
Chapitre I

On random sets connected to the
partial records of Poisson point
processes

Abstract

Random intervals are constructed from partial records in a Poisson point process in ]0,∞[×]0,∞[.
These are used to cover partially [0,∞[; the purpose of this work is to study the random set R that
is left uncovered. We show that R enjoys the regenerative property and identify its distribution in
terms of the characteristics of the Poisson point process. As an application we show that R is almost
surely a fractal set and we calculate its dimension.
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1 Introduction

Mandelbrot [14] introduced a natural and simple random generalization of Cantor’s triadic set, as
follows:

Let λ be the Lebesgue measure, ν an arbitrary Borel measure on ]0,∞], and P ⊂]−∞,∞[×]0,∞]
a Poisson point process with characteristic measure λ⊗ ν. This means that P is a countable random
set with the property that for A ⊂] − ∞,∞[×]0,∞] the cardinality of A ∩ P is a Poisson random
variable with parameter λ ⊗ ν(A); moreover, for disjoint Borel subsets Ai ⊂] − ∞,∞[×]0,∞] the
cardinalities of Ai ∩ P are independent random variables. For any (x, y) ∈ P he associated the open
interval ]x, x + y[. Those intervals plays the role of cut outs of R . He then studied the structure of
the so called “uncovered set”

M = R \
⋃

(x,y)∈P

]x, x+ y[,

conditioned to contain 0. Mandelbrot has shown that the set M is equal in distribution to the closure
of the image of a subordinator (i.e., an increasing process that has independent and homogeneous
increments). He has also raised the problem of determining under which conditions R is completely
covered by the cut outs and gave a partial solution to this problem. In a paper that was published
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2 On random sets connected to the partial records of Poisson point processes

at the same time, Shepp [21] provided a definitive answer showing that R is completely covered with
probability one if ∫ 1

0
dx exp

{∫ ∞
x

(y − x)ν(dy)
}

= ∞,

and with probability zero otherwise. The fact that the closed random set M is equal in distribution to
the closure of the image of a subordinator is equivalent to say that M is a regenerative random closed
set in the sense of Hoffmann–Jørgensen [8], and this leads to study the random set M through the
associated subordinator. This approach was used by Fitzsimmons, Fristedt and Shepp [6] to obtain
in a simpler way the necessary and sufficient condition of Shepp and many others characteristics of
M. The problem of covering R or more general sets by random bodies has been studied by several
authors with different approaches but we will not consider here and we refer to Kahane [9] and the
references therein for an historic account.

In the present work we construct an uncovered random set R, in a different way which is partly
inspired by a paper by Marchal [15].

Let P ⊂]0,∞[×]0,∞[ be a Poisson point process with characteristic measure λ⊗ ν and p : [0,∞[→
[0, 1] be a measurable function. For every (x, y) ∈ P we define x∗ as the abscissa of the first point
in P to the right of x with a higher level, say y∗ > y. In this way for any (x, y) ∈ P we associate
the interval [x, x∗[. We make then a cut out [x, x∗[ with probability p(y) and we are interested in the
remainder set, R, of points that weren’t deleted from R+.

The class of regenerative sets that arise from our construction differs from that obtained by Man-
delbrot. Example belonging to one but not both of such classes is provided (see remarks to Theorems 1
and 3). Regenerative sets that are the image of a stable subordinator can be generated with both
methods.

An outline of this note now follows. Section 2 is devoted to present the setting and survey the
basic elements on the theory of Extremal Process. In section 3 we obtain some integral test to decide
whether R, is bounded, has isolated points, positive Lebesgue measure and further similar properties.
In section 4 we recall the definition of regenerative set, preliminaries results on subordinators and
regenerative sets and establish that the uncovered random set R is regenerative. In Section 5 we
use the knowledge about subordinators to obtain an explicit formula of the renewal function of the
regenerative set R and an exact formula for the estimation of some fractal dimensions of R .

2 Preliminaries

This section is subdivided in 3 subsections. Subsection 2.1 is devoted to establish mathematically the
verbal construction of the uncovered random set R . Once we have built the random set R we wish
to know the probabilities of some related events , such like “R contains some interval [0, t[”, “a given
point t is in R”, “0 is isolated in R”, “R is bounded”, etc.. The tools needed for the computation of
such probabilities are essentially two well known results: one about Poisson Measures and the other
on Extremal Process. These are the subjects of subsection 2.2 and 2.3, respectively.

2.1 Settings

To make precise the construction of the uncovered random set described in the preceding section, let
us introduce a Marked Poisson point process, that is, we add a mark to the Poisson point process
P =

{
(t,∆t), t > 0

}
, in the following way: suppose that to each point (t,∆t) we associate a random
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variable ut independent of the whole Poisson point process P and that the ut’s are independent
identically distributed (i.i.d.) with uniform law over [0, 1]. We know by the marking Theorem (see
[11]) that the process P ′ =

{
(t,∆t, ut), t > 0

}
is also a Poisson point process with characteristic

measure µ(dt, dy, du) = dt ⊗ ν(dy) ⊗ du on ]0,∞[×]0,∞[×[0, 1]. Let
(
Gt
)
t≥0

denote the completed
natural filtration generated by

(
(t,∆t, ut); t ≥ 0

)
. For every (x, y) ∈ P define the associated x∗ by

x∗ = inf
{
x′ > x|y′ ≥ y, (x′, y′) ∈ P

}
.

Let T be the set of left end points of the intervals [x, x∗[ that are deleted from R+, i.e.,

T =
{
x > 0 | p(y) > z, (x, y, z) ∈ P ′

}
.

Therefore the uncovered random set, R, is given by

R = [0,∞)�
⋃
x∈T

[x, x∗[. (1)

Clearly 0 ∈ R .
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Figure 1 Uncovered set

In Figure 1, the points × are some points of a P.P.P. So the × and the ◦ denote
respectively the left and right extremities of the possible intervals to cover R+.
We have drawn with a doted line the intervals that are not used to cover and
with a continuous line those used to cover R+. Last, under the graph the union
of intervals shows the resulting uncovered set.

In order to get explicit and precise formulas we will make a technical assumption but the methods
here used can be applied in the general case.

We assume: ν is an atom–less Borel measure such that its tail, ν(y) = ν]y,∞[, is finite for any y > 0,
is strictly decreasing and its right limit at zero is infinite, i.e., ν(0+) = ∞. This last has an immediate
consequence on the points of the Poisson point process P. If we take any right neighborhood, Bε of
zero in R+ the Poisson random variable card{(x, y)| (x, y) ∈ P ∩{]0, t] × Bε}} is infinite a.s., for any
t > 0. More precisely, the points of the Poisson point process are dense in R+.

It is well known that the distribution of a Poisson point process is determined by its characteristic
measure. Let D and O be two Poisson point process with the same characteristic measure and a
function p : [0,∞[→ [0, 1]. By construction we have that two uncovered random sets, say R and R′,
generated via p and the Poisson point process D and O, respectively, are equal in distribution. To
illustrate this and help the reader to become acquainted with the uncovered random sets constructed
here, we present the following
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Example 1. Let p ∈ [0, 1] and ν(dx) an arbitrary Borel measure. Denote by Rp, the uncovered
random set generated through the points of a Poisson point process with characteristic measure λ⊗ ν
and a constant function p equal to p. It is plain that R0 = R+ a.s. and R1 = {0} a.s. Later we shall
show that the converse also holds, that is, if R = R+, (R = {0}) a.s. then the function p is ν–a.s.
constant equal to 1 (0) (see Proposition 1 below). The structure of the uncovered random set Rp with
p ∈]0, 1[ is not so simple; nevertheless, one can show that in this case it has the scaling property, that
is, for any c > 0 the random sets Rp and

cRp = {cx| x ∈ Rp}

have the same distribution and we say that Rp is self–similar. To show this we restrict ourselves to
the case ν(dx) = αx−α−1dx, a general proof to this fact will be given as a consequence of Theorem 2
below. Indeed, let f(x, y) = (cx, c1/αy). It is well known that

f(P) = {f(x, y)| (x, y) ∈ P},

still is a Poisson point process with characteristic measure λ ⊗ ν ◦ f , i.e., for any measurable set
A ⊂]0,∞[×]0,∞[

λ⊗ ν ◦ f(A) = λ⊗ ν{(x, y)|f(x, y) ∈ A}.
Denote by R′p the uncovered random set generated via p and f(P). It is straightforward that the
measures λ ⊗ ν and λ ⊗ ν ◦ f are equal, thus Rp and R′p have the same distribution. On the other
hand, as f scales the x–axis by a factor c it is immediate that R′p is equal to cRp .

Remark 1. If a self–similar random set Rp is regenerative then it must be equal in distribution to
the image of a stable subordinator (see example 2 below).

2.2 Campbell’s formula

Let N be the Poisson random measure on ]0,∞[×]0,∞[ defined by

N
(
]0, t]×A

)
=

∑
{0<s≤t;(s,∆s)∈P}

1{∆s∈A}

for any t > 0 and A ⊂]0,∞[ measurable. Let f :]0,∞[×]0,∞[−→ [0,∞[ be a positive measurable
function. Define the random variable

< N, f >=
∑

(s,∆s)∈P

f(s,∆s).

The following Lemma provides a criteria to decide whether the random variable < N, f > is finite a.s.
as well as a expression of its Laplace transform. This is a classical result and can be found in any text
book about Poisson random measures, we refer e.g. to [11] p. 28.

Lemma 1 (Campbell’s Theorem and Exponential Formula).
The variable < N, f > is finite a.s. if and only if∫

]0,∞[×]0,∞[
min{1, f(x)}λ⊗ ν(dx) <∞.

And if this last holds, the Laplace transform of < N, f > is given by

E
[
exp{−q < N, f >}

]
= exp

{
−
∫

]0,∞[×]0,∞[
(1− e−qf(x))λ⊗ ν(dx)

}
.
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2.3 Some facts about Extremal Process

Let F be any distribution function on R . We will say that a process X(t) for t ≥ 0, is a Process
Extremal–F if its finite dimensional distribution functions are given by

P
(
X(t1) ≤ x1, X(t2) ≤ x2, . . . , X(tn) ≤ xn

)
= F t1(x′1)F

t2−t1(x′2) · · ·F tn−tn−1(x′n),
(2)

for any 0 ≤ t1 < t2 < . . . < tn and x1, x2, . . . , xn ∈ R, and x′k =
∧n
k xj . Define the process J(t) =

sup{∆s |(s,∆s) ∈ P, 0 < s ≤ t}. It is easy to verify that the process {J(t), t ≥ 0} is a process
extremal–F with F (x) = exp{−ν(x)}, for x ≥ 0. Indeed, take 0 < t1 < t2, and x1, x2 ∈ R+, the
bivariate distribution of J is given by

P
(
J(t1) ≤ x1, J(t2) ≤ x2

)
= P

(
J(t1) ≤ x1 ∧ x2, sup

t1<u≤t2
{∆u} ≤ x2

)
= exp

{
− t1ν(x1 ∧ x2)

}
exp

{
− (t2 − t1)ν(x2)

}
,

where last equality follows from the identity{
card

{
0 < s ≤ t : ∆s ∈ (u,∞)

}
= 0
}

=
{
J(t) ≤ u

}
and the independence of the counting processes. Following this pattern we verify that the n–variate
distribution function of J satisfies (2). This is the constructive approach of an extremal process given
by Resnick [19]. In the remainder of this subsection we recall some properties about general extremal
process which can be found in [19] section(4.3), [20] and [18]. Let F be any distribution function on
R with support [a, b],−∞ ≤ a < b ≤ ∞. Then

(i) X is stochastically continuous.

(ii) There is a version in D(0,∞), the space of right continuous functions on (0,∞), with left limits.

(iii) X has non-decreasing paths and almost surely

lim
t→∞

↑ X(t) = b, lim
t→0

↓ X(t) = a.

(iv) X is a Markov jump processes with

P
(
X(t+ s) ≤ x | X(s) = y

)
=

{
F t(x) if x ≥ y

0 if x < y

for t > 0 and s > 0. Set Q(x) = − logF (x). The parameter of the exponential holding time at
x is Q(x), and given that a jump is due to occur the process jumps from x to ] −∞, y] with
probability {

1−
(
Q(y)/Q(x)

)
if y > x

0 if y ≤ x.

The definition of extremal process is given for any distribution function but for continuous distribution
functions there is essentially only one extremal process because general extremal process generated
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from a continuous distribution function may be obtained via a change of scale from the process
extremal–Λ, where

Λ(x) = exp{−e−x} for x ∈ R .

The processes extremal–Λ and any process X(t) extremal–F with F continuous are connected via the
following measurable function. Define

S(x) = − log{− logF (x)} for x ∈ R .

Note that S(x) is continuous, non–decreasing and −∞ ≤ S(x) ≤ ∞. It can be verified directly from
the definition that the process {S(X(t))}t≥0 is extremal and is generated by Λ(x). In the case of the
process {J(t)}t≥0, defined previously, the corresponding function S, is given by S(x) = − ln ν(x). The
advantage of working with a process extremal–Λ is frequently the calculations are easier thanks to its
additive structure (this is maybe the most important special property of this process). More precisely,
let X be extremal–Λ. Pick t0 arbitrary. Let t0 < τ1 < τ2 < . . . be the times of jumps of X(t) in ]t0,∞[
and set Z0 = X(t0), Zn = X(τn)−X(τn−1), n ≥ 1. Then the random variables,

{
Zn, n ≥ 1

}
, are i.i.d.

with common distribution exponential of parameter 1, independent of Z0 which has the distribution
Λt0(x). Remark that for s > t0 this result yields the representation

X(s) = Z0 +
µ]t0,s]∑
j=1

Zj

where µ]t0, s] is the number of jumps of X in ]t0, s] and it is not independent of {Zj}. So for a general
process with continuous distribution function F , we have

S
(
X(s)

)
= Z0 +

µ]t0,s]∑
j=1

Zj .

Let S−1 denote the right continuous inverse of S, that is,

S−1(x) = inf{z|S(z) > x}.

By inversion we obtain

{
X(s), s ≥ t0

}
=d
{
S−1

(
Z0 +

µ]t0,s]∑
j=1

Zj
)
, s ≥ t0

}
.

Define the inverse process
{
X−1(x), a ≤ x ≤ b

}
by

X−1(x) = inf
{
z | X(z) > x

}
.

It is also directly obtained from the definition that if the process X is extremal–Λ then the process
X̃(t) = − logX−1(− log t), is also extremal–Λ. The following Lemma will be our major tool in the
estimation of the probability of the event t ∈ R.

Lemma 2.
Let X be extremal–F with F a continuous distribution function. Let t > 0 fixed. Define T1 = inf{s |
S(X(s)) = S(X(t))} and for n ≥ 1 Tn+1 = inf

{
t | S(X(t)) = S(X(T−n ))

}
, so that

{
Tj , j ≥ 1

}
is the

sequence of jump times of S(X(·)) on ]0, t] ranked in decreasing order. Then

{
X(T−j ), j ≥ 1

}
=d

{
S−1

(
S(X(t))−

j∑
i=1

Zi

)
, j ≥ 1

}
Where

{
Zn, n ≥ 1

}
are i.i.d. exponential random variables independent of X(t).
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The proof of this Lemma is a slight variation to that of Theorem 8 in Resnick [18] so we give a

Sketch of proof It is clear that it is enough to consider the case F = Λ. In this case S(x) = x, x ∈ R .
As it was noted before the Process X̃(t) = − logX−1(− log t) is a process extremal–Λ. It is well known
that the jump times, {τn}n≥1, after a time t0 > 0 of a extremal process have the same distribution
that a function of a sum of independent identically distributed random variables (i.i.d.r.v.’s) with
exponential distribution, in fact,

{τn, n ≥ 1} =d {exp{log t0 +Wn}, n ≥ 1},

where Wn =
∑n

1 Zi, and the random variables Zn, n ≥ 1 are i.i.d. with exponential distribution (this
can be read from [20] p.302). This fact stills true even if t0 is replaced by a jump time of the extremal
process X. So take T̃0 = exp{−X(T1)}, which is clearly a jump time of the process X̃, thus the process
X̃(s) remains constant past time T̃0 except at times τ1, τ2, . . . and hence X−1(s) remains constant for
s < X(T1) except at times − log τ1,− log τ2, . . . However

{X(T−j ), j ≥ 1} = {− log τj , j ≥ 1} =d
{
X(t)−

j∑
1

Zi, j ≥ 1
}
.

3 First properties of R
By the time homogeneity of the Poisson point process we can suppose, and we shall do, that for every
t > 0, fixed the process

Yt(s) = sup
{
∆t−u|(t− u,∆t−u) ∈ P;u ≤ s

}
for 0 ≤ s ≤ t,

is a process extremal–F restricted to the time interval [0, t], with F given by F (x) = exp{−ν(x)}.
Thus the law of Yt(s) for any s ≤ t is given by

P(Yt(s) ≤ x) = F s(x) x ≥ 0.

Throughout this note the function S(x) will be defined by

S(x) = − log ν(x)

and then the distribution function F and S are related by

F (x) = exp
{
− exp{−S(x)}

}
.

For t > 0 fixed, let Γt be the set of times between 0 and t where the process Yt(·) jumps, i.e.,

Γt =
{
s | Yt(s) > Yt(s−), 0 ≤ s ≤ t

}
with Yt(0−) = 0. Note the almost sure equivalence

s ∈ Γt ⇐⇒ (t− s)∗ > t.

The proof of the direct implication is straightforward. To prove the converse suppose 0 < s ≤ t and
s /∈ Γt. Since the points of the P.P.P. are dense in R+, there is at least one time r, 0 < r < s where
the process Yt jumps, that is, r ∈]0, s[∩Γt. Let

vs = inf{r : Yt(r) = Yt(s)}.
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It is plain that vs ∈ Γt, vs < s and ∆t−s ≤ ∆t−vs . Moreover, since the measure ν is atom–less the
latter is a strict inequality ν–a.s. Therefore (t− s)∗ ≤ t ν–a.s.

From the preceding equivalence we deduce that for t > 0, fixed the only points x ≤ t that can be
the left extreme of an interval that covers t are those in Γt ∩T (see figure 2). So we obtain the almost
sure equivalence:

t ∈ R ⇐⇒ ∀ s ∈ Γt, p(∆t−s) ≤ ut−s, (3)

or equivalently
t ∈ R ⇐⇒ ∀ s ∈ Γt, p(Yt(s)) ≤ ut−s.

The equivalence (3) shows two things: that the event “t belongs to R” just depends on the Poisson
point process until time t and that we can calculate the probability of the event t ∈ R, in terms of
the process Yt(·).

-
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Figure 2 A t fixed that does not belong to R.

We use the same notation as in Figure 1 and for a t fixed we draw with dashed
lines the sample path of the process Yt(s), 0 ≤ s ≤ t. So t does not belong to R
since t − s1 is the left extreme of an interval used to cover R, i.e., p(Yt(s1)) >
ut−s1 .

By means of integral tests in the following results we describe the principal elementary properties of
the uncovered random set R .

Proposition 1.

i) Let Z = inf{t > 0, t /∈ R}, then Z > 0 with probability 1 if and only if∫ ∞
0

p(y)ν(dy) <∞. (4)

In this case Z, follows an exponential law of parameter
∫∞
0 p(y)ν(dy). In particular, R = [0,∞[

if and only if p = 0, ν–almost surely.

ii) For every t > 0

P
(
t ∈ R

)
> 0 ⇐⇒

∫
0+

p(u)S
(
du
)
<∞. (5)

And if the right hand side of condition (5) holds, then

P(t ∈ R) =
∫ ∞

0
F t(dy)[1− p(y)] exp

{
−
∫ y

0
p(w)S(dw)

}
.
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iii) 0 is isolated in R a.s. if and only if∫
0+

[1− p(y)]S(dy) <∞. (6)

iv) R is bounded a.s. if and only if ∫ ∞+ [
1− p(y)

]
S(dy) <∞. (7)

v) R = {0} a.s if and only if p = 1, ν–a.s.

Proof. We begin by showing i). Note the equivalence,

Z > t⇐⇒ p(∆s) ≤ us,∀s ≤ t, (s,∆s, us) ∈ P ′ .

This shows in particular that Z is as (Gt)t≥0–stopping time. So the event ′′Z > 0′′ has probability 0
or 1. From the former equivalence we also have that

P(Z > t) = E
[
E
(
{Z > t}|{(s,∆s), s ≤ t}

)]
= E

[∏
s≤t

[1− p(∆s)]
] (8)

The second equality was obtained using the fact that u’s are independent identically distributed with
distribution uniform on [0, 1]. The probability (8) is positive if and only if∏

{(s,∆s),s≤t}

[
1− p(∆s)

]
> 0 a.s..

This is also equivalent to the convergence a.s of the series
∑
{s≤t} p(∆s). We know by Campbell’s

Theorem that the latter converges a.s. if and only if the condition
∫∞
0 p(y)ν(dy) < ∞ holds. This

shows the first assertion of i) in Proposition 1. Suppose that
∫∞
0 p(y)ν(dy) < ∞. The fact that Z

follows an exponential law with parameter
∫∞
0 p(y)ν(dy) is a direct application of the exponential

formula and the fact that the convergence a.s. of the sum
∑
p(∆s) is equivalent to the convergence

a.s. of
∑

log[1− p(∆s)]. Indeed,

P(Z > t) = E
[
exp{

∑
s≤t

log[1− p(∆s)]}
]

= exp
{
− t

∫ ∞
0

p(y)ν(dy)
}

This entails that P(Z > t) = 1 for all t > 0, if and only if p(y) = 0 for ν–almost every y.

Next, we show ii). Take Ht = σ
{
Yt(s), 0 ≤ s ≤ t

}
. By equivalence (3) and the independence of the

random variables u′s

P
(
t ∈ R

)
= E

[
E
(
{t ∈ R} | Ht

)]
= E

[
E
(
p(Yt(s)) ≤ ut−s for all s ∈ Γt | Ht

)]
= E

[ ∏
y∈At

(
1− p(y)

)]
= E

[
E
[ ∏
y∈At

(
1− p(y)

) ∣∣ Yt(t)]]
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with At =
{
r < ∞ | Yt(s) = r for some s, 0 ≤ s ≤ t

}
. Let (Zk)k≥1 be a sequence of i.i.d.r.v.’s

with common exponential distribution and independent of Yt(t). Set Wn =
∑n

k=1 Zk, for n ≥ 1. By
Lemma 2

P(t ∈ R) = E
([

1− p
(
Yt(t)

)]
H
(
Yt(t)

))
(9)

where H(Yt(t)) = E
(∏

n≥1

[
1 − p

(
S−1

{
S(Yt(t)) −Wn

})])
. Given that Yt(t) = y, the term under

the expectation sign is positive a.s if and only if

∞∑
n=0

p
(
S−1

[
S(y)−Wn

])
<∞ a.s..

Since the points
{
Wn

}
n≥1

are those of an homogeneous Poisson process (i.e. on [0,∞[ with intensity
given by the Lebesgue measure) by Campbell’s Theorem the former holds if and only if∫ ∞

0
p
(
S−1

[
S(y)− x

])
dx =

∫ y

0
p(w)S(dw) <∞.

As |p(·)| ≤ 1 and ν(y) <∞ for all y > 0, then the integral,
∫ y
0 p(w)S(dw), is finite for all y > 0 if and

only if this integral is finite in some neighborhood of 0. As a consequence the convergence of the sum
in question does not depend on y. This shows that H(y) is strictly positive for all y > 0 if and only if∫
0+ p(w)S(dw) < ∞. The conclusion is straightforward. To obtain the expression for the probability

of the event t ∈ R, suppose that the right hand side of (5) holds, by the equation (9) we just have to
calculate H(y) for any y > 0. This is a direct application of the exponential formula and the fact that
the convergence a.s. of the sum ∑

p
(
S−1

[
S(y)− Sn

])
is equivalent to the convergence a.s. of the sum∑

ln
[
1− p

(
S−1

[
S(y)− Sn

])]
,

Therefore, H(y) = exp
{
−
∫ y
0 p(w)S(dw)

}
, and the result follows.

The proofs of statement in iii) and iv) are very similar to that of statement in ii). So we only point
out the key arguments. To deal with this task define the process J(0) = 0 and for s > 0,

J(s) = sup
{
∆v| (v,∆v) ∈ P; 0 < v ≤ s

}
,

and its set of jump times γ0 =
{
s | J(s) > J(s−)

}
. It was seen before that a such process is Extremal–

F , with F (x) = exp−ν(x).
Sketch of proof of iii). Let T1 be the abcissa of the first atom of P whose ordinate is a local

maximum and whose abcissa is the left extremity of an interval that is not used to partially cover R+ .
That is,

T1 = inf
{
t ∈ γ0 | p(J(t)) ≤ ut

}
.

We thus have that
T1 > s ⇐⇒ p(J(v)) > uv, ∀ v ∈]0, s[∩γ0; (10)

in words, T1 > s if and only if all the jump times of J before s are the left extremities of an interval
that is used to partially cover R+ . Now we claim that if T1 < ∞ then T1 ∈ R . Indeed, if T1 = 0
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there is nothing to prove since 0 ∈ R . In the case 0 < T1 <∞, we have, by the way we construct R,
that the only intervals that can be used to cover T1 are those having a left extremity < T1 but, since
T1 is a local maximum, all these intervals have a right extremity ≤ T1. Thus no interval with a left
extremity to the left of T1 covers T1, that is T1 ∈ R . Recall that we have assumed that the measure ν
has infinite total mass which implies that 0 is an accumulation point for the jump-times of J. Thus,
we have furthermore that

0 is isolated inR⇐⇒ T1 > 0.

To see this we assume first that T1 < ∞. If T1 = 0 then there exists a random sequence of times
(tn)n∈N ⊂ {t ∈ γ0 | p(J(t)) ≤ ut

}
such that tn > 0 and limn→∞ tn = 0. By an argument similar to

the one used to prove that T1 ∈ R we have that tn ∈ R for all n ∈ N . Then 0 is not isolated in R .
Now, using that 0 is an accumulation point for the jump-times of J and that every jump–time of J
to the left of T1 is the left extremity of an interval used to partially cover R+ it is easily seen that if
T1 > 0 then the only uncovered point to the left of T1 is 0, that is 0 is isolated in R . We have proved
the claim in the case T1 <∞, but the latter argument proves also that T1 = ∞ implies that R = {0}
and the claim follows.

So the random variable T1 is an stopping time of the completed σ–field (Gt)t≥0, and by the zero-one
law the event {T1 > 0} has probability zero or one. Therefore it is enough to show that P(T1 > s) > 0
for some s > 0. To this end we use the equivalence (10) and proceed as in the proof of (ii). We omit
the details.

Sketch of proof of iv). Let g∞ be the largest element of R . That is g∞ = sup{ s > 0 : s ∈ R}. It
is easy to see that this random variable can be also related to the extremal process J as follows: for
any s > 0,

g∞ < s =⇒ p
(
J(t)

)
> ut for all t ∈]s,∞[∩γ0 =⇒ g∞ <∞. (11)

Indeed, let s > 0 and (tn, n ≥ 1) be the jump times of J after s ranked in increasing order. By
construction we have that t∗n = tn+1 for any n ≥ 1. To see that if g∞ < s then every tn is the left
extremity of an interval that is used to partially cover R, suppose that at least one of this times (say
tk) is not so; then by an argument similar to the one given before to prove that T1 ∈ R we see that
tk ∈ R, which is a contradiction since g∞ < s < tk. This proves the first claim. To prove the second
one we use that ∪n≥1[tn, t∗n[ forms a cover [t1,∞[ of R+, which implies that R ⊂ [0, t1[ and then that
g∞ <∞ since t1 <∞ a.s.

Now the proof of (iv) uses the equivalence (11) and the additive structure of the extremal process
J after time s stated at subsection (2.3). Indeed, proceeding as in the proof of (ii) we get that for
any s > 0,

P(g∞ < s) ≤ P(p(J(t)) > ut,∀t ∈]s,∞[∩γ0)

= E(H̃(J(s)))
≤ P(g∞ <∞),

where H̃(y) = E(
∏∞
n=1 p(S

−1(S(y) + Wn))) for y > 0 and (Wn, n ≥ 1) as in the proof of (ii).
Furthermore, using arguments similar to those given in (ii) we prove that H̃(y) is strictly positive of
every y > 0 if and only if

∫∞(1− p(w))S(dw) <∞. In this case,

H̃(y) = exp−
∫ ∞
y

(1− p(w))S(dw),

and for any s > 0,

0 < E(H̃(J(s))) = E(exp{−
∫ ∞
J(s)

(1− p(w))S(dw)}) ≤ P(g∞ <∞).
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Thus making s→∞ we prove that P(g∞ <∞) = 1. Now, if
∫∞(1−p(w))S(dw) = ∞, then H(y) = 0

for every y > 0 and as a consequence P(g∞ <∞) = 0.

proof of v) We know that if p(·) ≡ 1 then R = {0} a.s.. To show the converse note that

P
(
R = {0}

)
= 1−P

(
p(J(s)) ≤ us for some s ∈ γ0

)
.

Conditioning by {J(s), s > 0} we see that

P
(
p(J(s)) ≤ us for some s > 0

)
= 0 ⇐⇒

∑
s>0

[1− p(J(s))] = 0 a.s.

the former can only happen if p(·) = 1 ν–a.e..

To continue our study of the random set R we adopt the approach of regenerative sets.

4 Structure of R
In this section we show that the uncovered set R is regenerative and to make the paper self contained
we first outline some relevant results on regenerative sets and subordinators. All the results about
subordinators can be found in Bertoin [1] and those regarding regenerative sets in Kingman [10],
Maisonneuve [12, 13], Fitzsimmons, Fristedt & Maisonneuve [5], Meyer[16] and Fristedt [7]. This
results will be then used to characterize R .

4.1 Regenerative Sets and Subordinators

According to Kingman [10] a random set M is a Standard Regenerative Phenomena if there exists a
function k :]0,∞[→]0, 1] whose limit at zero is 1 and such that

P
(
t1, t2, · · · , tn ∈M

)
=

n∏
r=1

k(tr − tr−1),

for any 0 = t0 < t1 < · · · < tn. The term “regenerative” comes from the following property that is
obtained from the former equality. For any l > 0 the conditional joint distributions of M∩ [l,∞[
given that l ∈ M and given the past before l are the same as the unconditional joint distributions of
M. Kingman has shown that a standard regenerative phenomena is the image of a subordinator with
positive drift whose law is characterized by k (for a proof of the latter properties see Kingman [10]).
However this definition is not convenient when P(t ∈ R) = 0 for all t > 0. An adequate and easy
to handle definition was given by Maisonneuve [13]. Let (Ω,F ,P) be a complete probability space,
(Qt)t≥0 a filtration in F and M ⊂ [0,∞[ a closed random set in (Ω,F). M is a regenerative set
relative to (Qt)t≥0 if

(a) (Dt)t≥0 = inf{M∩]t,∞[} is (Qt)t≥0–adapted;

(b) the law of M◦ θDt = {s−Dt |s ∈M, s ≥ Dt} given Qt and Dt <∞ is the same as M.

See Fitzsimmons et al. [5] for more details. Maisonneuve [12] has shown that the closure of the image
of a subordinator is a regenerative set and that any regenerative set is the closure of the image of
a subordinator, determined up to linear–equivalence, (to be defined below). We are in position to
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recall some facts about subordinators. The law of a subordinator, σ, is specified by the Laplace
transform of its one dimensional distribution. Its Laplace transform can be expressed in the form
E(exp{−λσt}) = exp{−tφ(λ)} where the function φ : [0,∞[→ [0,∞[ is called the Laplace exponent of
σ. For each subordinator σ, there exist a unique pair (k, d) of non-negative real numbers and a unique
measure Π on ]0,∞[ such that

∫
inf{1, x}Π(dx) <∞, and

φ(λ) = k + dλ+
∫

(0,∞)

(
1− e−λx

)
Π(dx).

Conversely, any function φ that can be expressed in the previous form is the Laplace exponent of a
subordinator. One calls k the killing rate, d the drift coefficient and Π the Lévy measure of σ. Let c be
a constant strictly positive. Thus σtc still is a subordinator and its Laplace exponent is characterized
by (ck, cd, cΠ). So the subordinator {σt, t ≥ 0} and {σtc, t ≥ 0} have the same range. Two such
subordinators are called linearly equivalent. The measure potential U(dx) of the subordinator σ is
often called the Renewal Measure and it is given by∫

[0,∞[
f(x)U(dx) = E

(∫ ∞
0

f(σt)dt
)
.

The distribution function of the renewal measure U(x) = E
( ∫∞

0 1{σt≤x}dt
)

for x ≥ 0, is called renewal
function. The Laplace transform of the renewal measure is related to the Laplace exponent of the
subordinator by ∫

[0,∞)
e−λxU(dx) =

1
φ(λ)

.

Denote by M the closure of the image of a subordinator σ so the renewal measure characterizes the
law of the regenerative set M since φ characterizes the law of σ and from the previous identity φ
is characterized by the renewal measure U . By using Fubini’s Theorem we obtain that M has zero
Lebesgue measure a.s. if and only if d = 0, and we then say that M is light. Otherwise we say that M
is heavy. We will also need the following Lemma that relies the renewal measure with the probability
that x ∈M for any x > 0, fixed.

Lemma 3.

• (Kesten) If the drift d = 0, then P(x ∈M) = 0 for every x > 0.

• (Neveu) If d > 0, then the function d−1 P(x ∈M) is a version of the renewal density dU(x)/dx
that is continuous and everywhere positive on [0,∞[.

Concerning regenerative sets:

0 ∈M. If 0 is isolated at M, then M has only isolated points and we say that M is discrete. If 0 is
not isolated then M does not have any isolated points, we then say that M is perfect. A right closed
random set is regenerative if and only if its closure is regenerative, this can be read from Fitzsimmons
et al. [5], page 158. Let M be the set of isolated points and right accumulation points of M then
for every t > 0, P

(
t ∈ M \M

)
= 0, then P(t ∈ M) = P(t ∈ M). Let Z be the first time after 0

when t does not belong to M, then there exist a constant q ∈ [0,∞] such that P(Z > t) = e−qt for
all t. If q = 0, then M = R+ a.s. If 0 < q < ∞, then M is a.s. the union of a sequence of closed
disjoints intervals. If q = ∞, then M has a.s. empty interior. For us one of the most useful results on
regenerative sets will be
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Lemma 4. (Fitzsimmons et al. [5])
Let (Rn, n ≥ 1) be a decreasing sequence of regenerative sets with corresponding renewal functions Un.
Then ∩∞n=1Rn is a regenerative set with a corresponding renewal function equal to the vague limit of
cnUn as n→∞, where the (cn, n ≥ 1) is an appropriate sequence of constants, in fact we may choose
cn = c/Un(1), with c > 0, a constant.

4.2 R as a Regenerative Set

Theorem 1.
The uncovered random set R is a regenerative set relative to (Gt)t≥0.

To prove Theorem 1 we will show that if P(t ∈ R) is strictly positive for all t > 0, then R
is a Standard Regenerative Phenomena with function k(t) = P(t ∈ R) and then we proceed by
approximation using Lemma 4.

Proof. Let p : [0,∞[→ [0, 1] be a measurable function continuous at 0 such that p(0) = 0 and∫
0+ p(y)S(dy) <∞. So by Proposition 1, P(t ∈ R) > 0 for all t > 0. We begin by showing that

lim
t→0

P(t ∈ R) = 1.

We know by ii) in Proposition 1 that

P(t ∈ R) =
∫ ∞

0
F t(dy)h(y)

with h(y) = [1−p(y)] exp
{
−
∫ y
0 p(w)S(dw)

}
. Since the measure F t(dy) converges weakly to the Dirac

mass at zero as t goes to zero, h(y) ≤ 1 for all y ≥ 0 and p is continuous at 0, then

lim
t→0

P(t ∈ R) = h(0) = 1.

Let 0 < t1 < t2. We next show that

P(t1, t2 ∈ R) = P(t1 ∈ R)P(t2 − t1 ∈ R).

As P(t1 ∈ R) > 0 then
P(t1, t2 ∈ R) = P(t1 ∈ R)P(t2 ∈ R |t1 ∈ R).

Given that t1 ∈ R, every interval having left end point in T∩]0, t1[ can not cover any point s > t1,
since it does not do for t1. So the coverage of any point s > t1 just depends on the points of the
Poisson point process P that fall in ]t1,∞[×]0,∞[. Moreover, the shifted point process

Pt1 =
{
(t1 + s,∆t1+s, ut1+s) ∈ P ′; s > 0

}
,

is independent of Gt1 and still is a Poisson point process with characteristic measure dt⊗ ν(dy)⊗ du
(see Meyer [17]). Let T t1 , be the set of points that are the left end points of the intervals that are
deleted from R+, corresponding to Pt1 , that is

T t1 =
{
r > 0| p(∆t1+r) > ut1+r

}
.
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So
Rt1 = [0,∞[\

⋃
x∈T t1

[x, x∗[,

enjoys the property
R =d Rt1 = R◦θt1 | t1 ∈ R,

with R◦θt(ω) = (R−t)+(ω) = {s− t| s ∈ R, s ≥ t}. In particular,

P(t2 ∈ R |t1 ∈ R) = P(t2 − t1 ∈ R◦θt1 |t1 ∈ R)
= P(t2 − t1 ∈ R).

The argument for any 0 < t1 < t2 < · · · < tn, is exactly the same if we note the obvious fact
P(tn ∈ R |t1, t2, · · · tn−1 ∈ R) = P(tn ∈ R |tn−1 ∈ R). So we have showed that R is the image of
a subordinator with positive drift. To conclude the proof, let p : [0,∞[→ [0, 1], be any measurable
function. Set

pn(y) =

{
p(y) if y > 1/n
0 if 0 ≤ y ≤ 1/n

,

and Rn its associated uncovered set. The function pn satisfies condition (5) for any Borel measure ν
and n ≥ 1, is continuous at zero and pn(0) = 0. Denote by Rn the closure of Rn . So

(
Rn : n ∈ N

)
is

a decreasing sequence of regenerative closed random sets and R =
⋂
n∈NRn. Therefore, by Lemma 4

it follows that R is regenerative and by consequence R is regenerative.

Remark 2. Let p : [0,∞[→ [0, 1] and ν a Borel measure such that condition (6) holds. Then the
associated uncovered random set R is a discrete regenerative set. This provides an example that does
not belong to Mandelbrot’s class of regenerative sets, since the latter are always perfect or trivial
(equal to {0} a.s.), see e.g. Theorem 1 and corollary 1 in Fitzsimmons et al. [6] or Theorem 7.2 in
Bertoin [1].

The following statements rephrases Proposition 1 in terms of subordinators.

Let Z be the first time after 0 when t does not belong to R, it was shown that Z follows an
exponential law with parameter q, given by q =

∫∞
0 p(x)ν(dx). As the only Regenerative sets that are

union of disjoint closed intervals are those that are the image of a compound Poisson process with drift.
Then, R, is the image of a compound Poisson process with drift if and only if

∫∞
0 p(x)ν(dx) <∞.

Given that the only Regenerative sets that have isolated points are the image of compound Poisson
process without drift, R is the image of a compound Poisson process without drift if and only if∫
0+ [1− p(x)]S(dx) <∞.

If now we are interested in the Lebesgue measure of the regenerative set R, by applying Fubini’s
Theorem we obtain that R is heavy if and only if

∫
0+ p(y)S(dy) < ∞. Which is equivalent to R is

light if and only if
∫
0+ p(y)S(dy) = ∞.

Last, R is perfect, equivalently, is the image of a subordinator with Lévy measure Π such that
Π]0,∞[= ∞ if and only if

∫
0+ [1− p(y)]S(dy) = ∞.

5 Further properties of R
Firstly, we will calculate the renewal function of the set R . In the case R has positive Lebesgue
measure a.s., i.e., ∫

0+

p(y)S(dy) <∞,
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from Lemma 3 the function

c

∫ ∞
0

F t(dy)[1− p(y)] exp
{∫ y

0
p(w)S(dw)

}
is a version of the density of the renewal measure of R, for c a positive constant. This means that for
a > 0, the renewal function is given by

U [0, a] = c

∫ a

0
dt

∫ ∞
0

F t(dy)[1− p(y)] exp
{
−
∫ y

0
p(w)S(dw)

}
.

We will generalize this result for any measurable function p. Our argument is similar to the analogue
of Fitzsimmons et al. [6], Theorem 1. To tackle this problem we will use the following

Lemma 5.
Let v0, be the first time when S(x) = 0, that is, v0 = S−1(0). The integral∫ a

0
dt

∫ v0

0
F t(dy)[1− p(y)] exp

{∫ v0

y
p(w)S(dw)

}
,

is finite for all a > 0.

Proof. Let h(y) = [1 − p(y)] exp
{∫ v0

y p(w)S(dw)
}

and note that F t(dy) = te−S(y)F t(y)S(dy). By
Fubini’s Theorem ∫ a

0
dt

∫ v0

0
F t(dy)h(y)

=
∫ v0

0
S(dy)h(y)e−S(y)

(∫ a

0
dt t exp

{
− te−S(y)

})
≤
∫ v0

0
S(dy)h(y)eS(y)

= eS(v0)

∫ v0

0
S(dy)[1− p(y)] exp

{
−
∫ v0

y
[1− p(w)]S(dw)

}
=
∫ v0

0
d

(
exp

{
−
∫ v0

y
[1− p(w)]S(dw)

})
=
(
1− exp

{
−
∫ v0

0
[1− p(w)]S(dw)

})
the second inequality was obtained from an integration by parts in∫ a

0
dt t exp{−tcy} = − a

cy
e−acy +

1
c2y

(
1− e−acy

)
≤ 1
c2y
,

where cy = e−S(y).

Just to ease the notation, in the sequel we will suppose that v0 = S−1(0) = 1. Now we have all the
elements to show the

Theorem 2.
Let p : [0,∞[→ [0, 1] be a measurable function, ν be a atom-less measure such that ν(x) = ν]x,∞[
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is finite, strictly decreasing and ν(0+) = ∞. Set F (x) = exp{−ν(x)} and S(x) = − log{ν(x)} for all
x ≥ 0. Then the renewal function of R is given by

U [0, a] = a

∫ ∞
0

F a(dx) exp
{∫ 1

x
p(y)S(dy)

}
for all a > 0.

Proof. When p(·) = 1 ν–a.s., it is the subject of v) in Proposition (1), that R = {0} a.s., which implies
in particular that U [0, a] ≡ 1, for all a > 0. On the other hand, for any a > 0,

a

∫ ∞
0

F a(dy) exp
{∫ 1

y
p(x)S(dx)

}
=
∫ ∞

0
dx xe−x = 1 = U [0, a]

where the first equality was obtained by the change of variables x = ae−S(y). So it remains to study
the case p(·) 6≡ 1 in a set of positive ν–measure. For this we build a decreasing sequence of regenerative
right closed random sets Rn as the uncovered random sets generated via

pn(y) =

{
0 if 0 ≤ y ≤ 1

n

p(y) if y > 1
n

and note that for this family of functions the condition (5) holds. By ii) in Proposition 1 and Lemma 3
the renewal function is given by

Un[0, a] =
1
γn

∫ a

0
dt

∫ ∞
0

F t(dy)hn(y)

with
hn(y) =

[
1− pn(y)

]
exp

{
−
∫ y

0
pn(w)S(dw)

}
.

By construction

Un[0, a] =
1
γn

∫ a

0
dtF t(1/n) +

1
γn

∫ a

0
dt

∫ ∞
1/n

F t(dy)hn(y)

= In + IIn.

Take γn = exp
{
−
∫ 1
0 pn(y)S(dy)

}
and note that by monotone convergence

IIn−−−→
n→∞

∫ a

0
dt

∫ ∞
0

F t(dy)[1− p(y)] exp
{∫ 1

y
p(w)S(dw)

}
.

Now if 0 is isolated, i.e., if
∫
0+ [1− p(w)]S(dw) <∞ then

In =
1
γn

1
ν(1/n)

[
1− e−aν(1/n)

]
=
[
1− e−aν(1/n)

]
exp

{
−
∫ 1

1/n
[1− pn(y)]S(dy)

}
−−−→
n→∞

exp
{
−
∫ 1

0
[1− p(y)]S(dy)

}
.
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Otherwise, In → 0 as n→∞. From the previous calculations we obtain the expression

U [0, a] = U{0}+
∫ a

0
dt

∫ ∞
0

F t(dy)[1− p(y)] exp
{∫ 1

y
p(w)S(dw)

}
, (12)

for any a > 0, with U{0} = exp
{
−
∫ 1
0 [1−p(y)]S(dy)

}
. Next we deduce the result from the identity (12)

by means of some relatively elementary calculations. Let dAy denotes the measure induced by the

increasing function Ay = exp
{
−
∫ 1
y [1− p(w)]S(dw)

}
. From equation (12) and Fubini’s Theorem

U ]0, a] =
∫ a

0
dt

∫ ∞
0

F t(dy)e−S(y)[1− p(y)]Ay

=
∫ ∞

0
dAye

−S(y)

∫ a

0
dt te−S(y) exp

{
− te−S(y)

}
=
∫ ∞

0
dAy

([
1− F a(y)

]
− ae−S(y)F a(y)

)
= −A0 +

∫ ∞
0

S(dy)a2e−2S(y)F a(y)Ay,

the fourth equality was obtained via an integration by parts using that

d
([

1− F a(y)
]
− ae−S(y)F a(y)

)
= −ae−S(y)F a(y)S(dy) + ae−S(y)F a(y)S(dy)− a2e−2S(y)F a(y)S(dy),

and since F a(y) ∼ 1− ae−S(y), as y goes to ∞,([
1− F a(y)

]
− ae−S(y)F a(y)

)
Ay

∣∣∣∞
0

= −A0 + lim
y→∞

Ay
[
1− F a(y)− ae−S(y)F (y)

]
= −A0 + a lim

y→∞
Aye

−S(y)[1− F (y)]

= −A0 + a lim
y→∞

Aye
−2S(y)

= −A0 + a lim
y→∞

exp
{
−
∫ y

1
p(w)S(dw)− S(y)

}
= −A0.

Therefore,

U [0, a] = U{0} −A0 + a

∫ ∞
0

F a(dy) exp
{∫ 1

y
p(w)S(dw)

}
,

which ends the proof since U{0} = A0.

Remark 3. Results iii)–v) in Proposition 1 could be obtained as a corollary to Theorem 2. To see iii),
recall that 0 is isolated in R if and only if the renewal function has an atom at 0. It has been showed at
the first stage of the proof of Theorem 2 that U has an atom at 0 if an only if

∫ 1
0 [1− p(y)]S(dy) <∞.

To get iv), recall that U [0,∞[< ∞ if and only if R is bounded a.s. Use (12) and proceed as in the
proof of Lemma 5 to show that

U [0,∞[= exp
{∫ ∞

1
[1− p(y)]S(dy)

}
.
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Last, if R = R+ by Lemma 3 U(dx) = cdx, we can suppose without loss of generality that c = 1.
Use (12) to conclude that p = 0 ν-a.s.

Example 2 (continuation example 1). Let the function p(y) = p for all y ≥ 0 with p ∈ (0, 1).
Then the associated set Rp is indistinguishable of the image of a subordinator stable(1− p).

To show this we just have to calculate the renewal function. By Theorem 2

U [0, a] = a

∫ ∞
0

F a(dy)e−pS(y)

= a

∫ ∞
0

dS(y)ae−(1+p)S(y) exp{−a exp{−S(y)}}

= a1−p

∫ ∞
0

xpe−xdx

= a1−pΓ(1 + p)

where Γ(x) denotes the function gamma calculated in x. So the Laplace exponent is given by

φ(λ) = cpλ
1−p,

with cp =
(
Γ(1 + p)Γ(2− p)

)−1
.

5.1 Fractal Dimensions of R

In this subsection we study some fractal dimensions of the regenerative set R . To this end we next
introduce two of the most important notions of fractal indices used in probability Hausdorff and
Packing dimensions. We refer to Falconer [3] for a detailed account on these and other definitions of
dimension.

Hausdorff measures and dimension. Let h be a strictly increasing continuous function on R+

such that h(0) = 0 and h(∞) = ∞ and F be a Borel subset of R. A δ–cover of a subset F is a
collection {Ui} countable (or finite) of subsets of diameter, |Ui|, at most δ > 0 that covers F , i.e.,
F ⊂

⋃
i Ui. For any δ we define

Hh
δ (F ) = inf

{ ∞∑
i=1

h
(
|Ui|
)

: {Ui} is δ–cover of F
}
.

As δ decreases the class of permissible δ–covers of F is reduced. Therefore the number Hh
δ increases

and so approaches a limit as δ →∞. The Hausdorff h–measure of F is the number

Hh(F ) = lim
δ→0

Hh
δ (F ) ∈ [0,∞].

It can be shown that the mapping F −→ Hh(F ) defines a measure on a σ–field that includes the Borel
sets (see Falconer [4]). Of special interest is the case where h(x) = xs, s > 0 in which we write Hs and
speak of s–measure. For any F it is clear that Hs(F ) is non–decreasing as s increases. Furthermore,
if t < s then

Hs
δ(F ) ≤ δs−tHt

δ(F ),

which implies that if Ht(F ) is positive then Hs(F ) is infinite. Thus there exist a critical value, dimHF,
called the Hausdorff dimension of F such that

Hs(F ) = ∞ if 0 ≤ s < dimH(F )
Hs(F ) = 0 if dimH(F ) < s <∞.
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Packing measures and dimension. Let F be a Borel subset of R, s, δ > 0 and Br(x) a ball of radii
r with center in x. Consider

Psδ (F ) = sup
{∑

i

|Bri |s : {Bri(xi)} disjoints such that xi ∈ F, ri < δ

}
Since Psδ (F ) decreases with δ, the limit

Ps0(F ) = lim
δ→0

Psδ (F )

exist. It may be shown that the mapping

F −→ Ps(F ) = inf
{∑

i

Ps0(Fi) : F ⊂
⋃
i

Fi

}
defines a measure on R, known as the s–dimensional packing measure. Analogous to the case of the
Hausdorff dimension we define the fractal index

DimP (F ) = inf
{
s > 0 : Ps(F ) = 0

}
,

which is known as the packing dimension. The definition of packing measure and dimension where
introduced by Taylor and Tricot [22]. Its well known that for any Borel subset of R

0 ≤ dimH(F ) ≤ DimP (F ) ≤ 1,

Suitable examples shows that none of the inequalities can be replaced by equality. These fractal
indices have the advantage of being defined for any set through measures which are relatively easy
to manipulate. A major disadvantage is that in many cases it is hard to calculate or to estimate by
computational methods. Although, for regenerative sets there exists some refined results that allow
us to obtain its exact Hausdorff and Packing dimension. Let φ(λ) be the Laplace exponent of the
regenerative set R, i.e., for any λ > 0

φ(λ) =
(∫ ∞

0
e−λtU(dt)

)−1

with U the renewal function of R given by Theorem 2. Define the so called lower and upper indices,
respectively, of the Laplace exponent φ by

Ind φ = sup
{
α > 0 : lim

λ→∞
φ(λ)λ−α = ∞

}
,

Ind φ = inf
{
α > 0 : lim

λ→∞
φ(λ)λ−α = 0

}
.

with the usual convention sup ∅ = 0. We recall the following results

Lemma 6.
We have a.s for every t > 0

Ind φ = dimH(R∩[0, t])

Ind φ = DimP (R∩[0, t])

For a proof of these facts see chapter 5 section 1 in [1]. In the following Theorem we give formulas
to calculate the Hausdorff and Packing dimensions of R in terms of p and S.
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Theorem 3.
Almost surely for every t > 0, the Hausdorff and Packing dimensions of R∩[0, t[ are given by

dimH(R∩[0, t]) = lim inf
y→0+

∫ 1
y (1− p(w))S(dw)

−S(y)
,

DimP (R∩[0, t]) = lim sup
y→0+

∫ 1
y (1− p(w))S(dw)

−S(y)
.

Proof. It is well known that φ(λ) � (U [0, 1/λ])−1, i.e., there exist two positive constants c, c′, such
that c(U [0, 1/λ])−1 ≤ φ(λ) ≤ c′(U [0, 1/λ])−1. (see [1] Proposition 1.8, page 12). So it is immediate
that

Ind φ = sup
{
α > 0 : lim

λ→∞
U [0, 1/λ]λα = 0

}
,

Ind φ = inf
{
α > 0 : lim

λ→∞
U [0, 1/λ]λα = ∞

}
.

This result will be our major tool in the estimation of the lower and upper indices of φ. The conclusion
is then obtained by Lemma 6.

When 0 is isolated the affirmation is obvious. Indeed, in one hand, by Proposition 1 we know that∫
0+ [1− p(x)]S(dx) <∞ so ∫ 1

y [1− p(w)]S(dw)

−S(y)
−−−→
y→0

0 = ρ.

On the other hand, in the proof of Theorem 2 we have shown that

U [0, a] = U{0}+
∫ a

0
dt

∫ ∞
0

F t(dy)[1− p(y)] exp
{∫ 1

y
p(w)S(dw)

}
with U{0} = exp

{
−
∫ 1
0 [1 − p(y)]S(dy)

}
, then λαU [0, 1

λ ] → ∞ as λ → ∞ for any α > 0. Therefore

Ind φ = Ind φ = 0 = ρ.

It remains to show the statement of Theorem 3 when 0 is not isolated. To reach our goal, we will
first show that the function λU [0, 1/λ] is related to the Laplace-Stieltjes transform of an increasing
extended regularly varying function (say h). Then we will use a Tauberian theorem to determine
the behavior at infinity of λU [0, 1/λ] through that of h. (See e.g. Bingham et al. [2] Chapter 2 for
background on extended regularly varying functions.) We first introduce some notation. Let fλ(x) =
(1/λ) exp{−S(x)} and f−1

λ (·) the inverse in the variable x of fλ(x).Observe that S
(
f−1
λ (x)

)
= − log λx,

for all x > 0, thus
lim
λ→∞

S
(
f−1
λ (x)

)
= −∞, for all x > 0,

and since S is continuous
lim
λ→∞

f−1
λ (x) = 0, for all x > 0.

Because of Theorem 2 and making the change of variables y = fλ(x) we get that

λU [0, 1/λ] =
∫ ∞

0
F 1/λ(dx) exp

{∫ 1

x
p(w)S(dw)

}
=
∫ ∞

0
S(dx)

1
λ
e−S(x)F 1/λ(x) exp{

∫ 1

x
p(w)S(dw)}

=
∫ ∞

0
dye−y exp{

∫ 1

f−1
λ (y)

p(w)S(dw)}.
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Now, let S−1 be the right-continuous inverse of S, that is S−1(t) = inf{x > 0 : S(x) > t}. By a change
of variables for Stieltjes integrals and a change of variables u = e−w we get that for any λ, y > 0

exp

{∫ 1

f−1
λ (y)

p(w)S(dw)

}
= exp

{∫ 0

S(f−1
λ (y))

p
(
S−1(w)

)
dw

}

= exp
{∫ λy

1
p
(
S−1 (− ln(u))

) du
u

}
:= h(λy).

(13)

In short, for every λ > 0,

λU [0, 1/λ] =
1
λ

∫ ∞
0

dy e−y/λh(y) = ĥ(1/λ),

where ĥ denotes the Laplace–Stieltjes transform of h. By the representation theorem for extended
regularly varying functions (Theorem 2.2.6 in [2]) we have that the function h is indeed an increasing
extended regularly varying function. Furthermore, by a Tauberian theorem (Theorem 2.10.2 in [2])
we have that h(λ) = O(ĥ(1/λ)) and ĥ(1/λ) = O(h(λ)) as λ→∞. We deduce therefrom that

Ind φ = sup
{
α > 0 : lim

λ→∞
U [0, 1/λ]λα = 0

}
,

= sup
{
α > 0 : lim

λ→∞
λα−1ĥ(1/λ) = 0

}
= sup

{
α > 0 : lim

λ→∞
λα−1h(λ) = 0

}
= sup

{
α > 0 : lim

λ→∞

λ/h(λ)
λα

= ∞
}

= lim inf
λ→∞

log(λ/h(λ))
log(λ)

.

Analogously, we get that

Ind φ = lim sup
λ→∞

log(λ/h(λ))
log(λ)

.

Last, by the fact that

λ/h(λ) = exp
{∫ λ

1

(
1− p

(
S−1 (− ln(u))

)) du
u

}
, λ > 0,

and reversing the change of variables done in equation (13) we deduce that

lim inf
λ→∞

log(λ/h(λ))
log(λ)

= lim inf
λ→∞

∫ 1
f−1
1 (λ)(1− p(w))S(dw)

−S(f−1
1 (λ))

= lim inf
y→0+

∫ 1
y (1− p(w))S(dw)

−S(y)
.

Analogously, we prove the claim for the lim sup .

Example 3. Let p(x) = βe−x for x > 0, β ∈]0, 1] and ν(x) = x−α for α > 0. So S(x) = α lnx and
the associated uncovered random set R has zero Lebesgue measure, is perfect if β ∈]0, 1[ and discrete
if β = 1, unbounded and with fractal dimension 1− β.
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Example 4. Let S(x) be as in the previous example and

p(x) = cos2(1/x).

Then the associated uncovered set R has zero Lebesgue measure, is perfect, bounded and with fractal
dimension 1/2.

Acknowledgments I am very grateful to Jean Bertoin for suggesting the problem, numerous discus-
sions and comments on the manuscript.
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