ→∞

G1(θ)− log(θ) < ∞.

In this case, d = eγ+ eR.

Remark 7. For β ∈]0, 1[, it is well known that φ ∈ RV ∞β if and only if the sequence of
subordinators σz defined by (σz

t = zσt/φ(z), t ≥ 0) converge as z → ∞ in the sense of finite
dimensional distributions and in Skorohod’s topology to a stable subordinator σ̃ of parameter
β. This is equivalent to say that for any t > 0

P(1 < zσt/φ(z) ≤ λ) −−−→
z→∞

P(1 < σ̃t ≤ λ), λ > 1, (11)

and
P(λ < zσt/φ(z) ≤ 1) −−−→

z→∞
P(λ < σ̃t ≤ 1), 0 < λ < 1. (12)

On the other hand, Theorem 4 ensures that the latter condition on φ holds if and only if Sinǎı’s
condition holds at 0, which can be written as follows: for any λ > 1∫ ∞

0

ds

s
P(1 < z−1σs/φ(z−1) ≤ λ) =

∫ ∞
0

dt

t
P(z < σt ≤ λz)

−−→
z→0

β ln(λ)

=

∫ ∞
0

ds

s
P(1 < σ̃s ≤ λ),

(13)

where the first equality is justified by a change of variables s = tφ(z−1) and the last one follows
from the scaling property of the stable subordinator σ̃; and for any 0 < λ < 1∫ ∞

0

ds

s
P(λ < z−1σs/φ(z−1) ≤ 1) −−→

z→0

∫ ∞
0

ds

s
P(λ < σ̃s ≤ 1), (14)

Putting the pieces together we get that the result in Theorem 4 can be viewed as an equiv-
alence between the convergence of the uni-dimensional laws of σz in (11) & (12) and the
convergence of the integrated ones in (13) & (14). An analogous fact can be deduced for the
convergence of σz as z goes to 0 whenever Sinǎı’s condition holds at infinity.

We pass now to the proof of Lemmas 2, 3 & 4.
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2.1 Proof of Lemmas 2, 3 & 4

Proof of (i) in Lemma 2. We have by Frullani’s formula that for every θ > 0

1 + φ(θ) = exp

{∫ ∞
0

dt

t
e−t(1− e−tφ(θ))

}
= exp

{
θ

∫ ∞
0

dye−θy

∫ ∞
0

dt

t
e−t P(σt > y)

}
= exp{Ĝ1(θ)}.

Proof of (ii) in Lemma 2. The equation relating φ and the measure G2 can be obtained using
Frullani’s formula but to prove moreover that this measure is in fact is an harmonic renewal
measure we proceed as follows. Let (ek, k ≥ 1) be a sequence of independent identically dis-
tributed random variables with exponential law of parameter 1 and independents of σ. Put
Θl =

∑l
k=1 ek, l ≥ 1. It was proved by Bertoin and Doney [3], and it is easy to prove, that

(σΘl
, l ≥ 1) forms a renewal process. The harmonic renewal measure associated to (σΘl

, l ≥ 1)
is G2(dx). Indeed,

∞∑
l=1

1

l
P(σΘl

∈ dx) =
∞∑
l=1

1

l

∫ ∞
0

dt
tl−1

(l − 1)!
e−t P(σt ∈ dx)

=

∫ ∞
0

dt

t
e−t(et − 1)P(σt ∈ dx) = G2(dx).

Moreover, since the l-convolution of F (dx) = P(σΘ1 ∈ dx) is such that

F ∗l(dx) = P(σΘl
∈ dx)

we have that the Laplace transform F̂ (θ) of F is related to that of G2 by the formula

1− F̂ (θ) = exp{−Ĝ2(θ)} θ > 0.

Which finish the proof since F̂ (θ) = (1 + φ(θ))−1, for θ > 0.

Proof of (i) in Lemma 3. We can suppose without loss of generality that λ > 1. Given that∫ ∞
0

dt

t
P(z < σt ≤ λz) =

∫ ∞
0

dt

t
e−t P(z < σt ≤ λz) +

∫ ∞
0

dt

t
(1− e−t)P(z < σt ≤ λz),

for every z > 0, and

G1(λz)−G1(z) =

∫ ∞
0

dt

t
e−t P

(
1

λz
≤ σt <

1

z

)
, z > 0,

in order to prove (i) in Lemma 3 we only need to check that

lim
z→0

∫ ∞
0

dt

t
(1− e−t)P(z < σt ≤ λz) = 0, ∀λ > 1.
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Indeed, given that for any 0 < z < ∞∫ 1

0

dt

t
(1− e−t)P(σt ≤ λz) ≤

∫ 1

0

dt

t
(1− e−t) < ∞,

we have by the monotone convergence theorem that∫ 1

0

dt

t
(1− e−t)P(z < σt ≤ λz) ≤

∫ 1

0

dt

t
(1− e−t)P(σt ≤ λz) −→ 0, as z → 0, ∀λ > 1.

Furthermore, for any 0 < z < ∞, and 1 < λ,∫ ∞
1

dt

t
P(σt ≤ λz) ≤

∫ ∞
1

dtP(σt ≤ λz) < ∞,

owing to the fact that the renewal measure associated to σ of any interval [0, z] z > 0, is finite,
see e.g. [2] Proposition III.1. Thus, proceeding as in the case

∫ 1

0
we obtain that for any λ > 1,

lim
z→0

∫ ∞
1

dt

t
(1− e−t)P(z < σt ≤ λz) = 0.

Proof of (ii) in Lemma 3. As in the proof of (i) it is enough to prove that

lim
z→∞

∫ ∞
0

dt

t
e−t P(z < σt ≤ λz) = 0, ∀λ > 1.

Indeed, it is straightforward that

lim
z→∞

∫ ∞
1

dt

t
e−t P(z < σt ≤ λz) = 0, ∀λ > 1.

To prove that

lim
z→∞

∫ 1

0

dt

t
e−t P(z < σt ≤ λz) = 0, ∀λ > 1.

we will use the inequality (6) in Lemma 1 of [12] which enable us to ensure that for any u > 0
and z > 0

P(z < σt < ∞) ≤ tφ̃(u)e−κt

1− e−uz
, with φ̃(u) = ud +

∫
]0,∞[

(1− e−ux)ν(dx).

Applying this inequality we get that, for any u, z > 0, and λ > 1,∫ 1

0

dt

t
e−t P(z < σt ≤ λz) ≤ φ̃(u)

1− e−uz

∫ 1

0

e−(1+κ)tdt.

Making, first z →∞ and then u → 0 in the previous inequality, we obtain the estimate

lim
z→∞

∫ 1

0

dt

t
e−t P(z < σt ≤ λz) ≤ φ̃(0)

∫ 1

0

e−(1+κ)tdt,

valid for any λ > 1. Which in fact ends the proof since φ̃(0) = φ(0)− κ = 0.
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Proof of Lemma 4. The equivalence in (ii) of Lemma 4 follows from Theorem 3.9.1 in [4]. The
equivalence in (i) of Lemma 4 is obtained by applying Abelian-Tauberian theorems relying the
behavior of the differences of a non-decreasing function and those of their Mellin transform.
Indeed, to prove that (7) implies (8) we apply an Abelian theorem that appears in [4] Section
4.11.1. To that end we just need to verify that the Mellin transform ǩ of the kernel k is finite
in a set A = {x ∈ C : a ≤ <(x) ≤ b} with a < 0 < b. This is indeed the case since the Mellin
transform of k,

ǩ(x) :=

∫ ∞
0

t−xk(t)
dt

t
=

∫ ∞
0

t−xe−tdt, x ∈ C,

is finite in the strip <(x) < 1. That (8) implies (7) is a direct consequence of a Tauberian
theorem for differences established in [13] Theorem 2.35.

Proof of Corollary 3. To prove the assertion in (i) observe that

lim
θ→∞

G2(θ) =

∫ ∞
0

dt

t
(1− e−t)P(σt < ∞) =

∫ ∞
0

dt

t
(1− e−t)e−tφ(0),

which is finite if and only if φ(0) > 0, so if and only if σ has finite lifetime a.s. In this case, by
Frullani’s formula

lim
θ→∞

G2(θ) = ln

(
1 + φ(0)

φ(0)

)
.

In particular, Sinǎı’s condition is satisfied at infinity with index β = 0.

We next prove (ii). To that end observe that

lim
θ→∞

G1(θ) =

∫ ∞
0

dt

t
e−t P(σt > 0) =

∫ ∞
0

dt

t
e−t (1−P(σt = 0)) .

If the latter quantity is finite it implies that for t > 0, σs = 0, for all s ≤ t, with probability
> 0. So σ is compound Poisson. Reciprocally, if the latter holds then

P(σt = 0) = e−tν]0,∞[, t ≥ 0,

and thus
lim
θ→∞

G1(θ) = ln (1 + ν]0,∞[) .

In particular, Sinǎı’s condition is satisfied at 0 with index β = 0.

The proof of the assertion in (iii) & (iv) in Corollary 3 are quite similar so we will only
prove the assertion in (iii) and indicate the tools needed to prove (iv). Observe that owing to
ξ satisfies Sinǎı’s at infinity with index β = 1 and the assertion in (i) in Corollary 3 then its
lifetime is a.s. infinite so φ(0) = 0. It is well known that any subordinator has finite mean if
and only if its Laplace exponent is derivable at 0. Since σ is assumed to have infinite lifetime
and the following relations, which are a consequence of the Lemmas 2,3 & 4,

φ(θ)

θ
∼

φ(θ)

1 + φ(θ)

θ
∼ exp

{
−Ĝ2(θ)− log(θ)

}
∼ exp {γ −G2(1/θ) + log(1/θ)} , as θ → 0,

we have that φ is derivable at 0 if and only if the limit in Corollary 3 (iii) holds. The proof of
the assertion in Corollary 3 (iv) uses the fact that σ has a strictly positive drift if and only if
limθ→∞ φ(θ)/θ > 0.
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3 Proof of Theorem 2

We will prove that under the assumptions of Theorem 2, for t → ∞ in equation (2), the
assertion in Corollary 1 (iv) holds. (The proof of the case t → 0 in equation (2) follows in a
similar way and so we omit the proof.) To that end, let (ξr)r>0 be the family of Lévy processes
defined by, (ξr(t) = ξrt/b(r), t ≥ 0) for r > 0. The hypothesis of Theorem 2 is equivalent
to the convergence, in the sense of finite dimensional distributions, of the sequence of Lévy
processes ξr to a stable Lévy process X with characteristic exponent given by the formula (2).
By Corollary 3.6 in Jacod–Shiryaev we have that this convergence holds also in the Skorohod
topology and Theorem IV.2.3 in Gihman & Skorohod [14] enable us to ensure that there is also
convergence of the first passage time above the level x and the overshoot at first passage time
above the level x by ξr to the corresponding objects for X. That is, for any x > 0

τ r
x = inf{t > 0 : ξr(t) > x}, γr

x = ξr(τ r
x)− x,

τx = inf{t > 0 : X(t) > x}, γx = X(τx)− x,

we have that
(τ r

x , γr
x)

D−−−→
r→∞

(τx, γx).

In particular, for x = 1, we have that τ r
1 = r−1Tb(r) and γr

1 =
(
ξTb(r)

− b(r)
)

/b(r), in the
notation of Corollary 1, and thus that(

r−1Tb(r),
(
ξTb(r)

− b(r)
)

/b(r)
)

D−−−→
r→∞

(τ1, γ1).

We will next prove that
(ξTr − r) /r

D−−−→
r→∞

γ1,

which implies that the assertion (iv) in Corollary 1 holds. To that end, we introduce the
generalized inverse of b, b←(t) = inf{r > 0 : b(r) > t} for t > 0. Given that b is regularly
varying at infinity it is known that b(b←(t)) ∼ t as t →∞, see e.g. [4] Theorem 1.5.12. Owing
the following relations valid for any ε > 0 fixed and small enough,

b(b←(r)− ε) ≤ r ≤ b(b←(r)), r > 0,

we have that for any x > 0

P

(
ξTb(b←(r))

b(b←(r))

b(b←(r))

r
≤ x + 1

)
≤ P

(
ξTr

r
≤ x + 1

)
≤ P

(
ξTb(b←(r)−ε)

b(b←(r)− ε)

b(b←(r)− ε)

b(b←(r))

b(b←(r))

r
≤ x + 1

)
.

Making r tend to infinity and using that b(b←(r)− ε)/b(b←(r)) → 1 as r →∞, we get that the
left and right hand sides of the previous inequality tend to P(γ1 + 1 ≤ x + 1) and so that for
any x > 0

P

(
ξTr − r

r
≤ x

)
−−−→
r→∞

P(γ1 ≤ x).
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Furthermore, it is well known that in the case αρ ∈]0, 1[ the law of γ1 is the generalized
arc-sine law with parameter αP(X1 > 0) = αρ, that is

P(γ1 ∈ dx) =
sin(αρπ)

π
x−αρ(1 + x)αρ−1dx, x > 0.

In the case αρ = 0 the random variable γ1 is degenerate at infinity and in the case αρ = 1
it is degenerate at 0. Thus, in any case the Sinai index of ξ is αρ. Which finish the proof of
Theorem 2.

For shake of completeness in the following Lemma we provide necessary and sufficient con-
ditions on the tail behavior of the Lévy measure of ξ in order that the hypotheses of Theorem 2
be satisfied. This result concerns only the case t → ∞ in (i) of Theorem 2 and α ∈]0, 1[. The
triple (a, q2, Π) denotes the characteristics of the Lévy process ξ, that is, its linear and Gaussian
term, a, q and Lévy measure Π and are such that

Ψ(λ) = iaλ− λ2q2

2
+

∫
R \{0}

(eiλx − 1− iλx1{|x|<1})Π(dx), λ ∈ R .

By Π
+ and Π

− we denote the right and left hand tails of the Lévy measure Π respectively, i.e.
Π

+
(x) = Π]x,∞[ and Π

−
(x) = Π]−∞,−x[, for x > 0.

Lemma 5. Let α ∈]0, 1[ and δ ∈ [−1, 1]. The following are equivalent

DA There exists a function b :]0,∞[→]0,∞[ which is regularly varying at infinity with index
β = 1/α and such that the limit in equation (2) holds as t →∞.

TB The function Π
+
(·) + Π

−
(·) is regularly varying at infinity with index −α and

Π
+
(x)

Π
+
(x) + Π

−
(x)

−→ p,
Π
−
(x)

Π
+
(x) + Π

−
(x)

−→ q, as x →∞; p + q = 1, p− q = δ.

Proof of Lemma 5. It is plain, that for any t > 0 the function Ψ(t)(λ) := tΨ

(
λ

b(t)

)
is the

characteristic exponent of the infinitely divisible random variable X(t) := ξt/b(t), which by the
hypothesis DA(α) converges to a stable law X(1) whose characteristic exponent is given by
equation (2). The characteristic exponent Ψ(t) can be written as

Ψ(t)(λ) = iλa(t) − λ2(q(t))2/2 +

∫
R \{0}

(
eiλz − 1− iλh(z)

)
Π(t)(dz),

where h(z) = z1{|z|≤1} + z−11{|z|>1} and (a(t), q(t), Π(t)) are given by

a(t) =
ta

b(t)
+

t

b(t)

∫
x1{1<|x|≤b(t)}Π(dx) + tb(t)

∫
x−11{|x|>b(t)}Π(dx),

q(t) = q

(
t

b(t)2

)1/2

, Π(t)(dz) = tΠ(b(t)dz).
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According to a well known result on the convergence of infinite divisible laws, see e.g.
Sato [21], the convergence in law of X(t) to X as t → ∞, is equivalent to the convergence
of the triplet (a(t), q(t), Π(t)) to (l, 0, ΠS) as t →∞, with

ΠS(dx) =
(
c+x−1−α1{x>0} + c−|x|−1−α1{x<0}

)
dx, c+, c− ∈ R+,

and
l =

2(c+ − c−)

1− α2
,

and they are such that for every λ ∈ R

−c|λ|α (1− iδsgn(λ) tan(πα/2)) =

∫
R \{0}

(eiλx − 1)ΠS(dx)

= ilλ +

∫
R \{0}

(
eiλx − 1− iλh(x)

)
ΠS(dx),

with c > 0 convenably chosen. The term δ in the previous equation is determined by δ =

p− q =
c+ − c−
c+ + c−

.

That the hypotheses on the tail behavior of Π are equivalent to the convergence of Πt to ΠS

is a quite standard fact in the theory of domains of attraction and so we refer to [4] section
8.3.2, for a proof. This implies in particular that for any x > 0,

tΠ
+
(b(t)x) → c+x−α, and tΠ

−
(b(t)x) → c−x

−α, as t →∞.

The only technical detail that requires a proof is that a(t) → l as t → ∞. Indeed, under the
conditions (ii) of Theorem 2 and 0 < p < 1 the functions Π

+
(·) and Π

−
(·) are regularly varying

at infinity with index 0 < α < 1, this implies that at/b(t) → 0 as t → ∞. Moreover, it is
justified by making an integration by parts that∫

x1{1<x≤b(t)}Π(dx) ∼ Π
+
(1)− b(t)Π

+
(b(t)) +

∫ b(t)

1

Π
+
(z)dz

∼ Π
+
(1)− b(t)Π

+
(b(t)) +

b(t)Π
+
(b(t))

1− α
,

as t →∞. Multiplying by t/b(t) we get that

t

b(t)

∫
x1{1<x≤b(t)}Π(dx) ∼ −tΠ

+
(b(t)) +

tΠ
+
(b(t))

1− α
−→ −c+ +

c+

1− α

as t →∞. Similarly, it is proved that
t

b(t)

∫
x1{1<−x≤b(t)}Π(dx)−−−→

t→∞
c− −

c−
1− α

Concerning the term
∫

x−11{|x|>b(t)}Π(dx), an integration by parts and Karamata’s theorem
yield ∫

x−11{x>b(t)}Π(dx) ∼ (b(t))−1Π
+
(b(t)) +

∫ ∞
b(t)

z−2Π
+
(z)dz

∼ (b(t))−1Π
+
(b(t)) +

Π
+
(b(t))

b(t)(1 + α)
,

19



as t →∞ and therefore

tb(t)

∫
x−11{x>b(t)}Π(dx) ∼ tΠ

+
(b(t)) +

tΠ
+
(b(t))

1 + α
−→ c+ +

c+

1 + α
.

Analogously, we prove

tb(t)

∫
x−11{x<−b(t)}Π(dx)−−−→

n→∞
−c− −

c−
1 + α

.

Finally, adding up these four terms it follows that

lim
t→∞

a(t) =
c+ − c−
1− α

+
c+ − c−
1 + α

= l.

The proof that a(t) → l in the case p = 1, respectively p = 0, is quite similar but uses that
Π
−

= o(Π
+
), respectively Π

+
= o(Π

−
).

Remark 8. The proof of Theorem 2 is a reworking of its analogous for random walks, which
was established by Rogozin [20] Theorem 9.

Remark 9. The result in Lemma 5 holds also true for α ∈]0, 2[ if the Lévy process is assumed
to be symmetric (the proof of Lemma 5 can be easily extended to this case). Furthermore,
there is also an analogue of this result when t → 0 in (i) of Theorem 2 in the cases 1 < α < 2
or 0 < α < 2 and ξ is assumed to be symmetric. Its proof is quite similar to that of Lemma 5,
see e.g. the recent work of De Weert [6].

4 Proofs of Theorem 3 and Propositions 1 and 2

Proof of (a) in Theorem 3. To prove that (a-1) is equivalent to (a-2) we will prove that either
of this conditions implies that

po(x) =

∫ ∞
0

Π
+
(x + y)V̂ (dy) ∼ 1

µ

∫ ∞
x

Π
+
(z)dz, as x →∞, (15)

with µ := E(Ĥ1), from where the result follows. (Observe that the assumption that Ĥ has a
finite mean implies that

∫∞
Π

+
(z)dz < ∞.)

Assume that (a-1) holds. Indeed, by the renewal theorem for subordinators we have that for
any h > 0,

lim
t→∞

V̂ ]t, t + h] =
h

µ
.

Thus, for any h > 0 given and any ε > 0 there exists a t0(h, ε) > 0 such that

(1− ε)
h

µ
< V̂ ]t, t + h] < (1 + ε)

h

µ
, ∀t > t0,
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and as a consequence, if N0 is an integer such that N0h > t0, we have the following inequalities∫ ∞
0

Π
+
(x + y)V̂ (dy) ≤ Π

+
(x)V̂ [0, N0h] +

∞∑
k=N0

Π
+
(kh + x)V̂ ]kh, kh + h]

≤ Π
+
(x)V̂ [0, N0h] + (1 + ε)

∞∑
k=N0

Π
+
(kh + x)

h

µ

≤ Π
+
(x)V̂ [0, N0h] +

(1 + ε)

µ

∫ ∞
(N0−1)h

Π
+
(x + z)dz

≤ Π
+
(x)V̂ [0, N0h] +

(1 + ε)

µ

∫ ∞
x

Π
+
(z)dz.

It follows from the previous inequalities and the fact that

Π
+
(x)/

∫ ∞
x

Π
+
(z)dz −→ 0, as x →∞,

since Π
+

I ∈ L0 and Π
+ is decreasing, that

lim sup
x→∞

∫∞
0

Π
+
(x + y)V̂ (dy)

1
µ

∫∞
x

Π
+
(z)dz

≤ 1.

Analogously, we prove that∫ ∞
0

Π
+
(x + y)V̂ (dy) ≥ (1− ε)

µ

∫ ∞
x

Π
+
(z)dz − (1− ε)

µ
Π

+
(x)(N0 + 1)h, x > 0.

Therefore,

lim inf
x→∞

∫∞
0

Π
+
(x + y)V̂ (dy)

1
µ

∫∞
x

Π
+
(z)dz

≥ 1.

Which ends the proof of the claim (15).
We assume now that (a-2) holds and we will prove that the estimate in (15) holds. On the

one hand, we know that for every z > 0

Π
+
(z) =

∫ ∞
z

po(dy)ne(y − z) + d̂p(z),

since k̂0 = 0, because under our assumptions the Lévy process does not drift to ∞. Integrating
this relation between x and ∞ and using Fubini’s theorem we obtain that for any x > 0∫ ∞

x

dzΠ
+
(z) =

∫ ∞
x

po(dy)

∫ y−x

0

dzne(z) + d̂po(x)

≤ po(x)

(∫ ∞
0

dzne(z) + d̂

)
= po(x)µ < ∞.
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Thus,

lim sup
x→∞

1
µ

∫∞
x

dzΠ
+
(z)

po(x)
≤ 1.

On the other hand, to prove that

lim inf
x→∞

1
µ

∫∞
x

dzΠ
+
(z)

po(x)
≥ 1,

we will use an argument based on some facts of renewal theory. To that end we recall that
it was proved by Bertoin and Doney [3] that the potential measure of a subordinator Ĥ is
the delayed renewal measure associated to the law F (x) = P(Ĥϑ ≤ x) with ϑ an exponential
random variable independent of Ĥ, that is

V̂ (dy) =
∞∑

n=1

F ∗n(dy).

We have by hypothesis that
∫∞

0
(1−F (x))dx = E(Ĥ1) = µ < ∞ and thus the measure G̃F (dy)

on ]0,∞[, with density GF (z) := (1 − F (z))/µ, z > 0 is a probability measure. By standard
facts of renewal theory we know that the following equality between measures holds

dy

µ
= G̃F (dy) + G̃F ∗ V̂ (dy), y > 0,

where ∗ denotes the standard convolution between measures. Using this identity and the
equation (EAI) we have that for any x > 0,

1

µ

∫ ∞
0

dyΠ
+
(x + y) =

∫ ∞
0

dyGF (y)Π
+
(x + y) +

∫ ∞
0

dzGF (z)

∫ ∞
0

V̂ (dr)Π
+
(x + z + r)

=

∫ ∞
0

dyGF (y)Π
+
(x + y) +

∫ ∞
0

dzGF (z)po(x + z),

and by Fatou’s lemma we get that

lim inf
x→∞

1
µ

∫∞
0

dyΠ
+
(x + y)

po(x)
≥
∫ ∞

0

dzGF (z) lim inf
x→∞

po(x + z)

po(x)
= 1.

So we have proved that (a-1) and (a-2) are equivalent and imply (a-3). To finish the proof,
we will prove that (a-3) implies (a-2). To that end it suffices with proving that

lim
x→∞

po(x)− po(x + y)

po(x)
= 0, for any y > 0.

Indeed, using the equation (EA) we have that for any y > 0,

µ−
∫∞

0
dzΠ

+
(z + x)

po(x)
=

∫∞
0

dzne(z)po(x) + d̂po(x)−
∫∞

x
po(dy)

∫ y−x

0
dzne(z)− d̂po(x)

po(x)

=

∫ ∞
0

dzne(z)
po(x)− po(x + z)

po(x)

≥
∫ ∞

y

dzne(z)
po(x)− po(x + y)

po(x)
≥ 0.
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and the assertion follows making x → ∞ in the latter equation since by assumption its left
hand term tends to 0 as x →∞.

Proof of (b) in Theorem 3. The assumption that k̂0 > 0, implies that the renewal measure
V̂ (dy) is a finite measure and V̂ [0,∞[= 1/k̂0. Thus if Π

+
(x) ∈ L0 we have by the equation

(EA) and the dominated convergence theorem that

lim
x→∞

po(x)

Π
+
(x)

= lim
x→∞

∫ ∞
0

V̂ (dy)
Π

+
(x + y)

Π
+
(x)

=

∫ ∞
0

V̂ (dy) lim
x→∞

Π
+
(x + y)

Π
+
(x)

=
1

k̂0

.

Now, that (3) holds is a straightforward consequence of the following identity, for any x > 0

Π
+
(x) =

∫ ∞
0

ne(dy) (po(x)− po(x + y)) + k̂0po(x) + d̂p(x)

= po(x)

∫ 1

0

ne(dy)

(
po(x)− po(x + y)

po(x)

)
+

∫ ∞
1

ne(dy) (po(x)− po(x + y))

+ k̂0po(x) + d̂p(x),

(16)

which is obtained using the equation (EAI) and Fubini’s theorem. We have so proved that
(b-1) implies (b-2) and (b-3). Next, to prove that (b-2) implies (b-1) and (b-3) we assume that
po ∈ L0 and (3) holds. Under this assumptions we claim that

Π
+
(x) ∼ k̂0po(x) + d̂p(x) as x →∞.

Indeed, this can be deduced from equation (16), using that
∫ 0

−∞ ne(dy) min{|y|, 1} < ∞, that
limx→∞ po(x + y)/po(x) = 1 for any y > 0, and the dominated convergence theorem. Further-
more, we have by hypothesis that d̂p(x)/po(x) → 0 as x →∞, which implies that

Π
+
(x) ∼ k̂0po(x) as x →∞.

To finish we next prove that (b-3) implies (b-2). Indeed, using the equation (EAI) and the
hypothesis (b-3) we get that

Π
+
(x)

po(x)
− k̂0 =

∫∞
x

po(dz)ne(z − x) + d̂p(x)

po(x)

=

∫ ∞
0

ne(dz)
(po(x)− po(x + z))

po(x)
+

d̂p(x)

po(x)
−→ 0 as x →∞.

We deduce therefrom that (3) holds and that po ∈ L0 since for any y > 0,∫ ∞
0

ne(dz)

(
po(x)− po(x + z)

po(x)

)
≥ ne(y)

(
po(x)− po(x + y)

po(x)

)
≥ 0.
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Proof of (a) in Proposition 1. According to Theorem 6.3.2 in [23] under these assumptions the
measure po has infinite total mass if and only if limx→0+

∫ 1

x
Π

+
(z)dz = ∞ and in this case

po(x) ∼ 1

d̂

∫ 1

x

Π
+
(z)dz, as x → 0 + .

Thus the assertion in (a) Proposition 1 is a consequence of this fact and the monotone density
theorem for regularly varying functions.

Proof of (b) in Proposition 1. According to Theorem 6.3.1 in [23] under these assumptions, if
we suppose limx→0+ po(x) = ∞, then

po(x) ∼ 1

ne]0,∞[+k̂0

Π
+
(x), as x → 0 + .

The result follows.

Sketch of proof of Proposition 2. The proof of the assertion (i) implies (ii) is a reworking of
the proof of Lemma 3 in Asmussen et al. [1], this can be done in our setting since the only
hypothesis needed in that proof is that the dual ladder height has a finite mean.

To show that (i) implies (ii) in Proposition 2 we first prove that under the assumption
E(Ĥ1) = µ < ∞, the condition Π

+ ∈ L0, implies that for any z > 0,

(BRT)
po]x, x + z[∼ z

µ
Π

+
(x), x →∞.

The latter estimate and the fact that Π+ ∈ L0 implies that for any a ≥ 0,

po]x + a, x + a + z[∼ z

µ
Π

+
(x), x →∞. (17)

To prove that (BRT) holds, we may simply repeat the argument in the proof of Lemma 3 in
Asmussen et al. [1] using instead of the equation (12) therein, the equation

po]x, x + z[=

∫ ∞
x

Π(dy)V̂ ]y − x− z, y − x[, z > 0,

which is an elementary consequence of equation (EAI) and Fubini’s theorem.
The result in (ii) in Proposition 2 follows from (BRT) in the same way that the Key renewal

theorem is obtained from Blackwell’s renewal theorem using the estimate in (17) and the bounds

po]x, x + z[

Π
+
(x)

≤ V̂ (z), x > 0, z > 0,

which are a simple consequence of the former equation and the fact that V̂ is a renewal measure
and so that for any 0 < z < y, V̂ (y)− V̂ (y − z) ≤ V̂ (z).
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To show that (ii) implies (i) we have to verify that for any a > 0

lim
x→∞

Π
+
(x + a)

Π
+
(x)

= 1.

This is indeed true since using (ii) in Proposition 2 it is straightforward that for any z > 0
the assertion in (BRT) holds and a further application of (ii) in Proposition 2 to the function
ga(·) = 1{]a,a+1[}(·), a > 0, gives that for any a > 0,

lim
x→∞

po]x + a, x + a + 1[

Π(x)
=

1

µ
,

and therefore, for any a > 0,

lim
x→∞

Π
+
(x + a)

Π
+
(x)

= lim
x→∞

Π
+
(x + a)

po]x + a, x + a + 1[

po]x + a, x + a + 1[

Π
+
(x)

= 1.
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