
Chapitre II

A law of iterated logarithm for
increasing self–similar Markov
processes

Abstract

We consider increasing self–similar Markov processes (Xt, t ≥ 0) on ]0,∞[. By using the Lamperti’s
bijection between self–similar Markov processes and Lévy processes, we determine the functions f
for which there exists a constant c ∈ R+ \{0} such that lim inft→∞Xt/f(t) = c with probability
1. The determination of such functions depends on the subordinator ξ associated to X through
the distribution of the Lévy exponential functional and the Laplace exponent of ξ. We provide an
analogous result for the self–similar Markov process associated to the opposite of a subordinator.
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1 Introduction

Let X = (Xs, s ≥ 0) be a strong Markov process with values in ]0,∞[ and denote by Px its law starting
from X0 = x > 0. For α > 0, we say that X is α–self–similar (α–ss), whenever it fulfills the scaling
property: for any c > 0 and x > 0

the distribution of
(
cX(tc−1/α), t ≥ 0

)
under Px is Pcx. (1)

Such processes have been introduced by Lamperti [20, 21] under the name of semi–stable processes.
We refer to Embrechts and Maejima [12] for some account of their properties and applications.

Recently, Bertoin and Caballero [3] studied the weak behavior of t−αXt as t→∞, in the case when
X has increasing sample paths (see also Bertoin and Yor [5] for the general case). For any y > 0 fixed,
they established the weak convergence

Py
(
t−αXt ∈ ·

)
−−−→
t→∞

P0+

(
X1 ∈ ·

)
,
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where P0+

(
X1 ∈ ·

)
is the so-called entrance law from 0+. The problem that we consider here concerns

the rate at which an increasing α–ss process goes to infinity. More precisely, we should like to determine
the functions f : [0,∞[→ [0,∞[, for which, for any x > 0

lim inf
t→∞

Xt

f(t)
∈ ]0,∞[ Px–a.s. (2)

Fristedt [15] (see also Breiman [8]) provided an answer to (2) when X has moreover independent
and stationary increments, that is X is a stable subordinator. Later, the problem was solved by
Watanabe [32] for increasing ss–process with independent increments. In this paper we treat the case
that does not assume neither stationarity nor independence of the increments. Namely, under a rather
natural hypothesis on the entrance laws, we provide an explicit characterization of the functions that
satisfies (2). Our approach is based, essentially on the main result of Lamperti [21] about the existence
of a bijection between self–similar and Lévy processes. Specifically, let ξ = (ξt, t ≥ 0) be a Lévy process
and (Ft, t ≥ 0) its natural filtration. Denote by P and E the probability and expectation with respect
to ξ. Suppose that ξ does not drift to −∞. For α > 0, define

At =
∫ t

0
eξs/αds, t ≥ 0,

and the time change associated to A by

τ(t) = inf{s : As > t}.

For an arbitrary x > 0, write by Px the law of the process

Xt = x exp ξτ(tx−1/α), t ≥ 0.

It is straightforward that under Px, X has the scaling property defined in (1). A classical result on
time changes shows that the process X inherits the strong Markov property from ξ. So X is an α–ss
Markov process. Conversely any α-ss Markov process can be obtained in this way.

In our setting X is an increasing process so ξ is a subordinator (see Bertoin [1] § 3, for background).
The law of a subordinator is characterized by its Laplace transform,

E(e−λξt) = exp−tφ(λ) λ ≥ 0, t ≥ 0,

where φ is the so called Laplace exponent of ξ and can be expressed thanks to the Lévy–Khintchine’s
formula as

φ(λ) = dλ+
∫

]0,∞[

(
1− e−λx

)
Π(dx),

The term d is called the drift coefficient and Π is the Lévy measure associated to the subordinator ξ,
that is, a positive measure such that

∫
]0,∞[(1 ∧ x)Π(dx) < ∞. We suppose henceforth that the drift

coefficient is d = 0, and we shall exclude the case ξ is arithmetic, that is when Π is supported by kN,
for some k > 0.

Bertoin and Caballero [3] showed that if

0 < µ = E
(
ξ1
)

= φ′(0+) <∞,

then the α–ss Markov process X started at x > 0 converges in the sense of finite dimensional distri-
butions when x −→ 0+ (cf. Bertoin and Yor [5] for the general case). We then denote by P0+ the
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limiting law. Moreover, the law of X1 under P0+ is related to the law under P of the Lévy exponential
functional associated to the subordinator ξ, i.e.

I =
∫ ∞

0
e−ξs/αds, (3)

by the formula
E0+

(
f(X1/α

1 )
)

=
α

µ
E
(
I−1f(1/I)

)
, (4)

where f : [0,∞[→ [0,∞[ is a measurable and bounded function. Besides, provided that φ′(0+) < ∞
Carmona, Petit and Yor [10], showed (c.f. Proposition 2.1 in [10]) that the law of I admits a density
ρ which is infinitely differentiable on ]0,∞[. Furthermore, Proposition 3.3 op. cit. establishes that the
law of I is determined by its integral moments, which in turn are given by the formulae

E
(
In
)

=
n∏
k=1

k

φ(k/α)
n ∈ N,

and that
E(erI) <∞,

for every 0 < r < φ(∞). Let us introduce the following technical hypothesis

(H) The density ρ is decreasing in a neighborhood of ∞, and bounded.

Examples which satisfy hypothesis (H) are given in Section 6.

Recall that a Borel function f : R+ → R+, is regularly varying at infinity (resp. at 0) with index
β if

f(xt)
f(t)

−→ xβ , as t→∞ (resp. as t→ 0)

for every x > 0. We refer to Bingham et al. [7] for a complete account of the theory of regular variation.

It is well known in the theory of subordinators that the regular variation at infinity (resp. at 0) of
the Laplace exponent φ, is related to the behavior at 0 (resp. at ∞) of the subordinator ξ associated
to it. So it is natural to expect that the regular variation at ∞ of the Laplace exponent should also
be related to the local behavior of any α–ss process associated to ξ. This is indeed the case, but we
first need to recall a result on subordinators in order to give a precise statement: let φ be regularly
varying at infinity with index β ∈]0, 1[, let ψ be the inverse of φ and

g(t) =
log | log t|

ψ(t−1 log | log t|)
, 0 < t < e−1,

then
lim inf
t→0

ξt
g(t)

= (1− β)(1−β)/β P –a.s.,

see e.g. Bertoin [1], section III.4. It follows easily that g is regularly varying at 0 with index 1/β and

lim
t→0

τ(t)
t

= 1, P –a.s.

This being said, it is straightforward that for any x > 0 and X an α–ss process associated to ξ we
have that

lim inf
t→0

Xt −X0

g(t)
= X

(αβ−1)/αβ
0 (1− β)(1−β)/β Px–a.s. (5)
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On the other hand, contrary to what we might expect, it is also the regular variation at infinity of
the Laplace exponent that gives us the means to determine the behavior at infinity of an increasing
self–similar Markov process. Indeed, we have the following

Theorem 1. Let ξ be a subordinator such that 0 < µ = E(ξ1) <∞ and whose Laplace exponent φ is
regularly varying at infinity with index β ∈]0, 1[. Suppose that the density ρ, of the Lévy exponential
functional I of ξ satisfies hypothesis (H). For α > 0, let X be the α–ss process associated to the
subordinator ξ. Define

f(t) =
φ(log log t)

log log t
, t > e.

Then for any x > 0

lim inf
t→∞

Xt

(tf(t))α
= α−αβ(1− β)α(1−β) Px–a.s.

This result also holds true under P0+ .

From the equation (5) only the local behavior of X under P0+ remains to be determined. In the
next result we fill this gap.

Theorem 2. Under the hypotheses and notations of Theorem 1, we have that

lim inf
t→0

Xt

(tf(1/t))α
= α−αβ(1− β)α(1−β) P0+–a.s.

The rest of this note is organized as follows. In section 2 we state two propositions that enable us
to prove Theorem 1. Section 3 is devoted to the proof of these propositions. The proof of Theorem 2
is given in section 4 where we obtain some results on time reversal for a self–similar Markov process.
There we also obtain a result analog to Theorem 1 for the self–similar Markov process associated to
the opposite of a subordinator near the first time that it hits 0. Finally in section 6 we give some
examples.

2 Preliminaries

Let X be an α-ss Markov process with α > 0. It is plain that the process Y = X1/α, is a 1-ss Markov
process, in fact it is the 1–ss process associated to (1/α)ξ. Conversely if Y is a 1-ss Markov process
then, for any α > 0, the process X = Y α is an α–ss Markov process. So we can assume henceforth,
without loss of generality, that α = 1.

We can deduce from equation (4) that the entrance law P0+(X1 ∈ dx) has a density

p1(x) =

{
(µx)−1ρ(x−1) if 0 < x <∞
0 otherwise,

with ρ the density of the law of I.

Denote by U = (Us, s ≥ 0) the Ornstein–Uhlenbeck (OU) process associated to the 1–ss Markov
process X, (or to the underlying subordinator ξ through Lamperti’s transformation if X0 = x for some
x > 0) that is

Ut = e−tXet−1 t ≥ 0.
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This process inherits the homogeneity and strong Markov property from X, has transition probabilities

P̃sf(x) = Ex
(
f(e−sXes−1)

)
s ≥ 0,

for every Borel function f. Moreover, it has a unique invariant probability measure given by the
entrance law p1(x)dx. See e.g. Carmona, Petit and Yor [10] for a proof of these facts.

The asymptotic behavior of the OU process U, defined above is described in the next proposition.

Proposition 1. Let ξ be a subordinator such that 0 < µ = E(ξ1) < ∞ and whose Laplace exponent
is regularly varying at infinity with index β ∈]0, 1[. Suppose that the density, ρ(·), of the exponential
functional I satisfies (H). Let U be the Ornstein–Uhlenbeck process associated to ξ. If h :]0,∞[→]0,∞[,
is a decreasing function then for every x > 0

Px
(
Us < h(s) i.o. s→∞

)
= 0 or = 1,

according whether ∫ ∞
ρ(1/h(s))ds <∞ or = ∞.

This result also holds true if we suppose that the Lévy measure is finite, Π]0,∞[< ∞, instead of the
regular variation at infinity of φ.

Remark 1. Of course one can derive an integral test from Proposition 1 for the 1–ss Markov process
associated to ξ. Indeed, if h is a decreasing function then

Px
(
Xs < sh(s) i.o. s→∞

)
= 0 or 1

according whether ∫ ∞
ρ(1/h(s))

ds

s
<∞ or = ∞.

However this result is not really satisfactory unless one has good estimates of ρ.

Despite the characterization of the law of the exponential functional I it is not always possible get
an explicit representation of its density. But to obtain the result stated at Theorem 1 we will only
need estimations of the behavior of log ρ(·) near infinity. That is the purpose of the following

Proposition 2. Let I be the exponential functional associated to a subordinator (ξs, s ≥ 0) whose
Laplace exponent φ, varies regularly at infinity with index β ∈]0, 1[. Then

− log P(I > t) ∼ (1− β)ϕ←(t), t→∞, (6)

where
ϕ←(t) = inf

{
s > 0 ,

s

φ(s)
> t
}
.

If moreover, the density ρ(·) of the law of I, is decreasing on some neighborhood of ∞, then

− log ρ(t) ∼ (1− β)ϕ←(t), t→∞. (7)

Remark 2. The fact that the tail distribution of I has this asymptotic form implies that the law of
I cannot be infinitely divisible (see e.g. Steutel [30] or Bingham et al. [7] section 8.2.8).

If we take for granted Propositions 1 and 2 the proof of Theorem 1 follows by standard arguments.
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Proof of Theorem 1. By Proposition 2 and the fact that ϕ← is regularly varying with index 1
1−β we

have that for any constant c > 0

− log ρ
( 1
cf(t)

)
∼ (1− β)c−

1
1−βϕ←

( 1
f(t)

)
as t→∞.

Since ϕ← is the inverse of s/φ(s) we then have that

− log ρ
( 1
cf(t)

)
∼ (1− β)c−

1
1−β log log t as t→∞. (8)

The statement in Theorem 1 is equivalent to the property (to be proven) that for any ε > 0,

Px
(
Xs < (1− ε)cβsf(s) i.o. s→∞

)
= 0,

and
Px
(
Xs < (1 + ε)cβsf(s) i.o. s→∞

)
= 1,

where cβ = (1 − β)(1−β). From the remark after Proposition 1 the former and later equations hold if
for any ε > 0, ∫ ∞

ρ(1/f1,ε(s))
ds

s
<∞,∫ ∞

ρ(1/f2,ε(s))
ds

s
= ∞,

where
f1,ε(s) = (1− ε)cβf(s), f2,ε(s) = (1 + ε)cβf(s),

respectively. Indeed, let ε > 0, by equation (8) there exists an sε such that for every s > sε,

− log ρ
( 1

f1,ε(s)

)
≥ (1− β)(1− ε)(1− ε)−

1
1−β c

− 1
1−β

β log log s

= (1− ε)−
β

1−β log log s.

Therefore, taking kε = (1− ε)−
β

1−β , we have∫ ∞
sε

ρ(1/f1,ε(s))
ds

s
≤
∫ ∞
sε

(log s)−kε
ds

s
<∞,

since kε > 1. Similarly, one shows the divergence of∫ ∞
ρ(1/f2,ε(s))

ds

s
.

We have showed the statement of Theorem 1 for α = 1, to show that the result holds for any α,
consider the 1–ss process Y associated to the subordinator α−1ξ. This subordinator has Laplace
exponent φα(λ), such that

φα(λ) = φ(α−1λ) ∼ α−βφ(λ) λ→∞,

owed to the regular variation of φ. Then one obtain the result readily by means of the α–ss process
X = Y α.
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3 Proofs

This section contains two parts. In the first one, we give the proof of the Proposition 1, which is
rather technical so that we decompose it in to several Lemmas. The second part contains the proof
of the Proposition 2.

3.1 Proof of Proposition 1

Let Ũ be process {
Ũs = e−sXes , s ∈ R

}
.

Under P0+ the process Ũ is a stationary strong Markov process, whose transition probabilities are
those of the OU process U defined in the preceding section. In fact, the law of the process (Ũs, s ≥ 0)
under P0+ is the same as that of the OU process (Us, s ≥ 0) with initial measure the entrance law
P0+(X1 ∈ dx) = p1(x)dx. This process will enable us to describe the local behavior of the OU process
U and in section 4 prove the Theorem 2.

The first ingredient in the proof of Proposition 1 is the following

Lemma 1. For any x > 0

P0+

(
lim
h→0

Ũh − Ũ0

h
= −Ũ0

∣∣∣Ũ0 = x

)
= 1.

Remark 3. In Lemma 1 we do not impose any constraint in the way we make h tend to 0. That is
why we postpone its proof until section 4.

We suppose in the sequel that the starting point of the OU process U is fixed, U0 = x > 0, unless
otherwise stated. The main argument in the proof of Proposition 1 is that of Breiman’s [8] proof of a
law of iterated logarithm for stable subordinators, which in turn is an adaptation of Motoo’s [24] proof
of Kolmogorov’s test for diffusions. Here is an outline of such a method, see e.g. Ito and McKean [18]
for Motoo’s proof of Kolmogorov’s test. Let {Rn, n ≥ 0} be the successive return times of the OU
process U to its starting point, i.e.,

Rn+1 = inf{t > Rn : Ut = U0},

with R0 = 0. Denote by R = R1 and Ty the first hitting time of a level y > 0 by the OU process U,
i.e.,

Ty = inf{t > 0 : Ut = y}.

Define the function g(x, y) by

g(x, y) = Px(Ty < R) = Px
(

inf
t∈[0,R]

Ut < y
)
, y < x.

By the homogeneity and strong Markov property of U the random variables

{Rn+1 −Rn, n ≥ 0}

are independent and identically distributed with the same law as R. The fact that the OU process U
has a unique invariant probability implies that

Ex(R) <∞.
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Then, by the strong law of large numbers

Rn
n

−−−→
n→∞

Ex(R), Px–a.s.

Besides, we can deduce from the Lemma 1, using the homogeneity and the strong Markov properties
of the OU process Ũ that the OU process U hits points from above and it leave it from below and
more importantly the range of the excursion process {Us, s ∈ [0, R]} is a compact interval with U0 in
its interior. Thanks to these facts Motoo’s arguments apply to show that for any decreasing function
h :]0,∞[→]0,∞[ we have the Px–a.s. inclusion of sets{

Us < h(s) i.o. s→∞
}
⊆
{

inf
s∈[Rn,Rn+1]

Us < h(c1n) i.o. n→∞
}

{
inf

s∈[Rn,Rn+1]
Us < h(c2n) i.o. n→∞

}
⊆
{
Us < h(s) i.o. s→∞

}
with c1, c2 > 0 constants that depend only on Ex(R). Therefore, by a standard application of the
Borel–Cantelli Lemma we get that if the integral∫ ∞

g(x, h(s))ds (9)

converges then

Px
(

inf
t∈[Rn,Rn+1]

Ut < h(c1n) i.o. n→∞
)

= 0,

whereas if (9) diverges then

Px
(

inf
t∈[Rn,Rn+1]

Ut < h(c2n) i.o. n→∞
)

= 1.

The proof reduces then to estimate the function g(x, y), that is, estimate the distribution of the depth
of the excursion and to show that the criterion does not depend of x. Namely that

g(x, y) � ρ(1/y) as y → 0, (10)

that is, there exists two positive constants b1, b2 such that

b1ρ(1/y) ≤ g(x, y) ≤ b2ρ(1/y) as y → 0.

In [2] Bertoin gets an estimate for the function g when the underlying self–similar process is a stable
subordinator. His proof provides the key steps for our estimation of the function g.

Lemma 1 enable us to follow the arguments of section 3 in [2] and this yields

Lemma 2. Assume ρ is bounded. For every x, y > 0 and q > 0 we have

(i)

lim
ε→0

1
ε

∫ R

0
1{Us∈[y−ε,y]}ds =

1
y
Card

{
t ∈ [0, R[: Ut = y

}
both Px–a.s. and in L1(Px).

(ii)

lim
ε→0

Ey
(1
ε

∫ R

0
e−qs1{Us∈[y−ε,y]}ds

)
=

1
y
.
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(iii)
Ex(R) =

µ

ρ(1/x)

(iv)

Ex
( ∑
t∈[0,R[

1{Ut=y}

)
=
ρ(1/y)
ρ(1/x)

.

Proof. First note that an application of Dynkin’s formula shows that the measure

ν(f) =
Ex(
∫ R
0 f(Us)ds)
Ex(R)

,

is an invariant law for the OU process. Moreover, by the uniqueness of the invariant law we have that

ν(f) =
∫ ∞

0
f(z)(µz)−1ρ(1/z)dz, (11)

for every function f non–negative and measurable. Next, if we take for granted Lemma 1, then we
may simply repeat the arguments of [2] to prove (i–iii). The statement in (iv) follows from (i), (iii)
and the identity in equation (11).

A standard application of the strong Markov property at time R shows that for every y > 0

Ex
( ∑
t∈[0,R[

1{Ut=y}

)
= Px(Ty < R)

(
1 + Py(R < Tx) + (Py(R < Tx))2 + · · ·

)
=

Px(Ty < R)
Py(Tx ≤ R)

.

(12)

Therefore, by comparing (iv) in Lemma 2 and equation (12) we get that

Px(Ty < R) = Py(Tx ≤ R)
ρ(1/y)
ρ(1/x)

.

Since by hypothesis (H) we have that
lim
y→0

ρ(1/y) = 0,

then we may conclude that the statement in (10) is equivalent to

lim inf
y→0

Py(Tx ≤ R) > 0. (13)

We next focus in the proof of (13). To that end, we will obtain more precise information on the duration
R of the excursion as the starting point tends to 0 using the well known fact that the distribution of
R can be characterized in terms of the resolvent density. We introduce some notation.

Define by {Lyt , t > 0} the “local time” at y > 0 of the OU process U, that is

Lyt =
1
y

∑
0<s≤t

1{Us=y}.

Let x ≥ 0, y > 0, and u1(x, y) the 1-potential of Lyt under Px, for x > 0 and P0+ for x = 0 i.e.,

u1(x, y) = Ex
(∫

]0,∞[
e−sdLys

)
.
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We have by the strong Markov property that

u1(x, y) = y−1 Ex(e−Ty)
1− Ey(e−R)

. (14)

Lemma 3. For every y > 0, we have

u1(0, y) =
1
µ

∫ 1/y

0
dzρ(z).

In particular u1(0, y) is a bounded and continuous function.

Proof. Let R1 denote the 1-resolvent operator of the OU process, that is,

R1f(x) = Ex
(∫ ∞

0
e−sf(Us)ds

)
=
∫
R1(x, dy)f(y),

for any Borel positive function f, and x ≥ 0. Our first aim is to show that the measure R1(0, dy)
has a density that coincides with u1(0, y). Indeed, by a change of variables, an application of Fubini’s
Theorem and the self–similarity of X, we get

R1f(0) = E0+

(∫ ∞
0

e−sf(Us)ds
)

= E0+

(∫ 1

0
f(uX(1−u)/u)du

)
=
∫ 1

0
E0+

(
f(uX1)

)
du.

=
∫ 1

0
du

∫ ∞
0

dx(µx)−1ρ(1/x)f(xu).

Straightforward calculations shows that

R1f(0) =
∫ ∞

0
dyf(y)v(y),

with v(y) = µ−1
∫ 1/y
0 dxρ(x). This shows that R1(0, dy) has a density v(y), that is continuous and

bounded. In particular

v(y) = lim
ε→0

ε−1

∫ y

y−ε
v(x)dx.

On the other hand,∫ y

y−ε
v(x)dx = E0+

(∫ Ty

0
e−s1{Us∈[y−ε,y]}ds

)
+ E0+

(∫ ∞
Ty

e−s1{Us∈[y−ε,y]}ds
)

= Iε + IIε.

By the strong Markov property

IIε =
E0+(e−Ty)

1− Ey(e−R)
Ey
(∫ R

0
e−s1{Us∈[y−ε,y]}ds

)
.
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Using (ii) in Lemma 2 and equation (14) we get that

lim
ε→0

ε−1IIε = y−1 E0+(e−Ty)
1− Ey(e−R)

= u1(0, y).

Thus the proof will be completed if we show that, ε−1Iε → 0 as ε → 0. Let Hy be the first time that
the OU process jumps above the level y > 0, Hy = inf{s > 0 : Us > y}. Indeed, by the Markov
property applied at the first passage time of the OU process above the level y − ε we get

Iε ≤ E0+

(
1{Hy−ε<Hy}e

−Hy−ε
)

sup
z∈[y−ε,y]

Ez
( ∫ Hy

0
e−s1{Us∈[y−ε,y]}ds

)
.

Applying repeatedly the Markov property at the stopping time R we get for every z > 0,

Ez
( ∫ Hy

0
e−s1{Us∈[y−ε,y]}ds

)
≤

Ez
( ∫ R

0 e−s1{Us∈[y−ε,y]}ds
)

1− Ez
(
e−R1{R<Hy}

) .

The claimed result now follows from an application of (ii) in Lemma 2 and the fact that Hy−ε −→ Hy

as ε→ 0 a.s.

We assume throughout the rest of this section that either φ is regularly varying at ∞
with index β ∈]0, 1[ or the Lévy measure is finite, Π]0,∞[<∞.

Lemma 4. One has
lim inf
y→0+

y−1 E0+

(
e−Ty

)
> 0.

Before proving this Lemma let us define a function that will be used in the sequel. Since the
function φ(λ)/λ is decreasing, there exists a function βy such that

φ(βy)/βy = y,

we denote δy = e1/βy − 1.

Proof. The statement in Lemma 4 means that

lim inf
y→0+

y−1P0+(Ty < e) > 0,

with e an exponential random variable independent of the OU process. To show this fact we will need
to introduce some notation and recall some results. Let HX

y be the first passage time above the level
y by the 1-ss process X, that is

HX
y = inf

{
s > 0 : Xs > y

}
.

Bertoin and Caballero [3] showed that under the entrance law P0+ , the law of the pair

(HX
y , XHX

y
)

is the same as that of
(yI exp{−V Z}, y exp{(1− V )Z}),

where V,Z and I are independent and V is uniformly distributed on [0, 1] and the law of Z is given
by

P(Z ∈ dz) = µ−1zΠ(dz) z > 0.
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So by taking Sy = log(1 +HX
y ) we get that(

USy/y, Sy
) D−−−→
y→0

(eK , 0),

where K is a random variable with law

P(K ∈ dk) = µ−1Π(k)dk,

and Π(k) = Π(k,∞). Recall that Hy is the first time that the OU process U jumps above the level y.
It is plain that the OU process hits a level [y,∞[ only if the ss process X is already at this level, i.e.

log(1 +HX
y ) ≤ Hy,

for every y > 0. Moreover, the weak convergence of USy/y implies that

P0+

(
log(1 +HX

y ) < Hy

)
≤ P0+(USy ∈ [0, y[) −→ 0 as y → 0.

So we can suppose henceforth that log(1 +HX
y ) = Hy, for all y small enough.

Let t > 0 fixed and εy an arbitrary function vanishing at 0. For every y > 0 such that t > εy we
have by the strong Markov property applied at time Sy, that

P0+(Ty < t)

=
∫ ∞
y

∫ t

0
P0+(USy ∈ dz, Sy ∈ dr)Pz(∃s ∈ [0, t− r], Us = y)

≥
∫ y(1+δy)

y

∫ t−εy

0
P0+(USy ∈ dz, Sy ∈ dr)Pz(∃s ∈ [0, εy], Us ≤ y),

(15)

the inequality in the former equation is owed to the fact that the OU process does not have negative
jumps and hits the points from above. Using the Lamperti’s transformation, it is straightforward that
for every z ∈]y, y(1 + δy)[

Pz (∃s ∈ [0, εy], Us ≤ y) = P
(
∃s ∈ [0, εy], ze−s exp{ξτ((es−1)/z)} ≤ y

)
≥ P

(
∃s ∈ [0, εy], y(1 + δy)e−s exp{ξτ((es−1)/y)} ≤ y

)
= Py (∃s ∈ [0, εy], (1 + δy)Us ≤ y) .

(16)

The weak convergence of (USy/y, Sy) as y → 0, implies that

P0+(USy ∈ [y, y(1 + δy)], Sy ∈ [0, t− εy]) ∼ P
(
eK ∈]1, 1 + δy[

)
,

as y → 0. Putting together equations (15) & (16) and the later fact we get the estimation

P0+(Ty < t)
≥ P0+(USy ∈ [y, y(1 + δy)], Sy ∈ [0, t− εy])Py (∃s ∈ [0, εy], (1 + δy)Us ≤ y)

∼ P
(
eK ∈]1, 1 + δy[

)
Py (∃s ∈ [0, εy], (1 + δy)Us ≤ y) ,

(17)

as y → 0. Furthermore, by the definition of δy we have that

P(eK ∈ [1, 1 + δy]) = P
(
K ∈ [0, β−1

y ]
)

=
1
µ

∫ β−1
y

0
Π(r)dr,

(18)
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and the last term in the former equation can be estimated in terms of the Laplace exponent. Specifi-
cally, there exist two constant c1, c2 depending only on φ such that

c1
φ(βy)
βy

≤ 1
µ

∫ β−1
y

0
Π(r)dr ≤ c2

φ(βy)
βy

,

see e.g. [1] Proposition III.1. Since βy is the inverse of φ(z)/z we have by equations (17) & (18) that

P0+(Ty < t) ≥ yc1Py (∃s ∈ [0, εy], (1 + δy)Us ≤ y) ,

for every y small enough. Now, we shall show in Lemma 5 below that the function εy can be chosen
such that

lim inf
y→0

Py (∃s ∈ [0, εy], (1 + δy)Us ≤ y) = ϑ > 0. (19)

Taking for granted this statement we end the proof since we have showed that for all t > 0,

P0+(Ty < e) ≥ e−tP0+(Ty < t)
≥ e−tCy as y → 0,

where e is an exponential random variable independent of U and C = c1ϑ.

Lemma 5. We may choose εy such that (19) holds true.

Proof. Recall that βy is determined by φ(βy)/βy = y and that δy = e1/βy − 1. The regular variation
at infinity of φ will enable us to show that the functions

εy =
ed/βy − 1

y
and ay = (d− 1)/βy,

with d > 1 arbitrary, are such that

(i)
εy, ay,−→ 0, as y → 0,

(ii)
lim
y→0

P(ξεy ≤ ay) = ϑ1 > 0.

The reason why we require the functions εy and ay to have this behavior is the following. Let

sy = log(1 + yεy), y > 0

and note that τ(s) ≤ s, for every s ≥ 0, since As ≥ s for every s ≥ 0. Then on the event

ξεy ≤ ay,

we have the inequalities
exp{ξτ((esy−1)/y)} ≤ exp{ξεy} ≤ eay ,

due to the fact that ξ is an increasing process and

τ ((esy − 1)/y) ≤ (esy − 1)/y = εy.
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So, on this event, we have also the inequalities

y(1 + δy)e−sy exp{ξ
τ
(
(esy−1)/y

)} ≤ y(1 + δy)e−sy+ay ≤ y,

from the definition of the functions sy and ay. Since sy ≤ εy for every y small enough and the OU
process does not have negative jumps, we can conclude by (ii) that

lim inf
y→0

P
(
∃ s ∈ [0, εy], y(1 + δy)e−s exp{ξτ((es−1)/y)} ≤ y

)
≥ lim

y→0
P(ξεy ≤ ay) > 0.

Then the proof reduces to show that the functions εy and ay so defined satisfies (i,ii).

Let φ′(·) be the derivative of φ,

Λ(u) = φ(u)− uφ′(u), u > 0,

and λy the function determined by the relation

φ′(λy) =
ay
εy
.

Since φ(λ) is concave and regularly varying with index β ∈]0, 1[ then φ(λ)/λ is regularly varying with
index β − 1 and φ′(λ) ∼ βφ(λ)/λ. This implies in turn that βy −→ ∞ and yβy −→ ∞ as y → 0.
Thus it is straightforward that εy, and ay satisfy (i), and moreover ay = O(yεy). This and the regular
variation of φ imply that λy = O(βy).

According to Jain and Pruitt [19] Theorem 5.1 the statement in (ii) is equivalent to

lim
y→0

εyΛ(λy) <∞.

The former is indeed true in our construction,

Λ(λy) = λy

(φ(λy)
λy

− φ′(λy)
)

∼ λyφ
′(λy)

(1− β

β

)
= λy

ay
εy

(1− β

β

)
.

Therefore
εyΛ(λy) ∼

λy
βy

(d− 1)
(1− β

β

)
= O(1).

This ends the proof in the case φ is regularly varying at infinity. When the Lévy measure is a finite
measure, that is ξ is a compound Poisson process, we can take ay ≡ 0 and

εy = (e1/βy − 1)/y y > 0.

This choice of the functions ay, εy is due to the fact that a compound Poisson process remains at zero
during an exponential time and a fortiori

lim
y→0+

P
(
ξεy ≤ ay

)
> 0.

The rest of the proof follows as in the case φ is regularly varying at ∞.
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The last ingredient in the proof of Proposition 1 is the following result.

Lemma 6. One has

(i)
lim sup
y→0+

Ey(e−R) < 1,

(ii)
lim inf
y→0

Py(Tx ≤ R) > 0.

Proof. (i) We know from equation (14) that

u1(0, y) = y−1 E0+

(
e−Ty

)
1− Ey(e−R)

≥ E0+

(
e−Ty

)
u1(y, y).

Moreover, by Lemma 3 one has

lim
y→0

u1(0, y) = lim
y→0

1
µ

∫ 1/y

0
dzρ(z) =

1
µ
.

Thus Lemma 4 implies
lim sup
y→0+

yu1(y, y) = θ <∞.

In particular, using equation (14) one gets

lim sup
y→0

Ey(e−R) =
θ

1 + θ
.

(ii) The statement in (i) shows that for every t > 0

lim sup
y→0

Py(R ≤ t) ≤ θ

1 + θ
.

Since the OU process U hits the points continuously from above, it is plain that for every y < x

Py(Tx < R) = Py(Hx < R).

Thus, for every t > 0
Py(Hx < R) ≥ Py(Hx < t)− Py(R ≤ t),

and as a consequence

lim inf
y→0+

Py(Hx < R) ≥ P0+(Hx < t)− lim sup
y→0

Py(R ≤ t)

≥ P0+(Hx < t)− θ

1 + θ
.

Since the OU process U is recurrent and without negative jumps we can ensure that

P0+(Hx <∞) = 1.

Then there exists a t > 0 such that the right hand term in the former inequality is strictly positive.

Lemma 6 ends the proof of Proposition 1 since we have noted that (10) is equivalent to (13).
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3.2 Proof of Proposition 2

This proof is based on the fact that one can relate the behavior of P(I > t) to that of the Laplace
exponent φ of ξ by using connections between the behavior of E(eλI) as λ→∞ and that of P(I > t)
as t→∞. This result can be proved using the results in Geluk [16]. However, for ease of reference we
provide a complete proof based on a result due to Kasahara. We note that a similar result has been
obtained in Haas [17] Proposition 11.

Proof of Proposition 2. Since the moment generating function of I, is well defined, that is,

ρ̂(s) = E(esI) <∞ ∀s > 0,

we have the conditions to use Kasahara’s Tauberian Theorem (Bingham et al. [7] Theorem 4.12.3), it
links the regular variation of log ρ̂(s) as s → ∞ with that of − log P(I > t) as t → ∞. On the other
hand the characteristic function of I, say f , is an entire function, admits a Taylor series

f(z) =
∑
n

anz
n, with an = in

E(In)
n!

=
in∏n

k=1 φ(k)
∀n ∈ N,

and its maximum modulus,
M(s, f) = sup {|f(z)| : |z| ≤ s} ,

coincides with ρ̂(s), that is
M(s, f) = ρ̂(s), ∀s > 0,

e.g. Lukacs [23] Theorem 7.1.2.

In order to apply Kasahara’s Theorem we must check that log ρ̂(s), i.e. logM(s, f), is asymptot-
ically regularly varying. To this end, we recall that we can estimate the behavior of logM(s, f) in
terms of the coefficients of the Taylor expansion of f. More precisely, suppose that

lim sup
n→∞

n log n
log(1/|an|)

=
1
β
. (20)

By Levin [22] (section 1.13), if there exists a regularly varying function with index β, say ψ, such that

lim
n→∞

|an|1/nψ(n) = eβ , (21)

then
lim
s→∞

logM(s, f)
ψ←(s)

= β, (22)

with ψ← the asymptotic inverse of ψ. A version of ψ← is

ψ←(s) = inf{r > 0|ψ(r) > s}.

With the aim of obtaining the asymptotic behavior of − log P(I > t), let ϕ(s) = s/ψ(s). Then ϕ is
a regularly varying function with index 1 − β and its asymptotic inverse, ϕ←, varies regularly with
index (1− β)−1. Using equation (22), a straightforward application to Theorem 4.12.7 in Bingham et
al. [7] leads to

− log P(I > t) ∼ (1− β)ϕ←(t), t→∞,

and, provided that ρ decreases in some neighborhood of ∞, we can apply Theorem 4.12.10 op. cit. to
get

− log ρ(t) ∼ (1− β)ϕ←(t), as t→∞.
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The rest of the proof is devoted to the proof of (20) and the fact that φ satisfies the equation (21).
With this aim, recall that

|an| = E(In)/n! =

(
n∏
k=1

φ(k)

)−1

.

As φ is regularly varying with index β, it can be expressed as φ(s) = sβ l(s), with l a slowly varying
function. Moreover, there exist two functions ε and c and a positive constant a, such that

l(t) = exp
{
c(t) +

∫ t

a
ε(s)

ds

s

}
and ε(t) → 0 and c(t) → c with c ∈ R, as t→∞. Therefore

log 1/|an| =
n∑
k=1

log φ(k) = β
n∑
k=1

log k +
n∑
k=1

log l(k).

Since

lim
n→∞

∑n
k=1 log k
n log n

= 1,

and for every slowly varying function l we have

lim
t→∞

log l(t)
log t

= 0,

it is straightforward that the lim sup in (20) is in fact a limit and equals 1/β. Next, we show that

lim
n→∞

φ(n)|an|1/n = eβ .

To do this, observe that due to the fact that (n!)1/n ∼ ne−1 we get

|an|1/n ∼ (ne−1)−β exp{− 1
n

n∑
k=1

log l(k)}.

Moreover,

1
n

n∑
k=1

log l(k)

=
1
n

(
n

∫ 1

a
ε(s)

ds

s
+
n−1∑
k=1

(n− k)
∫ k+1

k
ε(s)

ds

s

)
+

1
n

n∑
k=1

c(k)

=
∫ n

a
ε(s)

ds

s
− 1
n

n−1∑
k=1

k

∫ k+1

k
ε(s)

ds

s
+

1
n

n∑
k=1

c(k)

∼
∫ n

a
ε(s)

ds

s
+ c,

the last line is a consequence of Cesaro’s theorem since c(k) → c, and

k

∫ k+1

k
ε(s)

ds

s
−→ 0,

as k →∞. Therefore
|an|1/n ∼ eβ(φ(n))−1.
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4 On time reversal of X.

The aim of this section is to obtain a result on time reversal for a self–similar process and then use it
to prove Lemma 1 and Theorem 2.

Let z > 0 and P̂z the law of the process X̂ defined by

X̂t = z exp−ξτ̂(t/z), t ≥ 0

with the time change

τ̂(t) = inf{s > 0,
∫ s

0
e−ξrdr > t},

and the convention that X̂t = 0 if τ̂(t/z) = ∞. Define P̂0 the law of the process identical to 0. Then,
under the family (P̂z, z ≥ 0) the process X̂ is Markovian and has the scaling property defined in
equation (1) with α = 1. We will say that X̂ is the dual 1–self–similar Markov process, cf. Bertoin
and Yor [5] and the reference therein. Observe that 0 is an absorbing state for X̂ and let J be its
lifetime, i.e.,

J = inf{t ≥ 0 : X̂t = 0}.

It should be clear that the distribution of J under P̂z is that of zI, where I is the Lévy exponential
functional defined in (3). Last, denote (F̂t, t ≥ 0) the natural filtration and P̂t(z, dy) the semigroup
of the dual 1–ss Markov process.

Lemma 2 in [5], states that the q–resolvents Rq and R̂q of the processes X and X̂, respectively,
are in weak duality with respect to the Lebesgue measure (cf. Vuolle-Apiala and Graversen [31] for a
related discussion). Thus duality also holds for the respective semigroups. We will refer to this result
as the “duality Lemma” and we will use it to show, roughly speaking, that the law of the process(

X(r−t)− , 0 ≤ t < r | Xr− = x
)
,

under P0+ is the same as that (
X̂t, 0 ≤ t < r | J = r

)
,

under P̂x, with r, x > 0 fixed. A rigorous statement will be done by using the method of h–transform
of Doob, see e.g. Sharpe [29] section 62, Fitzsimmons et al. [13],. . . To this end, note that

• by the self similarity of X, for any s > 0 the law of the random variable Xs under E0+ has a
density

ps(z) = (µz)−1ρ(s/z), z > 0,

• for every s, t > 0 and z > 0
P̂tps(z) = pt+s(z). (23)

The identity (23) follows from the duality Lemma and the fact that (P0+(Xs ∈ dz), s > 0) is a family
of entrance laws for the semigroup Pt, of the 1–ss Markov process X.

Equation (23) and the Markov property of X̂ implies that for any r, x > 0 the process

hrt =
pr−t(X̂t)

pr(X̂0)
1{t<r}, t > 0,



4. On time reversal of X. 43

is a P̂x martingale. Let Ω be the space of càdlàg maps from [0,∞[ to [0,∞[ killed at the first hitting
time of 0. After Sharpe [29] Theorem 62.19, there exists a unique probability measure Qr

x on Ω equipped
with its natural filtration, rendering the process X̂ an inhomogeneous Markov process with semigroup

Qrt,t+s(z, dy) =
P̂s(z, dy)pr−t−s(y)

pr−t(z)
, (24)

and such that Qr
x(X̂0 = x) = 1. The measure Qr

x has the property that for any s > 0

Qr
x(F1{s<J}) = P̂x (Fhrs) , (25)

for every F in F̂s.

Lemma 7. (i) If F is F̂J−–measurable and g ≥ 0 is a Borel function, then

Êx (Fg(J)) = µ

∫
drpr(x)g(r)Qr

x (F ) . (26)

Thus,
(Qr

x)r>0

is a regular version of the family of conditional probabilities

P̂x ( · |J = r) , r > 0.

(ii) Let r > 0 fixed and G ≥ 0 a bounded functional then

E0+

(
G
(
X(r−t)−, 0 ≤ t < r

))
= Qr

pr

(
G(X̂t, 0 ≤ t < r)

)
, (27)

where Qr
pr

denotes the law of the process X̂ under Qr
x with initial measure P0+(Xr ∈ dx).

It is implicit in the statement in (ii) of Lemma 7 that Qr
x is the image under time reversal of a

measure Q̃r
x on Ω corresponding to (Xt, 0 ≤ t < r) under the conditional law

P0+( · |Xr− = x).

So the support of Qr
x is the set Ωr of càdlàg paths that start at x and are absorbed at 0 at time r.

Proof. (i) By the Monotone class Theorem, to prove (26), it suffices to check that for any s ≥ 0 the
formula holds for every element of the form F = F ′ ∩ {J > s} with F ′ in F̂s. Indeed, note that on the
set {s < xI} we have that

xI = x

∫ τ̂(s/x)

0
e−ξtdt+ xe−ξτ̂(s/x)I ′ = s+ xe−ξτ̂(s/x)I ′,

with I ′ independent of (ξτ̂(u/x), u ≤ s) and equal in law to I, owed to the strong Markov property of
ξ. Using the fact that under P̂x the law of J is that of xI, the former equality and the strong Markov
property of X̂ we get that

Êx
(
g(J)1{s<J}|F̂s

)
= W (s, X̂s),
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where

W (s, z) = Êz
(
1{0<J}g(s+ J)

)
= E (g(s+ zI))

=
∫ ∞
s

drz−1ρ ((r − s)/z) g(r)

= µ

∫ ∞
s

drpr−s(z)g(r).

Note that
P̂z(J ∈ dr)

dr
= µpr(z).

Thereby an application of formula (25) gives

Êx (Fg(J)) = Êx
(
F ′ W (s, X̂s)

)
= µÊx

(
F ′
∫ ∞
s

dr pr−s(X̂s)g(r)
)

= µ

∫ ∞
0

drpr(x)g(r)Êx
(
F ′hrs

)
=
∫ ∞

0
drµpr(x)g(r)Qr

x(F ).

(ii) We first verify that under P0+ the process Yt = Xr−t, 0 < t < r, admits the semigroup defined in
equation (24). Let a, b : [0,∞[→]0,∞[ be Borel functions and t, t + s ∈ [0, r[. Indeed, by the duality
lemma for ss Markov processes, we have that

E0+

(
a(Yt)b(Yt+s)

)
=
∫
dz pr−t−s(z)b(z) Ez(a(Xs))

=
∫
dza(z)Êz(pr−t−s(X̂s)b(X̂s))

=
∫
dza(z)pr−t(z)

Êz(pr−t−s(X̂t)b(X̂t))
pr−t(z)

= E0+(a(Yt)Qrt,t+sb(Yt)),

with Qrt,t+s the semigroup defined in equation (24).

By the Monotone class theorem, to prove (ii) it suffices to check that equation (27) holds for
every G of the form f1(X(r−t1)−) · · · fn(X(r−tn)−) with f1, . . . , fn positive bounded Borel functions
and 0 ≤ t1 < · · · < tn < r. Using the fact that the ss process X does not have fixed jumps we get that
for n = 2

E0+

(
f1(X(r−t1)−)f2(X(r−t2)−)

)
= E0+

(
f1(X(r−t1))f2(X(r−t2))

)
= E0+

(
Qr0,t1fQ

r
t1,t2f2(Xr)

)
=
∫
dxpr(x)Qr

x

(
f1(X̂t1)f2(X̂t2)

)
,

the general case follows by iteration.

Now we have all the elements to provide a
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Proof of Lemma 1. When h→ 0+, thanks to the Markov property ofX, applied at time 1, our problem
reduces to show that for every x > 0

Px
(

lim
h→0+

Uh − U0

h
= −U0

)
= 1.

To this end, we recall that since ξ is a subordinator we have

(i)

lim
s→0

ξs
s

= 0,

(ii) ξ at time τ(1/x) is right continuous and

(iii)

lim
s→0

τ(s)
s

= 1 P –a.s.

Using these facts and Lamperti’s transformation it is straightforward that

lim
ε→0+

Xε −X0

ε
= 0, Px–a.s.

The rest of the proof, in the case h→ 0+, follows by standard arguments.

Next we use Lemma 7 to study the case h→ 0−. By equation (27) we know that

P0+

(
lim
h→0−

Ũh − Ũ0

h
= −Ũ0

∣∣Ũ0 = x

)
= Q1

x

(
lim
h→0+

ehX̂(1−e−h) − X̂0

−h
= −X̂0

)
.

Since for any x > 0 and ε > 0 the measure Q1
x is absolutely continuous with respect to P̂x on the

trace of {ε < J} in F̂ε, the result follows as in the case h→ 0+ but this time for the dual self–similar
process X̂.

Other interesting results on time reversal can be deduced from the duality Lemma by using the
classical Theorem on time reversal of Nagasawa or its generalized version in Theorem 47 chapter XVIII
Dellacherie et al. [11]. We will content ourselves with the following result and refer to Bertoin and
Yor [5] and the reference therein for a related discussion.

Proposition 3. Let x > 0 fixed. Under Q1
x the dual Ornstein–Uhlenbeck process

Û = {etX̂1−e−t , t > 0},

is an homogeneous strong Markov process with semigroup

Q1
0,1−e−sHesf(·),

where Ht is the dilatation Htf(z) = f(tz).

Proof. The homogeneity is obtained from the expression of the semigroup in (24) using the self–
similarity enjoyed by X̂ under P̂x. Indeed, let f, g positive Borel functions then

Q1
x

(
f(etX̂1−e−t)g(et+sX̂1−e−(t+s))

)
= Q1

x

(
f(etX̂1−e−t)Q1

1−e−t,1−e−(t+s)Het+sg(X̂1−e−t)
)
.
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The expression of the semigroup can be reduced to

Q1
1−e−t,1−e−(t+s)Het+sg(z) = (pe−t(z))−1 Êz

(
g
(
et+sX̂e−t(1−e−s)

)
pe−(t+s)

(
X̂e−t(1−e−s)

))
=
(
p1(etz)

)−1 Êetz

(
g(Ûs)pe−s(X̂1−e−s)

)
,

= Q1
0,1−e−sHesg(etz)

where the second equality is owed to the self–similarity and the obvious identity

cprc(u) = pr(c−1u).

The strong Markov property follows from (25) by the optional stopping theorem using standard
arguments.

We have now the elements to prove the Theorem 2.

Proof of Theorem 2. The statement in (ii) in Lemma 7 shows that for every positive and bounded
functional F,

Q1
x

(
F (Ût, 0 ≤ t ≤ R̂)

)
= E0+

(
F (etXe−t , 0 ≤ t ≤ R′) | X1 = x

)
,

with R′ (resp. R̂) the first return time of the process {etXe−t , t ≥ 0} (resp. of Û), to its starting point.
Moreover, by the stationarity of the OU process Ũ defined at the beginning of the subsection 3.1, one
gets that

E0+(R′|X1 = x) = Ex(R),

and

P0+

(
inf

0<t<R′
etXe−t > y | X1 = x

)
= Px

(
inf

0<t<R
e−tXet−1 > y

)
.

Recall that our proof of Proposition 1 is based on the fact that the OU process U is homogeneous
and strong Markov and the probabilities that we considered there depend only on the excursion away
its starting point. It should be then clear that thanks to Proposition 3 one can repeat the arguments
in the proof of Proposition 1 to show that for any decreasing Borel function h we have

Q1
x

(
Ût < h(t) i.o. t→∞

)
= 0 or 1,

according whether ∫ ∞
ρ(1/h(s))ds <∞ or = ∞.

We deduce from this criterion, the equation (27) and a time change that for any increasing Borel
function ` such that `(0) = 0 we have

P0+ (Xt < t`(t) i.o. t→ 0) = 0 or 1,

according whether ∫
0+

ρ(1/`(s))
ds

s
<∞ or = ∞.

Rewriting the arguments in the proof of Theorem 1 we obtain the result.

The former proof provides further information on the behavior of the dual 1–ss Markov process
near its lifetime.
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Corollary 1. Let ξ be a subordinator such that its Laplace exponent φ is regularly varying at infinity
with index β ∈]0, 1[ and 0 < φ′(0+) <∞. Suppose that the density of the Lévy exponential functional
associated to ξ satisfies hypothesis (H). If X̂ is the dual 1–ss process associated to ξ with lifetime J

and f is the function defined in Theorem 1 then for any x > 0

lim inf
s→0

X̂r(1−s)

sf(1/s)
= r(1− β)(1−β) Qr

x–a.s.

Proof. In the previous proof we showed that for any x > 0 and ` an increasing Borel function we have

Q1
x

(
X̂(1−s) < s`(s) i.o. s→ 0

)
= 0 or = 1

according whether ∫
0+

ρ(1/`(s))
ds

s
<∞ or = ∞.

Moreover, a straightforward verification of the finite dimensional distributions shows that the scaling
property of X̂ under P̂ is translated for the dual OU process in the form: under Qr

x the law of the
process

1
r
etX̂r(1−e−t), t > 0

is that of the dual OU under Q1
x/r. The result follows as in the proof of Theorem 1.

5 Examples

Example (Watanabe process) Let ξ be a subordinator with zero drift and Lévy measure ν(dx) =
abe−bxdx, with a, b > 0. That is, ξ a compound Poisson process with jumps having an exponential
distribution. Carmona et al. [10] §2 showed that in this case the density of the law of I =

∫∞
0 ebξsds

is given by
ρ(x) = a2xe−ax, x > 0.

So ρ(x) satisfies the hypothesis (H). The (1/b)–ss Markov process associated to ξ by Lamperti trans-
formation is a process that arises in the study of extremes. More precisely, the (1/b)–ss Markov process
associated to ξ is a Q–Extremal process with

Q(x) =

{
∞ x ≤ 0,
ax−b x > 0

.

See Resnick [25]. This family of process is usually called generalized Watanabe process in honor to
Watanabe S. who studied them, when b = 1, using the theory of Brownian excursions, see e.g. Revuz
et Yor [26] pp. 504. We refer also to Carmona et al. [9] and the reference therein for the study of this
process as a ss Markov process and its generalizations. Hence, thanks to Proposition 1 we obtain

Corollary 2. Let X be a generalized Watanabe process and h an increasing function such that
(h(s))b/s is a decreasing function. Then

Px
(
Xs < h(s) i.o. s→∞

)
= 0 or 1

according whether ∫ ∞
(1/h(s))be−as(h(s))

−b
ds <∞ or = ∞.
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This result appears in Yimin Xiao [33] Corollary 4.1 in the case b = a = 1.

With the aim of providing a larger class of examples, in the following construction we make some
assumptions on the subordinators that ensure that the density of I satisfies hypothesis (H). It uses
the recent results of Bertoin and Yor [6, 4].

Let U(dx), be the renewal measure of ξ, i.e.

E
(∫ ∞

0
f(ξs)ds

)
=
∫

[0,∞)
f(x)U(dx).

If the renewal measure is absolutely continuous with respect to Lebesgue measure, the function u(x) =
U(dx)/dx, is usually called the renewal density.

Proposition 4. Let ξ be a subordinator. Suppose that its renewal measure is absolutely continuous
with respect to Lebesgue measure and that its renewal density u(x), is a decreasing and convex function
such that

lim
t→∞

u(t) =
1
µ
∈]0,∞[,

i.e., E(ξ1) = µ. Then the density ρ, of the exponential functional associated to ξ satisfies the hypothesis
(H).

Examples of such subordinators are those arising in Mandelbrot’s construction of regenerative sets
(see e.g. Fitzsimmons et al. [14]).

Proof. It is well known, that the renewal measure and the Laplace exponent of ξ are related by the
formula

1
φ(λ)

=
∫ ∞

0
e−λxu(x)dx. (28)

An integration by parts in the former equation leads

κ(λ) =
λ

φ(λ)
=

1
µ

+
∫ ∞

0
(1− e−λx)g(x)dx,

where −g(x) is the left hand derivative of u(x). That is, κ is the Laplace exponent of a subordinator
with killing term 1

µ , zero drift and Lévy measure with density g(x). Integrating by parts, once more,
we obtain that

ψ(λ) = λκ(λ) =
λ

µ
+
∫

(−∞,0)
(eλx − 1− λx)ν(−dx),

with ν(dx) = −dg(x) a Stieltjes measure. Specifically, ψ(λ) is the Laplace exponent of a Lévy
process, say (ζs, s ≥ 0), with no-positive jumps, drift term 1/µ and no Gaussian component. We
have furthermore, that

E(ζ1) = ψ′(0+) =
1
µ
∈]0,∞[,

then ζ drifts to ∞. This implies that the law of the exponential functional, Iψ, associated to ζ, is
self–decomposable, i.e., for every 0 < a < 1, there exists an independent random variable Ja such that
Ja + aIψ has the same law as Iψ, we refer to Sato [27] for background on self–decomposable laws. To
see this, consider the first passage time above the level − log a, that is %a = inf{s > 0 : ζs > − log a}.
By the strong Markov property of ζ we have that

ζ ′s = ζ%a+s − ζ%a
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is a Lévy process independent of {ζr, r < %a} and the same law as ζ. Moreover, by the absence of
positive jumps and the fact that E(ζ1) ∈]0,∞[, we have that ζ%a = − log a a.s. Therefore,∫ ∞

0
e−ζsds =

∫ %a

0
e−ζsds+ e−ζ%a

∫ ∞
0

e−ζ
′
sds

= Ja + aI ′ψ.

As a consequence the density ρψ, of the law of Iψ, is unimodal, i.e., there exists a b > 0 such that
ρψ(x) is increasing on ]0, b[ and decreasing on ]b,∞[, see e.g. Sato [27] Theorem 53.1. Besides, Bertoin
and Yor [4] section 3, showed that

1
µ

E
(
f(Iφ)

)
= E

(
I−1
ψ f(I−1

ψ )),

for every positive measurable function f, in the obvious notation. In particular, the densities of Iψ
and Iφ are related by

1
µ
ρφ(x) =

1
x
ρψ

(1
x

)
, for every x > 0. (29)

We derive from this that ρφ is a bounded and decreasing function on some neighborhood of ∞.

Remark 4. Equation (29) and the uniqueness of the invariant law for the OU process show that the
law of Iψ is the invariant law of the OU process associated to the subordinator with Laplace exponent
φ.

Remark 5. Since every self–decomposable law is infinitely divisible, then the law of Iψ is infinitely
divisible. According to Steutel [30] its tail distribution is of the form

− log P(Iψ > x) = O(x log x),

and since its density is decreasing on a set ]b,∞[ it follows by Theorem 4.12.10 in Bingham et al. [7]
that its density has the same behavior at infinity, i.e.

− log ρψ(x) = O(x log x) x→∞.

This provides a complementary result to Proposition 2,

− log xρφ(x) = O(x−1 log(1/x)), x→ 0.

We take the following examples from Fitzsimmons et al. [14] and Bertoin and Yor [4], respectively.

Example Let ξ be a subordinator without killing term, with zero drift and Lévy measure

Π(dx) =
βex

Γ(1− β)(ex − 1)1+β
dx,

with β ∈]0, 1[. An integration by parts in the Lévy–Khintchine formula and a use of the beta integral
show that the Laplace exponent of ξ is given by

φ(λ) =
Γ(λ+ β)

Γ(λ)
.

Using equation (28) we get that the potential measure of ξ is absolutely continuous with respect to
Lebesgue measure and that the renewal density is given by

u(x) =
1

Γ(β)

( ex

ex − 1

)1−β
x > 0.
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Therefore u is a convex decreasing function. Moreover,

φ(λ) ∼ λβ as λ→∞.

According to Lamperti [21], the increasing 1/β–ss Markov process X, associated to ξ is a β–stable
subordinator. Then by Theorem 1 one gets

lim inf
t→∞

Xt

t1/β
(
log log t

)(β−1)/β
= β(1− β)

(1−β)
β .

That is we recover the law of iterated logarithm for stable subordinators of Fristedt [15]. Furthermore,
since under P0+ the law of X(1) is that of an β–stable random variable one can use Proposition 1
and the estimations of the stable density, see e.g. Zolotarev [34], to recover the Breiman’s [8] test for
stable subordinators.

Example Let β ∈]0, 1[ and ξ be a subordinator with zero drift and Lévy measure

Π(dx) =
e−x/β

Γ(1− β)(1− e−x/β)1+β
dx.

By straightforward calculations we get that its Laplace exponent, say φ, can be expressed as

φ(λ) =
Γ(βλ+ 1)

Γ(β(λ− 1) + 1)
,

and by the Stirling formula
φ(λ) ∼ ββλβ as λ→∞.

Proceeding as in the former example we get that the renewal density of ξ is given by

u(x) =
1

Γ(1 + β)
(ex/β − 1)−(1−β),

and is a convex decreasing function. Besides, since the law of the exponential functional I associated
to this subordinator is characterized by its entire moments it is immediate that its Laplace transform
is given by

E(e−sI) = Eβ(−s) =
∞∑
n=0

(−s)n

Γ(nβ + 1)
.

The function Eβ(x) is the so called Mittag-Leffler function. Hence, I follows the Mittag–Leffler
distribution, that is, I follows the same distribution as γ−ββ with γβ a β–stable random variable.
Furthermore, it can be showed without the use of Proposition 2 that

− log P(I > x) ∼ (1− β)β
β

(1−β)x
1

(1−β) , x→∞,

see e.g. Bingham et al. [7] Theorem 8.1.12 or Sato [27] solution to exercise 29.19. This fact can be
considered as a motivation for our proof of Proposition 2.

More generally, one can consider the subordinator with Laplace exponent

φθ(λ) =
Γ(βλ+ θ)

Γ(β(λ− 1) + θ)
, (30)
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for β ∈]0, 1[ and θ ≥ β. See Bertoin and Yor [4] for a description of the Lévy measure corresponding to
this Laplace exponent. The renewal density associated to this Laplace exponent admits the expression

uθ(x) =
1

Γ(θ + 1)
e−x(θ−1)/β

(
ex/β − 1

)−(1−β)
, x ≥ 0.

Which is easily seen to be a decreasing and convex function. The entire moments of the exponential
functional Iθ associated to this subordinator are given by

E(Inθ ) =
n!Γ(θ)

Γ(βn+ θ)
, n ≥ 1.

We recognize in this formula the entire moments of a generalized Mittag–Leffler distribution see e.g.
Schneider [28]. Schneider showed that this distribution admits a density ρβ,θ(x), whose behavior at
infinity is

ρβ,θ(x) ∼ Bxδ exp{cβxσ}, x→∞,

with
σ = 1/(1− β), δ =

(β − θ + 1/2)
1− β

, cβ = (1− β)β
β

1−β , (31)

and B = (2π)−1/2Γ(θ)σ1/2βδ. This fact enables us to state the sharper result

Corollary 3. Let X be the 1–ss process associated to a subordinator ξ with Laplace exponent defined
by (30). If h : [0,∞[→ [0,∞[ is a decreasing function then

Px(Xs < sh(s) i.o s→∞) = 0 or 1,

according whether ∫ ∞
(h(s))−δ exp

{
− cβ(h(s))−σ

}ds
s
<∞ or = ∞

with σ, cβ and δ as in (31).
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functionals of Lévy processes. Potential Anal., 17(4):389–400, 2002.

[6] J. Bertoin and M. Yor. On the entire moments of self-similar Markov processes and exponential
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