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Recurrent extensions of self–similar
Markov processes and Cramér’s
condition

Abstract

Let ξ be a real valued Lévy process that drifts to −∞ and satisfies Cramér’s condition, and X a
self–similar Markov process associated to ξ via Lamperti’s [22] transformation. In this case, X has
0 as a trap and fulfills the assumptions of Vuolle-Apiala [34]. We deduce from [34] that there exists
a unique excursion measure n, compatible with the semigroup of X and such that n(X0+ > 0) = 0.
Here, we give a precise description of n via its associated entrance law. To this end, we construct a
self–similar process X\, which can be viewed as X conditioned to never hit 0, and then we construct
n in a similar way to the way in which the Brownian excursion measure is constructed via the law of a
Bessel(3) process. An alternative description of n is given by specifying the law of the excursion process
conditioned to have a given length. We establish some duality relations from which we determine the
image under time reversal of n.
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1 Introduction

Let X = (Xt, t ≥ 0) be a strong Markov process with values in [0,∞[ and for x ≥ 0, denote by Px its
law starting from x. Assume that X fulfills the scaling property: there exists some α > 0 such that

the law of (cXtc−1/α , t ≥ 0) under Px is Pcx, (1)

for any x ≥ 0 and c > 0. Such processes were introduced by Lamperti [22] under the name of semi–
stable processes, nowadays they are called α–self–similar Markov processes. We refer to Embrechts
and Maejima [14] for a recent account on self–similar processes.

Lamperti established that for each fixed α > 0, there exists a one to one correspondence between
α–self–similar Markov processes on ]0,∞[ and Lévy processes which we now sketch. Let (D,D) be the
space of càdlàg paths ω : [0,∞[→]−∞,∞[ endowed with the σ–algebra generated by the coordinate
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56 Recurrent extensions of s.s. Markov processes and Cramér’s condition

maps and the natural filtration (Dt, t ≥ 0) satisfying the usual conditions of right continuity and
completeness. Let P be a probability measure on D such that under P the coordinate process ξ is a
Lévy process that drifts to −∞, i.e. lims→∞ ξs = −∞. Set for t ≥ 0

τ(t) = inf{s > 0,
∫ s

0
eξr/αdr > t},

with the usual convention that inf{∅} = ∞. For an arbitrary x > 0, let Px be the distribution on
D+ = {ω : [0,∞[→ [0,∞[ càdlàg}, of the time–changed process

Xt = x exp
(
ξτ(tx−1/α)

)
, t ≥ 0,

where the above quantity is assumed to be 0 when τ(tx−1/α) = ∞. We agree that P0 is the law of
the process identical to 0. Classical results on time change yield that under (Px, x ≥ 0) the process
X is Markovian with respect to the filtration (Gt = Dτ(t), t ≥ 0). Furthermore, X has the scaling
property (1). Thus, X is a self–similar Markov process on [0,∞[ having 0 as trap or absorbing point.
It should be clear that the distribution of the first hitting time of 0 for X,

T0 = inf{t > 0 : Xt = 0}

under Px is the same as that of x1/αI under P, with I the so–called Lévy exponential functional
associated to ξ and α, that is

I =
∫ ∞

0
exp{ξs/α}ds. (2)

Since ξ drifts to −∞ we have that I <∞, P–a.s. and

Px(XT0− = 0, T0 <∞) = 1 for all x > 0.

We will say that X hits 0 continuously. Besides, if in the former construction we use a Lévy process
killed at an independent exponential time the resulting process is a self–similar Markov process X
that hits 0 by a jump

Px(XT0− > 0, T0 <∞) = 1 for all x > 0.

Conversely, any self–similar Markov process that has 0 as a trap and hits 0 continuously (resp. by
a jump) is the exponential of Lévy process (resp. killed at an independent exponential time) time
changed, cf. [22]. In this chapter we will restrict ourselves to the case where X hits 0 continuously
and we will devote the Chapter IV to study the case where X hits 0 by a jump.

Denote Pt and Vq the semigroup and resolvent for the process X killed at time T0, say (X,T0),

Ptf(x) = Ex(f(Xt), t < T0), x > 0,

Vqf(x) =
∫ ∞

0
e−qtPtf(x)dt, x > 0,

for non–negative or bounded measurable functions f. It is customary to refer to (X,T0) as the minimal
process.

Given that the preceding construction enables us to describe the behavior of the self–similar Markov
process X until its first hitting time of 0, Lamperti [22] raised the following question: What are the
self–similar Markov processes X̃ on [0,∞[ which behave like (X,T0) up to the time T̃0? Lamperti
solved this problem in the case where the minimal process is a Brownian motion killed at 0. Then
Vuolle-Apiala [34] tackled this problem using excursion theory for Markov processes and assuming
that the following hypotheses hold. There exists κ > 0 such that
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(H1-a) the limit

lim
x→0

Ex(1− e−T0)
xκ

,

exists and is strictly positive;

(H1-b) the limit

lim
x→0

Vqf(x)
xκ

,

exists for all f ∈ CK ]0,∞[ and is strictly positive for some such functions,

with CK ]0,∞[= {f : R → R, continuous and with compact support on ]0,∞[}. The main result
in [34] is the existence of an unique entrance law (ns, s > 0) such that

lim
s→0

nsBc = 0,

for every neighborhood B of 0 and ∫ ∞
0

e−s ns 1ds = 1.

This entrance law is determined by its q–potential via the formula∫ ∞
0

e−qs ns fds = lim
x→0

Vqf(x)
Ex(1− e−T0)

, q > 0, (3)

for f ∈ CK ]0,∞[. Then, using the results of Blumenthal [7], Vuolle-Apiala proved that associated
to the entrance law (ns, s > 0) there exists a unique recurrent Markov process X̃ having the scaling
property (1) which is an extension of the minimal process (X,T0), that is X̃ killed at time T̃0 is
equivalent to (X,T0) and 0 is a recurrent regular state for X̃, i.e.

P̃x(T0 <∞) = 1, ∀x > 0, P̃0(T0 = 0) = 1,

with P̃ the law on D+ of X̃. Furthermore, we know from [7] that there exists a unique excursion
measure say n, on (D+,G∞) compatible with the semigroup Pt such that its associated entrance
law is (ns, s > 0); the property lims→0 nsBc = 0, for any B neighborhood of 0, is equivalent to
n(X0+ > 0) = 0, that is the process leaves 0 continuously under n . Then the excursion measure n
is the unique excursion measure having the properties n(X0+ > 0) = 0 and n(1 − e−T0) = 1. See
subsection 2.1 for the definitions.

The first aim of this paper is to provide a more explicit description of the excursion measure n
and its associated entrance law (ns, s > 0). To this end, we shall mimic a well known construction of
the Brownian excursion measure via the Bessel(3) process that we next sketch for ease of reference.
Let P (respectively R) be a probability measure on (D+,G∞) under which the coordinate process is
a Brownian motion killed at 0 (respectively a Bessel(3) process). The probability measure R appears
as the law of the Brownian motion conditioned to never hit 0. More precisely, for u > 0, x > 0

lim
t→∞

Px(A | T0 > t) = Rx(A),

for any A ∈ Gu, see e.g. McKean [23]. Moreover, the function h(x) = x−1, x > 0 is excessive for
the semigroup of the Bessel(3) process and its h–transform is the semigroup of the Brownian motion
killed at 0. Let n be the h–transform of R0 via the function h(x) = x−1, i.e. n is the unique measure
in (D+,G∞) with support on {0 < T0 < ∞} such that under n the coordinate process is Markovian
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with semigroup that of Brownian motion killed at 0, and for every Gt–stopping time T and any
GT –measurable variable FT ,

n(FT , T < T0) = R0(FT
1
XT

).

Then the measure n is a multiple of the Itô’s excursion measure for Brownian motion, see e.g.
Imhof [20] § 4.

In order to carry out this program, through this chapter, unless otherwise stated, we will assume
that ξ is a Lévy process with infinite lifetime that satisfies the following hypotheses

(H2-a) ξ is not arithmetic, i.e. the state space is not a subgroup of kZ for any real number k;

(H2-b) There exists θ > 0 such that E(eθξ1) = 1;

(H2-c) E(ξ+1 e
θξ1) <∞, with a+ = a ∨ 0.

The condition (H2-c) can be stated in terms of the Lévy measure Π of ξ as

(H2-c’)
∫
{x>1} xe

θxΠ(dx) <∞;

cf. Sato [32] Theorem 25.3. Such hypotheses are satisfied by a wide class of Lévy processes, in
particular by those associated with self–similar diffusions and stable processes with no negative jumps.
In the sequel we will refer to these hypotheses as (H2) hypotheses.

The condition (H2-b) is called Cramér’s condition for the Lévy process ξ and force ξ to drift to
−∞ or equivalently E(ξ1) < 0. Cramér’s condition enables us to construct a law P\ on D, such that
under P\ the coordinate process ξ\ is a Lévy process that drifts to ∞ and P\ |Dt = eθξt P |Dt . Then,
we will show that the self–similar Markov process X\ associated to the Lévy process ξ\ plays the rôle
of a Bessel(3) process in our construction of the excursion measure n .

The rest of this paper is organized as follows. In Subsection 2.1 we recall the Itô’s program as
established by Blumenthal [7]. The excursion measure n that interests us is the unique (up to a
multiplicative constant) excursion measure having the property n(X0+ > 0) = 0. Nevertheless, this
is not the only excursion measure compatible with the semigroup of the minimal process, which is
why in Subsection 2.2 we review some properties that should be satisfied by any excursion measure
corresponding to a self–similar extension of the minimal process. There we also obtain necessary and
sufficient conditions for the existence of an excursion measure nj such that nj(X0+ = 0) = 0, which
are valid for any self–similar Markov process having 0 as a trap, regardeless if it hits 0 continuously
or by a jump. In Subsection 2.3 we construct a self–similar Markov process X\ which is related to
(X,T0) in an analogous way to that in which the Bessel(3) process is related to Brownian motion
killed at 0. We also prove that the conditions (H1) are satisfied under the hypothesis (H2), give a
more explicit expression for the limit in equation (3) and show that the hypotheses (H1) imply the
conditions (H2-b,c). Next, in Section 3 we give our main description of the excursion measure n and
give an answer to the question raised by Lamperti that can be sketched as follows: given a Lévy
process ξ satisfying the hypotheses (H2), then an α–self–similar Markov process X associated to ξ
admits a recurrent extension that leaves 0 continuously a.s. if and only if 0 < αθ < 1. The purpose of
Section 4 is to give an alternative description of the measure n by determining the law of the excursion
process conditioned by its length (for Brownian motion this corresponds to the description of the Itô
excursion measure via the law of a Bessel(3) bridge). In Section 5 we study some duality relations for
the minimal process and in particular we determine the image under time reversal of n . Finally, in
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Appendix A we establish that the extensions of any two minimal processes which are in weak duality
are still in weak duality as might be expected.

Last, the development of this work uses the theory of h–transforms of Doob, we refer to Sharpe [33]
or Walsh [35] for background.

2 Preliminaries and first results

This section contains several parts. In the first one, we recall the Itô’s program and the results in
Blumenthal [7]. The purpose of Subsection 2.2 is study the excursion measures compatible with the
semigroup of the minimal process (X,T0). Finally, in Subsection 2.3 we establish the existence of a
self–similar Markov process X\ which bears the same relation to the minimal process (X,T0) as the
Bessel(3) process does to Brownian motion killed at 0. The results in Subsections 2.1 and 2.2 do not
require hypotheses (H2).

2.1 Some general facts on recurrent extensions of Markov processes

A measure n on (D+,G∞) having infinite mass is called a pseudo excursion measure compatible with
the semigroup Pt if the following are satisfied:

(i) n is carried by
{ω ∈ D+ | 0 < T0(ω) <∞ and Xt(ω) = 0,∀t ≥ T0};

(ii) for every bounded G∞–measurable H and each t > 0 and Λ ∈ Gt

n(H ◦ θt,Λ ∩ {t < T0}) = n(EXt(H),Λ ∩ {t < T0}),

where θt denotes the shift operator.

If moreover

(iii) n(1− e−T0) <∞,

we will say that n is an excursion measure. A normalized excursion measure n is an excursion measure
n such that n(1− e−T0) = 1. The rôle played by condition (iii) will be explained below.

The entrance law associated to a pseudo excursion measure n is defined by

ns(dy) := n(Xs ∈ dy, s < T0), s > 0.

A partial converse holds: given an entrance law (ns, s > 0) such that∫ ∞
0

(1− e−s)dns1 <∞,

there exists a unique excursion measure n such that its associated entrance law is (ns, s > 0), see
e.g. [7].

It is well known in the theory of Markov processes that one way to construct recurrent extensions of
a Markov process is the Itô’s program or pathwise approach that can be described as follows. Assume
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that there exists an excursion measure n compatible with the semigroup of the minimal process Pt.
Realize a Poisson point process ∆ = (∆s, s > 0) on D+ with characteristic measure n. Thus each atom
∆s is a path and T0(∆s) denotes its lifetime, i.e.

T0(∆s) = inf{t > 0 : ∆s(t) = 0}.

Set
σt =

∑
s≤t

T0(∆s), t ≥ 0.

Since n(1 − e−T0) < ∞, σt < ∞ a.s. for every t > 0. It follows that the process σ = (σt, t ≥ 0) is an
increasing càdlàg process with stationary and independent increments, i.e. a subordinator. Its law is
characterized by its Laplace exponent φ, defined by

E(e−λσ1) = e−φ(λ), λ > 0,

and φ(λ) can be expressed thanks to the Lévy–Khintchine formula as

φ(λ) =
∫

]0,∞[
(1− e−λs)ν(ds),

with ν a measure such that
∫
s ∧ 1 ν(ds) <∞, called the Lévy measure of σ; see e.g. Bertoin [1] § 3

for background. An application of the exponential formula for Poisson point processes gives

E(e−λσ1) = e−n(1−e−λT0 ), λ > 0,

i.e. φ(λ) = n(1− e−λT0) and the tail of the Lévy measure is given by

ν[s,∞[= n(s < T0) = ns1, s > 0.

Observe that if we assume φ(1) = n(1− e−T0) = 1 then φ is uniquely determined. Since n has infinite
mass, σt is strictly increasing in t. Let Lt be the local time at 0, i.e. the continuous inverse of σ

Lt = inf{r > 0 : σr > t} = inf{r > 0 : σr ≥ t}.

Define a process (X̃t, t ≥ 0) as follows. For t ≥ 0, let Lt = s, then σs− ≤ t ≤ σs, set

X̃t =

{
∆s(t− σs−) if σs− < σs

0 if σs− = σs or s = 0.
(4)

That the process so constructed is a Markov process has been established in full generality by Sal-
isbury [30, 31] and under some regularity hypotheses on the semigroup of the minimal process by
Blumenthal [7]. See also Rogers [29] for its analytical counterpart. In our setting, the hypotheses
in [7] are satisfied as is shown by the following lemma.

Lemma 1. Let C0]0,∞[, be the space of continuous functions on ]0,∞[ vanishing at 0 and ∞.

(i) if f ∈ C0]0,∞[, then Ptf ∈ C0]0,∞[ and Ptf → f uniformly as t→ 0.

(ii) Ex(e−qT0) is continuous in x for each q > 0 and

lim
x→0

Ex(e−T0) = 1 and lim
x→∞

Ex(e−T0) = 0.
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This Lemma is an easy consequence of Lamperti’s transformation. Alternatively a proof can be
found in [34] pp. 549–550. Therefore we have from [7] that X̃ is a Markov process with Feller semigroup
and its resolvent {Uq, q > 0} satisfies

Uqf(x) = Vqf(x) + Ex(e−qT0)Uqf(0), x > 0,

for f ∈ Cb(R+) = {f : R+ → R, continuous and bounded}. That is X̃ is an extension of the minimal
process. Furthermore, if {X ′t, t ≥ 0} is a Markov process extending the minimal one with Itô excursion
measure n and local time at 0, say {L′t, t ≥ 0}, such that

E′0(
∫ ∞

0
e−sdL′s) = 1,

where E′ is the law for X ′. Then the process X̃ and X ′ are equivalent and the Itô’s excursion measure
for X̃ is n.

Thus, the results in [7] establish a one to one correspondence between excursion measures and
recurrent extensions of Markov processes. Given an excursion measure n we will say that the associated
extension of the minimal process leaves 0 continuously a.s. if n(X0+ > 0) = 0 or, equivalently, in terms
of its entrance law, lims→0 ns(Bc) = 0 for every neighborhood B of 0, see e.g. [7]; if n is such that
n(X0+ = 0) = 0, we will say that the extension leaves 0 by jumps a.s. The latter condition on n is
equivalent to the existence of a jumping–in measure η, that is η is a σ–finite measure on ]0,∞[ such
that the entrance law associated to n can be expressed as

nsf = n(f(Xs), s < T0) =
∫

]0,∞[
η(dx)Psf(x), s > 0,

for every f ∈ Cb(R+), cf. Meyer [25].

Finally, observe that if n is a pseudo excursion measure that does not satisfy the condition (iii), we
can still realize a Poisson point process of excursions on (D+,G∞) with characteristic measure n but
we cannot form a process extending the minimal one by sticking together the excursions because the
sum of lengths

∑
s≤t T0(∆s), is infinite P-a.s. for every t > 0.

2.2 Some properties of excursion measures for self–similar
Markov processes

Next, we deduce necessary and sufficient conditions that must be satisfied by an excursion measure
in order that the associated recurrent extension of the minimal process is self–similar. For c ∈ R, let
Hc be the dilatation Hcf(x) = f(cx).

Lemma 2. Let n be an excursion measure and X̃ the associated recurrent extension of the minimal
process. The following are equivalent

(i) The process X̃ has the scaling property

(ii) There exists γ ∈]0, 1[ such that for any c > 0,

n(
∫ T0

0
e−qsf(Xs)ds) = c(1−γ)/αn(

∫ T0

0
e−(qc1/αs)Hcf(Xs)ds),

for f ∈ Cb(R+).
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(iii) There exists γ ∈]0, 1[ such that for any c > 0,

nsf = c−γ/αns/c1/αHcf for all s > 0,

for f ∈ Cb(R+).

Remark If one of the conditions (i–iii) in the preceding Lemma holds, then the subordinator σ which
is the inverse local time of X̃ is a stable subordinator of parameter γ, where γ is determined in the
condition (ii) or (iii).

Proof. (ii) ⇐⇒ (iii) is straightforward.

(i) ⇒ (ii). Suppose that there exists an excursion measure n such that the associated recurrent
extension X̃ has the scaling property (1). Let M be the random set of zeros of the process X̃, i.e.
M = {t ≥ 0|X̃(t) = 0}. By construction M is the closed range of the subordinator σ = (σt, t ≥ 0),
that is M is a regenerative set. The recurrence of X̃ implies that M is unbounded a.s. By the scaling
property for X̃ we have that

M d= cM, for each c > 0,

that is M is self–similar. Thus the subordinator should have the scaling property and since the
only Lévy processes that have the scaling property are the stable processes it follows that σ is a
stable subordinator of parameter γ for some γ ∈]0, 1[ or, in terms of its Laplace exponent φ(λ) =
n(1− e−λT0) = λγ , λ > 0. Recall that the scaling property for the extension can be stated in terms of
its resolvent by saying that for any c > 0,

Uqf(x) = c1/αUqc1/αHcf(x/c), for all x ≥ 0, (5)

for f ∈ Cb(R+). Using the compensation formula for Poisson point processes we get that

Uqf(0) =
n(
∫ T0

0 e−qsf(Xs)ds)
n(1− e−qT0)

, (6)

From equation (5) we have that the measure n should be such that

n(
∫ T0

0 e−qsf(Xs)ds)
n(1− e−qT0)

= c1/α
n(
∫ T0

0 e−qc
1/αsHcf(Xs)ds)

n(1− e−qc
1/αT0)

,

and therefore we conclude that

n(
∫ T0

0
e−qsf(Xs)ds) = c(1−γ)/αn(

∫ T0

0
e−(qc1/αs)Hcf(Xs)ds).

(ii) ⇒ (i). The scaling property of X̃ is obtained by means of (5). In fact, the only thing that
should be verified is that equation (5) holds for x = 0, since we have the identity

Uqf(x) = Vqf(x) + Ex(e−qT0)Uqf(0), x > 0,

and the scaling property of the minimal process stated in terms of its resolvent Vq, i.e.

Vqf(x) = c1/αVqc1/αHcf(x/c), x > 0, c > 0, q > 0.

Indeed, by construction it follows that the formula (6) holds and the hypothesis (ii) implies that
n(1− e−qT0) = qγ , q > 0; the conclusion is immediate.
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In the following proposition we give a description of the sojourn measure of X̃ and a necessary
condition for the existence of a excursion measure n such that one of the conditions in Lemma 2 holds.

Lemma 3. Let n be a normalized excursion measure and X̃ the associated extension of the minimal
process (X,T0). Assume that one of the conditions (i–iii) in Lemma 2 holds. Then

n(
∫ T0

0
1{Xs∈dy}ds) = Cα,γy

(1−α−γ)/αdy, y > 0,

with γ determined in (ii) of Lemma 2 and Cα,γ ∈]0,∞[ a constant. As a consequence, E(I−(1−γ)) <∞
and Cα,γ = (αE(I−(1−γ))Γ(1− γ))−1, where I denotes the exponential functional (2).

Proof. Recall that the sojourn measure

n(
∫ T0

0
1{Xs∈dy}ds) =

∫ ∞
0

ns(dy)ds,

is a σ–finite measure on ]0,∞[ and is the unique excessive measure for the semigroup of the process
X̃, see e.g. Dellacherie et al. [12] XIX.46. Next, using the result (iii) in Lemma 2 and the Fubini’s
Theorem we obtain the following representation of the sojourn measure, for f ≥ 0 measurable∫ ∞

0
nsfds =

∫ ∞
0

s−γn1(Hsαf)ds

=
∫
n1(dz)

∫ ∞
0

s−γf(sαz)ds

= Cα,γ

∫ ∞
0

u(1−α−γ)/αf(u)du,

with 0 < Cα,γ = α−1
∫
n1(dz)z−(1−γ)/α <∞. This proves the first part of the claimed result. We now

prove that E(I−(1−γ)) <∞. On the one hand, the function ϕ(x) = Ex(e−T0) is integrable with respect
to the sojourn measure. To see this, use the Markov property under n, to obtain

n(
∫ T0

0
ϕ(Xs)ds) =

∫ ∞
0

n(ϕ(Xs), s < T0)ds

=
∫ ∞

0
n(e−T0 ◦ θs, s < T0)ds

=
∫ ∞

0
n(e−(T0−s), s < T0)ds

= n(1− e−T0) = 1.

On the other hand, using the representation of the sojourn measure, Fubini’s Theorem and the scaling
property we have that

Cα,γ

∫ ∞
0

Ey(e−T0)y(1−α−γ)/αdy = Cα,γ

∫ ∞
0

E(e−y
1/αI)y(1−α−γ)/αdy

= Cα,γαE(I−(1−γ))Γ(1− γ).

Therefore, E(I−(1−γ)) <∞ and Cα,γ = (αE(I−(1−γ))Γ(1− γ))−1.
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We next study the extensions X̃ that leave 0 a.s. by jumps. Using only the scaling property (1) it
can be verified that the only possible jumping–in measures such that the associated excursion measure
satisfies (ii) in Lemma 2 should be of the type

η(dx) = bα,βx
−(1+β)dx, x > 0, 0 < αβ < 1,

with a constant bα,β > 0, depending on α and β, cf. [34]. This being said we can state an elementary
but satisfactory result on the existence of extensions of the minimal process that leaves 0 by jumps
a.s.

Proposition 1. Let β ∈]0, 1/α[. The following are equivalent

(i) E(Iαβ) <∞;

(ii) The pseudo excursion measure nj = Pη, based on the jumping–in measure

η(dx) = x−(1+β)dx, x > 0,

is an excursion measure;

(iii) The minimal process (X,T0) admits an extension X̃, that is a self–similar recurrent Markov
process and leaves 0 by jumps a.s. according to the jumping–in measure η(dx) = bα,βx

−(1+β)dx,
with bα,β = β/E(Iαβ)Γ(1− αβ).

If one of these conditions holds then γ in (ii) in Lemma 2 is equal to αβ.

The condition (i) in Proposition 1 is easily verified under weak technical assumptions. Namely, if
we assume the hypothesis (H2) the aforementioned condition is verified for every β ∈]0, (1/α)∧θ[; this
will be deduced from Lemma 4 below. On the other hand, the condition is verified in other settings,
as can be seen in the following example.

Example 1 (Generalized self–similar saw tooth processes). Let α > 0, ζ a subordinator such
that E(ζ1) <∞, and X the α–self–similar process associated to the Lévy process ξ = −ζ. Then ξ drifts
to −∞, X has a finite lifetime T0 and X decreases from its starting point until the time T0, when it is
absorbed at 0. Furthermore, it was proved by Carmona et al. [10] that the Lévy exponential functional
I =

∫∞
0 exp{−ζs/α}ds, has finite integral moments of all orders. It follows that the condition (i) in

Proposition 1 is satisfied by every β ∈]0, 1/α[. Thus for each β ∈]0, 1/α[ the α–self–similar extension
X̃ that leaves 0 by jumps according to the jumping–in measure in (iii) of Proposition 1, is a process
having sample paths that looks like a saw with “rough” teeth. These are all the possible extensions
of X, that is, it is impossible to construct an excursion measure such that its associated extension of
(X,T0) leaves 0 continuously a.s. since we know that the process X decreases to 0.

Proof of Proposition 1. Let η(dx) = x−(1+β)dx, x > 0 and nj be the pseudo excursion measure
nj = Pη. By definition the entrance law associated to nj is

njsf =
∫ ∞

0
dx x−(1+β)Psf(x), s > 0.
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Thus, for nj to be an excursion measure, the only condition it needs to satisfy is nj(1 − e−T0) < ∞.
This follows from the elementary calculation∫ ∞

0
dx x−(1+β) Ex(1− e−T0) =

∫ ∞
0

dx x−(1+β) E(1− e−x
1/αI)

= αE
( ∫

dy y−αβ−1(1− e−yI)
)

= E(Iαβ)
Γ(1− αβ)

β
.

That is, nj(1 − e−T0) < ∞ if and only if E(Iαβ) < ∞, which proves the equivalence between the
assertions in (i) and (ii). If (ii) holds it follows from the results in [7] and Lemma 2 that associated
to the normalized excursion measure nj

′
= bα,βPη there exists a unique extension of the minimal

process (X,T0) which is a self–similar Markov process and which leaves 0 by jumps according to the
jumping–in measure bα,βx−(1+β)dx, x > 0, which establishes (iii). Conversely, if (iii) holds the Itô’s
excursion measure of X̃ is nj

′
= bα,βPη and the statement in (ii) follows.

2.3 The process X\ analogous to the Bessel(3) process

Here we shall establish the existence of a self–similar Markov process X\ that can be viewed as the
self–similar Markov process (X,T0) conditioned to never hit 0. In the case where (X,T0) is a Brownian
motion killed at 0, X\ corresponds to the Bessel(3) process. To this end, we next recall some facts
on Lévy processes and density transformations and deduce some consequences for self–similar Markov
processes. We assume henceforth (H2).

The law of a Lévy process ξ, is characterized by a function Ψ : R → C, defined by the relation

E(eiuξ1) = exp{−Ψ(u)}, u ∈ R .

The function Ψ is called the characteristic exponent of the Lévy process ξ and can be expressed thank
to the Lévy–Khintchine formula as

Ψ(u) = iau+
σ2u2

2
+
∫

R
(1− eiux + iux1{|x|<1})Π(dx),

where Π is a measure on R \{0} such that
∫

(|x|2 ∧ 1)Π(dx) < ∞. The measure Π is called the Lévy
measure, a the drift and σ2 the Gaussian coefficient of ξ. Conditions (H2-b,c) imply that the Lévy
exponent of ξ admits an analytic extension to the complex strip I(z) ∈ [−θ, 0]. Thus we can define a
function ψ : [0, θ] → R by

E(eλξ1) = eψ(λ) and ψ(λ) = −Ψ(−iλ), 0 ≤ λ ≤ θ.

Hölder’s inequality implies that ψ is a convex function and that θ is the unique solution to the equation
ψ(λ) = 0 for λ > 0. Furthermore, the function h(x) = eθx is invariant for the semigroup of ξ. Let P\

be the h–transform of P via the invariant function h(x) = eθx. That is, the measure P\ is the unique
measure on (D,D) such that for every finite Dt-stopping time T and each A ∈ DT

P\(A) = P(eθξTA).

Under P\ the process (ξt, t ≥ 0) still is a Lévy process, with characteristic exponent

Ψ\(u) = Ψ(u− iθ), u ∈ R,
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and drifts to ∞, more precisely,

0 < m\ := E\(ξ1) = ψ′(θ−) <∞.

See e.g. Sato [32] § 33, for a proof of these facts and more about this change of measure.

Let P\x denote the law on D+ of the self–similar Markov process started at x > 0 associated to the
Lévy process ξ\ via Lamperti’s transformation. In the sequel it will be implicit that the superscript \
refers to the measure P\ or P\ . We now establish a relation between the probability measures P and
P\ analogous to that between the law of a Brownian motion killed at 0 and the law of a Bessel(3)
process, see e.g. McKean [23]. Informally, the law P\x can be interpreted as the law under Px of X
conditioned to never hit 0.

Proposition 2. (i) Let x > 0 be arbitrary. Then we have that P\x is the unique measure such that
for every Gt–stopping time T we have

P\x(A) = x−θPx(A Xθ
T , T < T0),

for any A ∈ GT . In particular, the function h∗ : [0,∞[→ [0,∞[ defined by h∗(x) = xθ is invariant
for the semigroup Pt.

(ii) For every x > 0 and t > 0 we have

P\x(A) = lim
s→∞

Px(A | T0 > s),

for any A ∈ Gt.

The proof of (i) in Proposition 2 is a straightforward consequence of the fact that P\ is the h–
transform of P and that for every Gt–stopping time T we have that τ(T ) is a Ft–stopping time. To
prove (ii) in Proposition 2 we need the following lemma that provides us with a tail estimate for the
law of the Lévy exponential functional I associated to ξ as defined in (2).

Lemma 4. Under the conditions (H2) we have that

lim
t→∞

tαθ P(I > t) = C,

where
0 < C =

α

m\

∫
tαθ−1(P(I > t)−P(eξ

′
1I > t))dt <∞,

with ξ′1 =d ξ1 and independent of I. If 0 < αθ < 1, then

C =
α

m\
E(I−(1−αθ)).

Two proofs of this result have been given in a slightly restricted setting by Mejane [24]. However,
one of these proofs can be extended to our case and in fact it is an easy consequence of a result on
random equations originally due to Kesten [21], who in turn uses a difficult result on random matrices.
A simpler proof of Kesten’s result was given in Goldie [19].

Sketch of proof of Lemma 4. It is straightforward that the Lévy exponential functional I satisfies the
equation in law

I =d

∫ 1

0
eξs/αds+ eξ1/αI ′ = Q+MI ′,
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with I ′ the Lévy exponential functional associated to ξ′ = {ξ′t = ξ1+t − ξ1, t ≥ 0}, a Lévy process
independent of F1 and with the same distribution as ξ. Thus, according to [21] if the conditions (i–iv)
below are satisfied then there exists a strictly positive constant C such that

lim
t→∞

tαθ P(I > t) = C.

The hypotheses of Kesten’s Theorem are

(i) M is not arithmetic

(ii) E(Mαθ) = 1,

(iii) E(Mαθ ln+(M)) <∞,

(iv) E(Qαθ) <∞.

Assuming the conditions (H2) the only thing that needs to be verified is that (iv) holds. Indeed,

E(Qαθ) ≤ E
(
sup{eθξs : s ∈ [0, 1]}

)
≤ e

e− 1

(
1 + θ sup{E(ξ+s e

θξs) : s ∈ [0, 1]}
)
<∞.

The second inequality is obtained using the fact that (eθξt , t ≥ 0) is a positive martingale and a Doob’s
inequality. The first formula for the value of the limit, C = limt→∞ t

αθ P(I > t) is a consequence
of Lemma 2.2 and Theorem 4.1 in Goldie [19]. That the latter limit exists implies that E(Ia) < ∞,
for all 0 < a < αθ. Now, to obtain the expression for C when 0 < αθ < 1, we will use the following
formula for the moments of I,

E(Ia) =
a

−ψ(a/α)
E(Ia−1), for 0 < a < αθ, (7)

which can be proved with arguments similar to that given by Bertoin and Yor [5] Proposition 2. We
will also use the well known identity

λa =
a

Γ(1− a)

∫ ∞
0

(1− e−λx)x−(1+a)dx, λ > 0, a ∈]0, 1[.

On the one hand, since 0 < αθ < 1, Corollary 8.1.7 in Bingham et al. [6] implies

lim
s→0

E(1− e−sI)
sαθ

= CΓ(1− αθ).

On the other hand, by equation (7) we have

E(I−(1−αθ))αθ = lim
a↑αθ

E(Ia−1)a

=
αθ

Γ(1− αθ)
lim
a↑αθ

(−ψ(a/α))
∫ ∞

0
s−(1+a) E

(
1− e−sI

)
ds

= Cαθ lim
a↑αθ

−ψ(a/α)
αθ − a

= Cθψ′(θ−).

(8)
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Indeed, write
E(Ia−1) = E(Ia−11{I≥1}) + E(Ia−11{I<1}).

The first term tends to E(Iαθ−11{I≥1}) as a ↑ αθ, by dominated convergence. A consequence of equa-
tion (7) is that E(Ia−1) < ∞ for every 0 < a < αθ. Then by monotone convergence the second term
tends to E(Iαθ−11{I<1}). Then lima↑αθ E(Ia−1) = E(Iαθ−1). Next, using that the Stieltjes measure
qαθ−a over [0,∞[ defined by qαθ−a[0, s[= sαθ−a, s > 0 converges weakly to the Dirac mass at 0 as
a ↑ αθ we obtain that

lim
a↑αθ

(αθ − a)
∫ ∞

0
s−(1+a) E

(
1− e−sI

)
ds = lim

a↑αθ

∫ ∞
0

E
(
1− e−sI

)
sαθ

qαθ−a(ds) = CΓ(1− αθ)

and the claim in equation (8) follows.

The proof of Proposition 2 follows from standard arguments.

Proof of (ii) in Proposition 2. Recall that the law of T0 under Px is that of x1/αI under P . Thus we
deduce from Lemma 4 that for every x > 0,

lim
s→∞

sαθPx(T0 > s) = xθC.

Using the Markov property and a dominated convergence argument, we obtain that

Px(A | T0 > s) = Px(A 1{t<T0}PXt(T0 > s− t)/Px(T0 > s))

−−−→
s→∞

x−θPx(A Xθ
t 1{t<T0}).

By Proposition 2, the semigroup of X under P\x is given by

P \sf(x) := E\x(f(Xs)) = x−θ Ex(f(Xs)Xθ
s1{s<T0}), for x > 0,

with f a positive or bounded measurable function. Let J be the Lévy exponential functional associated
to the process ξ\, i.e.

J =
∫ ∞

0
exp{−ξ\s/α}ds, (9)

which is finite P\–a.s. since ξ\ drifts to ∞. Now, since under P\ the process (ξ\s, s ≥ 0) is a non
arithmetic Lévy process with 0 < m\ < ∞, Theorem 1 in Bertoin and Yor [4] ensures that the
measure P\x converges in the sense of finite dimensional distributions to a probability measure P\0+
as x→ 0. Moreover, the law of Xs under P\0+ is an entrance law for the semigroup P \t and is related
to the law of the Lévy exponential functional J under P\ by the formula

E\0+(f(X1/α
s )) =

α

m\
E\(f(s/J)/J), s > 0, (10)

for f measurable and positive. Recall also that m\/α = E\(1/J) <∞, cf. [4] for a proof of these facts.

The next result states that under the hypotheses (H2) the conditions (H1) hold and gives a first
description of the entrance law (ns, s > 0).

Proposition 3. Assume the hypotheses (H2).
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(i) If 0 < αθ < 1, then the hypotheses (H1) hold for κ = θ. Furthermore, the q–potential of the
entrance law (ns, s > 0), admits the representation∫ ∞

0
dse−qs ns f = γα,θ

∫ ∞
0

f(y)E\(exp{−qy1/αJ})y(1−α−αθ)/αdy,

where
γα,θ =

(
αE(I−(1−αθ))Γ(1− αθ)

)−1
,

for every f ∈ Cb(R+).

(ii) If αθ ≥ 1, then either the hypothesis (H1-a) or (H1-b) fails to hold.

Proof. (i) That the hypothesis (H1-a) holds is easily proved. Indeed, since 0 < αθ < 1 the Corol-
lary 8.1.7. in Bingham et al. [6] implies that the result in Lemma 4 is equivalent to

lim
x→0

Ex(1− e−T0)
xθ

= lim
x→0

E(1− e−x
1/αI)

xθ
= Γ(1− αθ)

αE(I−(1−αθ))
m\

. (11)

To prove (H1-b) we recall the identity,

Vqf(x)
xθ

= V \
q (f/h∗)(x),

where V \
q is the resolvent of the semigroup P \t and h∗(x) = xθ, x > 0. As was already pointed out, the

results in [4] are applicable in our setting to the self–similar process X\. In particular, formula (4) op.
cit. states that

lim
x→0

V \
q g(x) =

α

m\

∫ ∞
0

g(yα)E\(e−qyJ)dy,

for every function g ∈ Cb(R+). Therefore,

lim
x→0

Vqf(x)
xθ

= lim
x→0

V \
q (f/h∗)(x)

=
α

m\

∫ ∞
0

f(yα)y−αθ E\(e−qyJ)dy,

=
1
m\

∫ ∞
0

f(y)E\(e−qy
1/αJ)y(1−α−αθ)/αdy

(12)

for every f ∈ CK ]0,∞[. Thus we have verified the hypotheses (H1) and the expression of the q–resolvent
of the entrance law (ns, s > 0) follows from the identity (3) using the calculations in equation (11)
and (12).
(ii) If αθ ≥ 1, the Fatou’s lemma and the scaling property imply

lim inf
x→0

Ex(1− e−T0)
xθ

≥
∫ ∞

0
e−ss−αθ

(
lim inf
t→∞

tαθ P(I > t)
)
ds = ∞.

But from the proof of (i) we know that the limit

lim
x→0

Vqf(x)
xθ

, q > 0,

still exists and is not 0 for every non–negative function f ∈ CK ]0,∞[ and, indeed, f > 0 in a set
of positive Lebesgue measure. As a consequence, even if there exists κ < θ, such that the limit
limx→0 x

−κ Ex(1− e−T0), exists and is positive, the limit limx→0 x
−κVqf(x) is equal to zero for every

function continuous f with bounded support on ]0,∞[.
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Proposition 3 proves that the hypotheses (H2) and 0 < αθ < 1 imply the hypotheses (H1). In the
next Proposition we establish a partial converse.

Proposition 4. Assume that there exists a κ > 0 such that the hypothesis (H1) hold. Then

(i) 0 < ακ < 1,

(ii) the hypotheses (H2-b) and (H2-c) are satisfied with θ = κ.

Proof. To prove (i) we recall that under the hypotheses (H1) Theorem 2.1 in [34] states that the
q–resolvent of the entrance law (ns, s > 0) is characterized by the equation (3). Next, it is easily
verified using the self–similarity of the minimal process (X,T0), that for every q > 0, c > 0

lim
x→0

Vqf(x)
Ex(1− e−T0)

= c(1−ακ)/α lim
x→0

Vqc1/αHcf(x)
Ex(1− e−T0)

.

Then the excursion measure n is such that for every c > 0

n(
∫ T0

0
e−qsf(Xs)ds) = c(1−ακ)/α n(

∫ T0

0
e−qc

1/αsHcf(Xs)ds).

The latter fact implies that (ii) in Lemma 2 is satisfied with γ = ακ and 0 < ακ < 1. Next we prove
(ii). We first prove that under the hypothesis (H1) the process (Xκ

t , t > 0) is a martingale for Px,
which implies Cramér’s condition (H2-b). Indeed, since the hypothesis (H1-a) holds we have that

lim
x→0

Ex(1− e−T0)
xκ

= B ∈]0,∞[,

and, given that 0 < ακ < 1, the existence of this limit is equivalent to the existence of the limit

lim
s→∞

sακPx(T0 > s) = xκB/Γ(1− ακ).

This fact suffices to prove that for every x > 0 and t > 0

lim
s→∞

Px(A|T0 > s) = x−κPx(Xκ
t , A ∩ {t < T0}),

for any A ∈ Gt. To see this just repeat the arguments in the proof of (ii) in Proposition 2. In
particular, we have that for every x > 0 and t > 0, xκ = Ex(Xκ

t , t < T0). Using the Markov property
we obtain that for every x > 0, under Px the process Xκ is a martingale and as a consequence Cramér’s
condition follows. Moreover, the Lévy process ξ associated to X via Lamperti’s transformation has
a characteristic exponent Ψ which admits an analytic extension to the complex strip I(z) ∈ [−κ, 0[
defined by ψ(z) = −Ψ(−iz), see the survey at the beginning of this subsection. Now to prove that
the hypothesis (H2-c) is satisfied, we recall that under the hypotheses (H1) we have that

lim
s→∞

sακP(I > s) = x−κ lim
s→∞

sακPx(T0 > s) = B/Γ(1− ακ),

and that E(I−(1−ακ)) <∞, the latter being a consequence of Lemma 3. Repeating the arguments in
the calculation of the constant in the proof of Lemma 4 we obtain that

E(I−(1−ακ)) = Bψ′(θ−)/Γ(1− ακ) <∞,



3. Existence of recurrent extensions that leaves 0 continuously 71

that is the exponent ψ of ξ has a left derivative at κ which is equivalent to

E(ξ1eκξ1) <∞.

Using the elementary relation

0 ≤ (ξ1 exp{κξ1})− = ξ−1 exp{κξ1} = ξ−1 exp{−κξ−1 } ≤ κ−1

with a− = (−a) ∨ 0, we obtain that 0 ≤ E((ξ1eκξ1)−) < 1/κ. Therefore, E(ξ1eκξ1) <∞ if and only if
E(ξ+1 e

κξ1) <∞, which ends the proof.

Remark

1. If 0 < αθ < 1 we have the following equality

E(I−(1−αθ)) = E\(J−(1−αθ)).

This can be seen by making elementary calculations to obtain that∫
e−s ns 1ds = γα,θ

∫ ∞
0

E\(e−y
1/αJ)y(1−α−αθ)dy =

E\(J−(1−αθ))
E(I−(1−αθ))

,

and comparing this with the fact that
∫
e−s ns 1ds = 1 gives the equality

2. A consequence of Lemma (4) is that

E(Iβα) <∞ for every 0 < β < θ

and that E(Iαθ) = ∞. Then under the hypotheses (H2) any extension which leaves 0 by jumps
a.s. has a jumping–in measure η(dx) = bα,βx

−(1+β)dx, x > 0, with 0 < β < θ ∧ 1/α and bα,β as
defined in Proposition 1.

3 Existence of recurrent extensions that leaves 0 contin-

uously

We next study the excursion measure such that the related extension leaves 0 continuously. To this
end, we suppose throughout the rest of this section that the hypotheses (H2) holds.

Theorem 1. There exists a pseudo excursion measure n′ such that n′(X0+ > 0) = 0. Its associated
entrance law (n′s, s > 0) is given by

n′s f = E\0+(f(Xs)X−θs ), s > 0.

We have that n′ is an excursion measure if and only if 0 < αθ < 1. Assume that this condition holds
and let

aα,θ = αE\(J−(1−αθ))Γ(1− αθ)/m\.

Then the measure (aα,θ)−1 n′, is the normalized excursion measure n .
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Proof. We know from Proposition 2 that the function h(x) = x−θ is excessive for the semigroup P \t and
that the corresponding h–transform is Pt. Let n′ be the h–transform of E\0+ by means of h(x) = x−θ.
That is, n′ is the unique measure in D+ that is carried by {T0 > 0}, such that under n′ the coordinate
process is Markovian with semigroup Pt and for every Gt–stopping time T and any AT ∈ GT

n′(AT , T < T0) = E\0+(AT , X−θT ).

Therefore, n′ is a pseudo excursion measure such that n′(X0+ > 0) = 0 and the entrance law associated
to n′ is defined by

n′s f := n′(f(Xs), s < T0) = E\0+(f(Xs)X−θs ), s > 0, (13)

for f : R+ → R+ measurable. This proves the existence of a pseudo excursion measure such that
n′(X0+ > 0) = 0. To determine when n′ is in fact an excursion measure we have to specify when
n′(1− e−T0) is finite. Using standard arguments we obtain that

n′(1− e−T0) =
∫ ∞

0
dse−s n′(T0 > s)

=
∫ ∞

0
dse−s E\0+(X−θs )

=

{
αE\(J−(1−αθ))Γ(1− αθ)/m\ if αθ < 1
∞ if αθ ≥ 1,

the third equality is obtained from (10). If 0 < αθ < 1, then E\(J−(1−αθ)) < ∞ since E\(J−1) < ∞.
As a consequence n′(1 − e−T0) < ∞, if and only if 0 < αθ < 1. If we assume that 0 < αθ < 1, it
follows that the measure a−1

α,θ n
′ is a normalized excursion measure compatible with the semigroup

Pt. Furthermore, it is straightforward to check that a−1
α,θ n

′ satisfies the condition (ii) in Lemma 2 for
γ = αθ. The normalized excursion measure a−1

α,θ n
′ is equal to the measure n since this is the unique

normalized excursion measure having the property n(X0+ > 0) = 0.

In the following theorem we give a simple criterion to determine, in terms of the Lévy process ξ,
whether there exists a self–similar recurrent extension of (X,T0) that leaves 0 continuously. Further-
more, with this result we give a complete solution to the problem posed by Lamperti since we have
already established the existence of self–similar recurrent extensions of the minimal process that leave
0 by jumps.

Theorem 2. (i) Assume 0 < αθ < 1. The minimal process admits a unique self–similar recurrent
extension X̃ = (X̃t, t ≥ 0) that leaves 0 continuously a.s. The resolvent of X̃ is determined by

Uqf(0) =
γα,θ
qαθ

∫ ∞
0

f(y)E\(e−qy
1/αJ)y(1−α−αθ)/αdy,

with γα,θ as defined in Proposition 3 and

Uqf(x) = Vqf(x) + Ex(e−qT0)Uqf(0), x > 0,

for f ∈ Cb(R+). The resolvent Uq is Fellerian.

(ii) If αθ ≥ 1, there does not exist a self-similar recurrent extension that leaves 0 continuously.



3. Existence of recurrent extensions that leaves 0 continuously 73

Proof. To obtain (i) we use the Lemma 1. This enables us to apply the results in Blumenthal [7]
to ensure that associated to the excursion measure n described in Theorem 1 there exists a Markov
process X̃ having a Feller resolvent that is an extension of the minimal process. The self–similarity of
X̃ follows from Lemma 2. The only thing that needs a justification is the expression for the q–resolvent
of the extension. Using the compensation formula for Poisson point processes we obtain that

Uqf(0) = n
(∫ T0

0
e−qsf(Xs)ds

)
/n(1− e−qT0),

for every f ∈ Cb(R+). From Lemma 2 we deduce that n(1 − e−qT0) = qαθ. The expression of Uqf(0)
is then obtained from Proposition 3. The proof of (ii) is a straightforward consequence of Lemma 5
below.

The next lemma states that if αθ ≥ 1, the only excursion measures compatible with (X,T0) which
satisfy (ii) in Lemma 2 are those associated to a jumping–in measure as in (ii) in Proposition 1.

Lemma 5. Assume that αθ ≥ 1. If there exists a normalized excursion measure m compatible with
the minimal process such that conditions (ii) and (iii) in Lemma 2 are satisfied, then m(X0+ = 0) = 0.

Sketch of Proof. We recall from the proof of Proposition 3 that if αθ ≥ 1 we have that

lim inf
x→0

Ex(1− e−T0)
xθ

= ∞,

and that
lim
x→0

Vqf(x)
xθ

, q > 0,

exists in R for every function f ∈ CK ]0,∞[. Therefore,

lim
x→0

Vqf(x)
Ex (1− e−T0)

= 0,

for every function f ∈ CK ]0,∞[. Now, we may simply repeat the arguments in the proof of Lemma 1.1
in [34] to prove that for q > 0

m(
∫ T0

0
e−qsf(Xs)ds) = b

∫ ∞
0

Vqf(x)x−(1+β)dx,

for some β ∈]0, 1/α[ and a constant b ∈]0,∞[. The result follows.

Corollary 1. Assume 0 < αθ < 1.

(i) The law of T0 under n is

n(T0 ∈ ds) =
αθ

Γ(1− αθ)
s−(1+αθ)ds.

(ii) Under n the law of the height of the excursion, say H := sup0≤t≤T0
Xs, is given by

n(H > z) = pα,θz
−θ, z > 0.

with pα,θ = p
(
αθE\(J−(1−αθ))Γ(1− αθ)

)−1
, and p ∈]0, 1] a constant that depends on the law

of ξ.
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Proof. The result in (i) follows from the fact that the subordinator σ which is the inverse local time
of X̃ is a stable subordinator of parameter αθ, cf. Lemma 2. The main ingredient in the proof of (ii)
is that the tail distribution of the random variable S∞ = supr>0 ξr is such that

lim
s→∞

eθsP(S∞ > s) = p/m\θ,

for a constant p ∈]0, 1], cf. Bertoin and Doney [3] for a proof of this fact and an expression of the
constant p. We deduce from this a tail estimate for the behavior of the supremum of the minimal
process (X,T0) as the initial point tends to 0. More precisely, defining SX∞ := sup0≤r≤T0

Xr, we have

lim
x→0

x−θPx(SX∞ > z) = z−θ(p/m\θ), z > 0.

Let Ht = supt≤s≤T0
Xs, t > 0. Besides, we have that for any z > 0

lim
t→0+

n(Ht > z, t < T0) = n(H > z),

and that for any ε, δ > 0, there exists a t0 > 0 such that

n(Xt ∈ (ε,∞), t < T0) ≤ δ, ∀t < t0.

Therefore,

n(Xt ∈]0, ε[,Ht > z, t < T0) ≤ n(Ht > z, t < T0) ≤ δ + n(Xt ∈]0, ε[,Ht > z, t < T0),

and by the Markov property under n, we get that

n(Xt ∈]0, ε[,Ht > z, t < T0) = (aα,θ)−1 E\0+(Xt ∈]0, ε[, X−θt EXt(S
X
∞ > z))

∼ pα,θz
−θ E\0+(Xt ∈]0, ε[)

∼ pα,θz
−θ,

for t small enough. Thus,
pα,θz

−θ ≤ n(H > z) ≤ δ + pα,θz
−θ,

and the result follows by letting δ → 0.

If 0 < αθ < 1, it was shown by Vuolle-Apiala that given an excursion measure, the extension X̃
associated to this excursion measure either leaves 0 continuously or by jumps. This fact is natural
when we observe that the excursions that leave 0 continuously have different duration that those
leaving 0 by jumps. Indeed, the duration of the former has distribution

n(T0 > t) = t−αθ(Γ(1− αθ))−1,

and for the latter
nj(T0 > t) = t−αβ(Γ(1− αβ))−1, 0 < β < θ.

In the case when the Lévy process ξ is a Brownian motion with a negative drift, the criterion in
Theorem 2 coincides with the classification from Feller’s diffusion theory for 0 to be a regular or an
exit boundary point, as is explained in Example 2 below. By analogy, one can say that 0 is a regular
boundary point for X̃ if 0 < αθ < 1 and an exit boundary point if 1 ≤ αθ. Even in the case αθ < 0,
which is not considered in this chapter, it is easy to see that if θ < 0 in Cramér’s condition then
the Lévy process ξ drifts to ∞. The only way to extend a self–similar Markov process X associated
to a Lévy process that drifts to ∞ is by making 0 an entrance boundary point. This possibility is
considered by Bertoin and Caballero [2], Bertoin and Yor [4, 5] and Caballero and Chaumont [9].
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4 Excursions conditioned by their durations

It is well known that the excursion measure for the Brownian motion can be described using the law of
the excursion process conditioned to return to 0 at time 1, i.e. the law of a Bessel(3) bridge of length
1, see e.g. McKean [23] or Revuz and Yor [27] §XII.4. In this section we follow this idea to describe
the law under the excursion measure n defined in Theorem 1 of the excursion process conditioned to
return to zero at a given time. We then give an alternative description of the excursion measure n .
To that end, we will make the additional hypotheses

(H2-d) E(ξ1) > −∞ and the distribution of the Lévy exponential functional I has a continuous
density on [0,∞[, say ρ, with respect to Lebesgue measure.

The condition that the law of the exponential functional I has a continuous density is satisfied by a
wide variety of Lévy processes, cf. Carmona et al. [10] Proposition 2.1.

We next introduce another self–similar process. Denote by ξ̂ = (−ξs, s > 0) the dual Lévy process
and by P̂, and Ê, its probability and expectation. Then define (P̂x, x > 0) to be the distribution on
D+ of the α–self–similar process associated to the Lévy process with law P̂. The process X̂ is usually
called the dual α–self–similar process; the term dual is justified by the relation∫ ∞

0
g(x)Vqf(x)x(1−α)/αdx =

∫ ∞
0

f(x)V̂qg(x)x(1−α)/αdx, (14)

for every f, g :]0,∞[→ R+ measurable, see e.g. Lemma 2 in [4]. By hypothesis (H2-d) we have that
0 < m := |ψ′(0+)| = Ê(ξ1) < ∞. Let P̂0+ be the limit in the sense of finite dimensional marginals of
P̂x as x→ 0, whose existence is ensured by Theorem 1 in [4]. The latter theorem also establishes that
for every t > 0 and for f : R+ → R+, measurable we have

Ê0+(f(Xt)) =
α

m
E(f((t/I)α)/I), (15)

where I is defined in (2). Hypothesis (H2-d) implies that for any t > 0 the law of Xt under P̂0+ has a
density with respect to the measure υ(dy) = y(1−α)/αdy, y > 0, given by the formula

P̂0+(Xt ∈ dy)
υ(dy)

= m−1y−1/αρ(ty−1/α) := p̂t(y), y > 0.

Let (µs(dy) = P̂0+(Xs ∈ dy), s > 0). A consequence of the duality relation (14) is that the relation
µsP̂t−s = µt for s < t can be shifted to the semigroup of the minimal process Pt as p̂t = Psp̂t−s υ–a.s.
It was proved in Rivero [28] section 4, that these densities can be used to construct a regular version
of the family of probability measures (Px(·|T0 = r), r > 0) when the underlying Lévy process is a
subordinator. Morever, the same argument applies to any Lévy process assuming only (H2-d). Here
the densities (p̂t, t ≥ 0) will be used to construct a bridge for the coordinate process under E\0+; the
techniques here used are reminiscent of those in Fitzsimmons et al. [15].

Recall that the semigroup (P \t , t ≥ 0) is the h–transformation of the semigroup (Pt, t ≥ 0) via the
invariant function h(x) = xθ, x > 0. Using the fact that for every t > s > 0, the equality p̂t = Psp̂t−s
υ–a.s. holds, we obtain that for r > 0 arbitrary, the function

h\r(s, x) = p̂r−s(x)x−θ1{s<r}, x > 0, s > 0,
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is excessive for the semigroup (πt⊗P \t , t ≥ 0) of the space-time process. Let Λr be the h–transform of
the measure E\0+ by means of the space–time excessive function h\r(s, x). Then under Λr the space
process (Xt, t > 0) is an inhomogeneous Markov process with entrance law

Λrsf = E\0+(f(Xs)p̂r−s(Xs)X−θs ), 0 < s < r,

for f : R+ → R+ measurable, and inhomogeneous semigroup

Kr
t,t+s(x, dy) =

P \s (x, dy)h\r(t+ s, y)
h\r(t, x)

=
Ps(x, dy)p̂r−(t+s)(y)

p̂r−t(x)
, y > 0; t, t+ s < r.

Observe that the inhomogeneous semigroup Kr
t,t+s is that of X conditioned to die at 0 at time r,

cf. [28] Lemma 7. Moreover, using the fact that Λr is a h–transform of the measure E\0+ it is easily
verified that the measure Λr has the property

Λr(F (Xs, 0 ≤ s < r)) = r−(1+αθ)Λ1(F (rαXs, 0 ≤ s < 1)),

for every positive measurable F. In particular, the total mass of Λr is determined by

br := Λr(1) = r−(1+αθ)Λ1(1),

and it will be shown below that

Λ1(1) =
α2θE\(J−(1−αθ))

m\m
<∞. (16)

Therefore, assuming the hypotheses (H2-a,b,c,d) and Λ1(1) <∞, we can define a probability measure
on G∞ by Λr = b−1

r Λr. The distribution under Λr of the lifetime T0 is the Dirac distribution at r i.e.
Λr(T0 = r) = 1, cf. [28] Lemma 7. We can now state the main result of this section.

Proposition 5 (Itô’s description of the measure n). Assume hypotheses (H2-a,b,c,d) holds
and 0 < αθ < 1. Then Λ1(1) < ∞. Let n be the unique normalized excursion measure such that
n(X0+ > 0) = 0. For F ∈ G∞,

n(F ) =
αθ

Γ(1− αθ)

∫ ∞
0

Λr(F ∩ {T0 = r}) dr

r1+αθ
.

The proof of this proposition is similar to that given in [27] Theorem XII.4.2 for the analogous
result for Brownian excursion measure.

Proof. We first show that

n(F ) =
m

aα,θ

∫ ∞
0

Λr(F ∩ {T0 = r})dr, (17)

with aα,θ as defined in Theorem 1. We deduce from this that

Λ1(1) =
α2θE\(J−(1−αθ))

m\m
.

Indeed, by the monotone class theorem it is enough to prove the assertion for sets F of the form

F =
n⋂
1

{X(ti) ∈ Bi},
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with 0 < t1 < t2 < · · · < tn and Borel sets Bi ⊂]0,∞[, i ∈ {1, . . . , n}. On the one hand, according to
Theorem 1 we have

n(F ) =
∫
B1

nt1(dx1)
∫
B2

Pt2−t1(x1, dx2) · · ·
∫
Bn

Ptn−tn−1(xn−1, dxn),

On the other hand, using that F ∩ {T0 < tn} = ∅ we have that the right hand term in (17) can be
written as

m

aα,θ

∫ ∞
tn

dr

∫
B1

Λrt1(dx1)
∫
B2

Kt1,t2(x1, dx2) · · ·
∫
Bn

Ktn−1,tn(xn−1, dxn). (18)

Recall from Theorem 1 that

Λrt1(dx1) = P\0+(Xt1 ∈ dx1)p̂r−t1(x1)x−θ1 = aα,θ nt1(dx1)p̂r−t1(x1).

Using this identity and the expression of the transition probabilities Kti,ti+1 we get that (18) is equal
to

m

∫ ∞
tn

dr

∫
B1

nt1(dx1)
∫
B2

Pt2−t1(x1, dx2) · · ·
∫
Bn

Ptn−tn−1(xn−1, dxn)p̂r−tn(xn).

Finally, using

m

∫ ∞
s

p̂r−s(x)dr =
∫ ∞
s

ρ((r − s)x−1/α)
dr

x1/α
= 1,

for all x > 0, we conclude that both expressions in (17) for n(F ) coincide. In particular, if F = 1−e−T0

we have that

1 = n(1− e−T0) =
m

aα,θ

∫ ∞
0

Λr(1)(1− e−r)dr =
Λ1(1)m
aα,θ

(
Γ(1− αθ)

αθ

)
.

The value of Λ1(1) in (16) is obtained by using the expression for aα,θ and we derive from (17) that

n(F ) =
mΛ1(1)
aα,θ

∫ ∞
0

Λr(F ∩ {T0 = r}) dr

r1+αθ
,

and the result follows.

Remark A result equivalent to that in Proposition 5 can be obtained for the excursion measure nj

obtained via the jumping-in measure η(dx) = bα,βx
−(1+β)dx. The method is similar and we leave the

details to the interested reader.

5 Duality

In this section we will construct a self–similar Markov process which is in weak duality with the process
X̃ and whose excursion measure is the image under time reversal of n . This will be given under the
hypotheses (H2) and

(H2-e) E(ξ−1 ) <∞, with a− = (−a) ∨ 0.
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Next we introduce some notation. Let ξ\ be a Lévy process with law P\ and ξ̂\ its dual, i.e.
ξ̂\ = −ξ\. Denote by P̂\ and Ê\ the probability and expectation for ξ̂\. The process ξ̂\ drifts to −∞
and satisfies the hypotheses (H2-a,b,c). Indeed, that (H2-b) holds follows from

Ê\(eθξ1) = E\(e−θξ1) = E(e−θξ1eθξ1) = 1,

in the same way is verified that (H2-c) holds,

Ê\(ξ+1 e
θξ1) = E\((−ξ1)+e−θξ1) = E(ξ−1 ) <∞.

Let (P̂\x, x ≥ 0) be the law on D+ of the α–self–similar process X̂\ = (X̂\
t , t ≥ 0) associated by

Lamperti’s transformation to the Lévy process with law P̂\. The process X̂\ has a lifetime T̂0 =
inf{t > 0 : X̂\

t = 0} which is finite P̂\x–a.s. for all x ≥ 0. Denote by (P̂ \t , t ≥ 0) and (V̂ \
q , q > 0) the

semigroup and resolvent of the minimal process for X̂\, i.e.

P̂ \t f(x) = P̂\x(f(Xt), t < T0), t ≥ 0,

and
V̂ \
q f(x) =

∫
e−qtP̂ \t f(x)dt, q > 0.

By the duality relation (14), the resolvents V \
q and V̂ \

q are in weak duality with respect to the measure
υ(dx) = x(1−α)/αdx, x > 0. Furthermore, it follows that the resolvents Vq and V̂ \

q , are in weak duality
with respect to the measure ζ(dx) = x(1−α−αθ)/αdx, x > 0.

We assume henceforth that 0 < αθ < 1. The results in section 3 can be applied to the minimal
process (X̂\, T̂0) to ensure that there exists a unique normalized excursion measure n̂, compatible with
the semigroup (P̂ \t , t ≥ 0) and its associated entrance law admits the representation

n̂sf = (âα,θ)−1Ê0+(f(Xs)X−θs ), s > 0,

where âα,θ = αE(I−(1−αθ))Γ(1 − αθ)/m, for f continuous and bounded. To see this it should be

verified that the measure P̂\
\
, obtained by h–transformation of the law P̂\ by means of the function

h(x) = eθx is P̂ . To that end, it suffices to prove that both probability measures have the same
1–dimensional marginals. Indeed,

P̂\
\
(f(ξs)) = P̂\(f(ξs)eθξs) = P\(f(−ξs)e−θξs) = P(f(−ξs)) = P̂(f(ξs)),

for every f continuous and bounded. Then the α–self–similar Markov process associated to the Lévy

process with law P̂\
\

is equivalent to that associated to the Lévy process with law P̂. Remark that

the law of J under P̂\
\

is the same as that of I under P .

Then the minimal process (X̂\, T̂0) admits a unique extension (Z̃t, t ≥ 0), that leaves 0 continuously
a.s. Let (Ûq, q > 0) denote the resolvent of the process Z̃. Because of the weak duality relation between
the resolvents Vq, and V̂ \

q it is natural to ask if this property is inherited by the resolvents Uq and Ûq.
That is the content of the following result.

Lemma 6. The resolvents (Uq, q > 0) and Ûq are in weak duality with respect to the measure ζ(dx) =
x(1−α−αθ)/αdx, x > 0.
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Proof. From Proposition 3 we have that the resolvent at 0 of Z̃ is determined by the expression

Ûqf(0) =
γ̂α,θ
qαθ

∫ ∞
0

f(y)E(e−qy
1/αI)y(1−α−αθ)/αdy,

with γ̂α,θ = (âα,θm)−1. Recall that the resolvent at 0 of X̃ is given by

Uqf(0) =
γα,θ
qαθ

∫ ∞
0

f(y)E\(e−qy
1/αJ)y(1−α−αθ)/αdy.

On the other hand, for any f, g : R+ → R+ we have∫ ∞
0

ζ(dy)g(y)Uqf(y) =
∫ ∞

0
ζ(dy)g(y)Vqf(y) + Uqf(0)

∫ ∞
0

ζ(dy)g(y) Ey(e−qT0)

=
∫ ∞

0
ζ(dy)f(y)V̂ \

q g(y) + Uqf(0)
∫ ∞

0
ζ(dy)g(y)E(e−qy

1/αI)

=
∫ ∞

0
ζ(dy)f(y)V̂ \

q g(y)

+
âα,θm

aα,θm\
Ûqg(0)

∫ ∞
0

ζ(dx)f(x)E\(e−qx
1/αJ)

=
∫ ∞

0
ζ(dy)f(y)Ûqg(y),

where the last equality follows from the fact that the constants γα,θ and γ̂α,θ are equal. To see this
recall that E(I−(1−αθ)) = E\(J−(1−αθ)), as remarked after Proposition 3.

Some results on time reversal can be derived from the preceding facts. To give a precise statement
we introduce some notation. Let % denote the operator of time reversal at time T0, that is

(%X(ω))(t) =

{
X(T0−t)−(ω) if 0 ≤ t < T0 <∞
0 otherwise

and let %n denote the image under time reversal at time T0 of n . Recall that L is a return time if

L ◦ θt = (L− t)+, a.s. for all t ≥ 0.

The first part of the following result is an extension for self–similar process of the celebrated result on
time reversal of Williams [36]: a three dimensional Bessel process starting from 0 and reversed at its
last exit time from x > 0, is identical in law to a Brownian motion killed at its first hitting time of 0.
In the second part we determine %n .

Proposition 6. (i) If L is a finite return time then under E\0+ the reversed process (X(L−t)−, 0 ≤
t < L) is Markovian and has semigroup (P̂ \t , t ≥ 0).

(ii) We have that %n = n̂.

Proof. (i) The potential of the measure E\0+ is determined by

E\0+(
∫ ∞

0
dsf(Xs)) = aα,θ

∫ ∞
0

dsns(fh∗)

= aα,θ

∫
f(y)y(1−α)/αdy,
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with the notation of Sections 2.3 and 3. Because of the weak duality between the resolvents V \
λ and V̂ \

λ

with respect to the measure y(1−α)/αdy, y > 0, the statement in (i) is a direct consequence of a result
of Nagasawa on time reversal. A general version of Nagasawa’s result can be found in Dellacherie et
al. [12]§ XVIII.46.
(ii) Assuming that the excursion of X̃ from 0 starts and ends at 0 and using the weak duality in
Lemma 6 it follows from a result due to Mitro [26] § 4 that %n = n̂. To see that under our hypotheses
the excursions of the self–similar process X̃ from 0 starts and ends at 0, it should be verified that
X̃gt = 0 and X̃D−

gt
= 0 for all t a.s. with gt = sup{s ≤ t : X̃s = 0} and Dt = inf{t ≤ s : X̃s = 0}, see

e.g. Getoor and Sharpe [18] § 9. In fact, since we already know that n(X0+ > 0) = 0, it suffices to
verify that n(XT0− > 0) = 0. The latter is a straightforward consequence of the Markov property and
that Px(XT0− > 0) = 0 for all x > 0, since X is a self–similar Markov process associated to a Lévy
process that drifts to −∞, see e.g. [22] Theorem 4.1.

6 Examples

Example 2 (Self–similar diffusions). Here we consider the case when the Lévy process is a Brow-
nian motion with negative drift. Let (ξt = εBt − µt, t ≥ 0) with (Bt, t ≥ 0) a Brownian motion and
ε, µ > 0. The hypotheses (H2) are satisfied with θ = 2µ/ε2 and under P\ the law of ξ\ is that of
εBt + µt. Then the α–self–similar Markov process X associated to ξ has continuous paths and has an
infinitesimal generator of the form

Lf(x) = (ε2/2− µ)x1−1/αf ′(x) + ε2/2x2−1/αf ′′(x), x > 0.

Then for α > 0 we have that 0 < αθ < 1 if and only if 0 < µ < ε2/2α. This corresponds to the
case when the point 0 is a regular boundary point for the self–similar diffusion associated to the
infinitesimal generator L just described; in the case 1 ≤ αθ, or equivalently ε2/2α ≤ µ, 0 is an exit
boundary point, see e.g. Lamperti [22] Theorem 5.1 and Vuolle-Apiala [34] Theorem 3.1 for a related
discussion. If 0 < µ < ε2/2α holds, the process X admits a unique extension that is continuous and
is characterized by Theorem 2. Furthermore, using the fact that the law of J under E\ is that of
2α2/(ε2Zαθ), with Zαθ a random variable of law gamma of parameter αθ, (see e.g. Dufresne [13]), we
deduce that the entrance law in Theorem 1 has a density w.r.t. Lebesgue measure

ns(dy)
dy

= cαθs
−2(1−αθ)−1y2(1−αθ)/α−1 exp(−y1/αs−1dε,α) y > 0,

with

cαθ =
(1− αθ)α

Γ(1− αθ)µ2

(
ε2

2α2

)αθ
and dε,α =

2α2

ε2
.

Example 3 (Reflected stable processes). Let Y be a stable process of parameter a ∈]0, 2[ and
(Px, x ≥ 0) its law. Assume that Y has no negative jumps and |Y | is not a subordinator. Define
ρ = P(Y1 > 0) and

X ′t =

{
Yt − inf0≤s≤t Ys if t ≥ T]−∞,0]

Yt if t < T]−∞,0]

with T]−∞,0] the first hitting time of ] −∞, 0] by Y. Then ρ ∈]0, 1[ and 0 is a regular recurrent state
for X ′. (We refer to Bertoin [1] § VIII and Chaumont [11] for background on stable processes and
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its excursion theory.) We denote by (X,T0) the process X ′ killed at T]−∞,0]; this process is 1/a–self–
similar. The hypotheses on Y imply that

Px(T0 <∞, XT0− = 0) = 1, x > 0.

Let ξ be the Lévy process associated to (X,T0) via Lamperti’s transformation (see Caballero and
Chaumont [9] for a precise description of ξ). We claim that the hypothesis (H2) are satisfied for
θ = a(1 − ρ). This can be viewed either by barehand calculations using the results in [9] or by the
following arguments.

It is known that the function h(x) = xa(1−ρ), x > 0 is, up to a multiplicative constant, the only
invariant function for the semigroup of the process (X,T0). Then Cramér’s condition (H2-b) for ξ, is
satisfied with θ = a(1 − ρ). A consequence of this fact and Proposition 3.1 in[24] is that the Lévy
exponential functional I =

∫∞
0 exp{aξs}ds, has finite moments

E(Iβ/a) <∞ for every 0 < β < a(1− ρ).

The excursion measure for X ′ away from 0, say n, is an excursion measure compatible with the
minimal process (X,T0) such that its entrance law satisfies (iii) in Lemma 2 with γ = 1 − ρ, and
n(X0+ > 0) = 0 (see [11] and the reference therein). Thus E(I−ρ) < ∞, by Lemma 3. Therefore, it
is easily verified by repeating the arguments in the proof of Proposition 4 that the condition (H2-c) is
satisfied.

Finally, the excursion measure n defined in Theorem 1 is equal to n and the recurrent extension in
Theorem 2 associated to n is equivalent to X ′.

Example 4. Let ξ be a non–arithmetic Lévy process with no positive jumps such that ξ derives to
−∞. We assume that ξ is neither the negative of a subordinator nor a deterministic drift. The case
of the negative of a subordinator was discussed in example 1 and the case of a deterministic drift can
be treated in the same way. From the theory of Lévy processes with no positive jumps we know that
E(eλξ1) < ∞, for all λ > 0. Then the convex function ψ(λ) : R+ → R, defined by E(eλξ1) = eψ(λ), is
such that ψ(0) = 0, and limλ→∞ ψ(λ) = ∞. Since ξ drifts to −∞ there exists a unique θ > 0, such
that ψ(θ) = 0. It follows that ξ satisfies the conditions (H2). Let 0 < α < 1/θ, and let (X,T0) be
the α–self–similar minimal process associated to ξ. Owing to the absence of positive jumps, we have
that XT[z,∞[

= z whenever T[z,∞[ < T0, with T[z,∞[ = inf{t > 0 : Xt ≥ z}. The excursion measure n
compatible with the process (X,T0) defined in Theorem 1 has the property:

Under the probability measure on D+, n |(T[z,∞[ < T0), the processes (Xt, t ≤ T[z,∞[) and
(XTz+t, t ≤ T0 − T[z,∞[), are independent. The law of the former is E\0+ killed at T[z,∞[ and of
the latter is that of (X,T0) started at z.

Here n |(T[z,∞[ < T0) means n(A ∩ {T[z,∞[ < T0})/n({T[z,∞[ < T0}) for A ∈ G∞. This claim is easily
verified using the fact that the measure n is a multiple of the h–transform of E\0+ via the excessive func-
tion h∗(x) = x−θ, x > 0. Moreover, the law of the Lévy exponential functional I =

∫∞
0 exp{ξs/α}ds,

associated to ξ is self–decomposable and as a consequence the law of I has a continuous density, cf. [28]
Proposition 4. Therefore, to apply the results in Sections 4 & 5, the only hypothesis that should be
made on ξ is that E(ξ1) > −∞.

A On dual extensions

This section is motivated by Section 5, where we proved that given two minimal process X and X̂
which are self–similar and that are in weak duality, there exist Markov processes X̃ and Z̃ extending
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(X,T0) and (X̂, T̂0) respectively, which still are in weak duality. The purpose of this section is to
give a generalization of this fact under the hypotheses of Blumenthal. The result given here is of
independent interest and to make the section self–contained, we next introduce some notation. Let
(Yt, t ≥ 0) and (Ŷt, t ≥ 0) be Markov processes having 0 as a trap. Denote by P,E, (resp. P̂, Ê) the
probabilities and expectation for Y, (resp. Ŷ ) and by T0 (resp. T̂0) the first hitting time of 0 for Y
(resp. for Ŷ ), i.e. T0 = inf{t > 0 : Yt = 0}. Assume Px(T0 < ∞) = P̂x(T0 < ∞) = 1 for any x > 0.
Let Q0

t , and W 0
λ , (resp. Q̂0

t , Ŵ
0
λ ) denote the semigroup and λ–resolvent for Y killed at 0, (resp. Ŷ ).

For λ > 0, define the functions ϕλ, ϕ̂λ : R+ → [0, 1], by

ϕλ(x) = Ex(e−λT0); ϕ̂λ = Êx(e−λT0), x > 0.

The main assumptions of this section are

(H3-a) Y, Ŷ , both satisfy the basic hypotheses in [7];

(H3-b) the resolvents W 0
λ and Ŵ 0

λ are in weak duality with respect to a σ–finite measure ζ(dx) on
]0,∞[;

(H3-c) We have ∫
]0,∞[

ζ(dx)ϕλ(x) <∞;
∫

]0,∞[
ζ(dx)ϕ̂λ(x) <∞, for all λ > 0.

Theorem 3. Assume hypotheses (H3). Then there exist excursion measures m and m̂ compatible
with the semigroups (Q0

t , t ≥ 0) and (Q̂0
t , t ≥ 0) respectively. The Laplace transforms of the entrance

laws (ms, s > 0) and (m̂s, s > 0) associated to m and m̂ respectively, are determined by∫ ∞
0

e−λsmsfds =
∫

]0,∞[
ζ(dx)f(x)ϕ̂λ(x);

∫ ∞
0

e−λsm̂sfds =
∫

]0,∞[
ζ(dx)f(x)ϕλ(x),

for λ > 0, and f continuous and bounded. Furthermore, associated to these excursion measures there
exist Markov processes Y ∗ and Ŷ ∗ which are extensions for Y and Ŷ respectively and which are still
in weak duality with respect to the measure ζ(dx).

The proof of this theorem will be given via three lemmas. The first of them ensures the existence
of the excursion measures.

Lemma 7. The family of finite measures Mλf =
∫
]0,∞[ ζ(dx)f(x)ϕ̂λ(x), λ > 0, is such that

(i) limλ→∞Mλ1 = 0

(ii) For µ, λ > 0, µ 6= λ
(µ− λ)MλW

0
µf = Mλf −Mµf,

for f continuous and bounded.

Proof. That Mλ −→ 0, as λ → ∞, follows from the monotone convergence theorem. Using the weak
duality for the resolvents W 0

λ and Ŵ 0
λ , we get

MλW
0
µf =

∫
]0,∞[

ζ(dx)W 0
µf(x)ϕ̂λ(x)

=
∫

]0,∞[
ζ(dx)f(x)Ŵ 0

µ ϕ̂λ(x).
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The result is then obtained from the elementary identity

Ŵ 0
µ ϕ̂λ(x) =

Êx(e−λT0 − e−µT0)
µ− λ

.

From Lemma 7 and Theorem 6.9 of Getoor and Sharpe [17], there exists a unique entrance law
(mt, t > 0), for the semigroup (Qt, t ≥ 0), such that for each λ > 0

Mλf =
∫ ∞

0
e−λtmtfdt,

for f measurable and bounded, and ∫ 1

0
mt1dt <∞.

According to Blumenthal [7], for an entrance law (ms, s > 0) there exists a unique excursion measure
m, such that its entrance law is (ms, s > 0). The same method ensures the existence of an excursion
measure m̂ and an entrance law (m̂t, t > 0), for the semigroup (Q̂t, t ≥ 0).

Using the results in [7] we obtain that associated to the excursion measure m (resp. to m̂) there
exists a unique Markov process Y ∗ extending Y (resp. Ŷ ∗ extends Ŷ ) and the λ–resolvent of Y ∗ is
determined by

Wλf(0) =
Mλf

λMλ1
; Wλf(x) = W 0

λf(x) + ϕλ(x)Wλf(0), x > 0,

for f measurable and bounded; the λ–resolvent for Ŷ ∗, say Ŵλ, is defined in a similar way. To establish
weak duality with respect to the σ–finite measure ζ(dx) for the resolvents Wλ and Ŵλ we will need
the following technical result.

Lemma 8. For every λ > 0, we have that λMλ1 = λM̂λ1.

Proof. This result is a consequence of the following identity, for λ, µ > 0

λMλ1− µMµ1 = λM̂λ1− µM̂µ1;

and the fact that
lim
µ→∞

µMµ1 = 0,

since m(1−e−µT0) = µMµ1, with m the excursion measure associated to the entrance law (ms, s > 0).
Thus, to end the proof we just have to prove the former identity. Indeed, this follows from the fact
that

Mλϕµ =
∫

]0,∞[
ζ(dx)ϕ̂λ(x)ϕµ(x) = M̂µϕ̂λ,

and the following elementary identities: for λ, µ > 0

(λ− µ)Mλϕµ = λMλ1− µMµ1, and (λ− µ)M̂λϕ̂µ = λM̂λ1− µM̂µ1.

Finally, the following lemma establishes weak duality for the resolvents Wλ and Ŵλ.
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Lemma 9. For every λ > 0 and every measurable functions f, g : [0,∞[→ R+, we have∫
]0,∞[

ζ(dy)g(y)Wλf(y) =
∫

]0,∞[
ζ(dy)f(y)Ŵλg(y).

The proof of this lemma is a straightforward consequence of Lemma 8 and the construction of Wλ

and Ŵλ; see the proof of Lemma 6.

Remarks

1. Observe that
lim
λ→0

∫ ∞
0

dse−λsmsf =
∫ ∞

0
dsmsf =

∫
]0,∞[

ζ(dy)f(y).

By the weak duality relation in Lemma 9 we have that ζ(dy) is invariant for the semigroup of
Y ∗ and, since 0 is a recurrent state for Y ∗, ζ(dy) is in fact the unique (up to a multiplicative
constant) excessive measure for this semigroup, see e.g. Dellacherie et al. [12] XIX.46.

2. We have not considered here the possibility of a stickiness parameter in the construction of the
processes Y ∗ and Ŷ ∗; that is constructing Y ∗ and Ŷ ∗ via the subordinators

σt = dt+
∑
s≤t

T0(∆s); σ̂t = d̂t+
∑
s≤t

T̂0(∆s), t > 0,

for some d, d̂ > 0 (see section 2.1 for the notation or Blumenthal [8] § 5 for an account). In such
a case, the λ–resolvent for Y ∗ (resp. Ŷ ∗) at 0 is given by

Wλf(0) =
df(0) +Mλf

λd + λMλ1
; Wλf(0) =

d̂f(0) + M̂λf

λd̂ + λM̂λ1
,

for f continuous and bounded, and, if d = d̂, then the resolvents Wλ and Ŵλ are still in weak
duality but this time with respect to the measure ζd(dx) = dδ0(dx) + ζ(dx).

3. Assume moreover that for every x > 0, P̂x(T0 ∈ dt) is absolutely continuous with respect to
Lebesgue measure, having a density

a(x, t) =
P̂x(T0 ∈ dt)

dt
, x, t > 0,

which is jointly Borel measurable. Then for λ > 0,∫ ∞
0

dse−λsmsf =
∫

]0,∞[
ζ(dx)ϕ̂λ(x)f(x) =

∫ ∞
0

dse−λs
∫

]0,∞[
ζ(dx)a(x, s)f(x),

for f continuous and bounded. The second equality is a consequence of Fubini’s theorem. By
inverting the Laplace transform we obtain that for s > 0,

msf =
∫

]0,∞[
ζ(dx)a(x, s)f(x).

A similar result was obtained by Getoor in [16] Proposition 10.10 in a different setting.
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(fin). Compléments du calcul stochastique, volume V. Hermann, Paris, 1992.

[13] D. Dufresne. The distribution of a perpetuity, with applications to risk theory and pension
funding. Scand. Actuar. J., (1-2):39–79, 1990.

[14] P. Embrechts and M. Maejima. Self-similar processes. Princeton Series in Applied Mathematics.
Princeton University Press, Princeton, NJ, 2002.

[15] P. Fitzsimmons, J. Pitman, and M. Yor. Markovian bridges: construction, Palm interpretation,
and splicing. In Seminar on Stochastic Processes, 1992 (Seattle, WA, 1992), volume 33 of Progr.
Probab., pages 101–134. Birkhäuser Boston, Boston, MA, 1993.
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