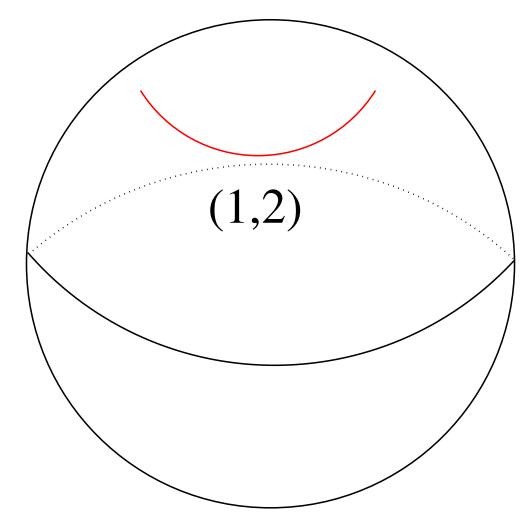
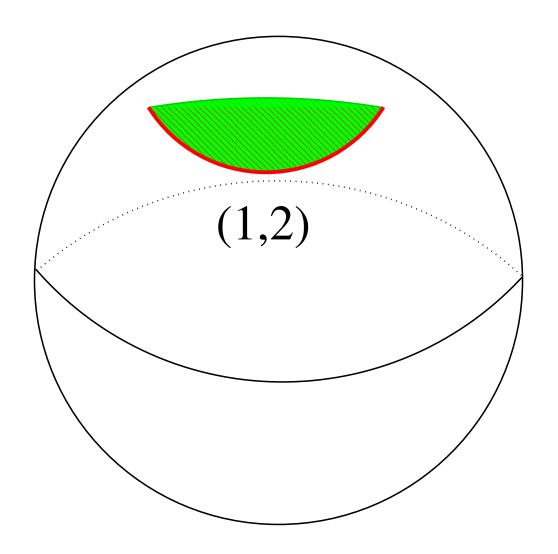
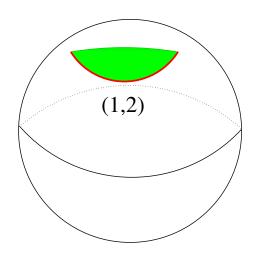
Nudos Universales

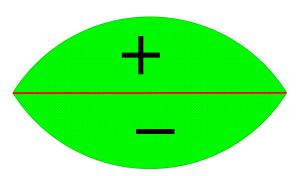
Víctor Núñez Cimat

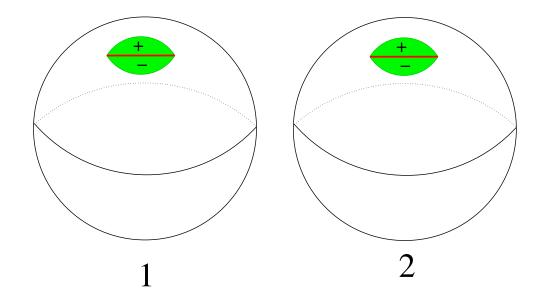


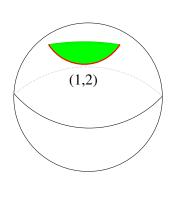
Una 3-bola B con un arco $\alpha\subset B$ propiamente encajado y una permutación $(1,2)\in S_n.$

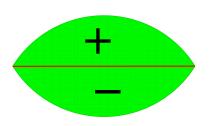


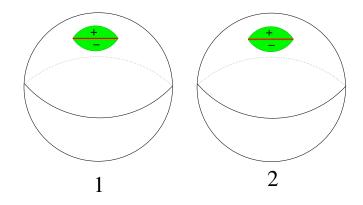


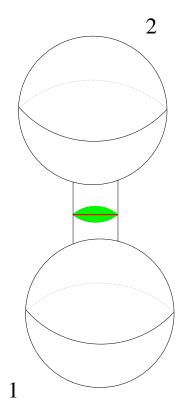


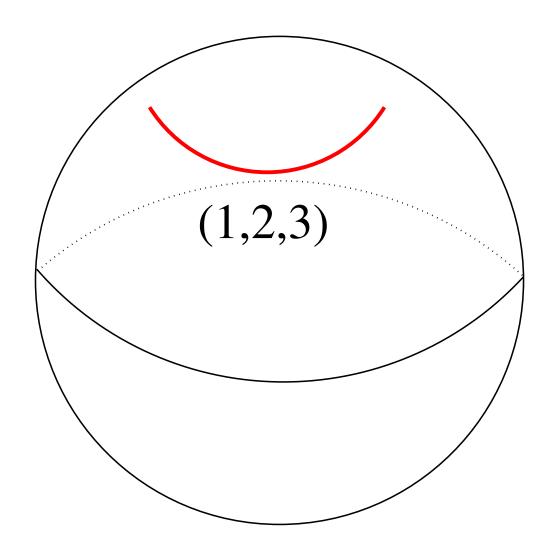


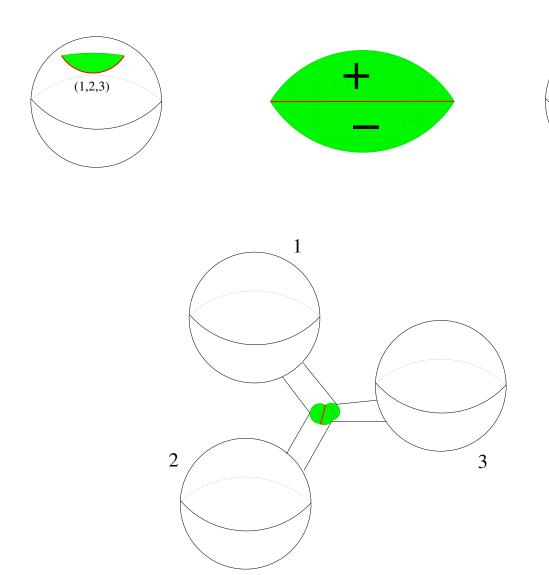


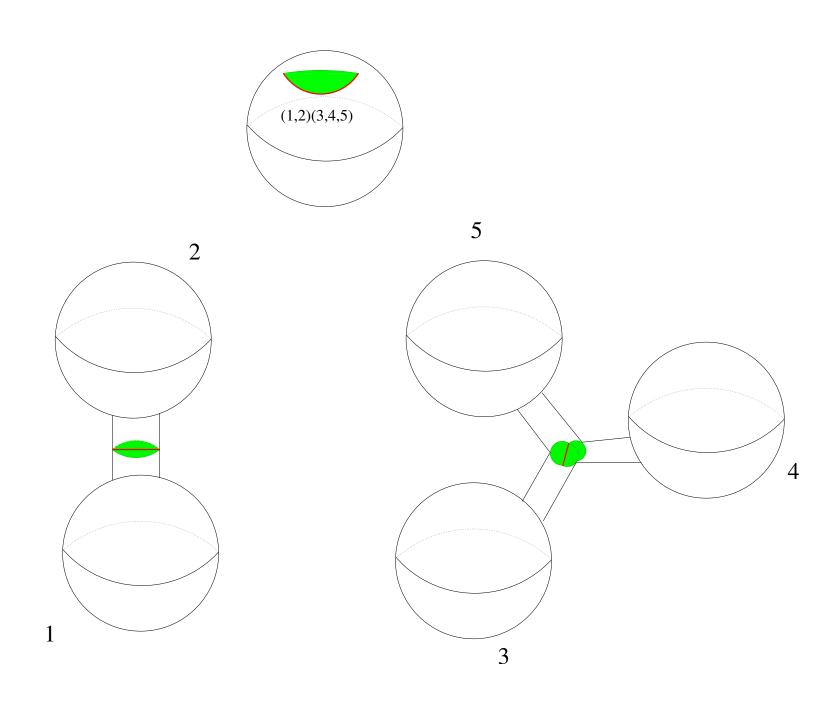


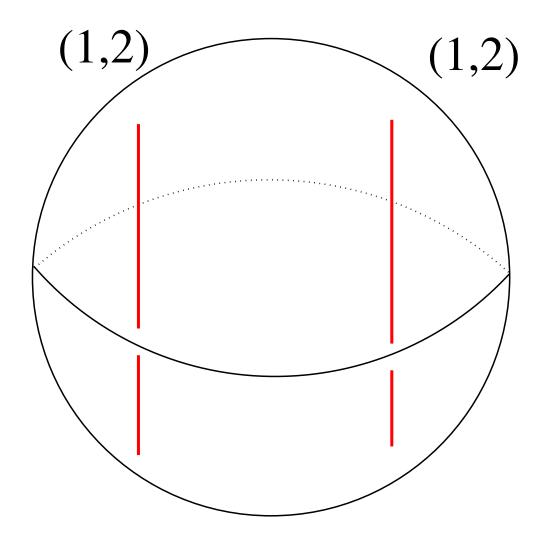


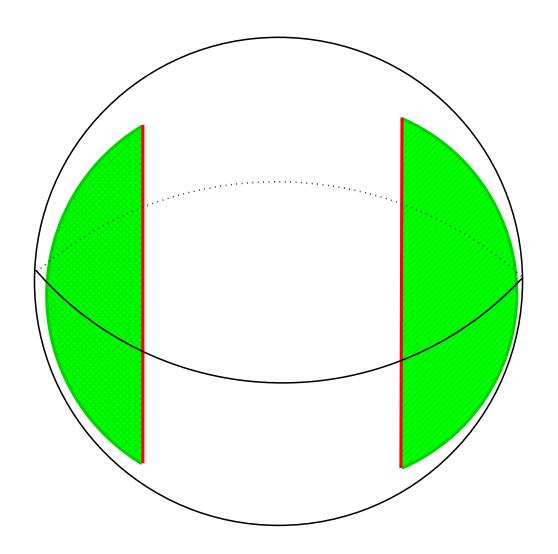


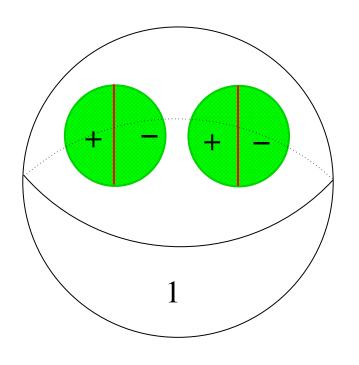


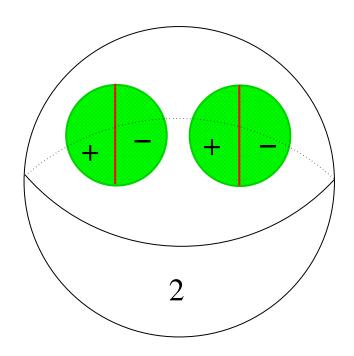


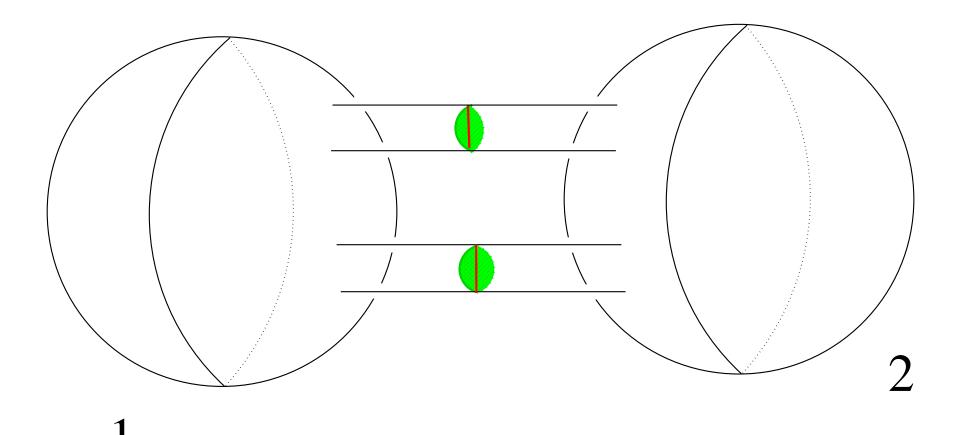


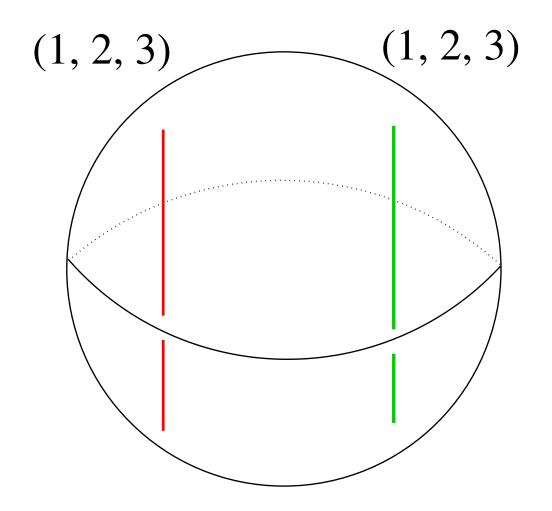


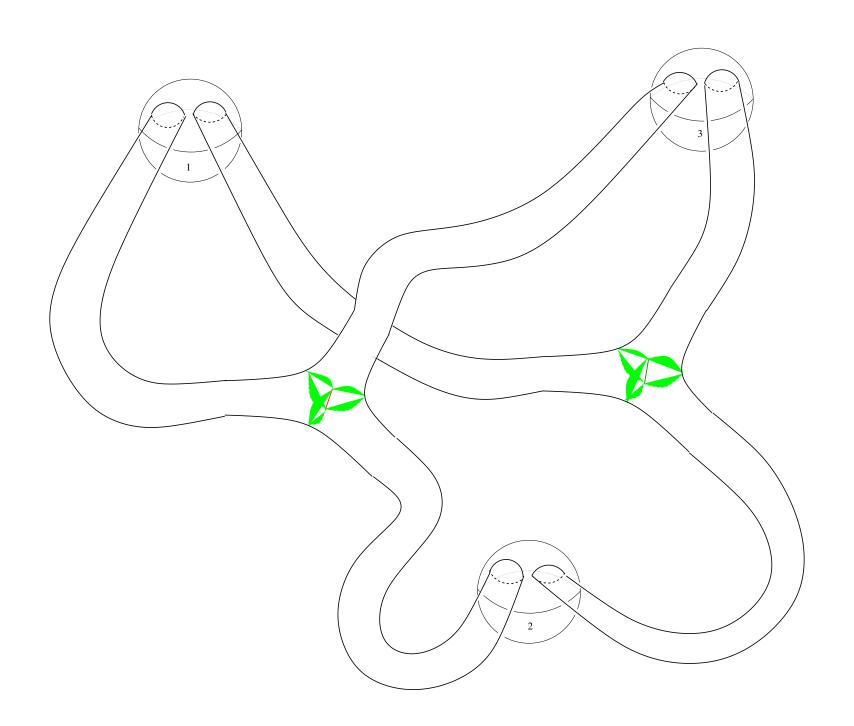


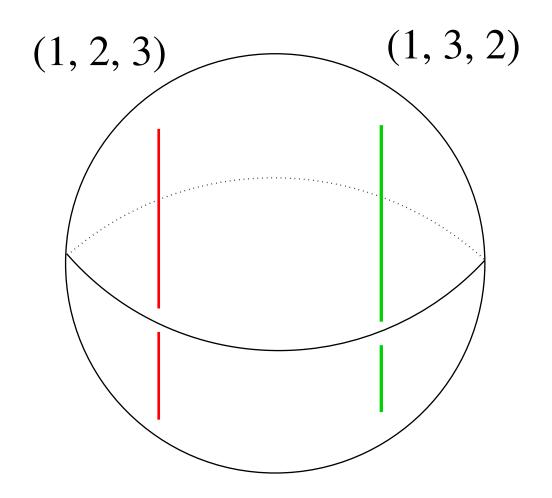


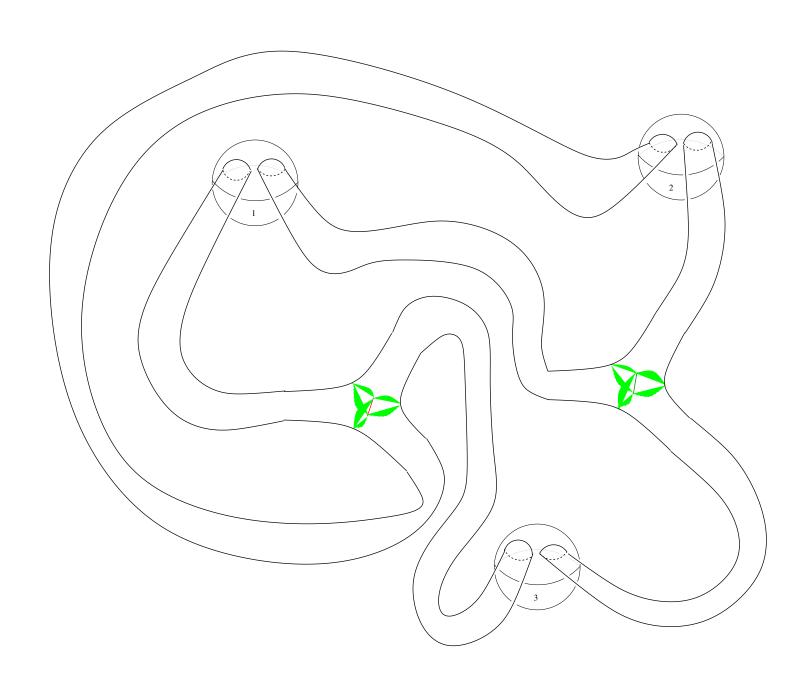


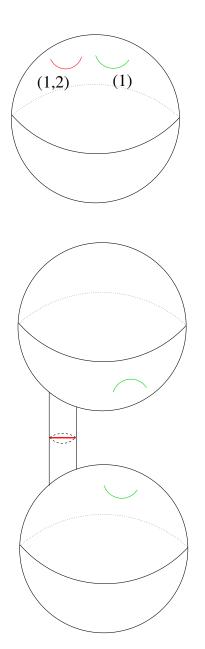




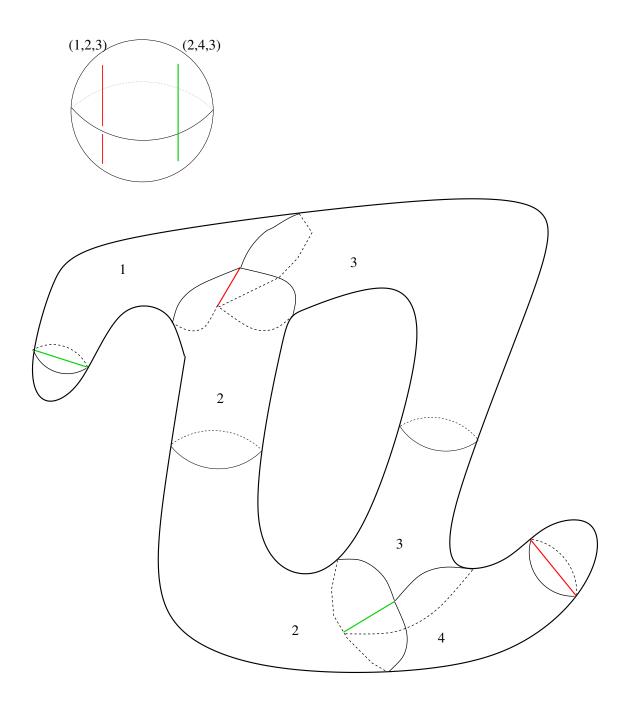


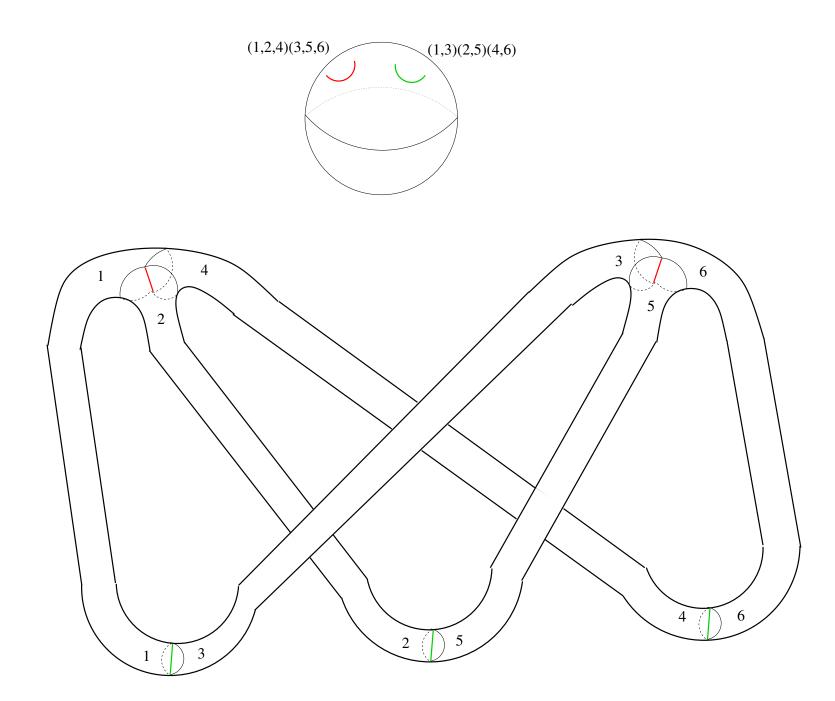






(1)=identidad





Se obtuvo una función $\varphi:M\to N$ que es

- continua,
- abierta y
- propia.

Para cada $x \in N$ el número $\#\varphi^{-1}(x) = n$ está fijo, excepto para los puntos de un subconjunto $K \subset N$ de codimensión 2.

Definición. Una función $\varphi:M^m\to N^m$ se llama una cubierta ramificada de n hojas si φ es continua, abierta y propia y si existe una subvariedad $k\subset N$ de codimensión 2 tal que

$$\varphi: M - \varphi^{-1}(k) \to N - k$$

es un espacio cubriente de n hojas.

(k está propiamente encajada en N).

Se dice que φ está ramificada a lo largo de k.

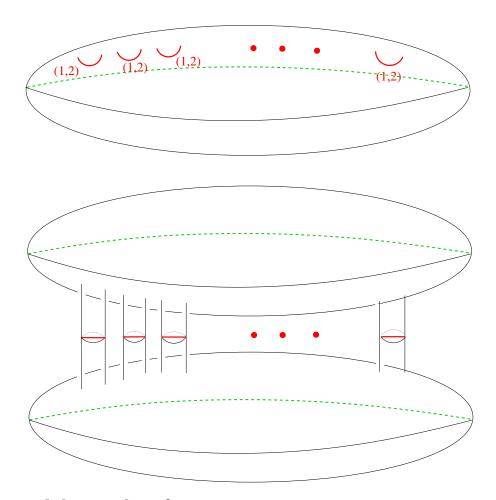
Para una cubierta ramificada $\varphi: M \to (N,k)$ de n hojas se tiene una <u>representación</u> (un homomorfismo) asociada:

$$\omega_{\varphi}:\pi_1(N-k)\to S_n.$$

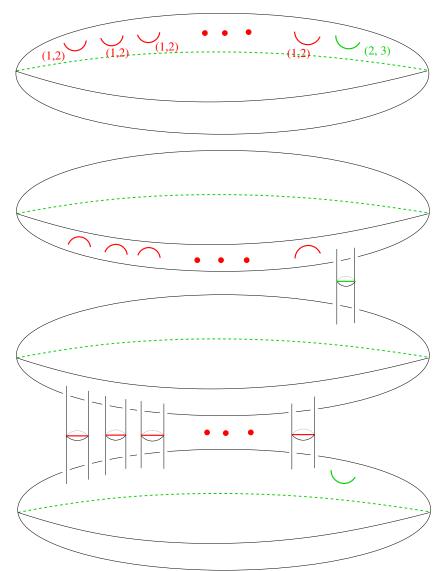
Para una representación $\omega:\pi_1(N-k)\to S_n$ dada se tiene una cubierta ramificada

$$\varphi_{\omega}: M \to (N,k).$$

Una cubierta ramificada $\varphi:M\to (N,k)$ se llama <u>simple</u> si su representacion asociada manda cada <u>meridiano</u> de k en un 2-ciclo.



Una bola con g+1 arcos da un cubo con g asas.



Una bola con g+2 arcos da un cubo con g asas.

Teorema. (Heegaard)

M es una 3-variedad cerrada, conexa y orientable

 \Leftrightarrow

M es la unión de dos cubos con asas (orientables) pegados a lo largo de sus fronteras.

$$V V_1 V_2$$

$$\varphi \downarrow \qquad = \downarrow \varphi_1 = \downarrow \varphi_2$$

$$B^3 B_1 B_2$$

$$f: \partial V_1 \to \partial V_2$$
$$g: \partial B_1 \to \partial B_2$$

$$V_1 \sqcup V_2 \longrightarrow V_1 \cup_f V_2$$

$$\varphi_1 \sqcup \varphi_2 \downarrow \qquad \qquad \downarrow \varphi_1 \cup \varphi_2$$

$$B_1 \sqcup B_2 \longrightarrow B_1 \cup_g B_2 (\cong S^3)$$

$$\varphi_1 \cup \varphi_2$$
 es función \Leftrightarrow $\begin{array}{c} \partial V_1 & \xrightarrow{f} \partial V_2 \\ \varphi_1 \downarrow & \downarrow \varphi_2 \text{ conmuta} \\ \partial B_1 & \xrightarrow{g} \partial B_2 \end{array}$

Teorema. (Berstein y Edmonds)

 $arphi:\partial V o\partial B^3$ cubierta simple de al menos tres hojas $f':\partial V o\partial V$ homeomorfismo

 \Rightarrow

Existen $f:\partial V\to\partial V$ y $g:\partial B^3\to B^3$ homeomorfismos tales que f es isotópica a f' y

$$\begin{array}{ccc}
\partial V_1 & \xrightarrow{f} \partial V_2 \\
\varphi_1 \downarrow & & \downarrow \varphi_2 \text{ commuta} \\
\partial B_1 & \xrightarrow{g} \partial B_2
\end{array}$$

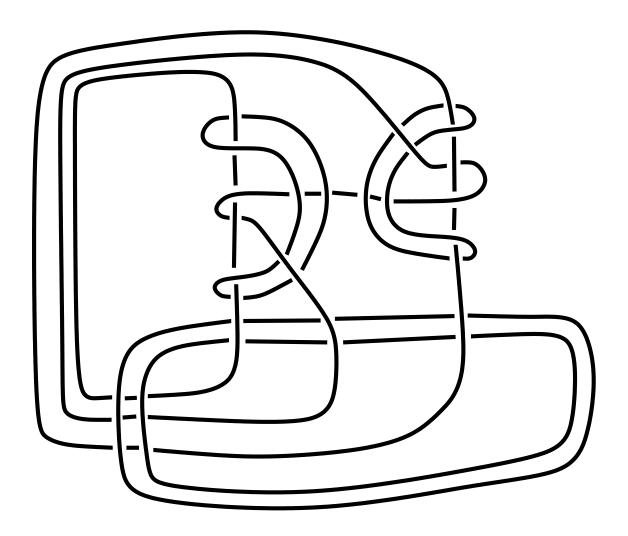
Teorema. (Hilden y Montesinos)

Toda 3-variedad cerrada, conexa y orientable es cubierta ramificada de la 3-esfera S^3 con una proyección cubriente simple de tres hojas y la ramificación es a lo largo de un enlace en S^3 .

Pregunta: (A. Ramírez)

¿Existe algún enlace $L\subset S^3$ tal que toda 3-variedad cerrada, conexa y orientable es una cubierta ramificada de (S^3,L) ?

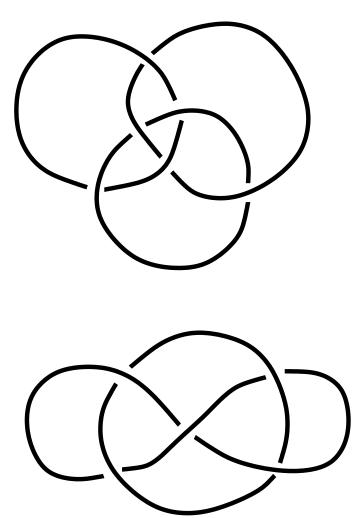
Teorema. (Thurston) El enlace



es universal.

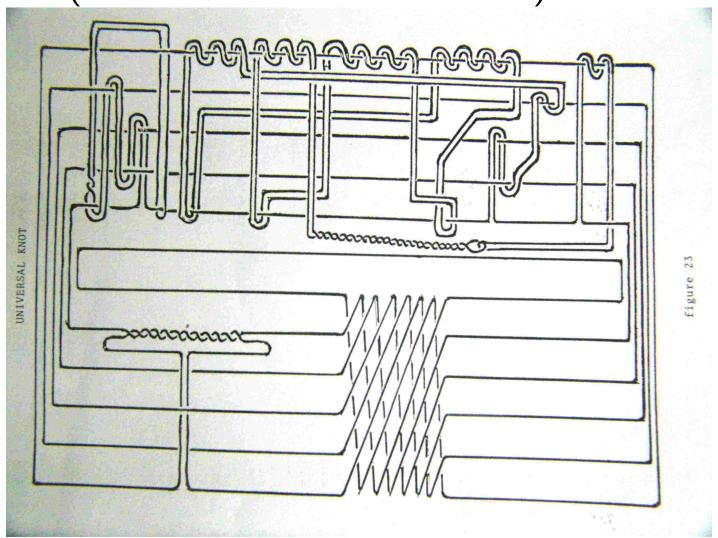
Teorema. (Hilden–Lozano–Montesinos)

Los enlaces



son universales.

Teorema. (Hilden-Lozano-Montesinos) El nudo



es universal.

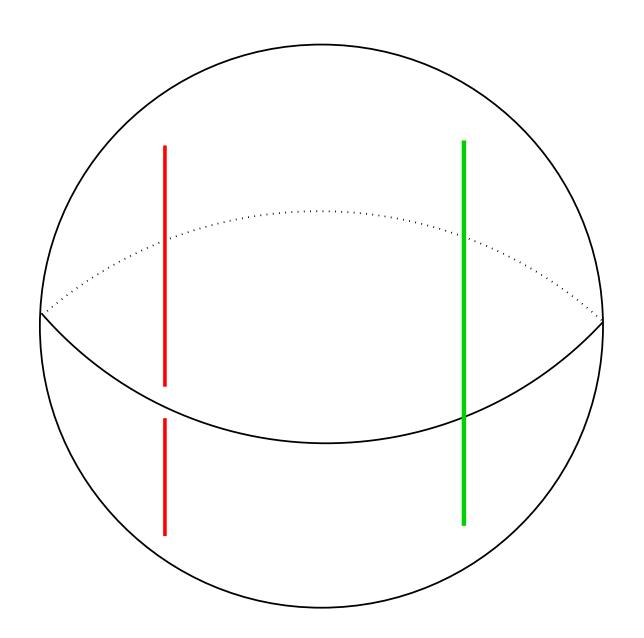
Nudos de n puentes.

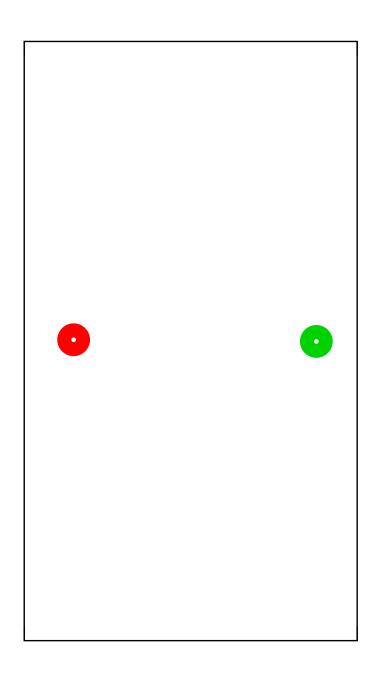
Un <u>n</u>-ovillo trivial es una pareja $(B, \{\alpha_i\}_{i=1}^n)$ donde

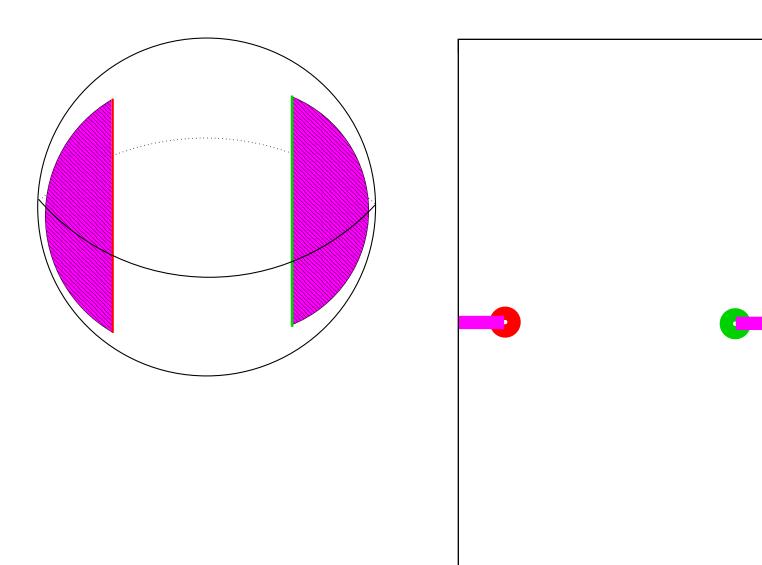
B es una 3-bola

 $\alpha_1, \ldots, \alpha_n \subset B$ son n arcos propiamente encajados <u>triviales</u>

(O sea, hay n 2-discos ajenos $D_1, \ldots, D_n \subset B$ tales que $\partial D_i = \alpha_i \cup \beta_i$ donde $\beta_i \subset \partial B$ y $\partial \alpha_i = \partial \beta_i$.)





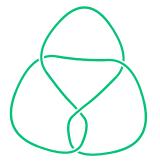


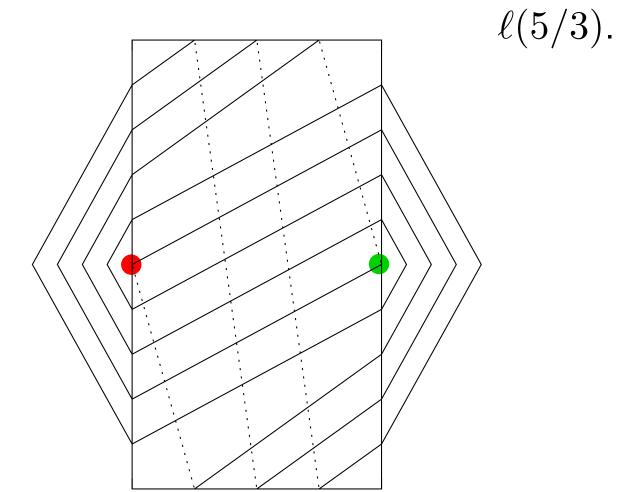
Un enlace $k \subset S^3$ está en posición de n puentes si existen dos n-ovillos triviales $(B, \{\alpha_i\})$ y $(B', \{\alpha_i'\})$ tales que

$$S^3 = B \cup_{\partial} B'$$

У

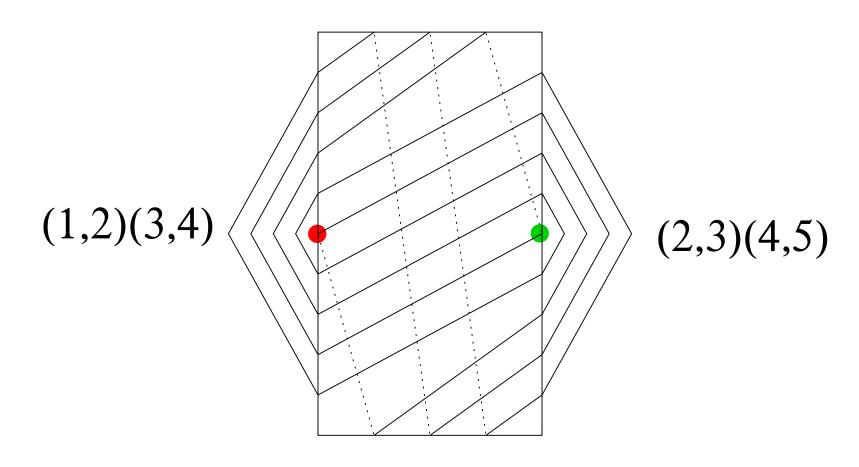
$$k = (\sqcup \alpha_1) \cup (\sqcup \alpha_i')$$



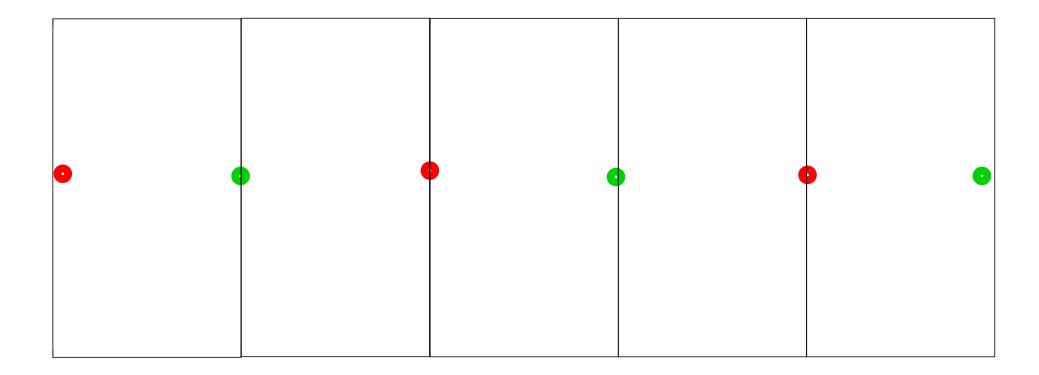


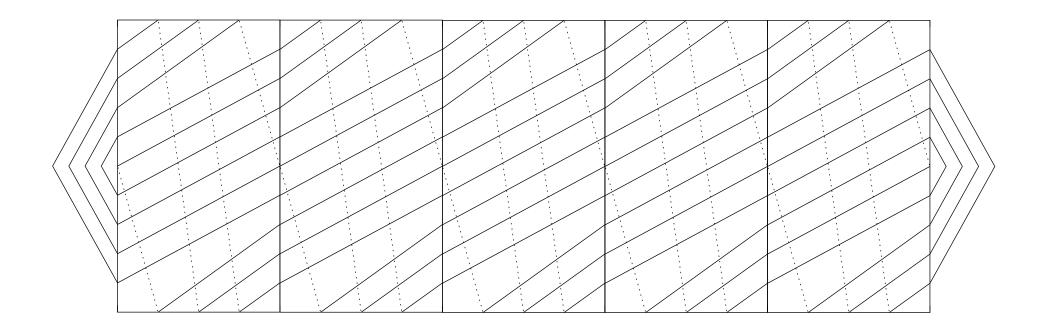
Cubiertas de nudos de dos puentes.

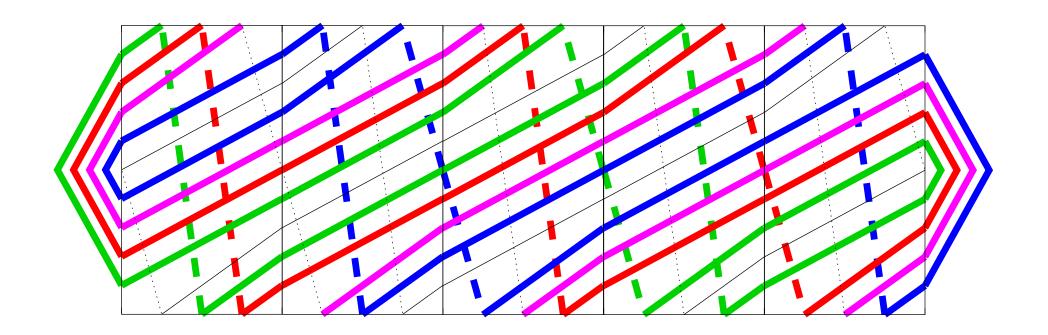
$$k = \ell(5/3)$$



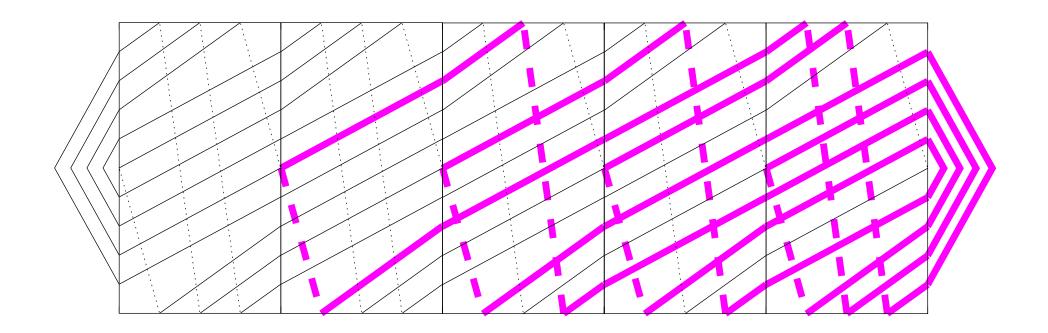
Conocemos la cubierta de la bola:

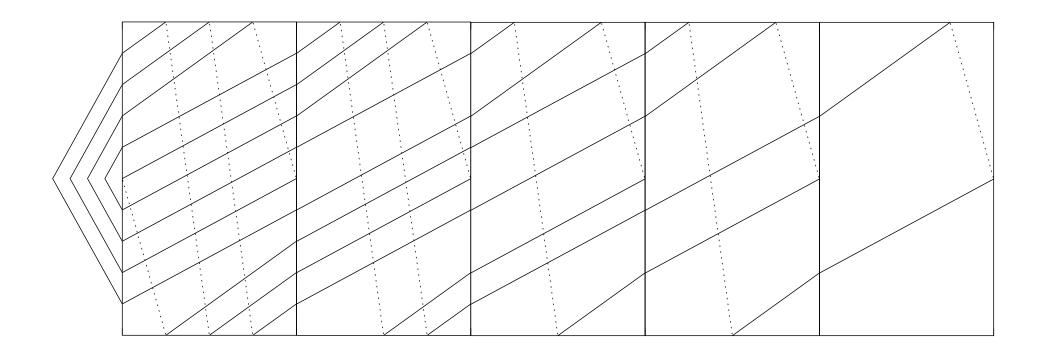


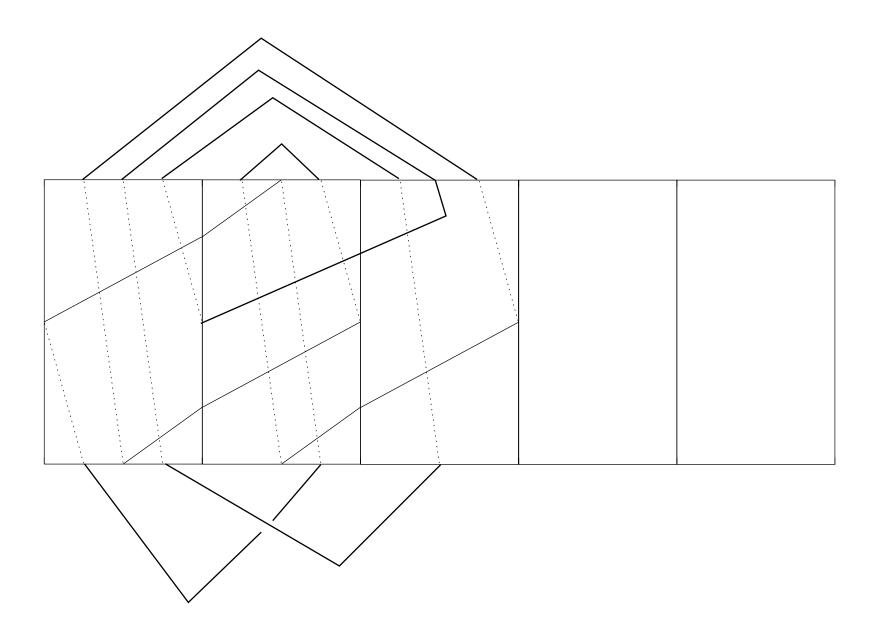


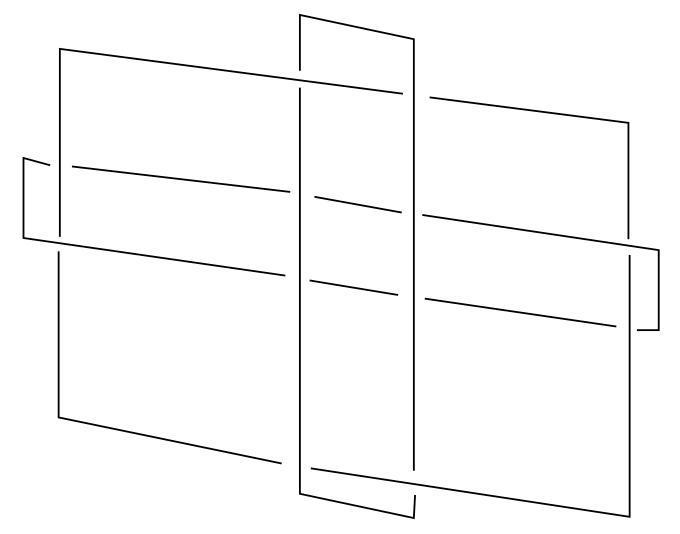


"Sobran" estos arcos (por ejemplo):









El enlace romano.

El Enlace Romano. 3.3

Teorema 3.4. Existe una cubierta ramificada $p: S^3 \to S^3$ con ramificación sobre el enlace Romano tal que el conjunto singular contiene los anillos Borromeanos. Esto es, el enlace Romano es universal.

Demostración. Paso 1: Dibujemos el enlace romano (Figura 36) como en la Figura 39. Sea $p_1:S^3 o S^3$ la cubierta diédrica de cuatro hojas con ramificación en las componentes A y B del enlace Romano (ver Figura 39). Observemos la esfera punteada; ésta separa a S^3 en dos ovillos triviales de 2-hilos. Aplicando la teoría de la sección 3.1 a estos dos ovillos, podemos dibujar la preimagen de la componente C como en la Figura 40 (a), esta preimagen es precisamente el enlace de dos puentes L(12/5) (Figura 40 (b)).

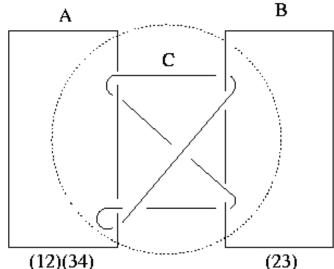
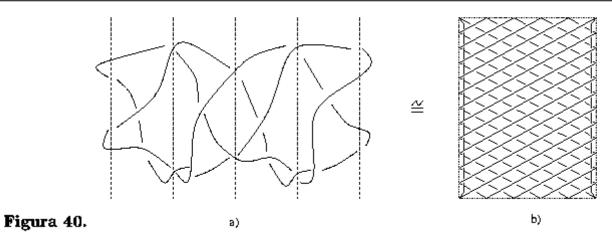


Figura 39.



Paso 2: Tomemos la cubierta diédrica de $p_2:S^3\to S^3$ de seis hojas (ver Figura 38) sobre L(12/5) y de la preimagen de este enlace escogemos las componentes $C_0,\,C_2,\,C_5$ y C_6 marcadas en la Figura 38. Estas componentes están dibujadas en la Figura 41 (a).

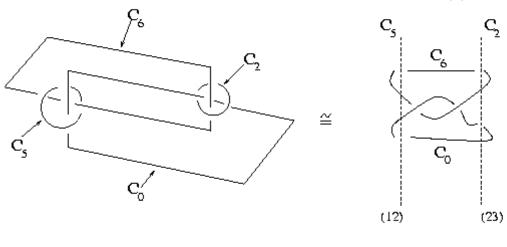


Figura 41. a) b)

Paso 3: Sobre el enlace anterior tomamos la cubierta diédrica $p_3: S^3 \to S^3$ de tres hojas con ramificación sobre las componentes C_5 y C_2 (Figura 41 (b). La preimagen bajo p_3 de C_0 y C_6 es el enlace de la Figura 42.

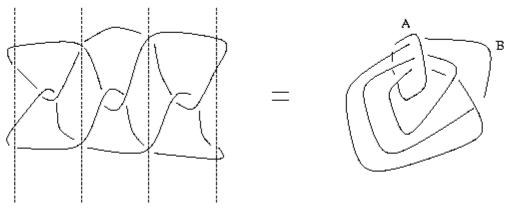


Figura 42.

Una cubierta cíclica de tres hojas sobre A:

B bajo esta cubierta son los Borromeanos. Por tanto la cubierta $p=p_4\circ p_3\circ p_2\circ p_1$ es la cubierta que describe el teorema.

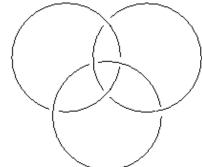


Figura 43.

 $\varphi_1:S^3\to (S^3,\ell(\frac{5}{3}))$ de **5** hojas, $\varphi_1^{-1}(\ell(\frac{5}{3}))=$ romano.

 $\varphi_2: S^3 \to (S^3, \text{romano}) \text{ de 4 hojas, } \varphi_2^{-1}(\text{romano}) \supset \ell(\frac{12}{5}).$

 $\varphi_3: S^3 \to (S^3, \ell(\frac{12}{5})) \text{ de 6 hojas, } \varphi_3^{-1}(\ell(\frac{12}{5})) \supset L_2.$

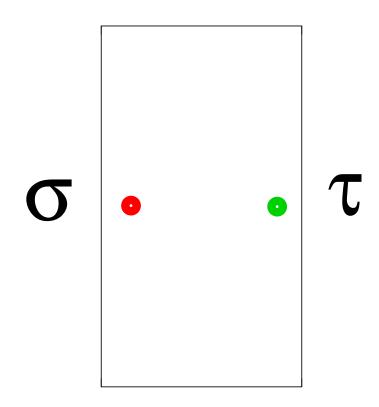
 $\varphi_4: S^3 \to (S^3, L_2) \text{ de } 3 \text{ hojas, } \varphi_4^{-1}(L_2) \supset L_3.$

 $\varphi_5: S^3 \to (S^3, L_3)$ de **3** hojas, $\varphi_5^{-1}(L_3) \supset \text{Borromeos}$.

Por lo tanto $\varphi = \varphi_5 \circ \varphi_4 \circ \varphi_3 \circ \varphi_2 \circ \varphi_1 : S^3 \to (S^3, \ell(\frac{5}{3}))$ de **1080** hojas, $\varphi^{-1}(\ell(\frac{5}{3})) \supset \text{Borromeos}$.

Luego $k = \ell(\frac{5}{3})$ es universal.

Para $k = \ell(a/b)$ con a impar



$$\sigma = (1,2)(3,4)\cdots(a-2,a-1)$$

$$\tau = (2,3)(4,5)\cdots(a-1,a)$$

Un nudo de dos puentes $\ell(b/a)$ es hiperbólico si y sólo si $b \not\equiv \pm 1 \pmod{a}$.

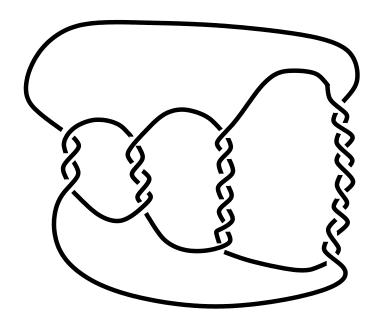
Teorema. (Hilden–Lozano–Montesinos) Un nudo de dos puentes k es universal si y sólo si k es hiperbólico.

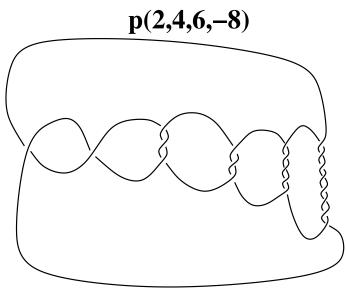
Más nudos universales.

Definición. Un enlace de Uchida es un nudo pretzel $p(a_1, a_2, \ldots, a_t)$ con al menos dos a's pares.

Teorema. (Uchida) Todos los enlaces de Uchida son universales, excepto:

- p(2s, 2t), $s, t \in Z \{0\}$.
- p(-2,2,s), $s \in Z \{0\}$
- $p(\pm 2, \pm 3, \mp 4)$, $p(\pm 2, \mp 3, \mp 6)$, $p(\pm 2, \mp 4, \mp 4)$ y
- p(-2, -2, 2, 2).



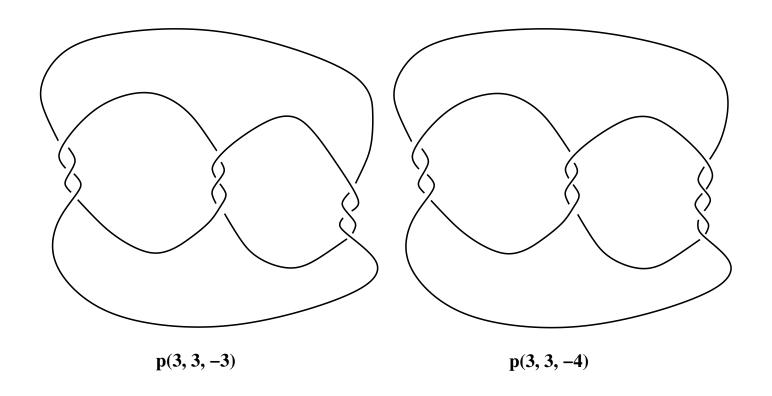


p(1, 1, 2, 3, 5, 8)

Teorema. (J. Rodríguez)

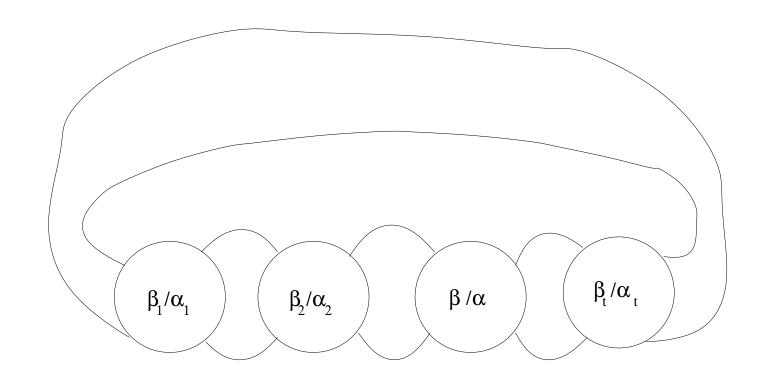
Si |n| > 1 y n es impar, entonces p(n, n, -n) es universal.

Si $n \neq 2$ y n es par, entonces p(3,3,n) es universal.

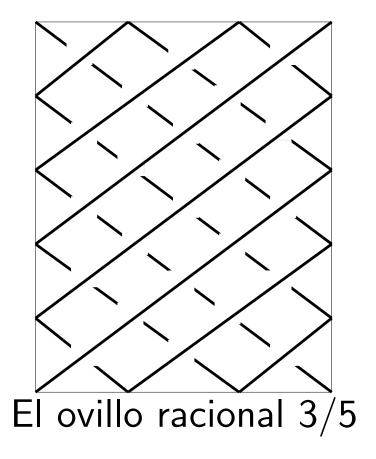


Nudos de Montesinos.

Un <u>nudo de Montesinos</u> $m(\beta_1/\alpha_1,\ldots,\beta_t/\alpha_t)$ es un enlace de la forma:

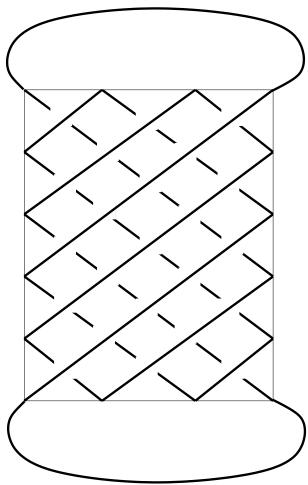


donde cada cajita (cada almohada cuadrada) contiene un ovillo racional



El lado vertical está dividido en 5 intervalos.

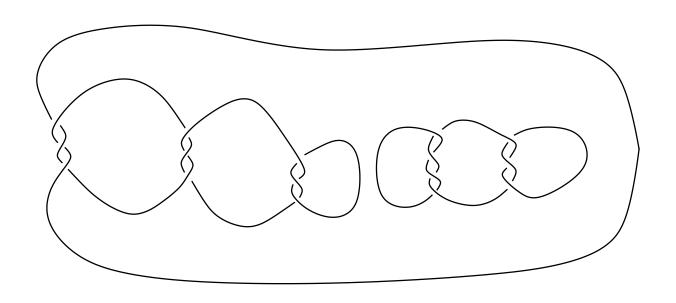
El lado horizontal está dividido en 3 intervalos.



El nudo racional $\ell(3/5) = m(3/5)$

Siempre supondremos que para cada i, $(\alpha_i, \beta_i) = 1$.

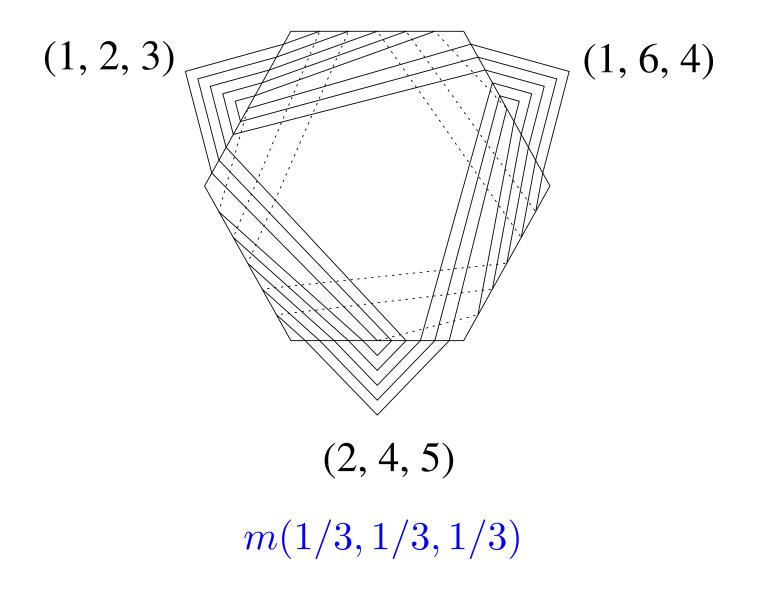
Es conveniente permitir que algunas α 's sean cero (aunque en este caso el nudo de montesinos es una unión de sumas conexas de enlaces racionales

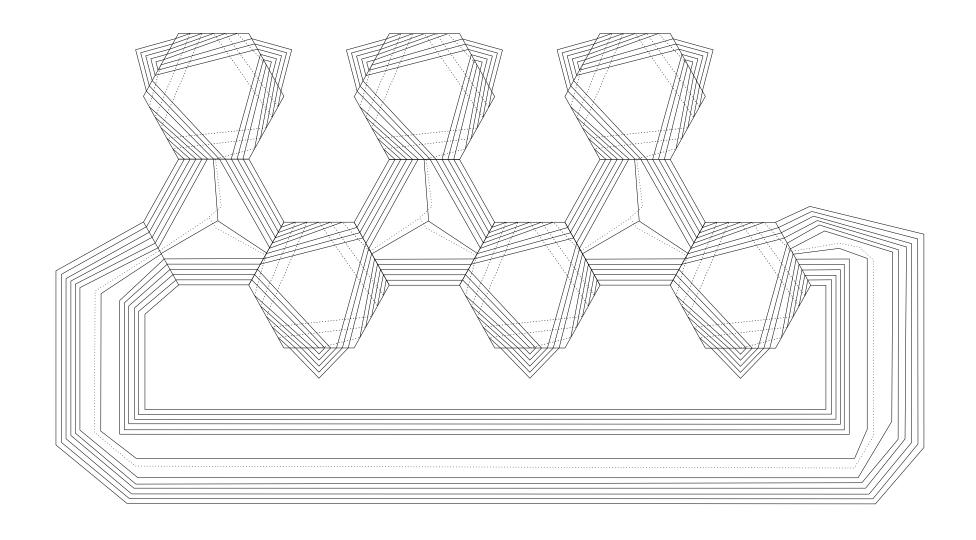


m(1/3, 1/3, -1/3, 1/0, -1/4, 1/3, 1/0)

).

Cubiertas de nudos de Montesinos.





Necesitamos otro enfoque...

Cocientes diédricos.

Sea $k\subset S^3$ un enlace. Escribimos $B_2(k)$ para la cubierta cíclica ramificada de dos hojas de (S^3,k)

(es decir, es la cubierta que se obtiene de marcar cada meridiano de k con la permutación (1,2).

En este caso hay una involución

$$u:B_2(k)\to B_2(k)$$

cuyo cociente es la cubierta cíclica ramificada de dos hojas

$$p:B_2(k)\to (S^3,k)$$

y es tal que p(fix(u)) = k).

Sea $\varphi:M\to (S^3,k)$ una cubierta ramificada de d-hojas. φ se llama un <u>cociente diédrico</u> si existe un diagrama conmutativo de cubiertas ramificadas

$$egin{array}{ccc} & \tilde{M}_{\psi} \ M & B_2(k) \ & arphi & arphi \ (S^3,k) \end{array}$$

tal que ψ es un espacio cubriente (sin ramificación) de d-hojas.

En este caso q es una cubierta cíclica ramificada de dos hojas con ramificación en el <u>seudo-branch</u> de φ (éste es un subenlace muy especial de $\varphi^{-1}(k)$).

Si k es el nudo de Montesinos $k=m(\beta_1/\alpha_1,\ldots,\beta_t/\alpha_t)$, entonces $B_2(k)$ es la variedad de Seifert

$$B_2(k) = (O, 0; \beta_1/\alpha_1, \dots, \beta_t/\alpha_t).$$

Teorema. (E. Ramírez y V.) Es posible calcular, en términos de los invariantes de Seifert, las cubiertas de una variedad de Seifert con símbolo $(O, 0; \beta_1/\alpha_1, \ldots, \beta_t/\alpha_t)$.

El seudobranch.

Para el nudo de Montesinos $k=m(\frac{\beta_1}{\alpha_1},\ldots,\frac{\beta_t}{\alpha_t})$ escribimos $\Delta(k)=\beta_1\alpha_2\cdots\alpha_t+\alpha_1\beta_2\cdots\alpha_t+\cdots+\alpha_1\alpha_2\cdots\beta_t.$

Teorema. (J. Rodríguez y V.) Si n es un divisor positivo de $\Delta(k)$ y para cada $i=1,\ldots,t$, $(n,\alpha_i)=1$, entonces

$$k \sim m(\frac{n \cdot b_1}{\alpha_1}, \dots, \frac{n \cdot b_t}{\alpha_t}),$$

y existe un cociente diédrico de n hojas $\varphi:S^3\to (S^3,k)$ tal que

$$m(\frac{b_1}{\alpha_1}, \dots, \frac{b_t}{\alpha_t}) \subset \varphi^{-1}(k).$$

 $(m(\frac{b_1}{\alpha_1},\ldots,\frac{b_t}{\alpha_t})$ es el seudobranch de φ .)

Corolario.

Supongamos que $(n, \alpha_i) = 1$ para cada $i = 1, 2, \ldots, t$.

Si $m(\beta_1/\alpha_1, \dots, \beta_t/\alpha_t)$ es universal, entonces $m(n\beta_1/\alpha_1, \dots, n\beta_t/\alpha_t)$ es universal.

Tabla de Conway: 2-enlaces de 9 cruces y alternantes

$$m(1/4,2/3,1/2) \ [\Delta = 17 \cdot 2] = m(17/4,17/3,-17/2) \leftarrow m(1/4,1/3,-1/2)$$

$$m(3/4,1/3,1/2) \ [\Delta = 19 \cdot 2] = m(19/4,19/3,-19/2) \leftarrow m(1/4,1/3,-1/2)$$

$$m(3/4,2/3,1/2) \ [\Delta = 23 \cdot 2] = m(23/4,23/3,-23/2) \leftarrow m(1/4,1/3,-1/2)$$

$$m(1/3,1/3,2/3) \ [\Delta = 4 \cdot 3^2] = m(4/3,4/3,-4/3) \leftarrow m(1/3,1/3,-1/3)$$

$$m(2/3,2/3,2/3) \leftarrow m(1/3,1/3,1/3)$$

$$m(3/5,1/2,3/2) \ [\Delta = 13 \cdot 2^2] = m(13/5,13/2,-13/2) \leftarrow m(1/5,1/2,-1/2)$$

$$m(1/3,1/2,5/2) \ [\Delta = 5 \cdot 2^2] = m(-5/3,5/2,5/2) \leftarrow m(-1/3,1/2,1/2)$$

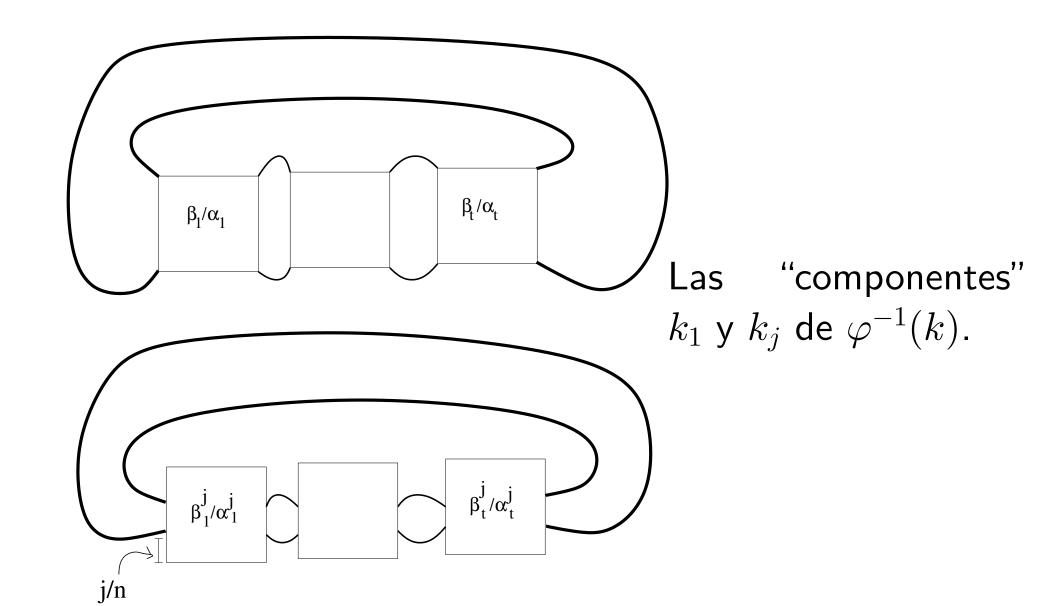
El branch.

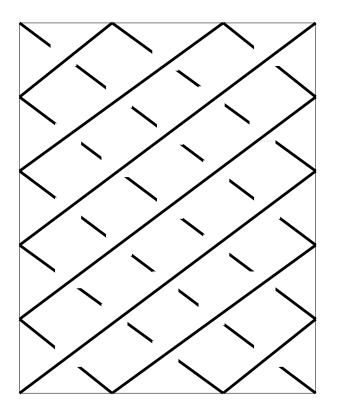
Si $(n, \alpha_i) = 1$ para cada i y $k = m(n\beta_1/\alpha_1, \ldots, n\beta_t/\alpha_t)$ y $\varphi: S^3 \to (S^3, k)$ es un cociente diédrico de n-hojas, entonces

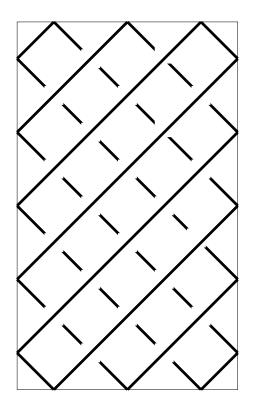
 $\varphi^{-1}(k)$ tiene (n-1)/2 "componentes" $k_1,k_2,\ldots,k_{(n-1)/2}$, si n es impar

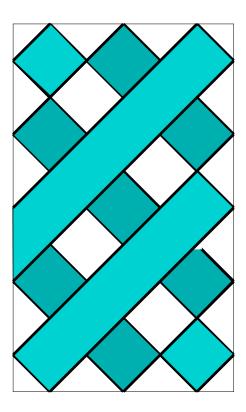
 $\varphi^{-1}(k)$ tiene n/2 "componentes" $k_1,k_2,\ldots,k_{n/2}$, si n es par.

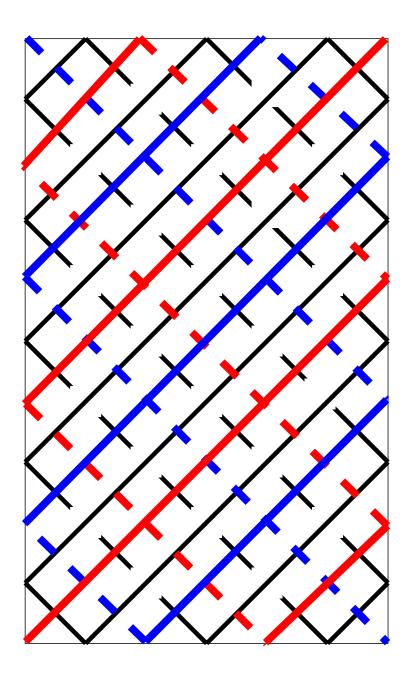
¿Cómo se ven esas "componentes"?

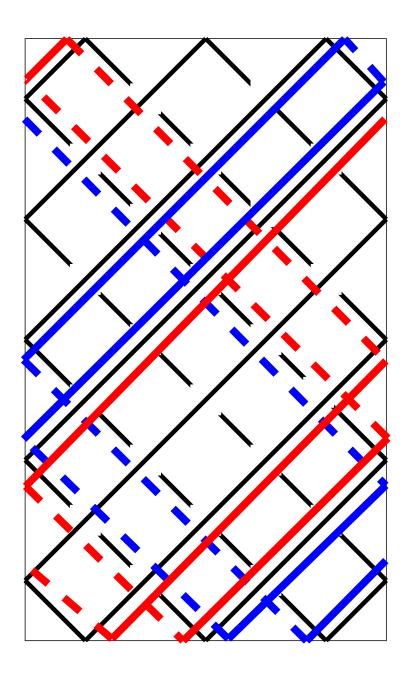








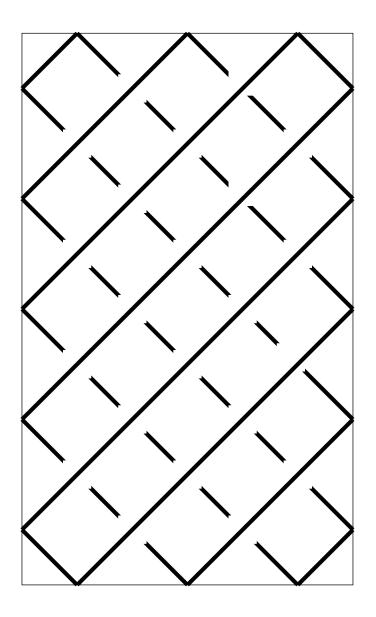


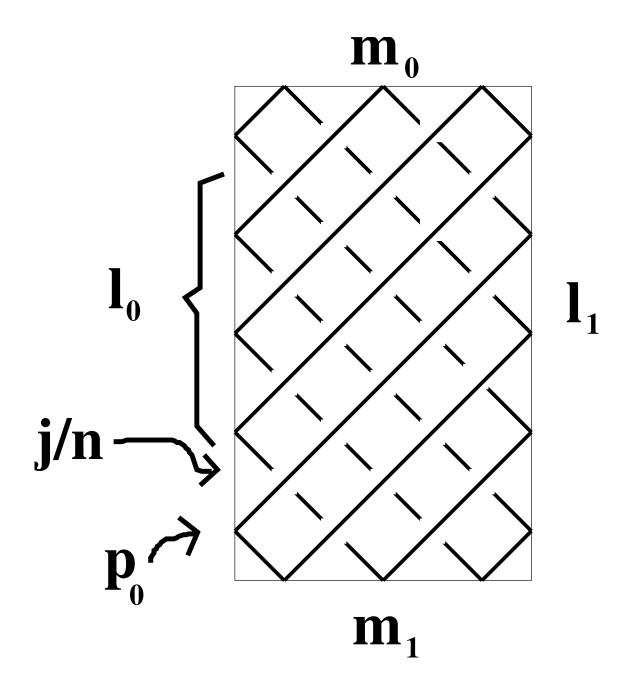


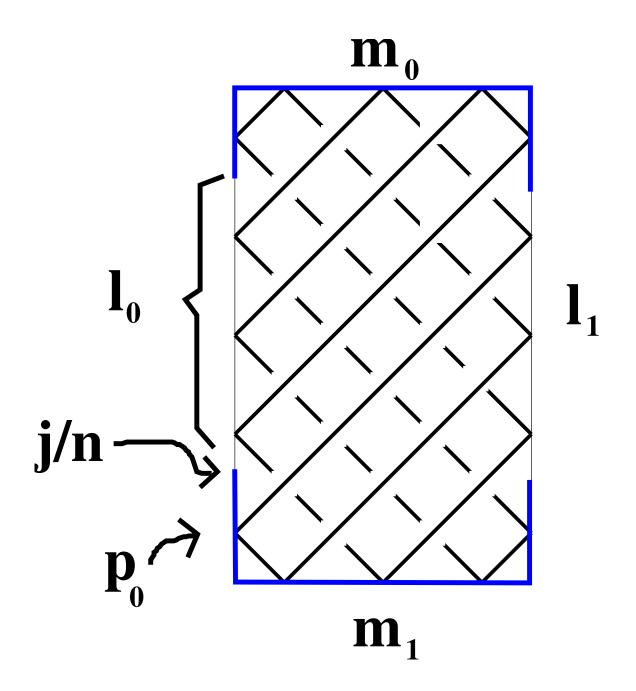
Algoritmo.

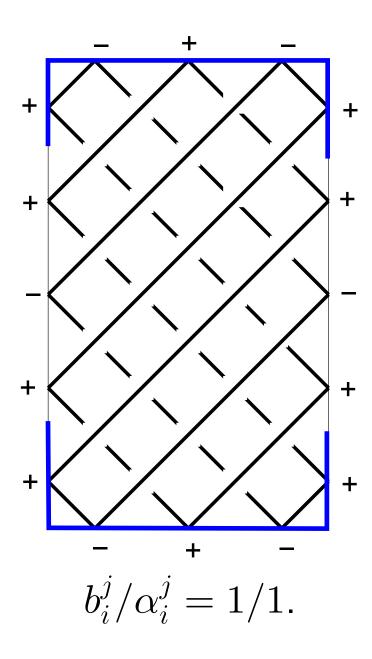
Sea ε el signo de la fracción β_i/α_i y dibuja el meridiano de $|\beta_i/\alpha_i|$.

- 1. Marca el punto $p_0 = (0, 1/2\alpha_i)$ con +1.
- 2. Si el punto $p_u \in d \cap \partial I^2$ está marcado con $\varepsilon_u \in \{-1, +1\}$, entonces el segmento de recta de d que comienza en p_u , si seguimos la orietación de'd, toca a ∂I^2 en el punto p_{u+1} .
 - (a) Si p_{u+1} no tiene una marca, entonces
 - Si $(p_u \in m_0 \text{ y } p_{u+1} \in m_0)$ o $(p_u \in m_1 \text{ y } p_{u+1} \in m_1)$, entonces marca $p_{u+1} \text{ con } \varepsilon_{u+1} = -\varepsilon_u$;
 - ullet en otro caso marca p_{u+1} con $arepsilon_{u+1}=arepsilon_u.$ GOTO 2 con "u:=u+1".
 - (b) Si p_{u+1} ya está marcado, entonces escribe b= la suma de las marcas de los puntos en m_0 y $\alpha=$ la suma de las marcas de los puntos en ℓ_0 . Regresa $b_i^j/\alpha_i^j=\varepsilon b/\alpha$.

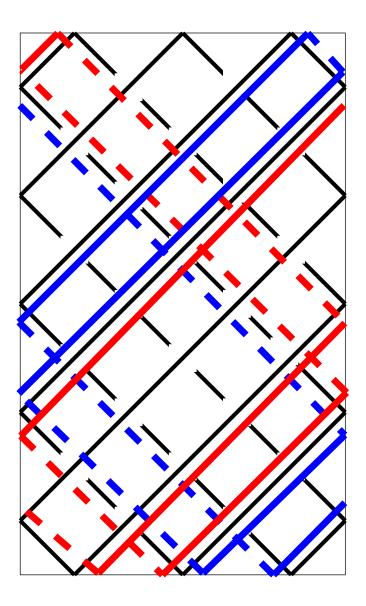


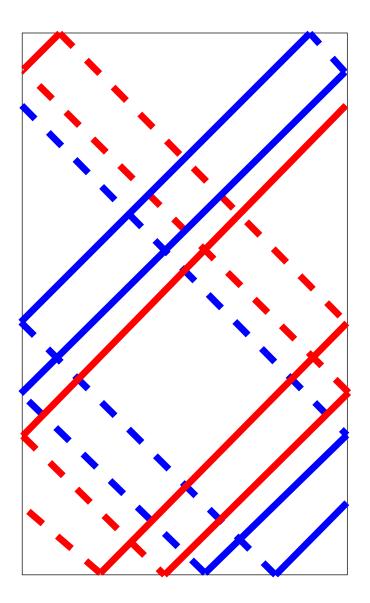


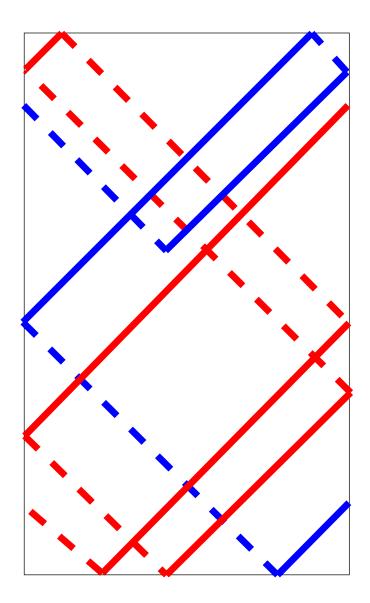


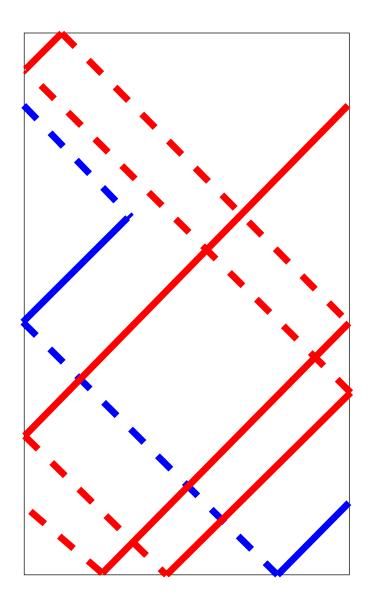


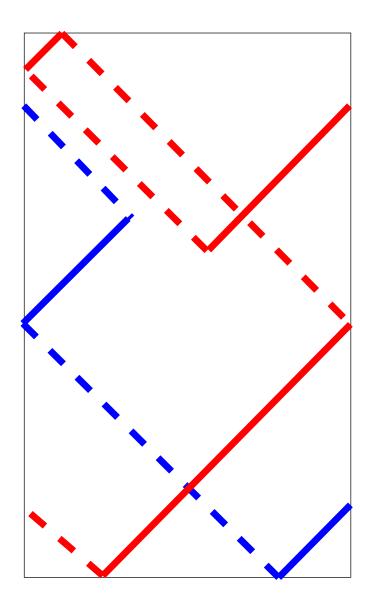
Con dibujos.

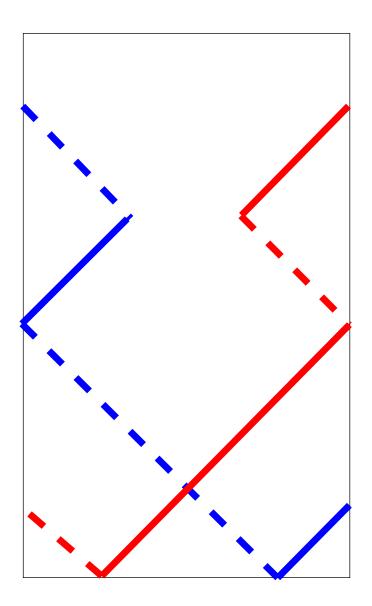












Una aplicación.

Proposición. (J. Rodríguez y V.) Sea q un entero impar, $q \notin \{-11, -7, -5, -3, -1, 1, 3, 5\}$ y sea k el nudo pretzel $k = p(2, q, q) = m(1/2, \pm 1/|q|, \pm 1/|q|)$.

Entonces existe una cubierta diédrica

 $\varphi:S^3 \to (S^3,k)$ de |q+4| hojas tal que

- 1. Si $|q| \equiv 1 \mod 4$, entonces o bien el nudo de Montesinos $m(1/2,-1/5,-1/5) \subset \varphi^{-1}(k)$ o bien $m(1/2,-2/9,-2/9) \subset \varphi^{-1}(k)$.
- 2. If $|q| \equiv -1 \mod 4$, entonces o bien $m(-1/2, 3/5, 3/5) \subset \varphi^{-1}(k)$ o bien $m(-1/2, 2/3, 2/3) \subset \varphi^{-1}(k)$.

¿Qué tantos nudos de Montesinos hay?

Nudos racionales.

 $3_1 = m(\frac{1}{3})$ $4_1 = m(\frac{2}{5})$

 $5_1 = \mathbf{m}(\frac{1}{5})$

 $5_2 = m(\frac{3}{7})$ $6_1 = m(\frac{4}{9})$

 $6_2 = m(\frac{4}{11})$

 $6_3 = m(\frac{5}{13})$ $7_1 = m(\frac{1}{7})$ $7_2 = m(\frac{5}{11})$ $7_3 = m(\frac{4}{13})$

 $7_4 = m(\frac{4}{15})$ $7_5 = m(\frac{7}{17})$ $7_6 = m(\frac{7}{19})$ $7_7 = m(\frac{8}{21})$ $8_1 = m(\frac{6}{13})$

 $8_2 = m(\frac{6}{17})$ $8_3 = m(\frac{4}{17})$ $8_4 = m(\frac{5}{19})$ $8_6 = m(\frac{10}{23})$ $8_7 = m(\frac{9}{23})$

$$8_7 = m(\frac{9}{33})$$

 $8_8 = m(\frac{9}{25})$ $8_9 = m(\frac{7}{25})$ $8_{11} = m(\frac{10}{27})$ $8_{12} = m(\frac{12}{29})$ $8_{13} = m(\frac{11}{29})$

 $8_{14} = m(\frac{12}{31})$ $9_1 = m(\frac{1}{9})$ $9_2 = m(\frac{7}{15})$ $9_3 = m(\frac{6}{19})$ $9_4 = m(\frac{5}{21})$

$$9_4 = \mathbf{m}(\frac{5}{21})$$

 $9_5 = m(\frac{6}{23})$ $9_6 = m(\frac{11}{27})$ $9_7 = m(\frac{13}{29})$ $9_8 = m(\frac{11}{31})$ $9_9 = m(\frac{9}{31})$

Nudos racionales.

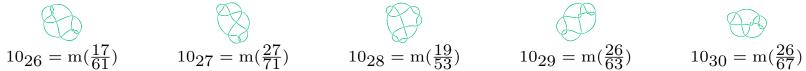
Nudos racionales.

$$10_{21} = m(\frac{16}{45})$$

$$10_{21} = m(\frac{16}{45}) \qquad 10_{22} = m(\frac{13}{49}) \qquad 10_{23} = m(\frac{23}{59}) \qquad 10_{24} = m(\frac{24}{55}) \qquad 10_{25} = m(\frac{24}{65})$$

$$_{5} = m(\frac{17}{61})$$

$$10_{28} = 1$$



$$10_{31} = m(\frac{25}{57})$$
 $10_{32} = m(\frac{29}{69})$ $10_{33} = m(\frac{18}{65})$ $10_{34} = m(\frac{13}{37})$ $10_{35} = m(\frac{20}{49})$

$$10_{33} = 1$$

$$10_{34}$$

$$10_{36} = m(\frac{20}{51})$$
 $10_{37} = m(\frac{23}{53})$ $10_{38} = m(\frac{25}{59})$ $10_{39} = m(\frac{22}{61})$ $10_{40} = m(\frac{29}{75})$

$$= m(\frac{23}{53})$$

$$10_{38} = m(\frac{25}{59})$$

$$_{39} = m(\frac{22}{61})$$

$$10 - m(3)$$

$$10_{41} = m(\frac{26}{71})$$
 $10_{42} = m(\frac{31}{81})$ $10_{43} = m(\frac{27}{73})$ $10_{44} = m(\frac{30}{79})$ $10_{45} = m(\frac{34}{89})$

Nudos de Montesinos.

$$8_5 = m(\frac{1}{3}, \frac{1}{3}, \frac{1}{2})$$

$$8_{10} = m(\frac{1}{3}, \frac{2}{3}, \frac{1}{2})$$
 $8_{15} = m(\frac{2}{3}, \frac{2}{3}, \frac{1}{2})$ $8_{19} = m(\frac{1}{3}, \frac{1}{3}, \frac{-1}{2})$

$$B_{19} = m(\frac{1}{3}, \frac{1}{3}, \frac{-1}{2})$$

$$8_{21} = m(\frac{2}{3}, \frac{2}{3}, \frac{-1}{2})$$

$$9_{16} = m(\frac{1}{3}, \frac{1}{3}, \frac{3}{2})$$

$$8_{20} = m(\frac{1}{3}, \frac{2}{3}, \frac{-1}{2}) \qquad 8_{21} = m(\frac{2}{3}, \frac{2}{3}, \frac{-1}{2}) \qquad 9_{16} = m(\frac{1}{3}, \frac{1}{3}, \frac{3}{2}) \qquad 9_{22} = m(\frac{3}{5}, \frac{1}{3}, \frac{1}{2})$$

$$9_{24} = m(\frac{1}{3}, \frac{2}{3}, \frac{3}{2})$$
 $9_{25} = m(\frac{2}{5}, \frac{2}{3}, \frac{1}{2})$

$$9_{28} = m(\frac{2}{2}, \frac{2}{2}, \frac{3}{2})$$

$$9_{28} = m(\frac{2}{3}, \frac{2}{3}, \frac{3}{2})$$
 $9_{30} = m(\frac{3}{5}, \frac{2}{3}, \frac{1}{2})$

$$9_{35} = m(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) \qquad 9_{36} = m(\frac{2}{5}, \frac{1}{3}, \frac{1}{2}) \qquad 9_{37} = m(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}) \qquad 9_{42} = m(\frac{2}{5}, \frac{1}{3}, \frac{-1}{2})$$

$$- = m(1 2)$$

$$9_{42} = m(\frac{2}{5}, \frac{1}{3}, \frac{-1}{2})$$

$$9_{43} = m(\frac{3}{5}, \frac{1}{3}, \frac{-1}{2}) \qquad 9_{44} = m(\frac{2}{5}, \frac{2}{3}, \frac{-1}{2}) \qquad 9_{45} = m(\frac{3}{5}, \frac{2}{3}, \frac{-1}{2}) \qquad 9_{46} = m(\frac{1}{3}, \frac{1}{3}, \frac{-1}{3})$$

$$\begin{pmatrix} 2 & 2 & -1 \end{pmatrix}$$

$$9_{45} = m(\frac{3}{5}, \frac{2}{3}, \frac{-1}{2})$$

$$9_{46} = m(\frac{1}{3}, \frac{1}{3}, \frac{-1}{3})$$

$$9_{48} = m(\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}) \qquad 10_{46} = m(\frac{1}{5}, \frac{1}{3}, \frac{1}{2}) \qquad 10_{47} = m(\frac{1}{5}, \frac{2}{3}, \frac{1}{2}) \qquad 10_{48} = m(\frac{4}{5}, \frac{1}{3}, \frac{1}{2})$$

$$_{17} = m(\frac{1}{5}, \frac{2}{3}, \frac{1}{2})$$
 $10_{48} = m(\frac{4}{5})$

$$10_{49} = m(\frac{4}{5}, \frac{2}{3}, \frac{1}{2})$$

$$\frac{1}{\sqrt{3}}$$

$$(\frac{1}{2})$$

$$10_{51} = m(\frac{3}{7}, \frac{2}{3}, \frac{1}{2})$$

$$10_{49} = m(\frac{4}{5}, \frac{2}{3}, \frac{1}{2}) \qquad 10_{50} = m(\frac{3}{7}, \frac{1}{3}, \frac{1}{2}) \qquad 10_{51} = m(\frac{3}{7}, \frac{2}{3}, \frac{1}{2}) \qquad 10_{52} = m(\frac{4}{7}, \frac{1}{3}, \frac{1}{2})$$

Nudos de Montesinos.

$$10_{53} = m(\frac{4}{7}, \frac{2}{3}, \frac{1}{2}) \qquad 10_{54} = m(\frac{2}{7}, \frac{1}{3}, \frac{1}{2}) \qquad 10_{55} = m(\frac{2}{7}, \frac{2}{3}, \frac{1}{2}) \qquad 10_{56} = m(\frac{5}{7}, \frac{1}{3}, \frac{1}{2})$$

$$10_{57} = m(\frac{5}{7}, \frac{2}{3}, \frac{1}{2}) \qquad 10_{58} = m(\frac{2}{5}, \frac{2}{5}, \frac{1}{2}) \qquad 10_{59} = m(\frac{2}{5}, \frac{3}{5}, \frac{1}{2}) \qquad 10_{60} = m(\frac{3}{5}, \frac{3}{5}, \frac{1}{2})$$

$$10_{61} = m(\frac{1}{4}, \frac{1}{3}, \frac{1}{3}) \qquad 10_{62} = m(\frac{1}{4}, \frac{1}{3}, \frac{2}{3}) \qquad 10_{63} = m(\frac{1}{4}, \frac{2}{3}, \frac{2}{3}) \qquad 10_{64} = m(\frac{3}{4}, \frac{1}{3}, \frac{1}{3})$$

$$10_{65} = m(\frac{3}{4}, \frac{1}{3}, \frac{2}{3}) \qquad 10_{66} = m(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}) \qquad 10_{67} = m(\frac{2}{5}, \frac{1}{3}, \frac{2}{3}) \qquad 10_{68} = m(\frac{3}{5}, \frac{1}{3}, \frac{1}{3})$$

$$10_{69} = m(\frac{3}{5}, \frac{2}{3}, \frac{2}{3}) \qquad 10_{70} = m(\frac{2}{5}, \frac{1}{3}, \frac{3}{2}) \qquad 10_{71} = m(\frac{2}{5}, \frac{2}{3}, \frac{3}{2}) \qquad 10_{72} = m(\frac{3}{5}, \frac{1}{3}, \frac{3}{2})$$

$$10_{73} = m(\frac{3}{5}, \frac{2}{3}, \frac{3}{2}) \qquad 10_{74} = m(\frac{1}{3}, \frac{1}{3}, \frac{5}{3}) \qquad 10_{75} = m(\frac{2}{3}, \frac{2}{3}, \frac{3}{3}) \qquad 10_{76} = m(\frac{1}{3}, \frac{1}{3}, \frac{5}{2})$$

$$10_{77} = m(\frac{1}{3}, \frac{2}{3}, \frac{5}{2}) \qquad 10_{78} = m(\frac{2}{3}, \frac{2}{3}, \frac{5}{2}) \qquad 10_{124} = m(\frac{1}{5}, \frac{1}{3}, \frac{-1}{2}) \qquad 10_{125} = m(\frac{1}{5}, \frac{2}{3}, \frac{-1}{2})$$

Nudos de Montesinos.

$$10_{126} = m(\frac{4}{5}, \frac{1}{3}, \frac{-1}{2}) \qquad 10_{127} = m(\frac{4}{5}, \frac{2}{3}, \frac{-1}{2}) \qquad 10_{128} = m(\frac{3}{7}, \frac{1}{3}, \frac{-1}{2}) \qquad 10_{129} = m(\frac{3}{7}, \frac{2}{3}, \frac{-1}{2})$$

$$- \frac{4}{2}$$

$$(\frac{-1}{2})$$

$$0_{128} = m(\frac{3}{7}, \frac{1}{3}, \frac{-1}{2})$$

$$10_{129} = m(\frac{3}{7}, \frac{2}{3}, \frac{-1}{2})$$

$$10_{130} = m(\frac{4}{7}, \frac{1}{3}, \frac{-1}{2})$$

$$10_{131} = m(\frac{4}{7}, \frac{2}{3}, \frac{-1}{2})$$

$$10_{132} = m(\frac{2}{7}, \frac{1}{3}, \frac{-1}{2})$$

$$10_{130} = m(\frac{4}{7}, \frac{1}{3}, \frac{-1}{2}) \qquad 10_{131} = m(\frac{4}{7}, \frac{2}{3}, \frac{-1}{2}) \qquad 10_{132} = m(\frac{2}{7}, \frac{1}{3}, \frac{-1}{2}) \qquad 10_{133} = m(\frac{2}{7}, \frac{2}{3}, \frac{-1}{2})$$

$$10_{134} = m(\frac{5}{7}, \frac{1}{3}, \frac{-1}{2})$$

$$10_{135} = m(\frac{5}{7}, \frac{2}{3}, \frac{-1}{2})$$

$$10_{134} = m(\frac{5}{7}, \frac{1}{3}, \frac{-1}{2})$$

$$10_{135} = m(\frac{5}{7}, \frac{2}{3}, \frac{-1}{2})$$

$$10_{136} = m(\frac{2}{5}, \frac{2}{5}, \frac{-1}{2})$$

$$10_{137} = m(\frac{2}{5}, \frac{3}{5}, \frac{-1}{2})$$

$$10_{137} = m(\frac{2}{5}, \frac{3}{5}, \frac{-1}{2})$$

$$10_{138} = m(\frac{3}{5}, \frac{3}{5}, \frac{-1}{2})$$

$$10_{139} = m(\frac{1}{4}, \frac{1}{3}, \frac{-2}{3})$$

$$10_{140} = m(\frac{1}{4}, \frac{1}{3}, \frac{-1}{3})$$

$$10_{138} = m(\frac{3}{5}, \frac{3}{5}, \frac{-1}{2}) \qquad 10_{139} = m(\frac{1}{4}, \frac{1}{3}, \frac{-2}{3}) \qquad 10_{140} = m(\frac{1}{4}, \frac{1}{3}, \frac{-1}{3}) \qquad 10_{141} = m(\frac{1}{4}, \frac{2}{3}, \frac{-1}{3})$$

$$10_{142} = m(\frac{3}{4}, \frac{1}{3}, \frac{-2}{3})$$

$$10_{143} = m(\frac{3}{4}, \frac{1}{3}, \frac{-1}{3})$$

$$10_{142} = m(\frac{3}{4}, \frac{1}{3}, \frac{-2}{3}) \qquad 10_{143} = m(\frac{3}{4}, \frac{1}{3}, \frac{-1}{3}) \qquad 10_{144} = m(\frac{3}{4}, \frac{2}{3}, \frac{-1}{3}) \qquad 10_{145} = m(\frac{2}{5}, \frac{1}{3}, \frac{-2}{3})$$

$$10_{145} = m(\frac{2}{5}, \frac{1}{3}, \frac{-2}{3})$$

$$10_{146} = m(\frac{2}{5}, \frac{2}{3}, \frac{-1}{3})$$
 $10_{147} = m(\frac{3}{5}, \frac{1}{3}, \frac{-1}{3})$

$$a_7 = m(\frac{3}{5}, \frac{1}{3}, \frac{-1}{3})$$

Los otros.

8 ₁₆	817	818	929	932	933	934
938	939	940	941	947	949	1079
1080	1081	1082	1083	1084	1085	1086
1087	1088	1089	1090	1091	1092	1093
1094	1095	1096	1097	1098	1099	10100
10101	10102	10103	10104	10105	10106	10107

Los otros.

10108	10109	10110	10111	10_{112}	10113	10114
10115	10116	10_{117}	10118	10119	10_{120}	10_{121}
10_{122}	10_{123}	10148	10149	10_{150}	10_{151}	10_{152}
10_{153}	10_{154}	10_{155}	10_{156}	10_{157}	10_{158}	10_{159}
10_{160}	10_{151}	10_{152}	10_{153}	10_{154}	10_{155}	10_{156}

Necesitamos nudos universales específicos.

Cubiertas tipo diédricas

$$egin{array}{ccc} & \widetilde{M}_{,\psi} \ M & B_2(k) \ & arphi & \swarrow & \swarrow p \ (S^3,k) & \end{array}$$

 ψ es un espacio cubriente arbitrario.

1. $k = m(\beta_1/2, \beta_2/3, \beta_3/3)$ es universal $\Leftrightarrow \Delta(k) \neq \pm 3$.

$$8_{5} = m(\frac{1}{3}, \frac{1}{3}, \frac{1}{2}) \qquad 8_{10} = m(\frac{1}{3}, \frac{2}{3}, \frac{1}{2}) \qquad 8_{15} = m(\frac{2}{3}, \frac{2}{3}, \frac{1}{2}) \qquad 8_{20} = m(\frac{1}{3}, \frac{2}{3}, \frac{-1}{2})$$

$$8_{21} = m(\frac{2}{3}, \frac{2}{3}, \frac{-1}{2}) \qquad 9_{16} = m(\frac{1}{3}, \frac{1}{3}, \frac{3}{2}) \qquad 9_{24} = m(\frac{1}{3}, \frac{2}{3}, \frac{3}{2}) \qquad 9_{28} = m(\frac{2}{3}, \frac{2}{3}, \frac{3}{2})$$

$$10_{76} = m(\frac{1}{3}, \frac{1}{3}, \frac{5}{2}) \qquad 10_{77} = m(\frac{1}{3}, \frac{2}{3}, \frac{5}{2}) \qquad 10_{78} = m(\frac{2}{3}, \frac{2}{3}, \frac{5}{2})$$

2. $k = m(\beta_1/2, \beta_2/3, \beta_3/5)$ es universal $\Leftrightarrow \Delta(k) \neq \pm 1$.

$$9_{22} = m(\frac{3}{5}, \frac{1}{3}, \frac{1}{2})$$

$$9_{42} = m(\frac{2}{5}, \frac{1}{3}, \frac{-1}{2})$$

$$9_{43} = m(\frac{3}{5}, \frac{1}{3}, \frac{-1}{2})$$

$$9_{44} = m(\frac{2}{5}, \frac{2}{3}, \frac{-1}{2})$$

$$9_{45} = m(\frac{3}{5}, \frac{2}{3}, \frac{-1}{2})$$

$$10_{46} = m(\frac{1}{5}, \frac{1}{3}, \frac{1}{2})$$

$$1070 = m(\frac{2}{\pi}, \frac{1}{3}, \frac{3}{3})$$

$$10_{105} = m(\frac{1}{5}, \frac{2}{5}, \frac{1}{5})$$

$$9_{25} = m(\frac{2}{5}, \frac{2}{3}, \frac{1}{2})$$
 $9_{30} = m(\frac{3}{5}, \frac{2}{3}, \frac{1}{2})$ $9_{36} = m(\frac{2}{5}, \frac{1}{3}, \frac{1}{2})$

$$a_3 = m(\frac{3}{5}, \frac{1}{3}, \frac{-1}{2})$$

$$10_{47} = m(\frac{1}{5}, \frac{2}{3}, \frac{1}{3})$$

$$10_{70} = m(\frac{2}{5}, \frac{1}{3}, \frac{3}{2}) \qquad 10_{71} = m(\frac{2}{5}, \frac{2}{3}, \frac{3}{2}) \qquad 10_{72} = m(\frac{3}{5}, \frac{1}{3}, \frac{3}{2}) \qquad 10_{73} = m(\frac{3}{5}, \frac{2}{3}, \frac{3}{2})$$

$$10_{125} = m(\frac{1}{5}, \frac{2}{3}, \frac{-1}{2}) \qquad \qquad 10_{126} = m(\frac{4}{5}, \frac{1}{3}, \frac{-1}{2}) \qquad \qquad 10_{127} = m(\frac{4}{5}, \frac{2}{3}, \frac{-1}{2})$$

$$9_{30} = m(\frac{3}{5}, \frac{2}{3}, \frac{1}{2})$$

$$9_{44} = m(\frac{2}{5}, \frac{2}{3}, \frac{-1}{2})$$

$$10_{46} = m(\frac{1}{5}, \frac{1}{3}, \frac{1}{2}) \qquad 10_{47} = m(\frac{1}{5}, \frac{2}{3}, \frac{1}{2}) \qquad 10_{48} = m(\frac{4}{5}, \frac{1}{3}, \frac{1}{2}) \qquad 10_{49} = m(\frac{4}{5}, \frac{2}{3}, \frac{1}{2})$$

$$10_{72} = m(\frac{3}{5}, \frac{1}{3}, \frac{3}{2})$$

$$10_{127} = m(\frac{4}{5}, \frac{2}{3}, \frac{-1}{2})$$

$$9_{36} = m(\frac{2}{5}, \frac{1}{3}, \frac{1}{2})$$

$$9_{45} = m(\frac{3}{5}, \frac{2}{3}, \frac{-1}{2})$$

$$10_{49} = m(\frac{4}{5}, \frac{2}{3}, \frac{1}{2})$$

$$10_{73} = m(\frac{3}{5}, \frac{2}{3}, \frac{3}{2})$$

3. $k = m(\beta_1/2, \beta_2/3, \beta_3/7)$ es universal.

$$10_{50} = m(\frac{3}{7}, \frac{1}{3}, \frac{1}{2})$$

$$10_{54} = m(\frac{2}{7}, \frac{1}{3}, \frac{1}{2})$$

$$10_{55} = m(\frac{2}{7}, \frac{2}{3}, \frac{1}{2})$$

$$10_{56} = m(\frac{5}{7}, \frac{1}{3}, \frac{1}{2})$$

$$10_{57} = m(\frac{5}{7}, \frac{2}{3}, \frac{1}{2})$$

$$10_{128} = m(\frac{3}{7}, \frac{1}{3}, \frac{-1}{2}) \qquad 10_{129} = m(\frac{3}{7}, \frac{2}{3}, \frac{-1}{2}) \qquad 10_{130} = m(\frac{4}{7}, \frac{1}{3}, \frac{-1}{2}) \qquad 10_{131} = m(\frac{4}{7}, \frac{2}{3}, \frac{-1}{2})$$

$$10_{132} = m(\frac{2}{7}, \frac{1}{3}, \frac{-1}{2})$$

$$10_{51} = m(\frac{3}{7}, \frac{2}{3}, \frac{1}{2})$$

$$a_{55} = m(\frac{2}{7}, \frac{2}{3}, \frac{1}{2})$$

$$10_{129} = m(\frac{3}{7}, \frac{2}{3}, \frac{-1}{2})$$

$$10_{133} = m(\frac{2}{7}, \frac{2}{3}, \frac{-1}{2})$$

$$10_{51} = m(\frac{3}{7}, \frac{2}{3}, \frac{1}{2}) \qquad 10_{52} = m(\frac{4}{7}, \frac{1}{3}, \frac{1}{2}) \qquad 10_{53} = m(\frac{4}{7}, \frac{2}{3}, \frac{1}{2})$$

$$_{56} = m(\frac{5}{7}, \frac{1}{2}, \frac{1}{2})$$

$$10_{124} = m(\frac{5}{2}, \frac{1}{2}, \frac{-1}{2})$$

$$10_{53} = m(\frac{4}{7}, \frac{2}{3}, \frac{1}{2})$$

$$= m(\frac{5}{7}, \frac{2}{3}, \frac{1}{3})$$

$$= m(\frac{4}{5}, \frac{2}{3}, \frac{-1}{3})$$

$$10_{132} = m(\frac{2}{7}, \frac{1}{3}, \frac{-1}{2}) \qquad 10_{133} = m(\frac{2}{7}, \frac{2}{3}, \frac{-1}{2}) \qquad 10_{134} = m(\frac{5}{7}, \frac{1}{3}, \frac{-1}{2}) \qquad 10_{135} = m(\frac{5}{7}, \frac{2}{3}, \frac{-1}{2})$$

4. (a) $|x| > 1 \Rightarrow k = p(e; 2x, 3y, 3z)$ es universal.

(a.1) |y| > 1 o $|z| > 1 \Rightarrow k = p(2, 3y, 3z)$ es universal.

(a.2) |y| > 1 o |z| > 1 y $\beta_2 \equiv \pm 1 \pmod{y}$ y $\beta_3 \equiv \pm 1 \pmod{z}$ $\Rightarrow k = m(1/2, \beta_2/3y, \beta_3/3z)$ es universal.

$$10_{61} = m(\frac{1}{4}, \frac{1}{3}, \frac{1}{3}) \qquad 10_{62} = m(\frac{1}{4}, \frac{1}{3}, \frac{2}{3}) \qquad 10_{63} = m(\frac{1}{4}, \frac{2}{3}, \frac{2}{3}) \qquad 10_{64} = m(\frac{3}{4}, \frac{1}{3}, \frac{1}{3})$$

$$10_{65} = m(\frac{3}{4}, \frac{1}{3}, \frac{2}{3}) \qquad 10_{66} = m(\frac{3}{4}, \frac{2}{3}, \frac{2}{3}) \qquad 10_{139} = m(\frac{1}{4}, \frac{1}{3}, \frac{-2}{3}) \qquad 10_{140} = m(\frac{1}{4}, \frac{1}{3}, \frac{-1}{3})$$

$$10_{141} = m(\frac{1}{4}, \frac{2}{3}, \frac{-1}{3}) \qquad 10_{142} = m(\frac{3}{4}, \frac{1}{3}, \frac{-2}{3}) \qquad 10_{143} = m(\frac{3}{4}, \frac{1}{3}, \frac{-1}{3}) \qquad 10_{144} = m(\frac{3}{4}, \frac{2}{3}, \frac{-1}{3})$$

(b) $|x| > 1 \Rightarrow k = p(\pm 2, \pm 3y, \pm 5z)$ es universal.

(c) $z > 0 \Rightarrow k = p(\pm 2, \pm 3, \pm 7)$ es universal.

5. $y, z \neq 0 \Rightarrow p(\pm 2, 5y, 5z)$ es universal.

$$10_{58} = m(\frac{2}{5}, \frac{2}{5}, \frac{1}{2})$$

$$10_{59} = m(\frac{2}{5}, \frac{3}{5}, \frac{1}{2})$$

$$10_{60} = m(\frac{3}{5}, \frac{3}{5}, \frac{1}{2})$$

$$10_{136} = m(\frac{2}{5}, \frac{2}{5}, \frac{-1}{2})$$

$$10_{138} = m(\frac{3}{5}, \frac{3}{5}, \frac{-1}{2})$$

Teorema.

Si $p(b; \alpha_1, \ldots, \alpha_t)$ es un enlace de Uchida universal y $(n, \alpha_i) = 1 \quad \forall i$ $\Rightarrow m(nb/1, n/\alpha_1, \dots, n/\alpha_t)$ es universal.

Teorema.

Si |p| > 1 y (n, p) = 1 y p impar $\Rightarrow m(n/p, n/p, -n/p)$ es universal.

Si $p \neq 2$ y (n, p) = 1 y p es par $\Rightarrow m(n/3, n/3, n/p)$ es universal.

$$9_{37} = m(\frac{1}{3}, \frac{2}{3}, \frac{2}{3})$$

$$9_{37} = m(\frac{1}{3}, \frac{2}{3}, \frac{2}{3})$$
 $9_{46} = m(\frac{1}{3}, \frac{1}{3}, \frac{-1}{3})$ $10_{74} = m(\frac{1}{3}, \frac{1}{3}, \frac{5}{3})$

$$10_{74} = m(\frac{1}{3}, \frac{1}{3}, \frac{5}{3})$$

¡Sesenta y seis nudos de Montesinos universales!

Nudos de Montesinos universales.

$$8_{5} = m(\frac{1}{3}, \frac{1}{3}, \frac{1}{2}) \qquad 8_{10} = m(\frac{1}{3}, \frac{2}{3}, \frac{1}{2}) \qquad 8_{15} = m(\frac{2}{3}, \frac{2}{3}, \frac{1}{2})$$

$$8_{20} = m(\frac{1}{3}, \frac{2}{3}, -\frac{1}{2}) \qquad 8_{21} = m(\frac{2}{3}, \frac{2}{3}, -\frac{1}{2}) \qquad 9_{16} = m(\frac{1}{3}, \frac{1}{3}, \frac{3}{2}) \qquad 9_{22} = m(\frac{3}{5}, \frac{1}{3}, \frac{1}{2})$$

$$9_{24} = m(\frac{1}{3}, \frac{2}{3}, \frac{3}{2}) \qquad 9_{25} = m(\frac{2}{5}, \frac{2}{3}, \frac{1}{2}) \qquad 9_{28} = m(\frac{2}{3}, \frac{2}{3}, \frac{3}{2}) \qquad 9_{30} = m(\frac{2}{5}, \frac{2}{3}, \frac{1}{2})$$

$$9_{36} = m(\frac{2}{5}, \frac{1}{3}, \frac{1}{2}) \qquad 9_{47} = m(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}) \qquad 9_{42} = m(\frac{2}{5}, \frac{1}{3}, -\frac{1}{2})$$

$$9_{43} = m(\frac{3}{5}, \frac{1}{3}, -\frac{1}{2}) \qquad 9_{44} = m(\frac{2}{5}, \frac{2}{3}, -\frac{1}{2}) \qquad 9_{45} = m(\frac{3}{5}, \frac{2}{3}, -\frac{1}{2}) \qquad 9_{46} = m(\frac{1}{3}, \frac{1}{3}, -\frac{1}{3})$$

$$10_{46} = m(\frac{1}{5}, \frac{1}{3}, \frac{1}{2}) \qquad 10_{47} = m(\frac{1}{5}, \frac{2}{3}, \frac{1}{2}) \qquad 10_{48} = m(\frac{4}{5}, \frac{1}{3}, \frac{1}{2})$$

$$10_{49} = m(\frac{4}{5}, \frac{2}{3}, \frac{1}{2}) \qquad 10_{50} = m(\frac{3}{7}, \frac{1}{3}, \frac{1}{2}) \qquad 10_{51} = m(\frac{7}{7}, \frac{2}{3}, \frac{1}{2}) \qquad 10_{52} = m(\frac{4}{7}, \frac{1}{3}, \frac{1}{2})$$

Nudos de Montesinos universales.

$$10_{53} = m(\frac{4}{7}, \frac{2}{3}, \frac{1}{2}) \qquad 10_{54} = m(\frac{2}{7}, \frac{1}{3}, \frac{1}{2}) \qquad 10_{55} = m(\frac{2}{7}, \frac{2}{3}, \frac{1}{2}) \qquad 10_{56} = m(\frac{5}{7}, \frac{1}{3}, \frac{1}{2})$$

$$10_{57} = m(\frac{5}{7}, \frac{2}{3}, \frac{1}{2}) \qquad 10_{58} = m(\frac{2}{5}, \frac{2}{5}, \frac{1}{2}) \qquad 10_{59} = m(\frac{2}{5}, \frac{3}{5}, \frac{1}{2}) \qquad 10_{60} = m(\frac{3}{5}, \frac{3}{5}, \frac{1}{2})$$

$$10_{61} = m(\frac{1}{4}, \frac{1}{3}, \frac{1}{3}) \qquad 10_{62} = m(\frac{1}{4}, \frac{1}{3}, \frac{2}{3}) \qquad 10_{63} = m(\frac{1}{4}, \frac{2}{3}, \frac{2}{3}) \qquad 10_{64} = m(\frac{3}{4}, \frac{1}{3}, \frac{1}{3})$$

$$10_{65} = m(\frac{3}{4}, \frac{1}{3}, \frac{2}{3}) \qquad 10_{66} = m(\frac{3}{4}, \frac{2}{3}, \frac{2}{3}) \qquad 10_{71} = m(\frac{2}{5}, \frac{2}{3}, \frac{3}{2}) \qquad 10_{72} = m(\frac{3}{5}, \frac{1}{3}, \frac{3}{2})$$

$$10_{73} = m(\frac{3}{5}, \frac{2}{3}, \frac{3}{2}) \qquad 10_{74} = m(\frac{1}{3}, \frac{1}{3}, \frac{5}{3}) \qquad 10_{76} = m(\frac{1}{3}, \frac{1}{3}, \frac{5}{2})$$

$$10_{77} = m(\frac{1}{3}, \frac{2}{3}, \frac{5}{2}) \qquad 10_{78} = m(\frac{2}{3}, \frac{2}{3}, \frac{5}{2}) \qquad 10_{125} = m(\frac{1}{5}, \frac{2}{3}, \frac{-1}{2})$$

Nudos de Montesinos universales.

$$10_{126} = m(\frac{4}{5}, \frac{1}{3}, \frac{-1}{2})$$

$$p_7 = m(\frac{4}{5}, \frac{2}{3}, \frac{-}{3})$$

$$10_{126} = m(\frac{4}{5}, \frac{1}{3}, \frac{-1}{2}) \qquad 10_{127} = m(\frac{4}{5}, \frac{2}{3}, \frac{-1}{2}) \qquad 10_{128} = m(\frac{3}{7}, \frac{1}{3}, \frac{-1}{2}) \qquad 10_{129} = m(\frac{3}{7}, \frac{2}{3}, \frac{-1}{2})$$

$$10_{129} = m(\frac{3}{7}, \frac{2}{3}, \frac{-1}{2})$$

$$10_{130} = m(\frac{4}{7}, \frac{1}{3}, \frac{-1}{2})$$

$$0_{121} = m(\frac{4}{5}, \frac{2}{5}, \frac{1}{5})$$

$$10_{132} = m(\frac{2}{7}, \frac{1}{3}, \frac{-1}{2})$$

$$10_{130} = m(\frac{4}{7}, \frac{1}{3}, \frac{-1}{2}) \qquad 10_{131} = m(\frac{4}{7}, \frac{2}{3}, \frac{-1}{2}) \qquad 10_{132} = m(\frac{2}{7}, \frac{1}{3}, \frac{-1}{2}) \qquad 10_{133} = m(\frac{2}{7}, \frac{2}{3}, \frac{-1}{2})$$

$$10_{134} = m(\frac{5}{7}, \frac{1}{3}, \frac{-1}{2})$$

$$a_5 = m(\frac{5}{7}, \frac{2}{7}, \frac{-1}{2})$$

$$10_{134} = m(\frac{5}{7}, \frac{1}{3}, \frac{-1}{2}) \qquad 10_{135} = m(\frac{5}{7}, \frac{2}{3}, \frac{-1}{2}) \qquad 10_{136} = m(\frac{2}{5}, \frac{2}{5}, \frac{-1}{2})$$

$$10_{138} = m(\frac{3}{5}, \frac{3}{5}, \frac{-1}{2})$$

$$10_{140} = m(\frac{1}{4}, \frac{1}{3}, \frac{-1}{3})$$

$$10_{138} = m(\frac{3}{5}, \frac{3}{5}, \frac{-1}{2}) \qquad 10_{139} = m(\frac{1}{4}, \frac{1}{3}, \frac{-2}{3}) \qquad 10_{140} = m(\frac{1}{4}, \frac{1}{3}, \frac{-1}{3}) \qquad 10_{141} = m(\frac{1}{4}, \frac{2}{3}, \frac{-1}{3})$$

$$10_{142} = m(\frac{3}{4}, \frac{1}{3}, \frac{-2}{3})$$

$$10_{143} = m(\frac{3}{4}, \frac{1}{3}, \frac{-1}{3})$$

$$10_{142} = m(\frac{3}{4}, \frac{1}{3}, \frac{-2}{3}) \qquad 10_{143} = m(\frac{3}{4}, \frac{1}{3}, \frac{-1}{3}) \qquad 10_{144} = m(\frac{3}{4}, \frac{2}{3}, \frac{-1}{3})$$

Nudos toroidales.

$$8_{19} = m(\frac{1}{3}, \frac{1}{3}, \frac{-1}{2})$$

$$10_{124} = m(\frac{1}{5}, \frac{1}{3}, \frac{-1}{2})$$

$$24 = m(\frac{1}{5}, \frac{1}{3}, \frac{-1}{2})$$

Indecisos.

$$9ar = m(\frac{1}{2})$$

$$9_{35} = m(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$

$$10_{69} = m(\frac{3}{5}, \frac{2}{3}, \frac{2}{3})$$

$$10_{146} = m(\frac{2}{5}, \frac{2}{3}, \frac{-1}{3})$$
 $10_{147} = m(\frac{3}{5}, \frac{1}{3}, \frac{-1}{3})$

$$9_{48} = m(\frac{2}{3}, \frac{2}{3}, \frac{-1}{3})$$

$$10_{75} = m(\frac{2}{3}, \frac{2}{3}, \frac{5}{3})$$

$$10_{147} = m(\frac{3}{5}, \frac{1}{3}, \frac{-1}{3})$$

$$9_{35} = m(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) \qquad 9_{48} = m(\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}) \qquad 10_{67} = m(\frac{2}{5}, \frac{1}{3}, \frac{2}{3}) \qquad 10_{68} = m(\frac{3}{5}, \frac{1}{3}, \frac{1}{3})$$

$$10_{69} = m(\frac{3}{5}, \frac{2}{3}, \frac{2}{3})$$

$$10_{75} = m(\frac{2}{3}, \frac{2}{3}, \frac{5}{3})$$

$$10_{137} = m(\frac{2}{5}, \frac{3}{5}, \frac{-1}{2})$$

$$10_{145} = m(\frac{2}{5}, \frac{1}{3}, \frac{-2}{3})$$

$$10_{68} = m(\frac{3}{5}, \frac{1}{3}, \frac{1}{3})$$

$$10_{145} = m(\frac{2}{5}, \frac{1}{3}, \frac{-2}{3})$$

Unas aplicaciones.

Teorema. Sea q impar, $q \notin \{-1, -3, -7, -11\}$. Entonces p(2, q, q) es universal.

Nótese que p(2,-1,-1)= nudo trébol y $p(2,-3,-3)=\tau_{3,4}$ no son universales.

Pregunta: ¿Los nudos p(2,-7,-7) y p(2,-11,-11) son universales?

Conjetura. Sea q impar. El nudo p(2,q,q) es impar si y sólo si $q \neq -1, -3$.

Ejemplo.

$$k = m(1/3, 3/5, -3/4, -2/7, 3/11, -5/13), \Delta(k) = 12869.$$

En la cubierta diédrica de 12869 hojas la "componente"

$$k_{2758} = m(1/1, -1/2, 1/1, 1/1) = m(7/2)$$

Luego k es universal.

Cubiertas de almohadas de nuevo.

Indecisos.

$$9ar = m(\frac{1}{2})$$

$$9_{35} = m(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$

$$10_{69} = m(\frac{3}{5}, \frac{2}{3}, \frac{2}{3})$$

$$10_{146} = m(\frac{2}{5}, \frac{2}{3}, \frac{-1}{3})$$
 $10_{147} = m(\frac{3}{5}, \frac{1}{3}, \frac{-1}{3})$

$$9_{48} = m(\frac{2}{3}, \frac{2}{3}, \frac{-1}{3})$$

$$10_{75} = m(\frac{2}{3}, \frac{2}{3}, \frac{5}{3})$$

$$10_{147} = m(\frac{3}{5}, \frac{1}{3}, \frac{-1}{3})$$

$$9_{35} = m(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) \qquad 9_{48} = m(\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}) \qquad 10_{67} = m(\frac{2}{5}, \frac{1}{3}, \frac{2}{3}) \qquad 10_{68} = m(\frac{3}{5}, \frac{1}{3}, \frac{1}{3})$$

$$10_{69} = m(\frac{3}{5}, \frac{2}{3}, \frac{2}{3})$$

$$10_{75} = m(\frac{2}{3}, \frac{2}{3}, \frac{5}{3})$$

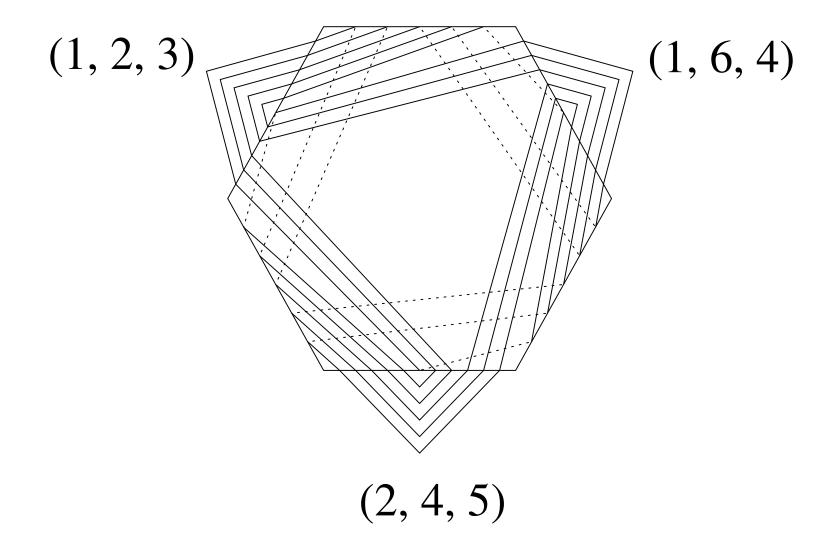
$$10_{137} = m(\frac{2}{5}, \frac{3}{5}, \frac{-1}{2})$$

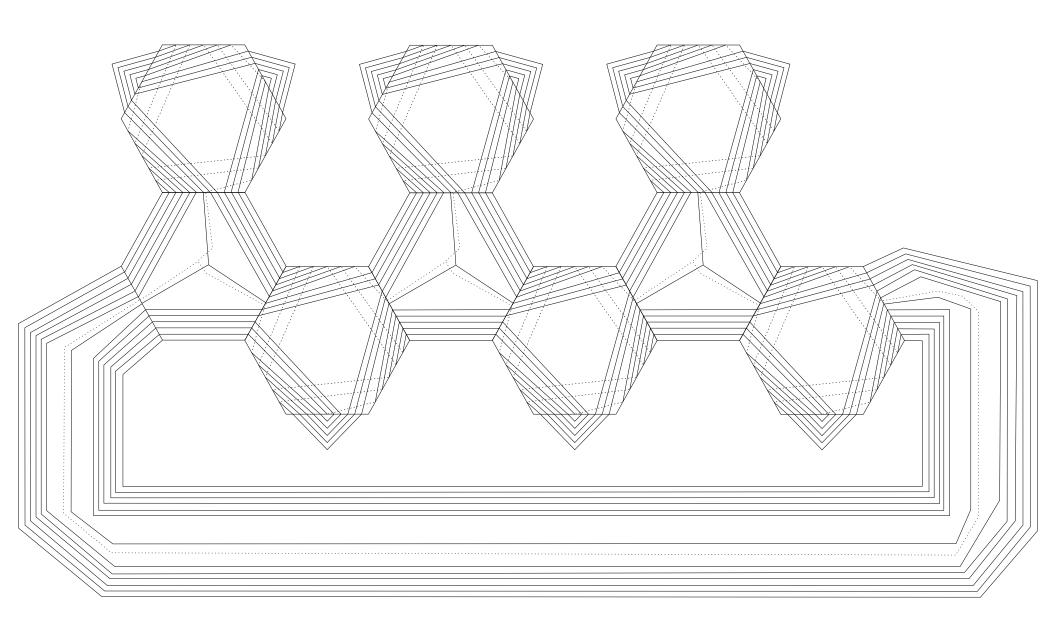
$$10_{145} = m(\frac{2}{5}, \frac{1}{3}, \frac{-2}{3})$$

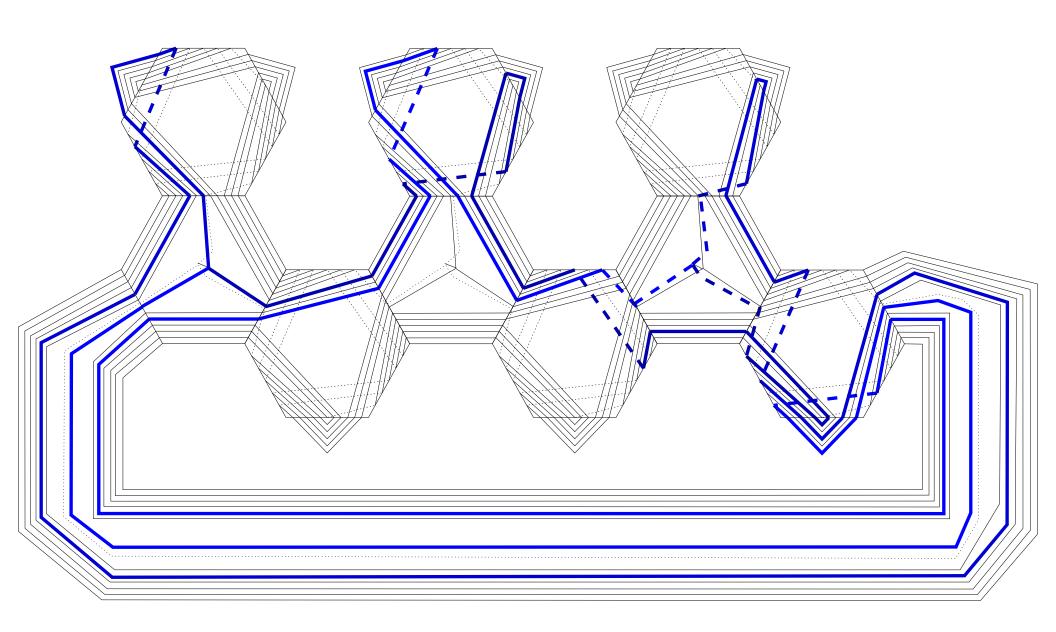
$$10_{68} = m(\frac{3}{5}, \frac{1}{3}, \frac{1}{3})$$

$$10_{145} = m(\frac{2}{5}, \frac{1}{3}, \frac{-2}{3})$$

Especificación del problema.

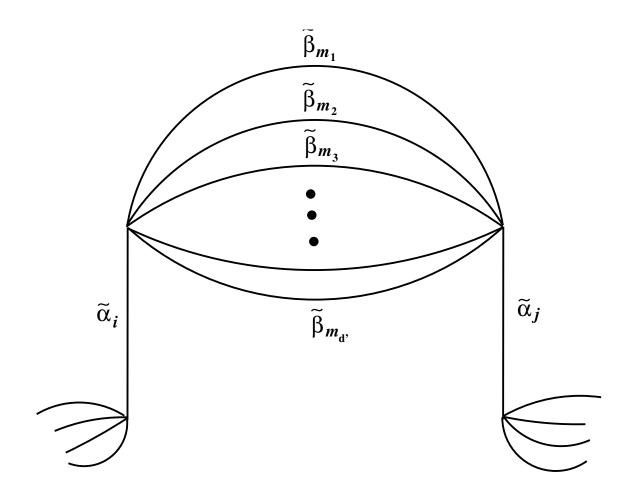






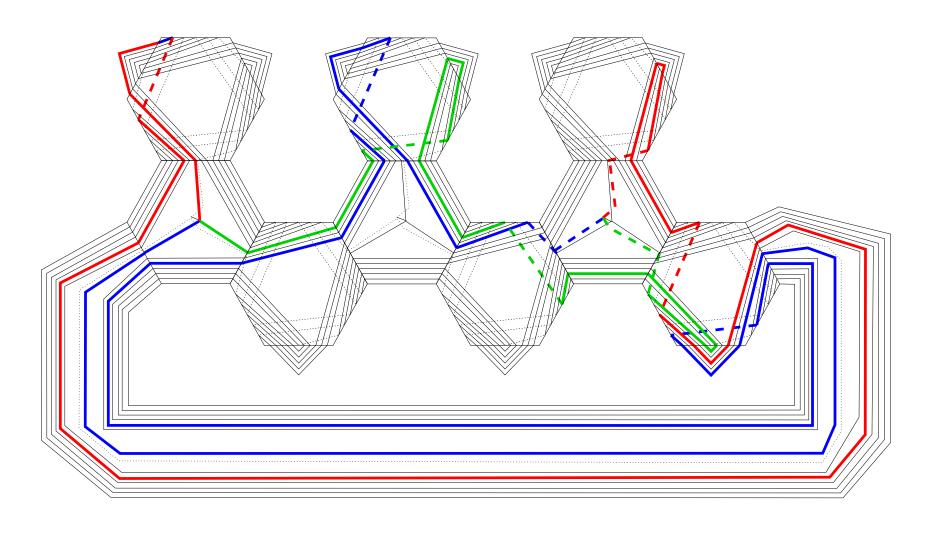


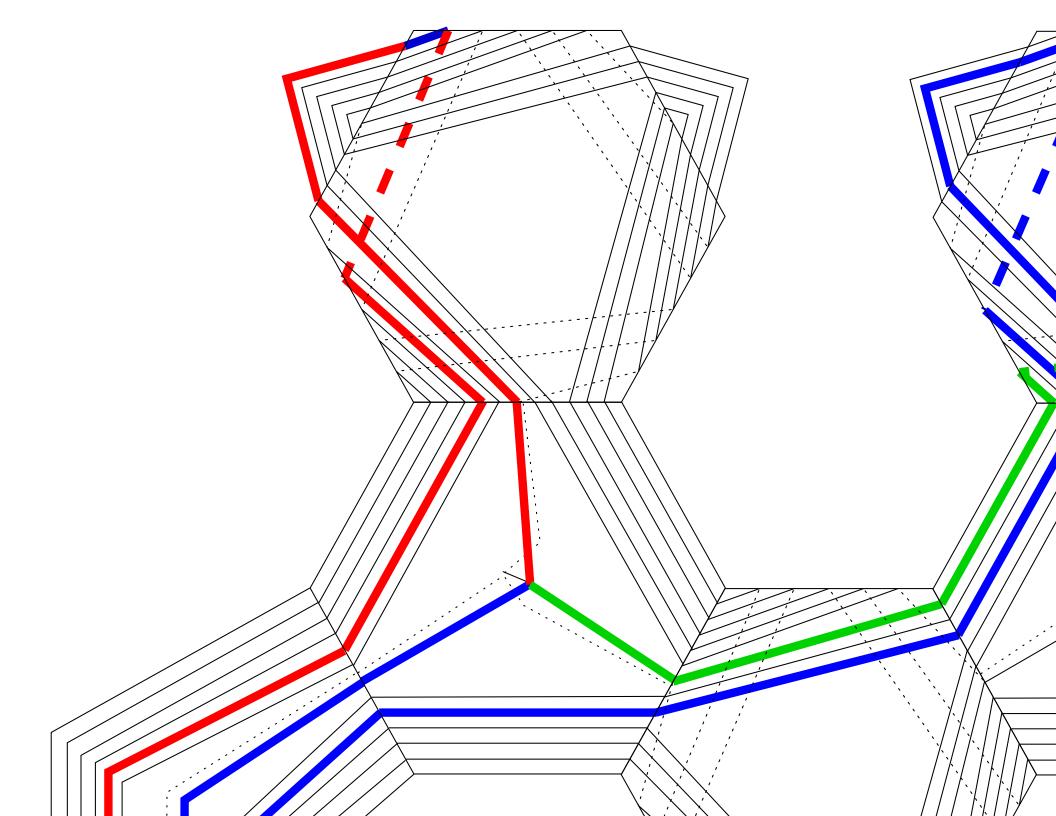
En general



 $\varphi^{-1}(\beta_m)$ es una unión de gráficas θ

Dado un arco $\beta_m \subset \partial B$, una pareja de arcos consecutivos en $\varphi^{-1}(\beta_m)$ se llama un ciclo de ramificación





Borremos todos los arcos, excepto uno, en cada uno de los ciclos de ramificacón de $\varphi^{-1}(k)$.

Lo que resulta se llama

una <u>poda</u> de $\varphi^{-1}(k)$ sobre $\varphi^{-1}(B) \cong B_{\omega}$

Teorema. (M. Jordán y V.)

Sea $k \subset S^3$ un enlace en posición de n puentes y sea (B, ℓ) una almohada 2n-gonal para k. Sea $\omega : \pi_1(S^3 - k) \to S_d$ una representación transitiva y sean $\varphi : M \to (S^3, k)$ $y \psi : B_\omega \to (B, B \cap k)$ las cubiertas ramificadas de d hojas inducidas por ω .

Si existe un encaje ε : $B_{\omega} \hookrightarrow M$ tal que los ciclos de ramificación sobre $\varepsilon(\partial B_{\omega})$ son frontera de 2-células ajenas en $\overline{M} - \varepsilon(B_{\omega})$, entonces cualquier homeomorfismo $\varepsilon(B_{\omega}) \cong \varphi^{-1}(B)$ se puede extender a un homeomorfismo de parejas $(M, \tilde{\ell}) \cong (M, \varphi^{-1}(k))$ donde $\tilde{\ell}$ es alguna poda de $\varepsilon(\psi^{-1}(\ell))$.

Nótese que la pareja $(\partial B_\omega, {\rm ciclos}\ {\rm de\ ramificaci\'on})$ induce un diagrama de Heegaard para M.

 $^{^1}$ Esto ayuda a identificar qué variedad es M

Indecisos.

$$9ar = m(\frac{1}{2})$$

$$9_{35} = m(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$

$$10_{69} = m(\frac{3}{5}, \frac{2}{3}, \frac{2}{3})$$

$$10_{146} = m(\frac{2}{5}, \frac{2}{3}, \frac{-1}{3})$$
 $10_{147} = m(\frac{3}{5}, \frac{1}{3}, \frac{-1}{3})$

$$9_{48} = m(\frac{2}{3}, \frac{2}{3}, \frac{-1}{3})$$

$$10_{75} = m(\frac{2}{3}, \frac{2}{3}, \frac{5}{3})$$

$$10_{147} = m(\frac{3}{5}, \frac{1}{3}, \frac{-1}{3})$$

$$9_{35} = m(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) \qquad 9_{48} = m(\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}) \qquad 10_{67} = m(\frac{2}{5}, \frac{1}{3}, \frac{2}{3}) \qquad 10_{68} = m(\frac{3}{5}, \frac{1}{3}, \frac{1}{3})$$

$$10_{69} = m(\frac{3}{5}, \frac{2}{3}, \frac{2}{3})$$

$$10_{75} = m(\frac{2}{3}, \frac{2}{3}, \frac{5}{3})$$

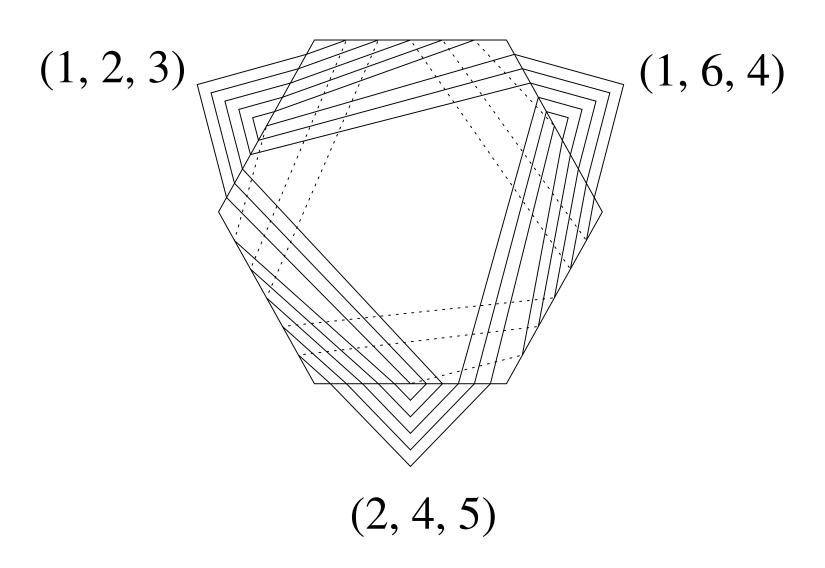
$$10_{137} = m(\frac{2}{5}, \frac{3}{5}, \frac{-1}{2})$$

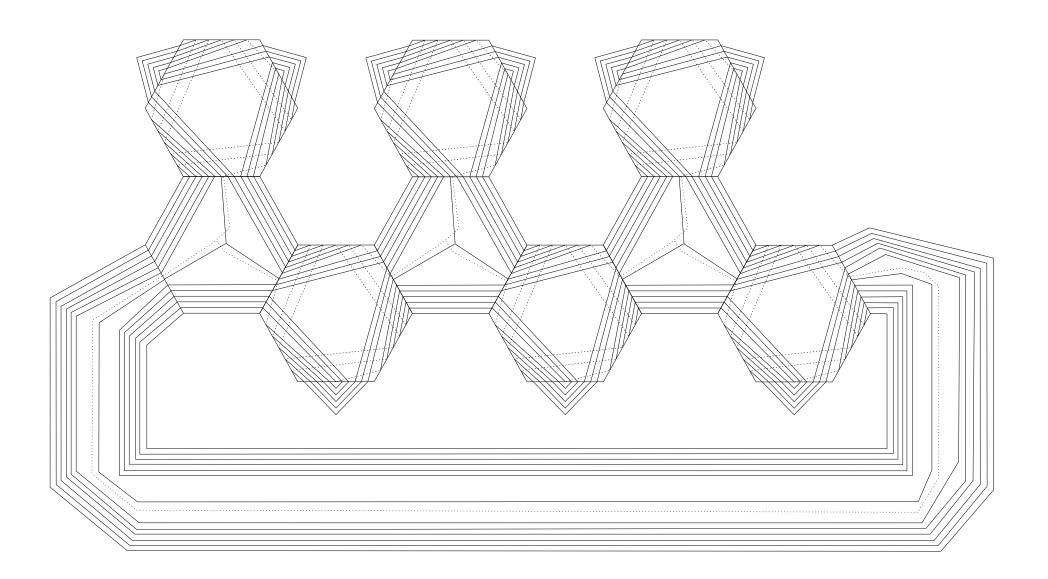
$$10_{145} = m(\frac{2}{5}, \frac{1}{3}, \frac{-2}{3})$$

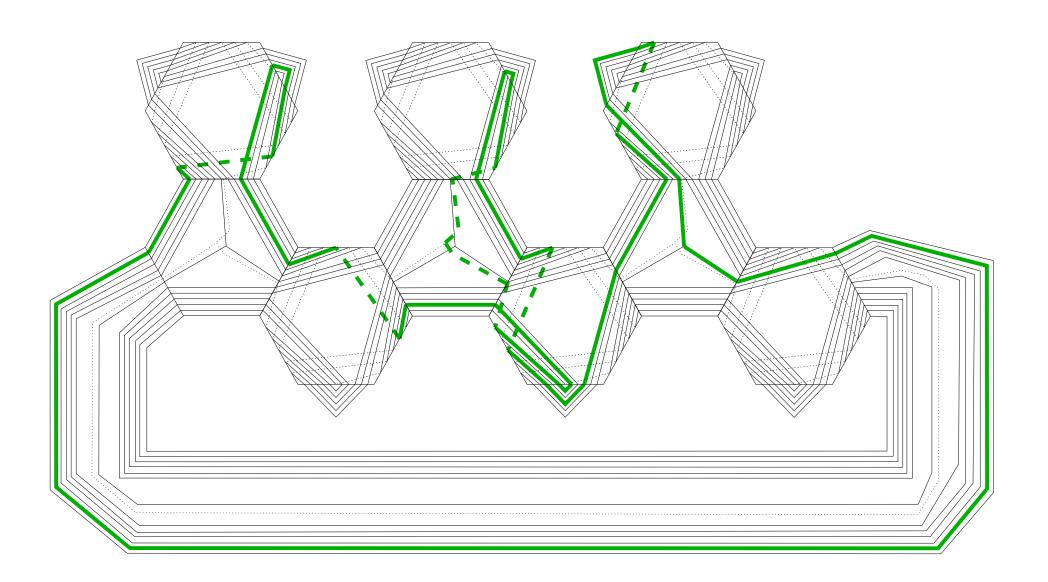
$$10_{68} = m(\frac{3}{5}, \frac{1}{3}, \frac{1}{3})$$

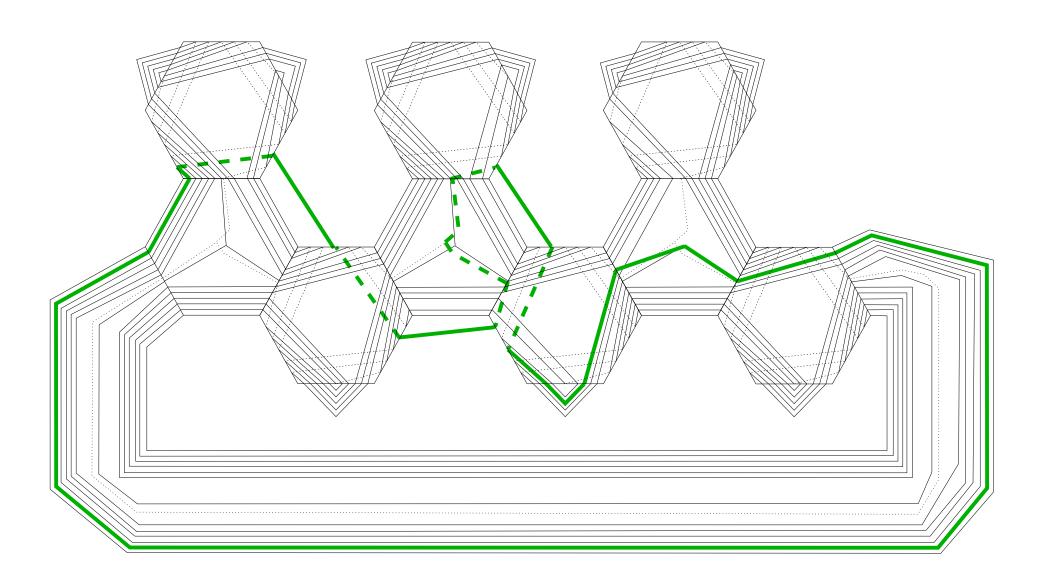
$$10_{145} = m(\frac{2}{5}, \frac{1}{3}, \frac{-2}{3})$$

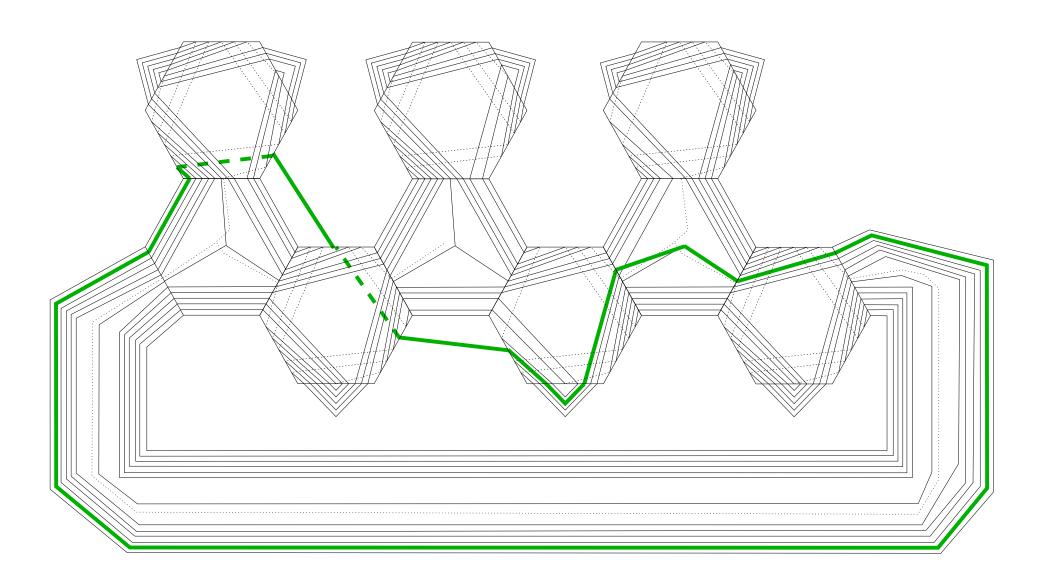
$$9_{35} = m(1/3, 1/3, 1/3)$$

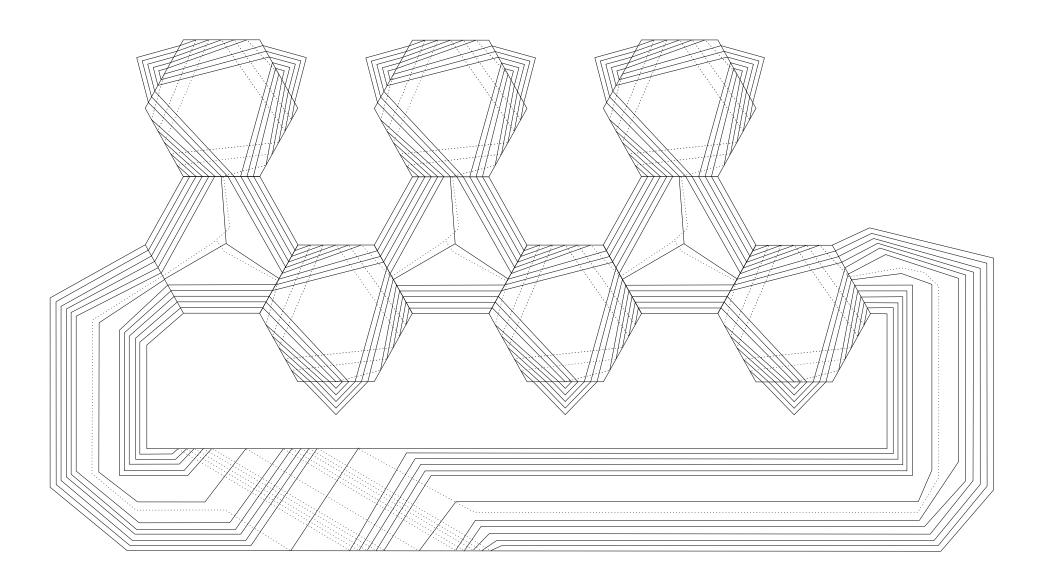


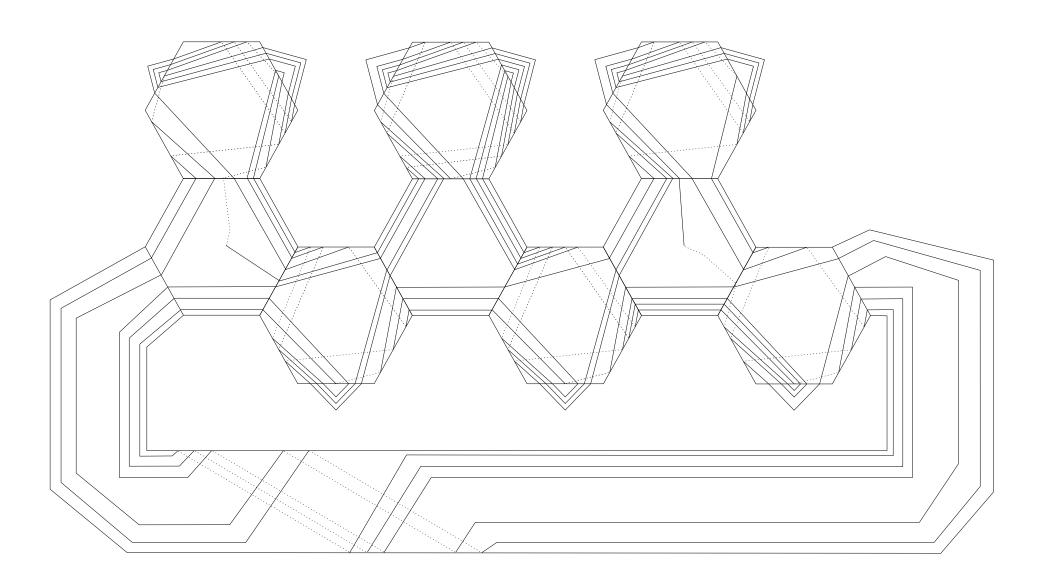


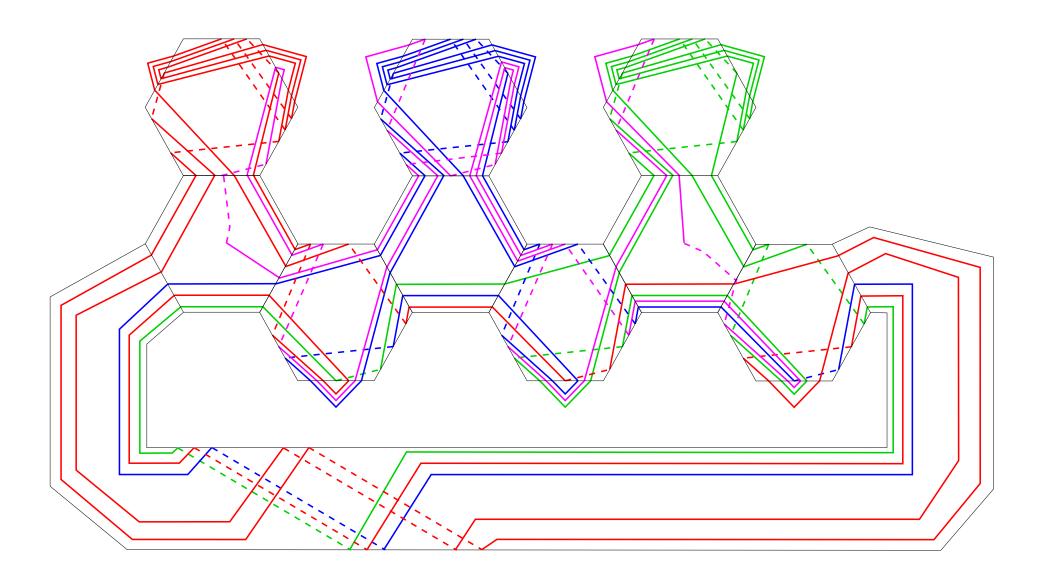


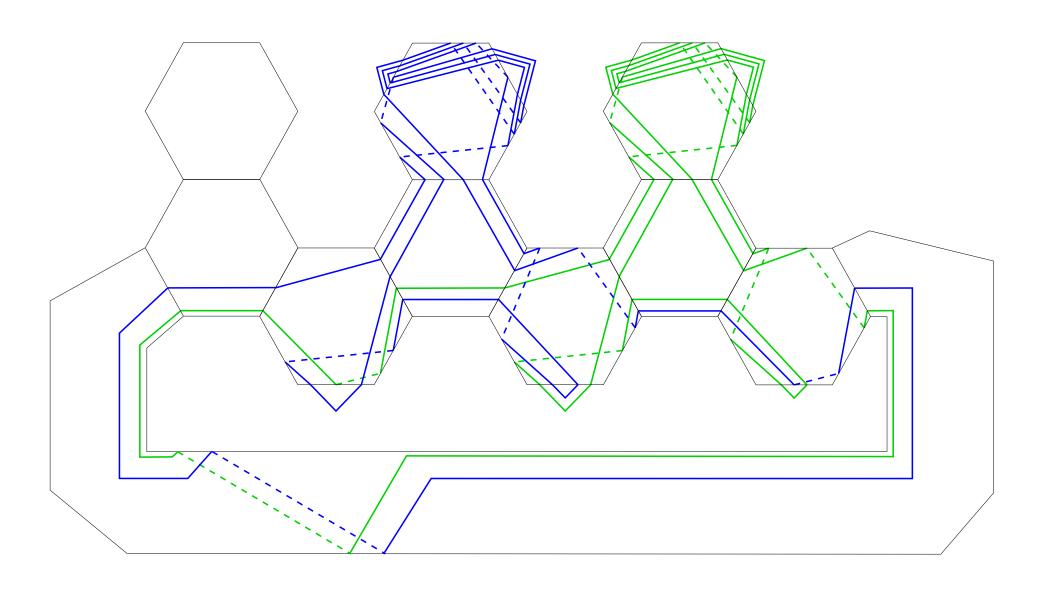


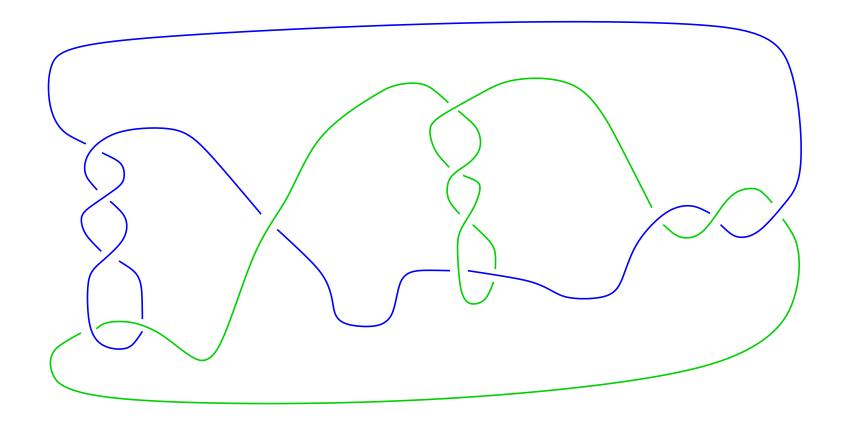








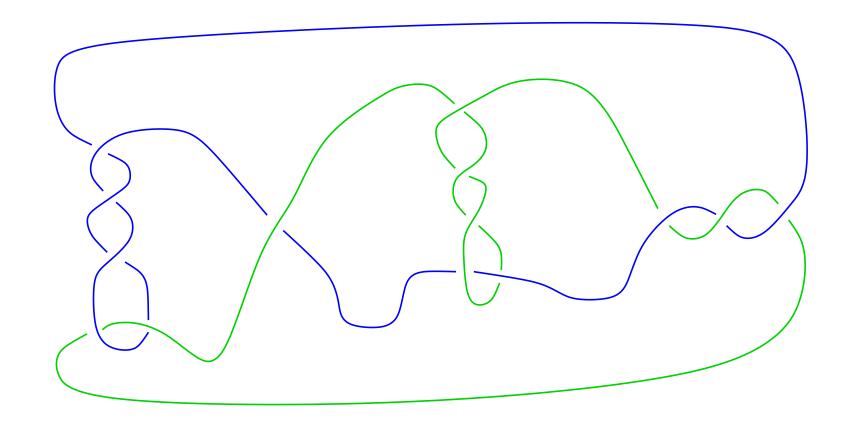




 $m(2/7, 1, 2/7, 3) \sim m(9/7, 23/7)$

$$m(\frac{\beta_1}{\alpha_1}, \frac{\beta_2}{\alpha_2}) \sim m(-\frac{\alpha_1\beta_2 + \alpha_2\beta_1}{\alpha_2r_1 + \beta_2s_1})$$

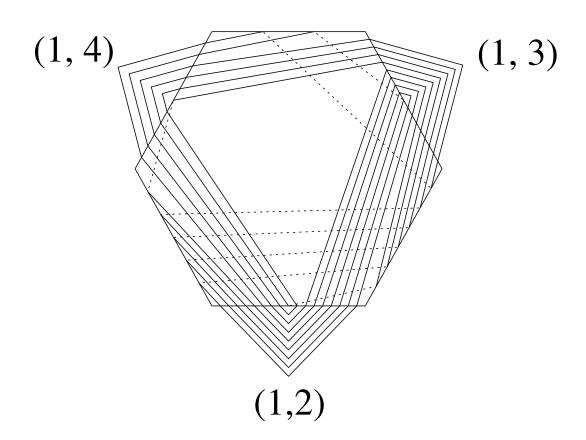
donde $\alpha_1 r_1 - \beta_1 s_1 = 1$.

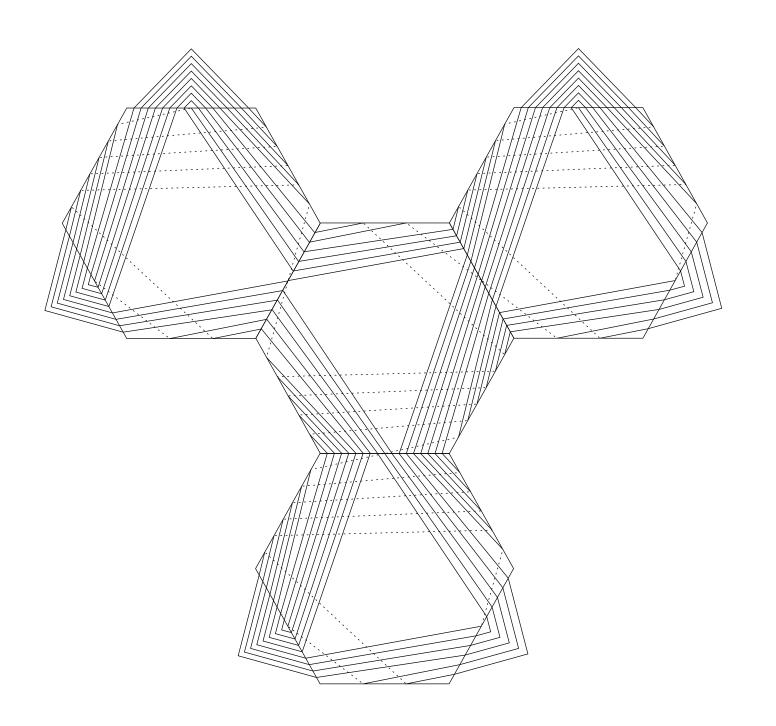


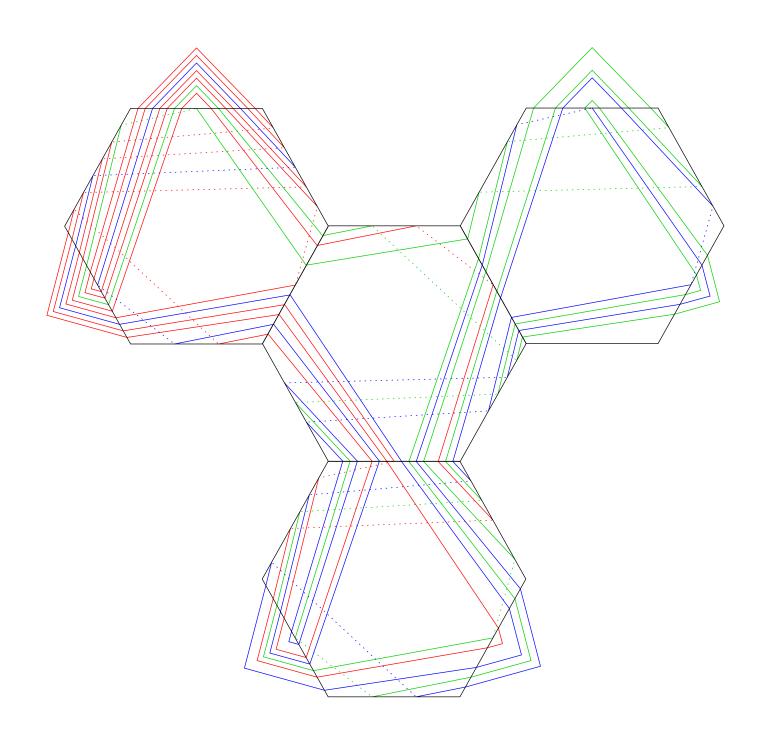
 $m(2/7, 1, 2/7, 3) \sim m(9/7, 23/7) \sim m(-224/97)$

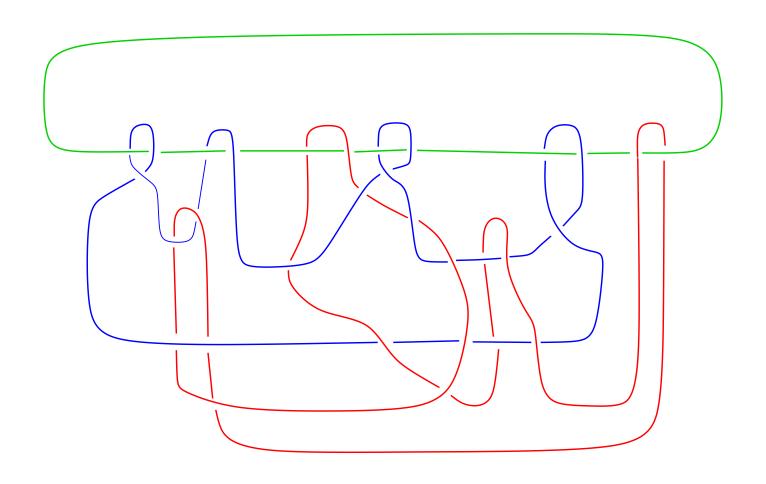
El nudo 9_{35} es universal.

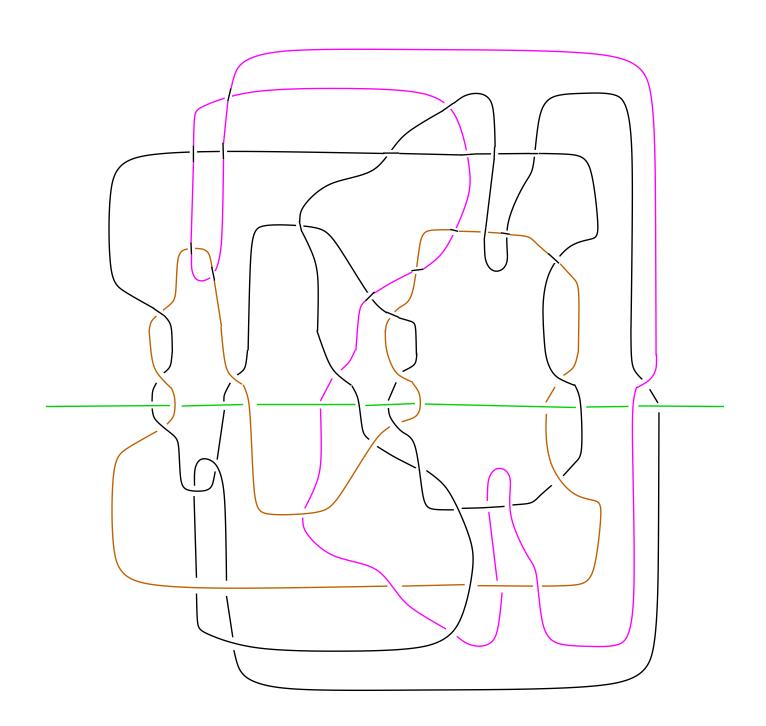
$$9_{48} = m(2/3, 2/3, -1/3)$$

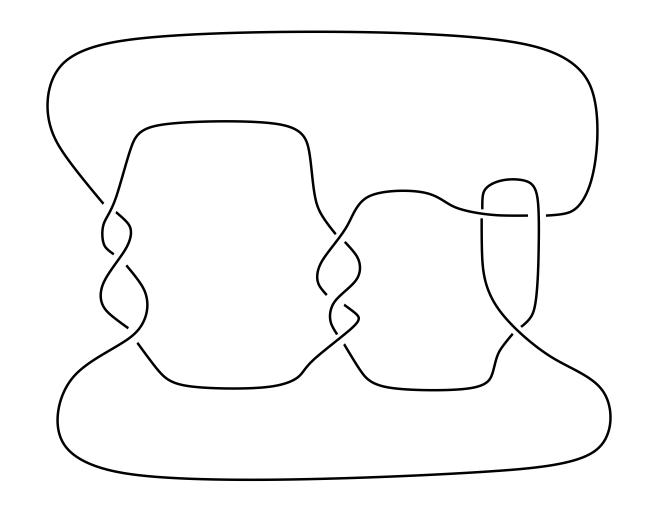












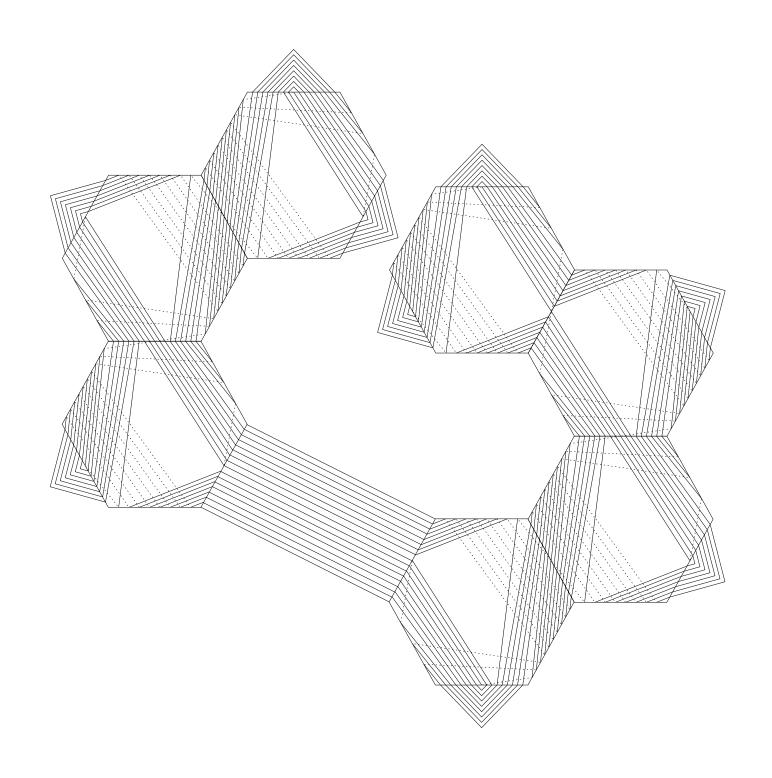
 $m(1/3, 1/3, 2/3) \sim m(4/3, 4/3, -4/3) \leftarrow m(1/3, 1/3, -1/3)$

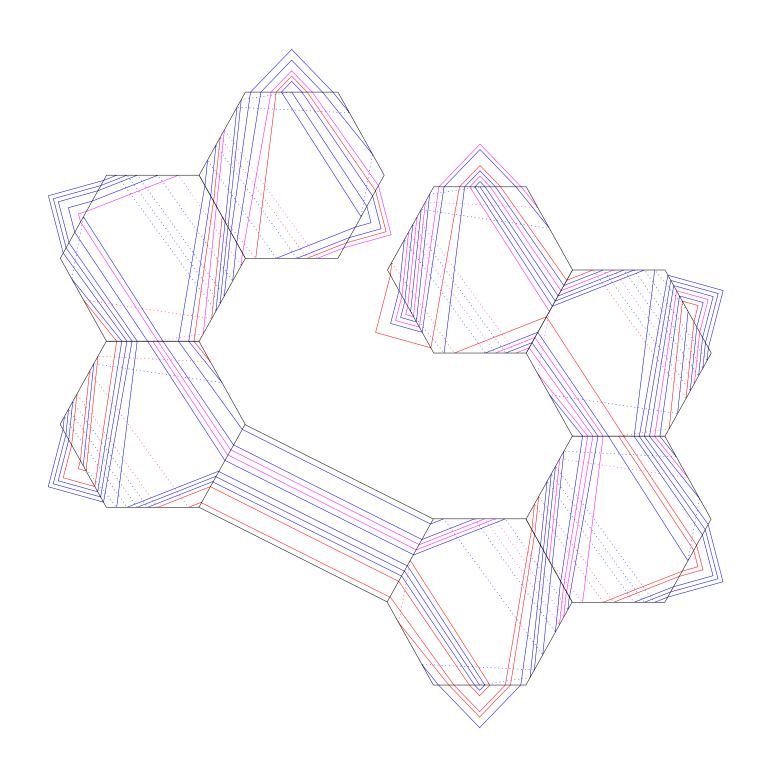
 $El \ nudo \ 9_{48} \ es \ universal$

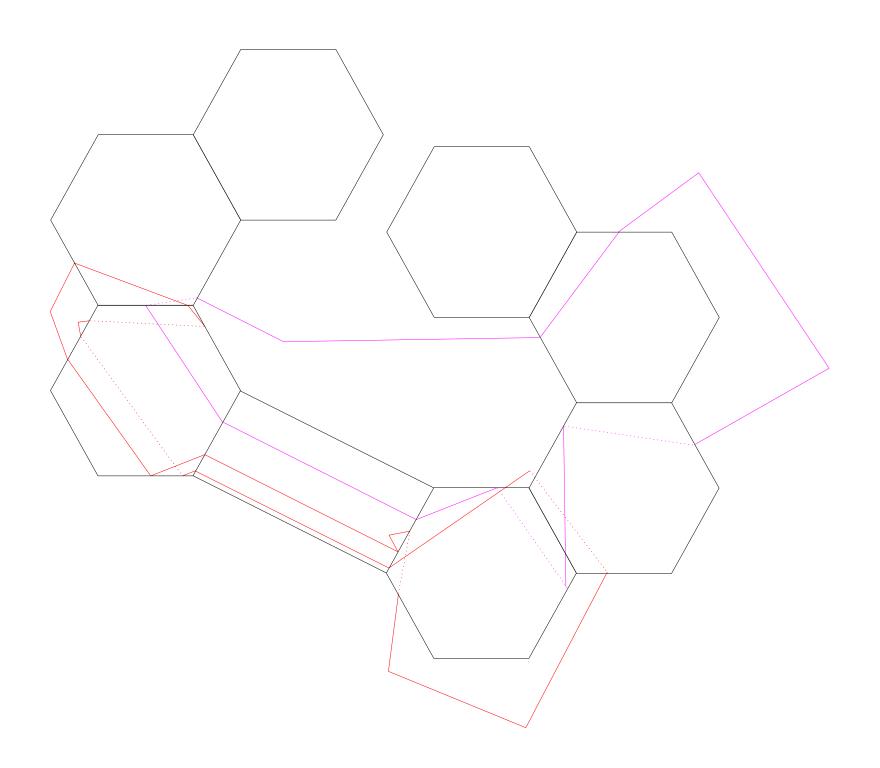
- $10_{68} = m(3/5, 1/3, 1/3) \sim m(-(19 \cdot 3/5, 19/3, 19/3) \leftarrow m(-3/5, 1/3, 1/3) \sim 10_{145}$
- $10_{69} = m(3/5, 2/3, 3/3) \sim m(-(29 \cdot 3)/5, 29/3, 29/3) \leftarrow m(-3/5, 1/3, 1/3) \sim 10_{145}$
- $10_{146} = m(2/5, 2/3, -1/3) \sim m(-(11 \cdot 3)/5, 11/3, 11/3) \leftarrow m(-3/5, 1/3, 1/3) \sim 10_{145}$
- $10_{75} = m(2/3, 2/3, 5/3) \leftarrow 10_{145}$
- $10_{147} = m(3/5, 1/3, -1/3) \leftarrow 10_{145}$

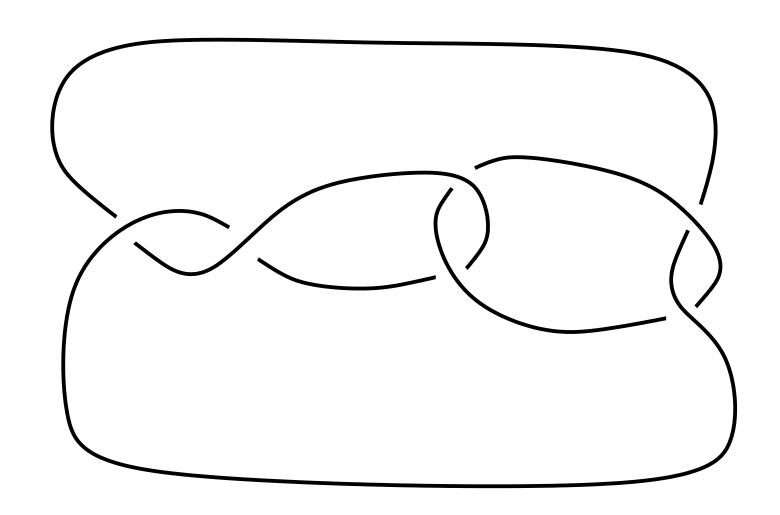
$$10_{145} = m(2/5, 2/3, -1/3)$$

(1, 3)(4, 5)(2, 4)(6, 7)(1, 2)(5, 6)









$$m(2, -\frac{1}{2}, \frac{1}{2}) \sim m(-\frac{1}{2}, \frac{5}{2}) \sim m(\frac{8}{3})$$

 $El \ nudo \ 10_{145} \ es \ universal$

Teorema. Todos los nudos de Montesinos hiperbólicos y con menos de once cruces son universales, excepto

$$10_{67} = m(\frac{2}{5}, \frac{1}{3}, \frac{2}{3}) \qquad 10_{137} = m(\frac{2}{5}, \frac{3}{5}, \frac{-1}{2})$$

(Todavía no sabemos).