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Chapter 1

Introduction

A Seifert manifold M is a 3-manifold which is a disjoint union of circles (fibers). Seifert
manifolds M were defined and classified (up to fiber preserving homeomorphisms) by H.
Seifert [Se| according to a Seifert symbol associated to M. Because of the fact that Seifert
manifolds are classified, they play a useful role in the Theory of 3—manifolds. Since the in-
vention of Seifert manifolds in the 30’s, an interesting problem is to understand the branched
coverings ¢ : M — M when M is a closed Seifert manifold.

Let M be a closed Seifert manifold and suppose ¢ : M — M is a covering of M branched
along fibers, that is, the branching of ¢ is a finite union of fibers of M. It is known that
M is also a Seifert manifold [G-H]. In [Se], H. Seifert also found the Seifert symbol for
the orientation double covering of M. More recently, V. Nifiez and E. Ramirez-Losada
[N-RL] compute the Seifert symbol for M when M is orientable and ¢ : M — M satisfies
some properties. But in general, if ¢ : M — M is a covering of a Seifert manifold M
branched along fibers, the Seifert Symbol for M is unknown. Therefore a basic problem is
to determine the Seifert symbol of M in terms of ¢ and the Seifert symbol of M. In this
work we solve the above problem (Theorem (3.3.8) and Theorem (3.3.15)).

On the other hand, Heegaard genera for almost all Seifert manifolds are known. M.
Boileau and H. Zieschang [B-Z] computed the Heegaard genera for almost all orientable
Seifert manifolds and V. Nunez [Nu] computed the Heegaard genera for almost all non-
orientable Seifert manifolds. In both cases, orientable or non-orientable, the Heegaard
genus of M is expressed in terms of the Seifert symbol of M.

Let M be a Seifert manifold with infinite fundamental group. Suppose ¢ : M — M is
a covering of M branched along fibers. If we know the Heegaard genus of M, h(M), and
we compute the Seifert symbol of M, we can compare the Heegaard genus of M, h(M ),
with h(M). What one can “reasonable” expect is that h(M) > h(M). But we find a
family of manifolds M, with infinite fundamental group, having a covering M such that
h(M) < h(M). This implies (translating into fundamental group) that there is an infinite
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6 CHAPTER 1. INTRODUCTION

family of infinite groups G that have a subgroup H < G of finite index with an unexpected
and surprising property: rank(H) < rank(G).

In Chapter 1, we deal with basic topics to be used along this work. The basic topics to
consider are: Topology of manifolds, Heegaard splittings and Branched coverings. In the
last section of Chapter 1, we write a list of Theorems that we will be needed later.

Let M be a Seifert manifold and ¢ : M — M a branched covering space of M. Sup-
pose M is connected. In chapter 2, we prove that there are coverings v : M — M’ and
¢ : M'" — M branched along fibers such that the following diagram commutes

M P
AN
® M’

/L

M

and if wy and we are the representations associated to ¢ and (, respectively, we have that
wy (') = ey and we(h) = (1), where (1) is the identity permutation in S, and e, is the
stardad n-cycle (1,2,...,n), and h and h’ are regular fibers of M and M’, respectively.
Thus we reduce the study of coverings of M to coverings ¢ : M — M, such that Wy, the
representation associated to ¢, sends a regular fiber h of M into the identity permutation
or into the n-cycle (1,...,n). In both cases, w(h) = (1) or w(h) = &5, we calcule the Seifert
symbol of M.

In chapter 3, given a ¢ : M — M covering of M branched along fibers such that w,,, the
representation associated to ¢, sends a regular fiber h of M into the identity permutation
or into the n-cycle (1,...,n), we apply the theory in Chapter 2 to compare the Heegaard
genus of M, h(M), with the Heegaard genus of M, h(M). The genus h(M) is computed in
terms of w, and the Seifert symbol of M. We show that there are Seifert manifolds of M
and coverings M such that h(M) < h(M).



Chapter 2

Preliminaries

This chapter is a brief review about facts in low-dimensional topology.

2.1 3-manifolds and Heegaard genus

Definition 2.1.1 Let M be a Hausdorff topological space. We say M is an n-manifold
if and only if each element x of M has a neighborhood homeomorphic to R" or R’} =
{(z1,...,2p) ER" :2; > 0,Vi=1,...,n}.

If M is an n-manifold and there is a point in M having no neighborhood homeomorphic
to R™, we say that M is an n-manifold with boundary and we call this point a boundary
point. The set of boundary points is called the boundary of M and we denote it by OM.
The space M — OM is called the interior of M and it is denoted by M°. An n-manifold
M is a closed manifold if it is compact and OM = (.

Definition 2.1.2 A 3-manifold M is irreducible if every 2—sphere S? in M bounds
a 3-ball.

Definition 2.1.3 A disk D? in a 3-manifold with boundary M is said to be properly
embedded if D> N OM = 0D?.

Definition 2.1.4 Let V be an orientable irreducible compact and connected 3-manifold
with non-empty boundary. If there exist k properly embedded pairwise disjoint 2-disks D
such that UD; splits V' into a 3-ball, we say that V is a handlebody of genus k.

Note that the boundary of V is a closed, connected and orientable surface of genus k.

Heegaard’s theorem 2.1.1 Let M be a connected closed and
orientable 3—manifold. Then M is union of two handlebodies of genus g, for some g > 0.
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8 CHAPTER 2. PRELIMINARIES

Handlebody
Proof.
It is well-known that M is triangulable [Mo]. Let K be a triangulation for M. Define
V1 to be a regular neighborhood of the 1-skeleton of K and V5 to be M — V; (I

Definition 2.1.5 Let M be a connected, closed 3-manifold and let I C M be a closed,
connected and orientable surface. If F splits M into two handlebodies, then (M, F) is a
Heegaard splitting of M.

Definition 2.1.6 The genus of a Heegaard splitting is the genus of the surface F, and
the Heegaard genus of M, h(M), is the smallest integer h such that M has a Heegaard
splitting of genus h.

Example 2.1.1 h(S%) =0

2.2 Branched coverings

Definition 2.2.1 Let X and X be two path-connected topological spaces. A surjective
map f : X — X is a covering space map if and only if for every x € X there exists a
neighborhood V,, of x satisfying the following properties:

(@) f' (Vi) = UaesVa, with Vo N\ V5 =0 if a # 3 and

(b) f|: Vi — Vg is a homeomorphism, for all a € J.

If | J| = n is a natural number, then f is a finite covering space and we say that f is
a covering of n-sheets or that f is an n—fold covering.

Let Q be a set of n elements; we write S,, = S(Q2) for the symmetric group on the n
elements of 2. When no confussion arises about the set €2, we only write .5,,.

Let N and N be n-manifolds. Suppose [ : N — N is a map. We say that f is a proper
map if f~1(ON) = ON. The map f is finite-to-one if f~!(x) is finite, for all z € N

Definition 2.2.2 A proper map f : N — N between two m-manifolds is called a
branched covering if it is finite-to-one and open.
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Usually one can check if an open map f between manifolds is a branched covering by
finding a subcomplex B of N of codimension two such that f| : N — f~}(B) —
N — B is a finite covering space|Fo].

The subcomplex B is called the branch set of f and f~!(B) is called the singular
set of f. In our examples the set B is always a submanifold.

If f|(N — f~*(B)) is an n-fold covering, we say that f is a branched covering of n-sheets
or that f is an n-fold branched covering.

Note that a finite covering space map (unbranched) between manifolds is a branched
covering with B = ().

Remark 2.2.1 The following facts about coverings and branched coverings are known:

(a) An n-fold covering space n : X — X determines and is determined by a homomorphism
wy : m(X) — Sy,, where S, is the symmetric group on n symbols. This homomor-
phism w is called a representation of m (X). Also X is connected if and only if w
18 transitive.

Let ¢ : X — X be a branched covering and let B be the branch set of .

(b) The covering | : X — ¢~ (B) — X — B determines the branched covering ¢ through a
Fox compactification [Fo]. item[(c)] By (a) and (b), a branched covering determines
and is determined by a representation wy : mi (N - Branch set of f) — Sy

(d) If X is orientable, X is also orientable [B-E], for if w1(X) is the first Stiefel-Whitney
class of X then ¢*w1(X) = wy(X).

2.3 Some preliminary Theorems

If M is 3—manifold, let wy(M) : Hi(M) — Z3 be a homomorphism such that if o C M
is an orientation preserving curve then wi(a) = 1, and if « is orientation reversing then
wy(a) = —1.

The homomorphism w1 (M) is the first Stiefel- Whitney class of M. If ¢ : M — M
is a branched covering of M, it is proved in [B-E| that wi(M) = ¢*(wi(M)) where
©* : HY(M,Zy) — H'(M,Zs) is the homomorphism induced by ¢ in the cohomology

groups.

We write PD : HY(M,Zy) — Hy(M,Zs) for the Poincaré duality isomorphism associ-
ated to the 3-manifold M.
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Definition 2.3.1 Let M be a non-orientable 3-manifold and F© C M be an orientable
surface. We call F' o Stiefel-Whitney surface for M if and only if F' is connected and
[F} = PD’LUl(M) € HQ(M; ZQ)

Assume M is a manifold. Let 3 : HY(M,Zy) — H'T'(M,Z) denote the Bockstein
homomorphism associated to the short exact sequence of coefficients

0—>Z—7Z — Zo — 0.

Lemma 2.3.1 [B-E] Let M be a non-orientable 3-manifold. Then Bwi(M) = 0 if and
only if there exists S C M a two-sided Stiefel-Whitney surface for M.

Let M = (Xz,g9,01/c1 ..., Br/a;) be a Seifert manifold, where Xz ia symbol in {Oo, On, No, Nnl, NnII, N
(See Chapter 3). Write eg(M) = > fBi/a; and, N(M) = lem{aq,...,a,} - eo(M), where
lem{aq,...,a,} denotes the least common multiple of aq, ..., a,. Notice that A(M) is an
integer number.

Theorem 2.3.1 [Nu/ If M is a non-orientable Seifert manifold with orbit projection
p: M — F, then fwi(M) # 0 if and only if either M € NnIl or M € Nnl, g(F) is odd
and \(M) is even.

Theorem 2.3.2 [Nu/ Let M be a non-orientable Seifert manifold. Then there exists
a fibered torus T' C M, where fibered means that T is a union of fibers of M, such that T is
a Stiefel-Whitney surface for M. In the following cases T is two-sided in M :

(i) M € (No,g).

(ii) M € (Nnl,2g).

(iii) M € (Nnlll,g).

And in the following cases T is one-sided in M :
(iv) M € (Nnl,2g+1).

(v) M e (Nnll,g).

Theorem 2.3.3 [Nu/ Let M be a non-orientable Seifert manifold and T be a fibered
torus in M.

e Suppose M € (Nnl,2g+1) or M € (Nnll,g). If T C M is a two-sided fibered torus,
then M — T s non-orientable;

o Assume M € (No,g) or M € (Nnl,2g) or M € (Nnlll,g). If T C M is an
one-sided fibered torus, then M — T is non-orientable.



Chapter 3

Coverings of Seifert manifolds

3.1 Coverings and bundles

Recall that if € is a set of n elements, then S,, = S(£2) denotes the symmetric group on the
n elements of Q.

The identity permutation of .S, is the permutation that fix all the elements of 2. We
denote the identity permutation of S,, by (1).

Let o € S,,, the order of o, denoted by order(c), is the smallest natural number n such
that 0" = (1).

A cycle p = (a1,...,as) in S, = S() is the permutation that fixes the elements
in Q different from a;, for all ¢ = 1,...,s, it sends the element a; € Q into a;41, for
each ¢ = 1,...,s — 1, and sends the element as into a;. One can verify easily that if
p = (ai1,...,as) then order(p) = s. Throughout this work the standard n—cycle is the
permutation (1,2,...,n) € S, and it will be denoted by &,.

Recall that if o is a permutation in S, then o can be represented as a product of disjoint
cycles. Throughout this work all permutations in S,, will be represented as a product of
disjoint cycles, unless explicitly stated.

Definition 3.1.1 Suppose m,n € N — {1} and H < Sy, = S(Q); then we say that H
is m,n—imprimitive if there are Aq,..., A, C Q such that:

(a) Q=11 A;, where denotes the disjoint union.
(b) #A;,=m, foralli=1,...,n.

(c) The elements of H leave the sets A; invariant, that is o(A;) = Aj, for each i and o

11



12 CHAPTER 3. COVERINGS OF SEIFERT MANIFOLDS
and for some j € {1,...,n}.

The sets Ay, ..., A, are called sets of m, n-imprimitivity for H. Note that if H is m, n—imprimitve
then H > Sp.

Given = € Q, the stabilizer of x is the subgroup St(z) = {0 € S(Q)|o(z) = 2} > S(w).

Let H be m,n—imprimitive. The quotient A; U... U A, — {Aq,...,A,} which sends
all symbols of A; into the symbol A; for each i, induces a “quotient homomorphism” q :
H — S, =SH{A1,...,A}). If Hy = ¢ *(St(A1)), then the “restriction homomorphism”
~v: Hy — S, = S(A1) such that v(o) = o|A1, is a group homomorphism.

Lemma 3.1.1 Let ¢ : X — Y be an mn—fold covering space and let w : m1(Y) — Sy
be the associated representation; write H = Im(w). Then H is m,n—imprimitive if and
only if @ factors through an m-fold covering ¢ : X — Z and an n— fold covering  : Z — Y.

Proof.
If H is m, n—imprimitive, then there exists sets of m,n—imprimitivity, Ay, ..., A,, for
H. Consider the representation

we:m(Y) S HL S, =S{AL,..., AL},

where ¢ is the quotient homomorphism determined by Ai,...,A,. Let ( : Z — Y be

~

the n—fold covering associated to w¢: then Z is a topological space such that m1(Z) =
(qow)™1(St(A1)). Notice that w=1(St(1)) C (gow) (St(A1)) by definition of q. Therefore
there is an m—fold covering ¢ : X — Z such that (o = ¢.

Note that the representation associated to 1 is
wy = m(Z) = (qow)H(St(A1)) = ¢~ (SH(A1)) - Sa = S(A),

where w is the restricition homomorphism determined by Aq, ..., A,.

Now suppose there are ¥ : X — Z and ( : Z — Y covering spaces of m—sheets and
n—sheets, respectively, such that ¢ = o (. Let yo € Y. Then (" *(yo) = {z1,...,2,} and

(p_l(y()) = {{L‘Ll, ey [L'Lm,xQJ e 7$2’m, ey .%'ml, ey wn,a}-

By renumbering the points, if necessary, we can suppose that 9 (z; ;) = 2, for 1 <i <n
and for 1 < j < m. Define A; = {zj1,...,%im}, for each i € {1,...,n}. Using the Path
Lifting Theorem for covering spaces, it is clear that the A;’s are sets of m, n—imprimitivity.[]

Suppose N is an n—manifold and ¢ : N — N is an m—fold covering of F. Let
w : m(N) — S, be the representation determined by ¢ and 6 : Hi(N) — Zy be an
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epimorphism, (i.e. # is a transitive representation).

If g : Np — N is the 2-fold covering associated to ¢. Define 0 = ©*(0), where
©* : HY(N,Zs) — HY(N,Zs) is the cohomology induced homomorphism. Notice that ¢
can be regarded as an element of H'(N;Zy), that is 6 : H{(N) — Zs is a homomorphism.

Note that if 6 is non-trivial, then € is an epimorphism (i.e. 6 is a transitive representa-
tion). Consequently 71(Ng) = Ker(0), for g is regular and thus Ker(0) = 671(St(1)).

Remark 3.1.1 If 6 is trivial, then 0 is trivial.

Proof.
In this case Ny = N U N, where L denotes the disjoint union. Suppose & € Hi (N),
then 0(a&) = 0(ps«(&)) = (1). O

Remark 3.1.2 If 0 is non-trivial, then 0 is trivial if and only if there exists a %-fold
covering 1) : N — Ny such that ¢ o g = .

Proof.

Let us suppose that 6 is trivial; then 6(a@) = 0(p.(@)) = (1), for all & € Hy(N).

Therefore ¢, (H1(N)) C Ker(f) and there is a %-fold covering v : N — Nj satisfying that

Yoy = .
On the other hand, if there exists a covering 1) : N — Ny such that ¢ o pg = ¢, then
w«(H1(N)) C Ker(6) and thus 6 is trivial. O

Theorem 3.1.1 Assume N is an n—manifold and ¢ : N — N is an m—fold covering
of F'. Let w : m(N) — Sy, be the representation determined by ¢ and 6 : Hi(N) — Zs be a
homomorphism. Let 0 = ¢*(0). Suppose that 0 is non-trivial.

~ m m
Then 0 is trivial if and only if Im(w) is 5 2—imprimitive and there are sets of 5 2—imprimitivity

for Im(w), A1 and Ag, such that the quotient homomorphism q : Im(w) — So satisfies that

qgow =0.

Proof.
If 6 is trivial, by Remark 3.1.2 there exists an %—fold covering 1 : N — Ny such that

1 0 g = . Then, by Lemma 3.1.1, there exist Ay and As sets of %, 2—imprimitivity for
Im(w) such that the representation induced by ¢y is gow : m1(IN) — Sy. Therefore gow = 6.
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On the other hand, if there are sets of %, 2—imprimitivity for I'm(w), A1 and Asg, such

m

that g o w = 0, then by Lemma 3.1.1 there is a covering v : N — Ny of “5-sheets such that
@ =1 owy. Thus, by Remark 3.1.2, 6 is trivial. O

Definition 3.1.2 Let N be a connected m—manifold and let n € N. Assume w :
m1(N) — S, is a transitive representation and § € H'(N,Z3). We say that w tri-

vializes the bundle of 6 if and only if Im(w) is %,Q—imprimitive and there are sets

of %,Z—imprimitivity for Im(w), Ay and Ag, such that the quotient homomorphism q :

Im(w) — Sa satisfies that gow = 6.

When a permutation in an imprimitive subgroup contains an odd order cycle, computa-
tions are somewhat eased. For example, let us consider the permutations a = (1,2, 3)(4, 5, 6)
and b = (1,4)(2,5)(3,6) in S¢. Let H = (a, b) be the subgroup in Sg generated by the per-
mutations a and b. It can be seen that H is 3,2—imprimitive. Let us calculate a system of
3, 2—imprimitivity for H. There exist sets of 3,2—imprimitivity, Ay and Ay for H. Note
that a - A1 must be equal to A1 or Ay because A is a set of 3, 2—imprimitivity. Assume
1e A

If a- Ay = Ay, then 2,3 € A for a(1) = 2 and a(2) = 3; thus {1,2,3} C A; and we get
Ay ={1,2,3} because #A; = 3.

Note that a - A1 = Ay cannot happen. If a- Ay = Ay, then 2 € Ay for 1 € A and
a(1l) = 2. Of course 3 should belong to Ay because a(3) = 1; otherwise, if 3 € A; we have
1 € Ay. But 3 € Ay implies that a- Ay = Ay for a(2) =3 and 2,3 € Ay. Thus 1 € Ay since
a(3) = 1 and this contradicts our assumption that 1 € A;.

Therefore A; = {1,2,3} and Ay = {4,5,6} are the only sets of 3,2—imprimitivity for
H. One can see easily that if ¢ : H — S5 is the quotient homomorphism associated to A;
and Ay, then ¢(a) is the identity in So = S({A1, A2}) and ¢(b) = (A1, Ag) € S({A1, Az}).

In general, we obtain the following corollary.

Corollary 3.1.1 Assume N is an n—manifold and ¢ : N — N is an m—fold covering of
F. Let w: m(N) — Sy, be the representation determined by ¢ and 6 : Hi(N) — Zo be
a homomorphism. Let 0 = ©*(0). Suppose that vj is a generator for mi(N) such that in
the disjoint cycle decomposition of w(v;) there is a cycle (aj1,...,a;jr) of odd order and
0(v;) = (1,2).

Then 0 is non-trivial.

Proof.
Assume that 6 is trivial. Then there are sets A; and Ag of %, 2—imprimitive for Im(w).
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Since (aj,1 - -aj) has odd order and w(v;) must leave the sets Ay and Ay invariant, it fo-
llows that {aj1,...,a;k} C Ay or {aj1,...,a;k} C Az. Without loss of generality, we

suppose that {a;1,...,a;r} C Aq, thus (gow(v;))(A1) = Ay and g o w # 6. Therefore 6 is
non-trivial. O

Let N be a manifold and let 6 be equal to wq(IN), the first Stiefel-Whitney class of N,
and recall that if ¢ : N — N is a covering space then w;(N) = ¢*(wi(N)). Then we can
apply the previous theorem to get the following corollary.

Corollary 3.1.2 Suppose that N is a non-orientable manifold and consider a transitive
representation w : i (N) — Sp,. Let ¢ : N — N be the covering space associated to w and
w1 (N) be the first Stiefel-Whitney class of N.

Then N is orientable if and only if Im(w) trivializes the bundle of wi(N).

Remark 3.1.3 Let F be a non-orientable surface of genus k and let {’Uj}?:l be a basis
for i (F) such that vj is an orientation reversing loop, for all j € {1,...,k}. Suppose that
n>2 ¢: F — F is a covering space and let w : m1(F) — S, be the representation
associated to ¢. By Corollary (3.1.1) and Corollary (3.1.2)

1. If the order of a cycle of w(vy) is odd, for some m € {1,...,k}, then F is non-
orientable.

2. If n is an odd number, F is non-orientable.

3. Suppose that all the cycles of w(v;) have even order (therefore n is an even number),
foreach j =1,...,k; then G is orientable if and only if Im(w) trivializes the bundle
of wi(F).

3.2 Seifert manifolds

Let a and 3 be coprime integers numbers and «; > 1; Suppose r : D?> — D? is the rotation
defined by r(z) = 2e>™®/8), Then the fibered solid torus T(3/«) is the quotient space
D? x I
(2,0) ~ (r(z),1)

The fibers of T(3/«a) are the images of the intervals {z} x I (under the identification).
Note that almost all fiber in 7'(3/«) is the union of the images of 3 intervals; the only ex-
ception is the core of T'(3/«) because this fiber is the image of just the interval from {0} x I.

, where I = [0, 1].

Suppose T'(/«) and T'(' /o) are fibered solid tori. A fiber preserving homeomor-
phism f of T(5/a) and T(f'/a’) is a homeomorphism f : T'(5/a) — T('/a’) that sends
each fiber of T'(3/«) onto one fiber of T'(3' /o).
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Definition 3.2.1 A Seifert manifold M is a connected closed 3-manifold that can
be decomposed into disjoint circles called fibers of M, such that for every fiber h there

exist a neighborhood Vi, and coprime integer numbers o > 1 and 3, and a fiber preserving
homeomorphism f : Vi, — T(B/a) such that f(h) is the core of T(3/c).

If « > 2, the core of V}, is called an exceptional fiber of multiplicity o of M,
otherwise it is a regular fiber of M.

Note that by collapsing each fiber into a point we get a well-defined quotient p : M — F,
where F' is a closed surface of genus g; F' is orientable or non-orientable. This quotient is
called the orbit quotient of M or the orbit projection of M, and F is called the
orbit surface of M. Since each fiber h in M has a neighborhood V;, homeomorphic to a
fibered solid torus, one can show that {p(V})°} is a basis for the topology of F'. The image of
a regular fiber is a regular point and the image of an exceptional fiber is an exceptional point.

Given a triangulation T of F' it is possible to construct a system of neighborhoods of
fibers of M, where each neighborhood is homeomorphic to a fibered solid torus and projects
onto a triangle of F'. Also we can pick T, in such way, that every triangle contains at most
one exceptional point. We will consider only triangulations of F' with this property.

Assume F is triangulated by T'. Let x1,y1 € F and suppose there is a triangle 77 which
misses exceptional points. Let ¢; C 77 be a path joining x; and y;. Let us fix an orientation
of p~1(x1). Since p~!(x) and p~!(y) are fibers of the fibered solid torus p~*(7}), we can
induce an orientation on the fiber p~!(y1) by translating the fiber p~!(z) along the path c;
and we say that p~!(y) has the orientation induced by p~!(z) along c.

In general, let z,y € F' and suppose there is a path ¢, connecting x with y, which misses
exceptional points, we may assume, refining 7', if necessary, that there exist a finite number
of s triangles T; without exceptional points, where ¢ = 1,...,s, such that ¢ C U;_;T;. Let
Vi be the solid torus determined by T;, for all i = 1,...,s. Note that we can also suppose
that the set ¢; = ¢NT; does not contain the vertices of T;. If pil(x) has an orientation then
we can induce an orientation on the fiber p~!(y) by translating the orientation of p~!(z),
triangle by triangle, along the curves ¢;. Then if x = y and the fiber p~!(z) is oriented
we can follow the induced orientation of p~!(x) along loops ¢ based at x. Thus we have a
homomorphism e : 71 (F) — Zg such that e(c) = +1, if ¢ preserves the orientation of the
fiber when the fiber is translated along c¢; otherwise, if ¢ reverses the orientation of the fiber,
e(c) = —1. This homomorphism is called the valuation homomorphism. Of course, it
is enough to define e in a basis for m1(F) or Hy(F).

Since M is compact, the number of exceptional fibers in a Seifert manifold is finite.

Seifert manifolds were classified by H. Seifert [Se| according to a Seifert symbol and six
classes, depending on the orientability of F', the valuation homomorphism and the multiplic-
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ities of exceptional fibers. In order to state the classification in classes of Seifert manifolds
we fix the following facts and notation.

Let {h;};_, be a set of fibers of M which contains all the exceptional fibers and some
regular fibers. Recall each fiber has a neighborhood V; fiber preserving homeomorphic to
a fibered solid torus. Let T'(f3;/«a;) be the fibered solid torus homeomorphic to V;, for all
i=1,...,r. Recall that o; and (3; are coprime numbers and «; > 1. We always will ask
to a; be greater than or equal to 1 and coprime with (3;.

We write My = M — UV;. Note that we have a quotient p| : My — Fp, where Fj is a
surface with boundary. The boundary of Fy has r components, one for each component of
OMy. Let q1, ..., q- be the components of 0Fy and h be a regular fiber. It is very important
to note that e(g;) = +1 since g; bounds a disk in F'.

Now the list of classes of Seifert manifolds is the following (we use the notations of the
previous paragraphs).

(O0) M is orientable, the orbit surface F is orientable of genus ¢g and e is the trivial ho-
momorphism.

The Seifert symbol associated to this manifold is
M = (00795 ﬂl/al) oo 7ﬂr/a7‘)~

If {v; ?ﬁ | is a basis for 71 (F'), presentations for the fundamental groups of M and M)
are the following:

7'(-1(]\4) = <U17" -5 V2¢541, - - - 7q7'7h; [h,?)]] = 11 [ha Q’L] = 15
g

gz gr = [ [lvaj-1, 025, 0% = 1.
=1

7"-1(]\40) = <vl’~'-7v29aQ1""7qT7h; [h,Uj] :17[h7ql} :1’
g

qaq2 - qr = H[U2j7177}2j]>-
j=1

(On) M is orientable, the orbit surface F' of M is non-orientable of genus g and if {vq, ..., vy}
is a basis for 7 (F') such that each v; is orientation reversing then e(v;) = —1, for

i=1,...,g.

The Seifert symbol associated to this manifold is

M = (On,g; B1/an, .., B/ ow).
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Presentations for the fundamental groups of M and Mj are

WI(M) = <Ula <oy Vg, (41, - - '7q7“7h;vjhvj_1 = hil? [hqu] = 17

g
0 qr = [ [v} @ n = 1).
j=1

i
g
g qr = o)

1

7.‘-1(]\40) = <U1)'"7Ug)q17"')qr7h;vjh’v;1:h_17[h7Q]:1)
J

(No) M is non-orientable, the orbit surface F' is orientable of genus g and if {v;} is a basis
for w1 (F') then e(vi) = —1 and e(v;) = +1, for j > 2.

The Seifert symbol associated to this manifold is

M= (Noag;ﬁl/ala" 'aﬁT/O‘T‘)'

Fundamental groups of M and M, are isomorphic to the following presentations:

7-{-1(]\4) = <U1a-~77)297(I1a--~7q$7h§Q1Q2"‘Qr: [/UQj—laUZj]u

1forj>2)>.

—_—,
TRyt

[h7 ql] = ]-’qzazhﬁl = 1,U1h1);1 - h_17 [Ujvh

g
Wl(MO) = <v17"'71}297Q17‘"JQSah;qqu"'qT: H[’Uzj_l,’l)gj],
7j=1
[h7QZ] = 17U1hU1_1 = h_l, [Uj,h] =1 fOI'j Z 2)

(NnI) M is non-orientable, the orbit surface F' is non-orientable of genus g and the valu-

ation is trivial.

The Seifert symbol for this class is

M = (Nnl,g;p1/0u,...,0:/ar).
In this case, If {v;} is a basis for 7 (F') of orientation reversing curves, then presen-
tations for the fundamental groups of M and M are

WI(M) = <U17--- yUgy 41, - - 'aQTyh; [Uj’h] = 17 [h7Q’L] = 17

g
Qg2 qr = Hﬁﬂ?ihﬁ" =1).
j=1
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m(Mo) = (vi,...,0¢,q1,---,Gr, h;[vj,h] =1,[h,q;] =1,
g

a2 g = [ Jo])-
j=1
(NnII) M is non-orientable, the orbit surface F' is non-orientable of genus g > 2 and if

{v;} is a orientation reversing basis for m;(F'), then e(v1) = +1 and e(v;) = —1, for
all j > 2.

The Seifert symbol associated to this Seifert manifolds is
M = (Nn]laga ﬁl/ab <. 'aﬁ?‘/aT)a

and, in this case, presentations for the fundamental groups of M and My are

g
7T1(M) = <U1)"'avg7q17"‘7QT7h;[h7qi]:17q1q2"'QT:HU_]2'7
j=1

qf‘ihﬁi =1,[v1,h] = 1,vjhv]71 = h~!, for each j > 2).

g
WI(MO) = <U17"'7v97Q17'”7Q7‘7h; [h7QZ} :1JQ1q2'”qT:HU]2‘7
j=1
[v1,h] = 1,v;hv; " = b, for each j > 2).
(NnIIT) M is non-orientable, the orbit surface F' is non-orientable of genus g > 3 and

if {v;} is a orientation reversing basis for m;(F'), then e(vi) = e(v2) = +1 and
e(vj) = —1, for each j > 2.

The Seifert symbol associated to these manifolds is
M = (Nn[ljag;ﬂl/ala cee 7ﬂ7"/a7’)'

The fundamental groups of M and My have the following presentations:

g
7T1(M) = <U17"’7vg7q17”'7q7"7h;[h7Qi]:17QIq2”'QT:Hv]2'7
=1

qf‘ihﬂz' = 1,[v1,h] =1, [va, h] = 1,vjhvj_1 = h~!Y, for each j > 3).

g
7'(-1(]\4'0) = (Ulu"'77)97Q17"'7Q7”7h; [h7Qi]:17Q1q2”'Q7’:H/U‘72')
7=1

U1, = 1, |v2, = L1,v; v = -, Ior eac ]Z .
h) =1, vz, h] = 1,vhv; " = h71, f hj>3
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The set {h,q;,v;} is called a standard system of generators of 7 (M) and of
7T1(M0)

The Seifert Classification Theorem is:

Theorem 3.2.1 [Se] Two Seifert symbols represent homeomorphic Seifert manifolds
by a fiber preserving homeomorphism if and only if one of the symbols can be changed into
the other by a finite sequence of the following mowves:

1. Permute the ratios.

2. Add or delete 0/1.
3. Replace the pair i/ oy, Bj/og by (Bi + kay) /oy, (B — kay) /v

Definition 3.2.2 The rational number eq(M) = >\, i/ is called the Euler num-
ber of M.

3.3 Coverings of Seifert manifolds branched along fibers

Definition 3.3.1 If M is a Seifert manifold and o : M — M is a branched covering
space of M, we say ¢ is branched along fibers if the branch set of ¢ is a finite union
of fibers of M.

Let {h;};_, be a set of fibers of M which contains all the exceptional fibers of M and
a finite number of regular fibers of M. Recall each fiber has a fibered neighborhood V;
fiber preserving homeomorphic to a fibered solid torus T'(3;/c;), for i = 1,...,r. Recall
My = M — UV;. Note that My is equal to M with all the exceptional fibers and some
regular fibers drilled out.

Remember also that ¢; = p(9V;), where p: M — F is the orbit projection.
A covering of M branched along fibers is determined by a representation w : m (M —
Ui_,h;) — Sy and therefore by a representation w : m(Mp) — Sy,.

To describe a covering of M branched along fibers our procedure is as follows:

e Let M be a Seifert manifold and consider the subspace M.

e Consider a representation w : m (Mp) — Sp,. This determines a finite covering space
wo = Mo — M.

e Let T; = ¢; X h. Let f; : 0V; — 1; be the glueing homeomolrphis~ms.~ Using o, lift
the homeomorphisms f; : 9V; — T; to glueing homeomorphisms f; : V; — T;, where
T; C ¢~ 1(T;) is a component.
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e In this way we obtain a covering ¢ : M — M of M branched along fibers.

Lemma 3.3.1 Suppose M is a Seifert manifold and w : m1(Mgy) — Sy is a transitive
representation. Assume w(h) # (1) and w(h) = o1 - - - ok, is the disjoint cycle decomposition

of w(h).

Then order(oy) = order(oy) = - -+ = order(oy).

Proof.

Note that the subgroup generated by h, denoted by (h), is a normal subgroup of 71 (My);
thus (w(h)) is normal in I'm(w). Let o1 = (a11,...,a1,m); then A = {a11,...,a1,,} is an

orbit of (w(h)).

Let as1 € {1,...,n}. We assume that as; appears in the orbit non-trivial of the cycle
0s. Since w is transitive there an o € m(Mp) such that w(a)(a1,1) = as1. Let us write

w(a)(A) ={as1,...,asm}

Also
(wh)) (w(@)(4)) = ({w(h))w(a))(A)
= (w(a){w(h))) (A) since (w(h)) is normal,
= w(a) ({w(h))(4))
w(a)(A) since A is an orbit of (w(h))
Thus {as1,...,asm} is an orbit of (w(h)) and o5 = (as1 - - asm)- O

Using Lemma (3.1.1) we can prove the following theorem which is our main tool to
study coverings of a Seifert manifold.

Theorem 3.3.1 Let M be a Seifert manifold and assume that ¢ : M — M is an n-fold
covering branched along fibers of M. Assume M is connected. Then there are coverings
¥ : M — M and ¢ : M’ — M branched along fibers such that the following diagram is
commutative

M P
\\
® M’

/L

M
Also if wy and w¢ are the representations associated to v and C, respectively, we have that
wy (') = e and we(h) = (1), where (1) is the identity permutation of Sy, e = (1,2,...,1t)
is the standard t—cycle, and h and h' are reqular fibers of M and M’', respectively.
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Proof.

Since M is connected then Wy, the representation determined by ¢, is transitive. If
w(h) = o1---0p is the disjoint cycle decomposition of w(h) in the proof of the previ-
ous lemma we also proved that each cycle o5 = (as1---asm) of w(h) gives us a set of
m, k—imprimitivity for Im(w), namely, Ag = {as1,...,asm}-

The quotient homomorphism ¢ : Im(w) — S({A1, ..., Ax}) satisfies that g(w(h))(A;) =
A;. Therefore g ow(h) = (A1), the identity permutation in S({A1,...,Ag}).

Also w(h) € Hy = ¢ 1(St(A1)) and 1 : Hy — S, = S(A1) sends h into an m—cycle.[

Therefore in order to understand the connected coverings of a Seifert manifold M
branched along fibers, we only need to study representations that send a regular fiber
h of M into the identity permutation and representations that send a regular fiber h of M
into an standard n—cycle.

3.3.1 The case w(h) = (1), the identity permutation

IftM = (Xz,g;01/c1,...,0:/a,), where Xz is a symbol in {Oo,On, No, NnI, NnII, NnIII},
we will write My for the manifold obtained from M by drilling out the fibers correponding
to the ratios B1/a1,. .., By /ay.

Along this section w : w1 (My) — S, is a transitive representation such that

w(h) = (1),
w(g) = oi1---0ig, fori=1,...,r and
w(vj) = pja1- Pisis
where 0;1 -0, and pj1---pjs,; are the disjoint cycle decompositions of w(g;) and
w(vj), respectively.

Let My = o~ (Mp).

Lemma 3.3.2 Suppose that M is a Seifert manifold with orbit surface F and n € N.
Let w : m1(My) — Sy, be a representation defined by

wh) = (1),

w(g) = oi1 -0y, fori=1,...,r and

w(vj) = Pj1-Pis;-
where ;1 - 74, and pj1---pjs; are the disjoint cycle decompositions of w(q;) and w(vy),
respectively.
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Let ¢ : M — M be the branched covering associated to w and let p : M — G be the orbit
projection of M. Assume g is the genus of G.

i) Suppose F' is non-orientable. If G is orientable, then

nR=g)+di b
2 )

g=1
otherwise,

T
f]:n(g—2)+2+m‘—z&.
i=1

” . . ~ nr—>.1_1 4
ii) If F is orientable, then g =1+ n(g — 1) + —=5=—.

Proof.

This is essentially the R{emann—Hurwitz formula. Let Fy be the orbit surface of My and
Gy be the orbit surface of My = ¢~ 1(M).

Note that ¢~ '(h) has n-components, hi,...,h,. Thus if Z,§ € hy, for some t €
{1,...,n}, we have p(Z) = p(y) and p(v(Z)) = p(e(y)); by the Universal Property of
Quotients we have a covering of n—sheets @ : Gy — Fy such that the following diagram is
commutative:

~ ©|
My — My
5 p
Go o - F,

w(g) = o410y, fori=1,...,r and
w(’l)j) = P51 P forj=1,...,9.

That is @ = ¢|Gp. Since w is transitive and w(h) = (1), F = ¢~ '(F) is connected and
let Fo = F'N M. It is easy to see that Fp is a horizontal surface, then p| : Fy — Gp is a
covering. Also we know that ¢| : Fy — Fj is a covering of n sheets.
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Then there exists a commutative diagram

Fy

\zil

ol Go

/s

Fo
Thus Fy & Gy and we conclude F 2 G.

Since Fy is a covering of n sheets of Fy, then X(Ep) = nx(Fp). Since w(q;) = 041 -~ 04,
therefore go_l(qi) has ¢; components; thus 0F, has 22:1 ¢; components for dFy = Ug;.
Hence

X(F) = nx(Fo) + > 4 (3.1)
=1

i) Suppose F' is non-orientable; then x(Fy) = 2 — g — r and Equation (3.1) has the
following form

XE) =n@2-g-r)+3 4
=1

If G is orientable, then G has Euler characteristic equal to 2 — 2g and

1_n(2—g)+zz:1€¢—nr
5 :

g =
If G is non-orientable, we know that x(G) = 2 — g. Therefore,

T
Gg=n(g—2)+2+nr—> &
=1

ii) When F' is orientable, G is also orientable. Since x(Fp) = 2—2g—r and x(G) = 2—2g,
by (3.1) we conclude
nr— 3 i i

g=14+n(g—1)+ >

O

Since My is an S'—bundle over F and w(h) = (1), then My is the pullback of My by
© : Gy — Fp and the following lemma follows.
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Lemma 3.3.3 If M is a Seifert manifold and w : w1 (My) — S, is a representation

defined by
o) = (),
w(gi) = oix -0, fori=1,...,r and
w(”ﬂ) = pj,l"'pj,Sjv

where 0;1 -7y, and pj1---pjs; are the disjoint cycle decompositions of w(q;) and w(vy),
respectively. Let ¢ : M — M be the covering determined by w.
Then € = p*(e), where e and é are the valuations of M and M, respectively.

Lemma 3.3.4 Let M be a non-orientable Seifert manifold. Let F' and G be the or-
bit surfaces of M and M, respectively. Consider the orbit projections p : M — G and
p: M — F. Suppose B : G — F is the induced covering of orbit surfaces. Recall that
© = ¢|G. Let Fy and Gq be the orbit surfaces of My and My = o Y (My), respectively.

If v is a simple closed curve in Fy and if © C Gy is the component of ¢~ (v) correspond-
ing to the cycle p = (a1,...,a,) of w(v), then:

(a) ¢|: p~ (D) — p~t(v) is an r-fold covering space.
(b) If e(v) = +1, then é(v) = +1.
(c) Suppose that e(v) = —1. Then é(v) = +1 if and only if order(p) is even.

Proof.
Note that p~!(v) and p~1(9) are S'-bundles over v and @, respectively.

(a) It is easy to see that ¢(p~ (7)) = p~'(v) because B(?) = v and the following diagram
commutes.

M();LP’MO

D p

GOLlpo

Thus ¢| : p1(#) — p~!(v) is a covering space and the representation associated to
this covering is ' : 71 (p~1(v)) — S, = S({a1,...,a,}) defined by

W'(h) = (1) and

() = p.

(b) Since p~!(v) and p~1(?) are S'-bundles over v and 9, respectively, | : p~1(7) — p~1(v)
is a covering, p(v) = v and e(v) = +1 then by Remark (3.1.1) we get é(0) = +1.
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(c) Note that r odd implies é(v) = —1 (Corollary 3.1.1). Thus é(9) = +1 only if r is even.
On the other hand, suppose  even and let p = (1--- 7). Define A; = {aj,as3,...,a,-1}
and Ay = {ag,a4,,...,a,}, thenq: Im(w') — Sz = S({A1, As}) sends v into (A1, Ag)
and we have ¢ o w = e. Therefore € is trivial and é(0) = +1 (See Remark 3.1.1) O

Lemma 3.3.5 Suppose that X and X' are n-manifolds with boundary. LetY andY’ be
connected sub-manifolds of 0X and 0X', respectively. If f: Y — Y’ is a homeomorphism,
then Z = X U X'/ f is orientable if and only if X and X' are orientable.

Proof.
Assume O, is an orientation of Z. Then O,|X and O,|X’ are orientations for X and
X', respectively.

Now, suppose O and O’ are orientations of X and X', respectively.

e If f is orientation reversing, it is clear that O U O’ is an orientation of Z.

e Is f is orientation preserving, then O U (—0') is an orientation for Z.

O

Suppose M is a Seifert manifold with orbit projection p : M — F. Let w : m1(Mp) — S, be
a representation such that

w(h) = (1),
w(g) = oi1---0iy, fori=1,...,r and

w(vj) = pj1 Pisis

where 01 --- 05, and pj1---pjs; are the disjoint cycle decompositions of w(g;) and w(v;),
respectively, and My is the Seifert manifold M with the exceptional fibers drilled out and
without some singular fibers that appear in the Seifert symbol, o;;, and p;; are cycles.

Assume ¢ : M — M is the covering of M branched along fibers associated to w. Let
p: M — G be the orbit projection of M and recall ¢|: G — F is a covering,.

Write Fy = p(Mp) and note that a presentation for 71 (Fp) is (v1,..., vk, q1,...,7 1 —=):
Let My = ¢~ '(Mp) and Gy = ¢ }(Fp). Note that Go = G N My and ¢| : Gy — Fp is a
covering.

In order to determine what class of Seifert manifold M belong to, we analyze two cases:
M orientable and M non-orientable. By Lemma (3.3.5), to see if M and G are orientable
we only need to determine the orientability of My = ¢~ !(My) and Gy = G N M.
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(a) The case M orientable.

Assume M = (Oo,g;01/ai,...,0r/ar) is an orientable Seifert manifold with ori-
entable orbit surface F' of genus g. Recall also that « > 1 and (; are coprime
numbers. The numbers ;/a; in the Seifert symbol are defined by a fibered torus
T(0; /i) which is a fibered neighborhood of some fiber h; of M. All the exceptional
fibers are contained in the set {h;}]_,. Recall that My = M — UT'(83;/;). Note that
OMy = U_,T;, where T; is a torus for ¢ = 1,...,r and U]_,7; denotes the disjoint
union of the tori T;. Let ¢; = p(T;), where p: M — F'is the orbit projection of M.

If {vz}?i | is a basis for 7 (F), a presentation for the fundamental groups of M and
My are

m(M) =2 (v1,...,029,q1,-..,¢, h; [h,v5] = 1, [h, ] =1,
g

Qg2 gr = [ [lvaj-1, 025, g 0% = 1.
j=1

WI(MO) = <U17-~7U2gaQ17-~7Qr7 [ [h QZ} - 7

h,v;] =
9
q192 -~ H V251, V2]

Theorem 3.3.2 Suppose that M = (Oo, g; /1/0a, ..., 0Br/car) and w : m(My) —
Sy is a transitive representation defined by

w(h) = (1),

w(g) = oi1---0iy, fori=1,...,r and
W(Uj) = Pyl Pjsjo fOT’j: L,...,2g;

where a1+ 04, and pj1---pjs; are the disjoint cycle decompositions of w(q;) and
w(vj), respectively, and {h,q;,v;} is a standard system of generators of My. Assume
that ¢ : M — M s the covering branched along fibers associated to w and p: M — G
is the orbit projection of M.

Then M € Oo, that is, M is orientable and G is orientable.

Proof.

Since M and F' are orientable, then My and Fy are orientable. Thus the first
Stiefel-Whitney classes of My and Fy, wi(Mp) and wq(Fp), respectively, are trivial.
Recall we have coverings ¢| : My — M and ¢| : Go — Fy, where My = ¢~ '(M) and
Go = G N My = ¢~ '(Fy). Then My and Gy are orientable since w; (M) and w;(Gy)
are (Remark 3.1.1). Therefore M is orientable and G is orientable. O
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Let M = (On,g;p1/0a,...,0:/ar) be a Seifert manifold: M is orientable and the
orbit surface F' of M is non-orientable of genus g. Again the numbers ;/q; in the
Seifert symbol are defined by a fibered torus T'((;/c;) which is a neighborhood of
some fiber h; of M. All exceptional fibers belong to the set {h;};_;. Consider the
manifold with boundary My = M — UT(5;/c;). Note that OMy = U!_,T;, where T;
isatorusfori =1,...,r. Let ¢; = p(T;), where p : M — Fis the orbit projection of M.

If {vi,...,v4} is a basis for 7 (F) such that each v; is orientation reversing, then a
presentation for the fundamental groups of M and M, are

Wl(M) = <Ula"°7vgaq17""qr7h;vjhv;1:h_17[h7qi]:]-a

g
a2 qr = [ Jof, ¢ h% =1).
j=1

m(Mo) = (vi,...,vg,q1,-. .,qr,h;vjhvj.’l =h"1 [h,qi] =1,

Theorem 3.3.3 Let M = (On,g;p1/a1,...,0:/a,). Suppose w : w1 (My) — Sp
s a representation such that

wh) = (1),
= 0j1--04, fori=1,...,r and
w(vj) = pj1-pis;s fori=1,...,9;

&
—
)
<3
~

|

where a1+ 04, and pj1---pjs; are the disjoint cycle decompositions of w(q;) and
w(vj), respectively, and {h,q;,v;} a standard system of generators of mi(My). As-
sume ¢ : M — M is the covering of M branched along fibers determined by w and
p: M — G is the orbit projection of M.

Then M € Oo (M and G are orientable) or M € On (M is orientable and G is
non-orientable).

Also M € Oo if and only if w|mi(Fy) trivializes the bundle of wi(Fy), where wy(Fp)
is the first Stiefel-Whitney class of Fy.

Proof.

Note that Mj is orientable since M is orientable. Then the first Stiefel-Whitney
class of My, w1 (M), is trivial. By Lemma 3.1.1, we have that the first Stiefel-Whitney
class of My = o Y (M), wl(Mo), is trivial. Thus M is orientable and we conclude M
is orientable.
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We have only two classes of orientable Seifert manifolds, namely, Oo and On. There-
fore M € Oo or M € On. By Corollary 3.1.2, the surface Gy is orientable (and

M € Oo) if and only if w|m; (Fy) has sets of g, 2—imprimitivity, A; and Ag, such that
the quotient homomorphism ¢ : I'm(w|m (Fpy)) — So satisfies that ¢ o w = wy(Fp). O

Example 3.3.1

Let M = (On,1;1/2). Since M € On, M is orientable and the orbit surface of M, F,
is non-orientable. The genus of F' is 1, that is, F is a projective plane. Let T'(1/2) be
the solid fibered torus homeomorphic (under a fiber preserving homeomorphism) to
a neighborhood of the only exceptional fiber. The boundary of My = M — T'(1/2) is
a torus T7. Let ¢ = p(T1), where p: M — F is the orbit projection of M. Let v; be
the generator of w1 (F') and let h be a regular fiber of M.

Note that

m(Mo) = (v, q1,h: [h,q1] = Lvghoy ' = h,qp = o)

and
WI(M) = <U17Q17h : [h7Q1] = 171}1}“}1_1 = hilﬂh - U%7Q%h = 1>

e Consider the representation w : m(Mp) — So defined by

w(h) = (1)7
w(gr) = (1,2) and
wv) = (1).

Assume ¢ : M — M is the covering determined by w. Note that the only sets
of 1,2—imprimitivity for Im(w|m;(Fp)) are Ay = {1} and Ay = {2}. It is clear
that ¢ : Im(w|mi(Fp)) — S2 = S({A1, Az}) holds the relation: g(vi) = (Ay), the
identity permutation in Sy. Thus M € On (Cf. Theorem 3.3.3).

e If we consider w : w1 (Mp) — Sy defined by

wh) = (1),
w(gr) = (1,2) and
wlvr) = (1,2),

then M is the 2-fold covering space of orientation and M € Qo (Cf. Theorem
3.3.2).

(b) The case M mon-orientable.
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(i) The case M € No.

Assume M = (No, g;(1/a1,...,0r/ar). Recall that in this kind of Seifert man-
ifolds M is non-orientable and the orbit surface F' is orientable of genus g; The
numbers [;/c; in the Seifert symbol are defined by a fibered torus T'(5/a;)
which is a fibered neighborhood of some fiber h; of M. The set of exceptional
fibers is contained in the set {h;}]_;. Recall My = M — UT(B;/c;). Note that
OMy = U]_,T;, where T; is a torus for ¢ = 1,...,r. Let ¢ = p(T;), where
p: M — F is the orbit projection of M.

If h is a regular fiber and {vj} 7, is a basis for 71 (F') then the valuation homo-
morphism e : w1 (M) — S, satisfies e(v1) = —1 and e(v;) = +1, for j > 2.

Fundamental groups of M and M, have the following presentations:

g
T (M) = (V1,0 029, @15+ 5 G5, Py quga - - - Hvzj 1, V2;),
]:

[h,qi] = 1,60 k% = 1,v1hvyt = b1, [uj, h] = 1 for j > 2).

g
7"-1(]\4’0) = <Ul,---aU2gaQI7---aanhSQIQ2' HUQJ 17”2]

[h,qi] = 1,v1hoy ! = b1 v, h] = 1 for Jj > 2).

The orbit projection of My is p| : My — Fy, where Fy C F is a surface. If
¢ : mi(Fy) — Sy is the valuation homomorphism in My then €’ = iy o e, where
e is the valuation homomorphism of M and i : My — M is the natural inclusion
map.

Theorem 3.3.4 Consider M = (No,g;B1/ai,...,0r/or) and suppose {v1, ..., vaq}
is a basis for the orbit surface F' of M. Assume that w : w1 (My) — Sy is a rep-
resentation defined by

w(h) = (1),

w(g) = oin1-0oig, fori=1,...,r and

W(Uj) = Pj1Pjsjs fO?”jZl,---,Qg,
where ;1 - 040, and pj1---pjs; are the disjoint cycle decompositions of w(q;)
and w(vj), respectively. Assume ¢ : M — M is the covering of M branched

along fibers determined by w and p : M — G is the orbit projection of M. Let
¢ : m(Fy) — Sa be the valuation homomorphism of My.

Then M € Oo (M and G are orientable) or M € No (M is non-orientable and
G is orientable). Furthermore M € Qo if and only if w|mi(Fy) trivializes the
bundle of €.
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Proof.

Recall My = ¢~ (My), Go = G N My = ¢~ }(Fy). We have coverings | : My —
Moy and | : Go — Fp. Since the first Stiefel-Whitney class of Fy, w1(Fp), is
trivial then wy(Go) is trivial (Remark 3.1.1). Therefore M € No or M € Oo.

By Remark 2.2.1.(b), the valuation homomorphism e : 7 (F) — Zay = S gives
us a covering @, : (F¢)o — Fy of 2-sheets.

Let €' : m(Fy — Zg = S5 be the valuation homomorphism of M. According to
Lemma 3.3.3 and Theorem 3.1.1, ¢’ is trivial if and only if w|m; (Fp) trivializes
the bundle of €. In the class No the valuation homomorphism is non-trivial.
Therefore M € Oo if and only if w|m (Fp) trivializes the bundle of ¢'. O

Remark 3.3.1 Let M = (No,g;31/a1,. .., Br/a,) with orbit projection p :
M — F. Suppose {vj}iil is a basis for w1 (F) and My = M — UT(5; /), where
T(Bi/ ;) is a fibered neighborhood of either a exceptional fiber or a regular fiber.
Recall Fy = F N My. Assume ¢ : M — M is an n—fold covering of M branched
along fibers, where M is connected. Let w : w1 (Mg) — Sy be the transitive repre-
sentation determined by ¢, and let h be a reqular fiber of M.

If w(h) = (1), the identity permutation in Sy, a useful criterion to determine if
M € No or M € Oo is the following:
1. If n is odd, then M e No

. Ifw(vy) has a cycle of odd order then M € No

2
3. If Im(w|m1(Fy)) is not g,2—imprimitive then M € No.
4

. f Im(w|m (Fp)) s g,Q—imprimitive, then M € Qo if and only if w|mi(Fy)
trivializes the bundle of €', where € : 7w (Fy) — Zo = So is the valuation
homomorphism of M.

Example 3.3.2

Let M = (No,1;1/2). The manifold M is non-orientable and F, the orbit surface
of M, is an orientable surface of genus 1. Note that M has exactly one exceptional
fiber h'. Then there exists a fibered neighborhood of A’ homeomorphic to the
solid fibered torus T'(1/2). Consider My = M — T(1/2) and {v1,v2} a basis for
m1(F). Note that dMj is a torus T7. Let ¢1 = p(T1), where p : M — F is the
orbit projection of M and let h be a regular fiber of M.

Presentations for the fundamental groups of My and M are
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m1(Mo) = (vi,v2,q1,h s vihv ™ = R [va, h] = 1, [h, 1] = 1,1 = [v1,v2])
and
(M) = (v1,v2,q1,h s vihv ™t = A1 [ug, bl = 1, [h,q1] = 1,1 = [v1,v2), ¢fh = 1).

e Let w:m(My) — Sy be the representation defined by

w(h) = (1),

wlvy) = (1,2)(3,4),
w(ve) = (1,3)(2,4), and
wlgr) = (1).

Suppose ¢ : M — M is the covering of M determined by w.

Observe that Ay = {1,3} and Ay = {2,4} are sets of 2, 2-imprimitivity for
Im(w|m (Fo)) such that ¢ : Im(w|m1(Fy)) — S({A1,As}) satisfies

q(v1) = (A1, Ag)
q(v2) = (A1), the identity permutation in S({A1, As}), and
q(q) = (A1)
On the other hand,
e(v1) = (1,2)=-1
e(ve) = (1) =+1, and
e(g) = (1) =+1L

Therefore M € Oo (Cf Theorem 3.3.4).
e Suppose w : 1 (My) — S3 is the representation such that

w(h) = (1),

wv) = (1,2,3)
wve) = (1,2,3) and
w(gn) = (1).

Let o : M — M be the covering of M determined by w. In this case M € No
because 3 is odd (Cf. Theorem 3.3.4).

(ii) The case M € Nnl.
Suppose M = (Nnl,g;31/ai,...,0r/a,). That is M is non-orientable, the orbit
surface F' is non-orientable of genus ¢ and the valuation is trivial. Consider
My =M —T(B;/a;), where T(5;/c;) is the solid fibered torus corresponding to
the ratio 3;/«a;. Note that My = U]_,T;, where T; is a torus for i = 1,...,r.
Let Fy = p(Mp) and ¢; = p(7T;), where p : M — F is the orbit projection of M.
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If h is a regular fiber of M and {v;} is a basis for m;(F) of orientation reversing
curves, then presentations for the fundamental groups of M and M, are:

WI(M) = <U17'-' yUgy 41y - - 'aQTyh; [Ujvh] = 17 [h7QZ] = 17

g
g2 qr = [Jof, g% =1).
j=1

@
=
I
—

m (M) = (vi,...,09,q1,-..,¢r, h;[vj, h] =1,[h, ¢

The valuation homomorphism of My, €' : w1 (Fy) — Sy, also is trivial.

Theorem 3.3.5 Let M = (Nnl,g;51/cu,...,0:/ar) be a non-orientable
Seifert manifold. Consider a representation w : w1 (My) — Sy, defined by

wh) = (1),

oi1 00, fori=1,...,r and
w(vi) = i1 Pis;

&
—
)
=T
~

Il

where o;1 -+ -0 4, and pj1--- Pj.s; are the disjoint cycle decompositions of w(g;)
and w(vj), respectively. Suppose ¢ :NM — M 1is the covering associated to w. Let
M — G be the orbit projection of M.

Then M € Qo or M € Nnl. Moreover, M € Oo if and only if w|m (Fy) trivializes
the bundle of wi(Fy), where wy(Fy) is the first Stiefel-Whitney class of Fp.

Proof.

Recall M, = 0 Y (Mp) and Gy = ¢ (Fp). Let é : m(Go) — S be the valua-
tion homomorphism of My. Since e is trivial we have € trivial by Lemma 3.3.3
and Remark 3.1.1. There are only two classes of Seifert manifolds having trivial
valuation homomorphism, namely, M € Oo or M € Nnl. Therefore M € Oo or
M € Nnl.

Since ¢| : G — F' is a covering, by Corollary (3.1.2), G is orientable if and only
if there are sets of §,2—imprimitivity, A; and Az, such that g o (w|m1(Fp)) =
w1 (Fp). Therefore M € Oo if and only if there are sets of 5, 2—imprimitivity,
Ay and Ag, such that g o (w|m(Fp)) = w1 (Fp). O

Example 3.3.3



CHAPTER 3. COVERINGS OF SEIFERT MANIFOLDS

Consider M = (Nnl,1;1/2). Suppose p : M — F is the orbit projection of
M. In this case, F' is a non-orientable surface of genus 1. Note that M has
exactly one exceptional fiber h’. Then there exists a fibered neighborhood of h’
homeomorphic to the solid fibered torus 7'(1/2). Consider My = M —T(1/2)
and let {v;} be a basis for 7 (F'). Note that My is a torus T1. Let Fy = p(Mpy)
and ¢; = p(T1), where p : M — F' is the orbit projection of M and let h be a
regular fiber of M.

Presentations for the fundamental groups of My and M are the following:

T (Mo) = (v1,q1,h: [v1,h] = 1, [q1,h] = 1,q1 = v})

and
m(Mo) & (v1,q1,h: [vr, ) =1, [q1,h] = 1,q1 = v}, ¢t h = 1).

e Assume that w : w1 (My) — Ss is the representation such that

wh) = (1),
w(gr) = (1,3,2) and
wv) = (1,2,3).

Let ¢ : M — M be the covering determined by w. Suppose G is the
0§bit surface of M. Then G is non-orientable because n is odd. Therefore
M € Nnl (Cf. Theorem 3.3.5)

o If w:m(My) — Sy is a representation defined by

wh) = (1),
w(Ql) = (173)(274) and
W(Ul) = (1327374)

Suppose ¢ : M — M be the covering associated to w and G is the orbit
surface of M.

Then Ay = {1,3} and Ay = {2,4} are sets of 2, 2—imprimitivity for Im(w|mi(Fp)),
such that g(vi) = (A1, A2) and ¢(q1) = (A1), the identity permutation in
S({A1,As}). Of course, wy (Fo)(v1) = (1,2) and wy (Fo)(g1) = (1). Therefore
M € Qo (Cf. Theorem 3.3.5).
(iii) The case M € NnIlI.
Suppose M = (Nnll,g;01/cu,...,0:/a,) and p : M — F' is the orbit projec-
tion. Since M € NnlIl then F' is non-orientable. Assume that the genus of
F is g. Write My = M — T(0;/c;), where T(f3;/c;) is the solid fibered torus
homeomorphic to a neighborhood of either a exceptional fiber or a singular fiber.
Then OMy = Ul_,T;, where T; is a torus for ¢ = 1,...,r. Let Fy = p(Mp) and
q;i = p(T;). If h is a regular fiber of M and {vj}?zl is a basis for 71 (F) of orien-
tation reversing curves, then presentations for the fundamental groups of M and
My are:
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g
7"-1(]\4) = <U1,. -y Vg, (41, - - -vqTah; [h)ql] = 1a¢]1¢]2 oy = ijza
j=1

g"hP =1,[v1, h] = l,vjhvjfl = h~!, for each j > 2).

g
WI(MO) = <vlv"')vqu17"'vqrah; [thl] :LQIQQ"‘Qr:HU?‘a
7=1

[v1,h] = l,vjhv;1 = h~!, for each j > 2)

Lemma 3.3.6 Suppose that M = (Nnll,g;(1/a1,...,0:/ay) andw : w1 (My) —
Sn 1s a representation such that

w(h) = (1),

oi1 00, fori=1,...,r and
w(v;) = pj1---pjs;, forj=1,...,9,

&
—
)
<
~

I

where 01+ 00, and pj1---pjs; are the disjoint cycle decompositions of w(q;)
and w(vj), respectively. Let ¢ : M — M be the covering associated to w and let
p: M — G be the orbit projection of M. Assume the valuation homomorphism
e:m(F) — Zo = Sy is non-trivial and M is non-orientable (i.e. M € NnII or
M e NnllI).

1. If the number of cycles of w(v1) having odd order is odd, then M € Nnll.
2. If the number of cycles of w(vy) having odd order is even, then M € NnIII.

Proof.

Note that v; is an orientation reversing curve in My because v; is orientation
reversing in Fy and e(vy) = +1. Then p~1(v1) is a 2-sided vertical torus T2. Let
N(p~'(v1)) be an open regular neighborhood of p~!(vy). Then M — N (p~*(v1))
is orientable for v,...,vg,q1,...,¢- and h are orientation preserving curves in
M.

Let @ be the components of ¢~!(v;) corresponding to p; ;. Then ¢~ 1(T?) =
LiLy (B x S1).

Suppose N(L(21,; x S)) is an open regular neighborhood of Li(7y; x S'). Tt is

clear that M — N(U(91; x S')) is orientable because T? is a Stiefel-Whitney
surface for My (Theorem 2.3.2).

Let PD : HY(M,Zy) — Hy(M,Z3) denote the Poincaré duality isomorphism
associated to M.
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Since ¢* (w1 (Mp)) = wi(Mp) then

PDuwy (M) = [~ (T?)]
Ly (D15 x S)]
U 1

(01,5 x S1)]

where possibly some classes [0; x S'] are trivial. Since the cycles p ; are disjoint
and the homology groups are abelian, without loss of generality, we may assume
that there is a k € {1,...,s1}, such that [T}] is trivial for all £ < j < s;. Thus
PDw; (M) = [911 x SV + [012 x S+ -+ + [0 x S']. Of course, if p; ; has odd
order then 1 < j < k since 77 ; is the core of a Moebius strip contained in Gy
and this is a non-separating curve in Go; consequently (9 ;) = 91, x St is a
non-separating surface in My and the class [~ (#;)] is non-trivial in Ho(Mp).

Let © be a simple closed curve in Gp homologous to v1,1 + --- + 91 % and note
that PDwi (M) = [6 x S1]; it means & x S! is a Stiefel-Whitney surface for My
and for M. Thus o x S! is a vertical torus which is a Stiefel-Whitney surface. Of
course, ¥ x S' is one-sided in My and M if and only if ¥ is one sided in Fy. By
Theorem (2.3.3), if the number of cycles of w(v1) having odd order is odd then
M € NnII; Otherwise, M € NnIII. O

Theorem 3.3.6 Assume that M = (Nnll,g;01/oa,...,Br/ay) and n € N.
Consider a representation w : w1 (My) — Sy such that

w(h) = (1),

gi1c 0, fori=1,...,r and
w(vy) = pj1-pis; fori=1,....9,

&
—
2
<t
~

I

where ;1 - 040, and pj1---pjs; are the disjoint cycle decompositions of w(q;)
and w(vj;), respectively. Let ¢ : M — M be the covering associated to w and let
p: M — G be the orbit projection of M. Let ¢’ : m (Fy) — Sy be the valuation
homomorphism of M.

(a) Suppose that n is an odd number.

(1) If w(v1) has an odd number of cycles of odd order, then M € NnlIlI.
(2) If w(vy) has an even number of cycles of odd order, then M € NnIII.

(b) Assume that n is an even number and that there exists v;, such that w(v;)
has at least a cycle of odd order.

(1) Suppose that the number of cycles of w(vi) having odd order is a non-
zero even number.
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If there exists k # 1 such that w(vg) has a cycle of odd order then
M € NnIII.

Otherwise, if for k # 1 each cycle of w(vy) has even order, then M e
NnI or M € NnlII.

Moreover M € Nnl if and only if w|m (Fy) trivializes the bundle of €'.

(2) If every cycle of w(v1) has even order, then M € On or M € NnIII.
Furthermore, M € On if and only if w trivializes the bundle of wi(My),
where wi(My) is the first Stiefel-Whitney class of M.

(c) If n is an even number and every cycle of w(v;) has even order, Jor j =
1,...,9, then M §é NnIl. In this case it is possible M € Oo, or M € On,
or M € No, or M € NnI or M € NnIIT .

Proof.
Suppose {v;} is a basis of orientation reversing curves for m;(F'). The val-
uation homomorphism e : m(F) — Zg = Sy is such that e(v;) = +1 and

e(vj) = —1, for j > 2.
Recall we have € : m(Fy) — S, the valuation homomorphism of My, and
wi(Fo) @ mi(Fy) — Sa, the first Stiefel-Whitney class of Fp, and wi(Mp) :
m1(Mo) — S2, the first Stiefel-Whitney class of My. Let € be the valuation
homomorphism of M.

(a) If n is an odd number. Corollary 3.1.1 applied to wi(My) and to wi(Fp)
give us that w; (M) and wi(Go) are non-trivial, where My = ¢~ (M) and
Go =GN M, = o Y(Fy). Therefore My and Gy are non-orientable Then
M and G are non-orientable. Applying Theorem 3.1.1 to the valuation ho-
momorphism e, we obtain that é, the valuation homomorphism of M, is
non-trivial. Therefore M € NnII or M € NnIII; The result follows from
Lemma 3.3.6.

(b) Recall {v;} is a basis of reversing orientation curves for m(F').

Since n is an even number and there exists v; such that w(v;) has at least one
cycle of odd order, then the orbit surface G of M is non-orientable (Corollary
3.1.1).

(1) Note that M is non-orientable since Corollary (3.1.1) applied to 6 =
wy (My) gives us wy(Mp) is non-trivial.
If there exists k # 1 such that vy has a cycle of odd order, then the val-
uation homomorphism of M, &, is non-trivial by Corollary 3.1.1 applied
to e. Since the number of cycles of w(v;) having odd order is even, by
Lemma 3.3.6 we obtain M € NnIII.
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If each cycle of w(vy) has even order, for all k& # 1, then M € Nnl or
M € NnlII and the result follows from Theorem (3.1.1).

(2) First note that Gy is non-orientable and the valuation homomorphism
of M, é, is non-trivial, by Corollary 3.1.2. Also, by Lemma 3.3.6, we
conclude M ¢ NnII. Thus M € On or M € NnIII. We can decide if
M € On applying Theorem (3.1.1) to 6 = w; (M) as required.

(c) If n is an even number and every cycle of w(v;) has even order, for all
j=1,...,9, then we have the following cases:

If Im(w|m (Mp)) and Im(w|mi(Fp)) are not g, 2—imprimitive, then w (Fp),

wi(Mp) and & are non-trivial by Theorem (3.1.1) applied to e, to wi(Mo)
and to wi(Fp). Therefore M and G are non-trivial. Since every cycle of
w(v1) has even order and € is non-trivial then M € NnIII by Lemma 3.3.6.

Assume I'm(w|m1(My)) is %’ 2—imprimitive. If wy (M) is trivial we have that

M € Oo or M € On. If w; ({\Zfo) is non-trivial, then M € No, or M € Nnl,
or M € NnIII. Note that M ¢ NnlII due to Lemma 3.3.6. O

(iv) The case M € NnlII

Let M = (NnlIl, g;01/a1,...,0r/a,) and let F' be the non-orientable orbit
surface of M. Assume that the genus of F' is g. Consider My = M — T'(0;/ ),
where T'(5;/a;) is the solid fibered torus homeomorphic to a neighborhood of
either a exceptional fiber or a singular fiber. Notice that My = U[_,T;, where
T; is a torus for i = 1,...,r. Let Fy = p(My) and ¢; = p(T;). Let h be a regular
fiber of M and {v; }5:1 be a basis for 71 (F) of orientation reversing curves.

The fundamental groups of M and Mj have the following presentations:

g
7T1(M) = <U1>-"7Ug7q17"'7Q7"ah;[h>Qi]:17Q1q2"'QT:HU]2'7
Jj=1

g"h% =1,[v1,h] = 1, [ve, h] = 1,vjhv;1 = h~1, for each j > 3).

g

w1 (M) = (vq,.. UG Qs Gy I h,qi] =1, 142 qr = HU]Z’
j=1

[v1,h] = 1, [va, h] = l,vjhvj_l = h~1, for each j > 3).

If e : 71 (M) — Zg is the valuation homomorphism of M, then e(v;) = e(ve) = +1
and e(vj) = —1 for j > 3.
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Recall 3 : H (M, Zy) — H*"Y(M,Z) is the Bockstein homomorphism associated
to the short exact sequence of coeflicients

0—>Z—7Z — Zy — 0.

Suppose that M € NnlII and consider a branched covering ¢ : M — M, then
Bwi (M) = 0 for fw; (M) = 0 and § is natural with respect to continuous func-
tions (¢« = Bps). Thus M € Ooor M € Onor M € Noor M € Nnl or
M € NnIII by Theorem 2.3.1 (and M € NnlII).

Theorem 3.3.7 Suppose M € NnlIl withp: M — F, the orbit projection
of M. Let n € N. Assume {v;} is a basis of reversing orientation curves for
m1(F) Let w : w1 (My) — Sp be a representation defined by

wh) = (1),

w(g) = oi1---0iy, fori=1,...,r and
w(vj) = pjai-pis;s forj=1,....9,

where 01 -+ 00, and pj1---pjs; are the disjoint cycle decompositions of w(q;)
and w(v]) respectively. Suppose ¢ : M — M 1is the covering determined by w and
p: M — G is the orbit projection of M. Let € : m(Fy) — Sy be the evaluation
Of MO .

(a) Ifn is an odd number, then M € NnIII.

(b) Suppose that n is an even number and there exists vj such that w(v;) has at
least one cycle of odd order.
(i) If each cycle of w(vi) and w(ve) has even order, then M € On or M €
NnIII. Also, M € On if and only if w trivializes the bundle of wi(Mp),
where wi(My) is the first Stiefel-Whitney class of M.
(ii) If w(v1) or w(ve) have a cycle of odd order, then M € Nnl or M €
NnlIll.

(c) If n is an even number and each cycle of w(vj) has even order, for all j =
1,...,g9, then M € Oo or M € No or M € Nnl or M € NniIll.

Proof.

Let € be the valuation homomorphism of M.
(a) If n is an odd number, then w;(Gp) and w;(Mp) are non-trivial by Corol-

lary 3.1.2; the homomorphism ¢ is also non-trivial by Theorem 3.1.1. Thus
M and G are non-orientable. Thus M € NnIII for é is non-trivial and

B(wi(M)) = 0.
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(b) Since there is one w(v;) having a cycle of odd order, then wi(Gyp) is non-
trivial because of Corollary (3.1.2). Thus G is non-orientable.

Recall e(vy) = e(v2) = +1 and e(v) = —1, for k > 3.

(i) Since v; # v1 and v; # vo, then € is non-trivial due to Corollary 3.1.1.
Therefore M € On or M € NnIII. By Theorem 3.1.1 applied to wy (M)
we can decide when M € On as stated.

(ii) Suppose that w(v;) or w(vz) have a cycle of odd order. Note that v;
and vy are orientation reversing curves in Mj since they are 1-sided
in Fy and e(v;) = e(va) = +1. By Corollary 3.1.1, w;(Mp) is non-
trivial and we conclude M is non-orientable. Recall 3 is non-orientable.
Therefore M € NnI or M € NnIII. Furthermore, M € NnlI if and

only if w|m (Fp) trivializes the bundle of €.

(c) Assume n is an even number and every cycle of w(v;) has even order for all
j=1,...,9. Then we have the following cases:

o If Im(w|m (Fp)) is g,Q—imprimitive. Then

1. Suppose w|m(Fy)) trivializes the bundle of €. Then é is trivial (The-
orem 3.1.1). Thus, if w|m;(Fp) trivializes the bundle of w;(Mp) then
M € 00. Otherwise, M € Nnl.

2. Suppose w|m(Fp)) does not trivialize the bundle of €’. Then € is non-
trivial (Theorem 3.1.1). Therefore, if w|m (Fp) trivializes the bundle
of wi(Fy), then wi(Go) and wi(G) are trivial (Theorem 3.1.1). Thus
G is orientable and we conclude M € No; Otherwise, if w does not
trivialize the bundle wy (Fp), then M € NnIII or M € On. Again we
can decide if M € On by means of Theorem 3.1.1 applied to w1 (Mp).

o If Im(w|m (Fp)) is not g, 2—imprimitive, we proceed as before in (2).

To finish our study about representations of Seifert manifolds that send a regular fiber
into the identity we prove the following Theorem which let us to compute the Seifert symbol
for M.

Theorem 3.3.8 Let M = (X, g; %, ey g—:) be a Seifert manifold with orbit projection
p: M — F, where Xx € {Oo,0n, No,NnI, NnII,NnIII}. Suppose that F is the orbit
surface of M and let g be the genus of F. Consider {v;} a basis for mi(F) such that every
curve vj is orientation reversing in F, if F' is non-orientable. Let h be a regular fiber of M.
Write My = M — U7_, Vi, where each V; is a fibered neighborhood of the fiber corresponding
to Bi/a;, fori=1,...,r. Note that OMy is the union of r tori, TyU---UT,. Let ¢; = p(1;),

fori=1,...,r. Letn € N and w : m(My) — Sy, be a transitive representation defined by
w(h) = (1),
w(g) = oi1---0iy, fori=1,...,r and

w(vj) = pj1-Pls;s
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where ;1 - 04, and pj1---pjs,; are the disjoint cycle decompositions of w(q;) and w(v;),
respectively. Let ¢ : M — M be the covering associated to w. Let p: M — G is the orbit
projection of M and G has genus g.

a) Suppose F' is non-orientable, then M s the manifold

Bia By, By1 By,

A1 Ay At A,

Yy, 5
where Yy € {Oo,0n, No,NnI, NnII, NnI1I} is determined by Theorems 3.3.3, 3.3.5,

3.8.6 and 3.3.7. If G is orientable, then

gzl_n(2—g)—|—z::1&—nr_
2 )

otherwise,

T
§=n(g—2)+2+m"—z&.
i=1

b) If F is orientable, then M is the manifold

Bi1 By, B, By,

Yy, g, ——, ..., Yo Y
( Vg Al,l Al,Zl Ar,l AT,ET

)7

where Yy € {Oo, No} is determined by Theorems 3.3.2 and 3.3.4; and

nr—yi 14

g=1+n(g—1)+ >

The numbers B; , and A; i, in the Seifert symbol for M in both (a) and (b) are given by:

Biy order(oi) - B

pe— d
' ged{a;, order(o; i)}’ an

Q;

Ai — 9
ok ged{oy, order(o; 1)}

where ged{a;, order(o; 1} denotes the greatest common divisor of o; and order(o; k).
Proof.
The genus of G, g, is determined by Lemma 3.3.2 and the class Yy is determined by
Theorems 3.3.2, 3.3.3, 3.3.4, 3.3.5, 3.3.6 and 3.3.7.

We compute the numbers B; j, and A; .
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Recall Gy = ¢~} (Fy) = G N My, where My = ¢~ ' (My). Then ¢| : G — F is a covering.
The representation associated to | : G — F is w| : m1(Fp) — Sp.

The manifold M is obtained from My by glueing a solid tori U; to T;0My with homeo-
morphisms f; : OU; — T; such that f;(m;) = ¢ hP , where m; is a meridian of OU;.

If i € {1,...,r} and we consider the torus T; = ¢; X h, then ¢~!(T;) has ¢; components
for ¢ : Gg — Fy is a covering and w(g;) is a product of ¢; cycles, in particular, o ~!(g;) has
£; components.

Let T; 1 be a component of o U(T;), for k € {1,... £;}. Note that Tj is a torus and
that ¢ induces a covering ¢;; : T;p — T; with order(o; ) sheets such that, if h is a
component of ¢~ !(h) and di i, is the pre-image of ¢; in the torus T; i, then {h, §; 1} is a basis

for m(T; ;) for ¢| : G — F is a covering. Note that §; ;, is the union of order(oo; ) liftings
7 order(

of ¢;. Then ; 1.(h) = h and ©; k(G %) = q; k) Gince {ﬁ,§i7k} is a basis for 71 (T} ), if
mi g C Lp:,i (m;) then there are A;; and B;}, integer numbers such that m;; = (jf,z’kiLBiv’“,
and

~ ~Ai -7 B d i Al .
ik(Mik) = i@ hP) = qf erios A B, (3.2)

On the other hand, associated to ;) we have a representation w;y : T; — Sorder(ai,k)
such that w(h) = (1), the identity permutation in Sorder(c; ;)» and w(qi) = Eorder(oi )
the standard order(o;x)—cycle in Sy ger( Note that w; ) satisfies that w;i(m;) =
w; k(g hP) = (0 5)%. This implies

Tik)"

@i,k(mi,k) _ m?rdeT((Ui,k)ai) _ (qiaz"OT‘de’f’((Ui,k)ai))(hﬁi‘OT‘deT’((Ui,k)ai))_ (3'3)

But in fact order(o;)*) = order (7.

= Ged{arorder(or )} hence by recalling Equations 3.2 and 3.3, we

obtain
order(o; 1) - Bi
Bi k — ’ ’
' ged{oy, order(o; )}
and '
A = &

)

a ged{a;, order(o; i)}

for Kk = 1,...,l; and either ¢ = 1,...,g, if F' is non-orientable or ¢ = 1,...,2g, if F is
orientable. [l

3.3.2 The case w(h) = ¢,, the stardad n-cycle

Suppose M is a Seifert manifold and h is a regular fiber of M, in this section we focus in
representations w : w1 (My) — Sy, such that w(h) = &, where &, is the standard n—cycle of
Sh.
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Definition 3.3.2 Let P be an n—sided reqular polygon with vertices labeled with the
numbers from 1 to n. A reflection p in S, is a permutation determined by a reflection
of P restricted to the vertices of P.

53 84 \ Ss
\

=1 3) =1 42 3) =1 5)2 4)

Figure 3.1: Reflections

Note that by definition a reflection p has order 2.

We say that o € S,, anticommutes with ¢, if oe,07! = 5;1.

Lemma 3.3.7 Leto € S,,. Then o anticommutes with e, if and only if o is a reflection.

Proof.

Let P be a n—sided regular polygon and o € S,, be a reflection. Note that &, is induced
by a rotation of P through an angle 27 /n; by inspections it is easy to see that o anticom-
mutes with &,.

In a n—sided regular polygon P we have n reflections, then if A = {h € S, : he,h~! =
e, '} we have that |A| > n.

Now we prove |A| = n.

Suppose p € A, then pe,p~! =¢; 1. Let - : S, x S, — S,, be the group action defined by
g-h = ghg~!. With this action the stabilizer of ¢, is the subgroup Stabilizer(e,) = {g € Sy, :
g en=-cnt=1{9€S,:geng ! =e,}. Consider S, /Stabilizer(s,) = {g(Stabilizer(e,)) :
g € S,} and note that r € p(Stabilizer(e,)) if and only if re,r~!' = pe,p~t. Thus
o(Stabilizer(e,)) = {r € Spl|re,r—t =¢;1} = A.

On the other hand, the orbit of €, under this action is the set O., = {h € Sylh =
geng or some g € S,}. Note that O, is the set of n—cycles for the conjugates of an
n-cycle have also order n.

We have a bijection S, /Stabilizer(e,) — O.,. Thenn! = |S,| = (|Stabilizer(e,)|)(|Oe,|).
Since |Og, | = (n — 1)!, we obtain |Stabilizer(e)| = n.
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Therefore |A| = n because |A| = |p(Stabilizer(ey,))| = |Stabilizer(e,)| = n. O

Lemma 3.3.8 Leto € S,. Then o commutes with €, if and only if there is k € Z such
that o = k.

Proof.

Consider again the group action - : S, x S,, — S,, given by g-h = ghg~!. Recall
from the proof of the previous lemma that |Stabilizer(¢)| = n. Since {(1),en,...,e" "1} C
Stabilizer(s,) we obtain Stabilizer(e) = {(1),n,...,e" '}, Therefore, o = ¢ for some
ke Z. ]

Lemma 3.3.9 (Torus Lemma)/N-RL] Let T be a torus and let h,q C T be a basis
for m(T). Let n € Z and assume that w : m(T) — Sy, is the representation such that

w(h) = e,
wlg) = ek,

where e, = (1,2,...,n) is the standard n—cycle. Suppose that ¢ : T T is the covering

space defined by w. Then there exist a basis h,§ C T for m(T) such that ¢(h) = h™ and
¢(q) = qh™*.

Proof.
Cut T along h and ¢ to get the identification square S shown in Figure 3.2.

+
h

h
Figure 3.2: Square S
The boundary of S is the union of h*,h_,¢* and ¢_. If S(1),...,S(n) are n copies of

S and the boundary of S(i) is the union of h(i)™, h(:)~,q(i)*, q(i)~, we can construct T by
glueing ¢(i)* C S(i) with g(g,,(7))” C S(g,(7)) and h(i)* with h(e, (7).
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h() * h@) * hk+1) " h(n-1)" h(n) *

X

I SK) see | see S0 am) -

X

h(1)~ h(2) — h(k+1) h(n-1)~ h(n) =

Figure 3.3: T

Suppose z € h(1)* and let y € h(k + 1)T be the image of x under the identification.
Let h = ¢~ '(h) and § a shortest curve in S(1) U - U S(n) connecting z and y, as shown in
Figure 3.3. Observe that h N § = {x}, then it is clear that h,§ C T is a basis for =1 (T). By
construction (k) = k™ and ¢(§) = gh™". O

Lemma 3.3.10 (Klein Bottle Lemma) Let K be a Klein bottle with 71 (K) = (h,v :
vhv™! = h=Y). Consider a representation w : m (K) — S, such that w(h) = en, where
en = (1,2...,n). Assume ¢ : K — K is the covering associated to w. Then w(v) is a

reflection p, the covering space;k is also a Klein bottle and, if p(1) = t, then there exists a
basis {h,v} for K such that (h) = h" and @(0) = vh~ (=1,

Proof.
Note that w(v)ew(v)™" = &1, for w(h) = e, and vhv™! = h™'. By Lemma (3.3.7),
w(v) is a reflection p. The surface K is a closed surface. Also x(K) = nx(K) = 0 for

X(K) = 0, where x(K) and x(K) are the Euler characteristic of K and K, respectively.
Thus K could be either a Klein bottle or a torus.

To construct K, cut K along h and v to get the identification square S shown in Figure
3.4.

The boundary of S is the union of h*,h~, v+ and v™. If S(1),...,5(n) are n copies of
S and the boundary of S(7) is the union of h(i)™, h(i)~,v(i)",v(i)~, then K is constructed
by glueing v(i)™ C S(i) along v(e, (7))~ C S(en(i)) and h(:)™ with h(p(i)).
_ Suppose = € h(1)" and let y € h(t)” be the image of 2 under the identification. Let
h = ¢~ 1(h) and ¥ be a shortest curve in S(1)U---U S(n) connecting x and y, as shown in

the Figure 3.5 Then go#(ﬁ) = h", pu(0) = vh~ =Y by construction.
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h

Figure 3.4: Square S

h() * h@)* heo* h(n-1)" h(n) *

vyt e G SK) SR S(n-1) s() v(n) =

W
v X
h(1)~ h(2) ~ h(t)™ h(n-1)~ h(n)~
Figure 3.5: T
Notice that
Qu(Ohth) = @u(®)ps(h)ou()pu(h)
_ (vh—(t—l))hn(h(t—l),U—l)hn
= oh™1pn
= vhv lvhv™' - whoT L A"
n—times
= h™"h" (because of the relation v;jhv —j=1 = h71)

= 1.
Thus oht~ = h~! for 4 is injective.

Observe that & intersects transversally ¢ only in one single point, thus K must be a
Klein bottle. Otherwise, {h, 7} would be a non-commuting pair in 7 (K), the fundamental
group of the torus K. Finally, {h, @} is a basis for 7 (K) because the complement of these
curves is a 2-disk, by construction. (I

Remark 3.3.2 Suppose M is a Seifert manifold with orbit projectionp: M — F. As-
sume F is of genus g. Let {h;}]_, be a set of fibers of M which contains all the exceptional
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fibers and a finite number of reqular fibers. Recall each fiber has a neighborhood V; fiber
preserving homeomorphic to a fibered solid torus T(3;/ o).

Write My = M — UV;. Note that we have a quotient p| : My — Fy, where Fy is a surface
with boundary. Recall Fy = F N My. The boundary of Fy has v components, one for each
component of OMy. Let qq,...,q, be the components of OFy and h be a reqular fiber in My.

Suppose {v;} is a basis for m(F') such that v is orientation reversing in F, if F is
non-orientable.

o Assume M € QOo, a presentation for m(Mp) is

WI(MO) = <’U17--~7'02‘g7q17-"7q’f7h; [havj] :17[h7QZ} :17

7j=1
Letw : m(Mp) — Sy be a representation such that w(h) = ey, where e, = (1,2,...,n).
Then w(vj) and w(q;) commute with e, for [h,v;] = [h,q] =1, j = 1,...,2g and
i=1,...,7, By Lemma (3.3.8), there are integer numbers k; and s; such that
w(g) = ek vi=1,...,r and

wv;) = ei,¥ji=1,...,2g.
In w1 (M) we have the relation qi - - - ¢ = [[[v2j—1,v25]. Then

wigr - g ([ lozj—1,025]) ") = e2F = (1).

Since €, has order n, there is an integer number p such that Y  k; = np. Define
Ky = ki1 —np and ki = k;, if j # 1. Then we get a representation w' : m1(Mo) — Sy,
such that

J(h) = en

(g) = eii,Vi =1,...,r and

W'(vj) = el,Vi=1,...,2g.

Clearly >_ ki =0 and ekt = exl because en has order n. Therefore w' = w and we can
always assume . k; = 0.

e If M € On, then a presentation for m (M) is

71-1(]\40) = <U17---aUg,CIh'--,CIrah;UjhU;l :h_lv[h7Qi] = 17
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Letw : m(My) — Sy, be a representation such that w(h) = &, where e, = (1,2,...,n).
Note that w(v;) anticommutes with e, that is, w(vj)e,w(v;)™! = 71, and w(q)
commute with €y, since we have that relations vjhvj_l =htand [h,q] =1, =
1,...,2g and i =1,...,r, By Lemmas 3.3.8 and 3.3.7 there are integer numbers k;

and reflections pj such that w : w1 (Mo) — Sy, is defined by

w(h) = &,
w(g) = ek vi=1,...,r and
wv;) = p;Vi=1,...,9.

Since we have the relation q1---qr = HUJQ in m(Mp) and reflections have order 2,

then
wlar- o[ == = )

Therefore there is an integer number p such that Y k; = np. Let k| = k1 — np and
K =kj, if j # 1. We define a representation ' : m1(Mo) — Sy, by

J(h) = en
J(g) = eﬁi,Vizl,...,r and
wl(vj) = ppVi=1...,9

Note that w' = w and Yk, = 0. Therefore we can always assume Y k; = 0.

If M € No, then a presentation for w(My) is

g
m(Mo) = (vi,... 029,01, Qe B quga < gr = [ [ [v25-1, 02,
=1

[h,qi] = Lorhoy ' = b7t Jog, B = 1 for j > 2).

Assume w : m(Mgy) — Sy is a representation such that w(h) = e,, where &, =
(1,2,...,n). Then w(vi) anticommutes with e, for vihvy*; w(v;) and w(q;) commute
with ey, for [h,v;] = [h,qi] =1, =2,...,2g and i = 1,...,r, By Lemma 3.3.7,
there is a reflection p1 and by Lemma 3.3.8 there are integer numbers ki, ..., ky,
52,53,...,529—1 and Sag such that w : w1 (My) — Sy, is defined by

wh) = e,

w(g) = eivi=1,...,r and

w(vy) = p

w(v)) = &l,Vji=2,...,2g.

. In m(My) we have the relation qi - - - ¢, = [ [[vaj—1, v2;]. Then

w(qr - "QT(H[U2j—1;U2j])71) = ex kit — (1),
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Thus there is an integer number p such that Y k; + 2so = np. Define ki = k1 — np
and ki = kj, if j # 1. We get a representation ' : m1(Mo) — Sy, such that

J(h) = ey

o(g) = sﬁi,Vizl,...,r and
W(v1) = pr

W'(v) = &d,Vj=2,...,2¢.

It is easy to see Y ki + 2sy = 0 and gkt = aﬁl for e, has order n. Therefore w' = w
and we can always assume Y k; + 2s9 = 0.

If M € Nnl, then a presentation for m(Mp) is

71'1(M0) = <?}1,. . .,Ug,ql,...,qr,h; [Uj,h] = 1, [h,qi] = 1,

g
Q492 qr = HU]2>
j=1
Suppose w : w1 (My) — S, is a representation such that w(h) = e,, where &, =
(1,2,...,n). Then w(v;) and w(g;) commute with ey, for [h,v;] = [h,q;] = 1. By
Lemma (3.3.8), j =1,...,2g and i = 1,...,r, there are integer numbers k; and s;
such that
wlg) = ek vi=1,...,r and
ww)) = e, ¥i=1,...,9.

Recall in w1 (Mp) we have the relation g - - g, = Hv]2 Then
w(q - 'qr(Hv?)*l) = el k=238 — (1),

Since €, has order n, there is an integer number p such thaty_ k;—2>" s; = np. Define
Ky = ki —np and kj = k;, if j # 1. Then we get a representation w' : m1(Mo) — Sy,
such that

J(h) = en
(g) = alff',W:l,...,r and
W'(v) = el,Vi=1,...,g.

Clearly > ki — 2% s; = 0 and ekv = 5,]3,1 because e, has order n. Therefore w' = w
and we can always assume Y ki —2 s; = 0.

If M € Nnll, then a presentation for m(My) is
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g
WI(MO) = <U17"'7v97Q17"‘ 7Q7“7h; [h7 QZ] = 1#]1‘]2 . H j2
Z

2).

Assume w : m(My) — Sy is a representation such that w(h) = e,, where &, =
(1,2,...,n). Then w(vi) and w(q;) commute with &,, for [vi,h] = [h,q] = 1; if j > 2,
then w(v;) anticommutes with €, because [h,v;] = [h,q] = 1, for j > 2. By Lemma
3.3.7 and 3.3.8, there are reflections p;, j > 2, and there are integer numbers k; and
s1 such that w : w1 (My) — Sy, is defined by

[v1,h] = 1,vjhvj =h~L, for each j

wlh) = e

wlg) = eivi=1,...,r
w(vy)) = ¢et, and

w(v;) = pj¥5=2,...,9.

Note that
voa(Ie) T =t =)

because of relation q1 -+ - ¢ =[] 0]2- and because reflections have order 2.

Thus there is an integer number p such that > k; — 2s1 = np. Define k| = k1 — np
and K = kj, if j # 1. We get a representation ' : m1(Mo) — Sy, such that

J(h) = ey

(g) = sﬁi,Vizl,...,r;
W(v) = e and

w/(Uj) = Py fO’f’j:2,...,g

It is easy to see Y ki —2s; =0 and ek = eﬁ since €, has order n. Therefore w' = w
and we can always assume Y ki — 2s; = 0.

If M € NnlIlI, then a presentation for m (M) is

g
WI(MO) = (Ulv -y Vg, 41, - 'aQWh; [h7QZ] = 1»‘11(12 ey = HU]Q‘7
[vi,h] =1, [ve, h] = l,vjhvj_l =h~Y for each j > 3).

Suppose w : m(Mp) — Sy is a representation such that w(h) = e,, where ¢, =
(1,2,...,n). Then w(vy), w(ve) and w(g;) commute with e, for [vi,h] = [va, h] =
(h,qi] = 1; if j > 3, then w(vj) anticommutes with e, for if j > 3 then [h,v;] =
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(h,q;)) = 1. By Lemma (3.3.7) and (3.3.8), there are reflections p;, j > 3, and there
are integer numbers k;, s1 and sa such that w : w1 (My) — Sy, is defined by

wh) = e,

wlg) = e vi=1,...r
wlvy) = &,

w(ve) = €2, and

w(vj) pi,Vi=3,...,9

Note that
w(ql e qT(H U?)_l) — gzki_2sl_252 — (1)

since q1 -+ Qp = HUJQ and because reflections have order 2.

Thus there is an integer number p such that > ki — 281 — 2s9 = np. Let k| = k1 —np
and K = kj, if j # 1. We obtain a representation w' : m1(Mo) — Sy such that

J(h) = ey

(g) = Eﬁ;,Vizl,...,r
W) = &,

W(vg) = &2, and

() = pj,Vi=3,...,0

It is easy to see Zk’ — 281 — 289 = 0 and skl = an for e, has order n. Therefore
W' =w and we can always assume > k; — 2s1 — 259 = 0.

Lemma 3.3.11 Let M be a Seifert manifold. Assume My, F and Fy are as in las
remark. Suppose h is a regular fiber of M and w : w1 (Mp) — Sy, is a representation such
that w(h) = &,,. Let ¢ : M — M be the covering of M branched along fibers of M determined
by w. Assume p: M — G is the orbit projection of M. Then F = G.

Proof.

Let My = o (M), Fy = ¢ Y(Fp) and Go = ﬁ(Mg). Then ¢| : Fy — Fy is a covering
space of n sheets. Since w(h) = e,, each fiber of My is the preimage of a fiber A’ in M
under . Thus the projection p| : Fy — Gy is also an n-fold covering for each fiber of M,
intersects Fy in n points. Suppose that z,y € Fy and p(#) = p(§). Then there is one fiber
h in My such that Z,5 € h N Fy. Also there is a fiber i/ of My such that ¢(h) = (k)™ for
w(h) = &,. We conclude ¢|(Z) = ¢|(9) for ¢|(Z), ¢|(g) € K’ N Fy and each fiber intersects Fy
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in one single point. Thus there exists the following commutative diagram:

Fy

\p‘l
ol Go
» Yo

Fo

The map B, : Go — Fp is defined as usual: Let 2 € G and consider Z € (p|)~!(x) then
Po(r) = p|(Z). Of course, Py(x) does not depend on 7 because (p|)((p|)~*(z)) is one point.
Note that @, is a covering of 1 sheet for p| : Fy — Gy and 0| : Fy — Fy are n—fold cover-
ings and for the diagram above is a commutative diagram. Thus i, is a homeomorphism.
Therefore there is a homeomorphism @ : G — F. ]

Note that in this context M is no longer a pullback.

Lemma 3.3.12 Let M be a Seifert manifold and o : M — M be a covering of M
branched along fibers. Assume p : M — G and p : M — F are the orbit projections
of M and M, respectively. Let h be a regular fiber of M. Let w : m1(My) — S, be the
representation determined by . Suppose w(h) = e,. Let Gy and Fy be as the proof of the
previous lemma. Let @y : Gy — Fy be the homeomorphism obtained in the previous lemma.
Recall 7T(F) — Zo 1s the valuation homomorphism. Let v C Gy and v C Fy be simple closed
curves such that py(0) = v.

Then:

(a) The map | : p~1(0) — p~Y(v) is an n—fold covering space.
(b) Ife(v) =+1, then é(v) = +1.

(c) Ife(v) =—1, Then é(v) = —1.

Proof.

(a) Note that the following diagram commutes.

MOLMO
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Thus ¢| : p~1(9) — p~1(v) is a covering space and w’ : w1 (p~1(v)) — S, = S({aq,...,a,}),
the representation associated to this covering, sends h into ¢,. Note that 5~1() and
p~1(v) are S'—bundles over the simple closed curves ¢ and v, respectively. Then

p 1(?) and p~!(v) are either tori or Klein bottles depending on the triviality of the

S —bundles.

(b) Since e(v) = 41, then p~!(v) is a torus and = 1(?) is a torus. Thus é(?) = +1 for
p1(9) is an S'—bundle over 9.

(c) If e(v) = —1, then p~*(v) is a Klein bottle. According to Lemma 3.3.10, we conclude

p1(9) is a Klein bottle and therefore é(7) = —1. O

Theorem 3.3.9 Assume M = (Oo, g;f1/ou, ..., 0/ /ay) is a Seifert manifold. Let v,
and q; be as in Remark 3.53.2 and w : w1 (My) — Sy, be a representation defined by

w(h) = &,
w(g) = ek Vi=1,...,r and
wv;) = ei,Vji=1,...,2g;

where > k; = 0.
Let ¢ : M — M be the covering defined by w. Then M € Oo.

Proof.

Let p: M — F be the orbit projection of M and let p : M — G be the orbit projection
of M. By Lemma 3.3.11, there exists a homeomorphism © : G — F. Then G is orientable.
Let My = o Y (My). Since ¢| : My — My is a covering and My is orientable, then My, and
consequently, M are orientable by Lemma 3.3.5 and Corollary 3.1.2. Therefore M € Oo.O

Theorem 3.3.10 Assume M = (On,g;f1/aq,...,0r/ar) is a Seifert manifold. Let v,
and q; be as in Remark 3.53.2 and w : m1(My) — Sy, be a representation defined by

wlh) = e,
w(g) = e vi=1,...;r and

wv)) = pj¥i=1,....,9;
where Y k; = 0 and p; is a reflection, for j =1,...,g.

Let ¢ : M — M be the covering defined by w. Then M € On.
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Proof.

Let p : M — F be the orbit projection of M and let p : M — G be the orbit projection
of M.

By Lemma 3.3.11, there exists a homeomorphism @ : G — F. Then G is non-orientable.
Let My = ¢~ 1(Mp). Since ¢ : My — My is a covering and My is orientable, then My is
orientable; M as also orientable by Lemma 3.3.5 and Corollary 3.1.2. Therefore M € On.O

Theorem 3.3.11 Assume M = (No,g;(1/aq,...,0:/ar) is a Seifert manifold. Let v,
and q; be as in Remark 3.3.2 and w : w1 (My) — S, be a representation defined by

wh) = ey

w(g) = e Vvi=1,...,r and
w(vl) = p1

wv)) = &l Vji=2,...,2g;

where > ki + 2s2 = 0 and p1 is a reflection. Suppose p1(1) = t1{1,...,n}.
Let ¢ : M — M be the covering defined by w. Then M € No.

Proof.

Let p: M — F be the orbit projection of M and let p : M — G be the orbit projection
of M. Recall e : 71 (F) — Zs, the valuation homomorphism of M, is defined by e(v1) = —1
and e(ve) = +1, for i = 2,...,2¢g. By Lemma 3.3.11, there is a homeomorphism @ : G — F.
Thus G is orientable. Let {v] ?il be a basis for 71(G) such that $(v}) = vj. By Lemma
(3.3.12), the map ¢| : ﬁ_l(v;) — p~1(v;) is a covering and é(v}) = e(vy), for j =1,...,2g,
where € : m1(G) — Zs is the valuation homomorphism of M. Therefore M € No. ]

Theorem 3.3.12 Assume M = (Nnl,g;(1/au,...,0r/a) is a Seifert manifold. Let
v;j and ¢; be as in Remark 3.3.2 and w : m(My) — Sy, be a representation defined by

wlh) = e,
w(g) = ki vi=1,...,r and
w;) = el ,Vi=1,...,9;

where Y ki —2) s; =0.
Let ¢ : M — M be the covering defined by w. Then M € Nnl.

Proof.
Let p: M — F be the orbit projection of M and let p : M — G be the orbit projection
of M.
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Recall {v;} is a basis of orientation reversing curves for m (F) and e : m(F) — Zo,
the valuation homomorphism of M, is trivial. By Lemma 3.3.11, there is an homeomor-
phism @ : G — F. Thus G is non-orientable. Since % is a homeomorphism, there exists a
basis {v}}9_, of orientation reversing curves for m(G) such that P(v}) = v;. By Lemma
3.3.12, the map ¢| : ;5_1(1);.) — p~Y(vj) is a covering and € : m(G) — Zsg is trivial, where
¢ : m(G) — Zy is the valuation homomorphism of M. Therefore M € Nnl. O

Theorem 3.3.13 Assume M = (Nnll,g;01/a1,...,0r/ar) is a Seifert manifold. Let
vj and g; be as in Remark 3.3.2 and w : w1 (Mo) — Sy be a representation defined by

w(h) = e,

wlg) = ebivi=1,...r
wvy) = €, and

wvj) = pjVi=2,...,9;

where Y k; — 251 =0 and p; is a reflection, for all j =2,...,g.

Let ¢ : M — M be the covering defined by w. Then M € NnIl.

Proof.

Let p: M — F be the orbit projection of M and let p : M — G be the orbit projection
of M.

Recall {v;} is a basis of orientation reversing curves for 7 (F) and e : 7 (F) — Zg, the
valuation homomorphism of M, is defined by e(v1) = +1 and e(v;) = —1, for j =2,...,g.
By Lemma 3.3.11, there is an homeomorphism @ : G — F. Then G is non-orientable. Also
there exists a basis {v] ?:1 of orientation reversing curves for 71(G) such that p(v}) =
vj,because P is a homeomorphism. By Lemma 3.3.12, the map ¢| : ﬁ_l(v;) — p~(vy)
is a covering and é(v;) = e(v;), for j = 1,...,g, where é : m(G) — Zs is the valuation
homomorphism of M. Therefore M € NnIl. O]

Theorem 3.3.14 Assume M = (Nnlll,g;01/a1,...,0Br/ar) is a Seifert manifold.
Let vj and g; be as in Remark 3.5.2 and w : m (Mp) — S, be a representation defined by

w(h) = e

wlg) = e vi=1,...r
wlv) = &,

w(ve) = €2, and

wvj)) = pjVi=3,...,9

where Y k; — 2s1 — 2s9 = 0 and p; is a reflection, for j =3,...,g.

Let ¢ : M — M be the covering defined by w. Then M € NnIII.
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Proof.

Let p : M — F be the orbit projection of M and let p : M — G be the orbit projection
of M.

Recall {v;} is a basis of orientation reversing curves for 7 (F) and e : 71 (F) — Zg, the
valuation homomorphism of M, is defined by e(vi) = +1 and e(v;) = —1, for j =2,...,g.
By Lemma 3.3.11, there is an homeomorphism @ : G — F. Then G is non-orientable. Also
there exists a basis {v] ?:1 of orientation reversing curves for 71(G) such that $(v}) = vj,
for ¥ is a homeomorphism. By Lemma 3.3.12, the map ¢| : ]3*1(1}9) — p~1(v;) is a covering
and é(v;) = e(v;), for j =1,...,g, where € : m(G) — Zs is the valuation homomorphism
of M. Therefore M € NnIII. O

Corollary 3.3.1 Let M = (Xz,g9;01/0a,...,0./Br) and My as in Remark 7?7 Assume h
is a regular fiber of M. Let w : w1 (My) — Sy, be a representation such that w(h) = e, and
let o : M — M be covering space determined by w.

Then M is in the same class of M.

Lemma 3.3.13 Suppose M = (Oo, g; 51/, ..., B /) is a Seifert manifold. Assume
h is a reqular fiber of M. Let w : m1(Mg) — Sy, such that w(h) = €, wheree, = (1,2,...,n).
By Remark 3.3.2, w : w1 (Mp) — Sy, is defined by

w(h) = £&n
w(g) = éﬁi‘,W:l,...,T and
w(v;) = el Vi=1,...,2¢;

where vj and g; are considered as in Remark 3.3.2 and ) k; = 0.
Let ¢ : M — M be the covering defined by w.

Then there are an orbit surface Gy of My and a basis O, ... , Vg for m(Gy) and curves
i in the boundary of Giy such that p4(q;) = qih ™k, 04 (V) = vjh™%, for all j.

In particular, we have an orbit surface G' of M such that v1, . . . , g s a basis for m (G').

Proof.

Let p : M — F be the orbit projection of M and let p : M — G be the orbit projection
of M.

Recall Fy = p(Mp). By Lemma 3.3.11, there exists a homeomorphism @, : Gy — Fop,
where Fy = p(Mp) and Gy = p(p~"(Mp)). Then there exists a basis {v}, ¢}, where
j=1...,2gand i = 1,...,r, for m(Go) such that $,(v;) = v; and Py(q;) = gi, for
allj=1,...,2¢gand fori=1,...,r.
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Recall e : 1 (F') — Za, the valuation homomorphism of M, is trivial. By Lemma 3.3.12

é(vj) = é(g;) = +1, where € : m1(G) — Z2 is the valuation homomorphism of M.

By Lemma 3.3.12, ¢| : p'(¢}) — p~1(g) is a covering space; using Lemma 3.3.9 we
~ /
i

obtain a basis {h, ¢} for 71(p"(¢})) such that @4 (h) = h" and @4(G) = g:h "

Analogously, there is a basis {#;, h} for m (;5_1(03-)) such that g4 (h) = h™ and @4 (v;) =

v;h™%, for all j. Note that, by construction, v; and ¢; intersect every fiber of 15*1(1);) and
P 1(q}), respectively, in exactly one point.

Since h commutes with v;, for j = 1,...,2g, we obtain

qh k.. QThikT(H[UQZfla 021])71

h=2kigy g ([T[var—1, var]) ™" (recall 3" k; = 0.)
a - ([ va-1, Uzz])fl

1,

o (@1 G ([T[o2j-1, 025]) ")

121 IR

where all homotopies are reldI. Thus g - - - G-([[[D2j—1, D2j]) ~* = 1 for ¢ is injective.
Then the curves ¢, ..., ¢ span a surface G, in My. After some isotopies of Gf, in M

fixing DG}, we obtain G} is an orbit surface. After filling the holes of My, G} gives rise to

G’ as required. O

Lemma 3.3.14 Suppose M = (On, g; 01/, ..., Br/ay) is a Seifert manifold. Assume
h is a regular fiber of M. Let My be as in Remark 3.53.2 and w : w1 (My) — Sy, such that
w(h) = ey, where e, = (1,2,...,n). By Remark 3.53.2, w: w1 (My) — Sy, is defined by

wh) = e,
w(g) = e vi=1,...,r and
w(vy) = p;Vi=1,....9

where Y k; =0 and pj is a reflection, for j =1,...,g. Suppose p;j(1) =t; € {1,...,n},
forj=1,...,g.

Let ¢ : M — M be the covering defined by w.

Then there are an orbit surface Gy of My and a basis v1, . . . ,0g for m(Gy) and curves
Gi in the boundary of Gy such that w4 (G;) = ¢;h ™", pu(v;) = v;h= L= for all j.

In particular, we have an orbit surface G' of M such that vy, . . . , g s a basis for m (G').

Proof.
Let p: M — F be the orbit projection of M and let p : M — G be the orbit projection
of M.
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Recall Fy = p(Mp) and {v;} is a basis of orientation reversing curves for 7 (F). By
Lemma 3.3.11, there exists a homeomorphism @, : Gy — Fpy, where Fy = p(My) and
Go = p(¢~1(Mp)). Then there exists a basis {vi,qi}, where j = 1,...,gand i =1,...,7,
for m1(Go) such that @y (vi) = v; and Py(q;) = ¢;, forall j=1,...,gand fori =1,...,7.

Recall e : 71 (F) — Zg, the valuation homomorphism of M, is defined by e(v;) = —1,
for j =1,...,9, and e(q;) = +1, for i = 1,...,r. Let é : m(G) — Zy be the valuation
homomorphism of M; by Lemma 3.3.12 we have that ¢ : P 1(q}) — p~1(g) is a covering,
é(v;) = —1 and é(g;) = +1.

From Lemma 3.3.9 it follows that we have a basis {h, g} for m (5~ '(q)) such that
o (h) = h" and ou(q;) = gh™".

Recall p;(1) = t;. By Lemma 3.3.10 there is a basis {0, h} for Wl(ﬁfl(vg-)) such that

go#(il) = h" and @4 (v;) = vjh_(tj_l), forj=1,....,9.

Note that, by construction, v; and ¢; intersect each fiber of ;5_1(1);) and p~1(q}), respec-
tively, in exactly one point.

Since h anticommutes with v;, we obtain vjh*(tjfl) = h(tﬂ'*l)vj and vjh(tj -1) =
h_(tf_l)”j, for j=1,...,2g9. Then vjh_(tj_l)vjh(_(tf_l)) = (tf_l)_(tf_l)v]z = vjz.

Note that

oy (@ @153

12

qih™F - g =P (T (vjh == 1))~
h=Xkigy - qo([Tvjh~ G Doyh=EG=D)=1 ] (recall 3 k; = 0.)
q g (1o

1R

1.
Thus ¢1--- ¢ (]| 17]2-])_1 ~ 1 because for ¢4 is injective.
Then the curves qi, ..., ¢ span a surface G, in My. After some isotopies of G| in M
fixing 0GY), we obtain Gj, is an orbit surface. After filling the holes of My, G}, gives rise to
G’ as required. O

Lemma 3.3.15 Suppose M = (No, g; 51/, ..., B /a.) is a Seifert manifold. Assume
h is a regular fiber of M. Let My be as in Remark 3.3.2 and w : w1 (Mp) — S,, such that
w(h) = ey, where e, = (1,2,...,n). Let w: w1 (My) — Sy be a representation is defined by

€

(h) = e&n

() = ebivi=1,...,r and
(v1) = m

(vj)) = &7,¥ji=2,...,2g;

€ & &
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where > ki + 2s9 = 0 and py is a reflection. Suppose p1(1) =t1 € {1,...,n}.
Let ¢ : M — M be the covering defined by w.

Then there are an orbit surface Gy, of My and a basis 01, . . . , g for m(Gp) and curves g;
in the boundary of Gly such that w4 (G;) = ¢h™, wu(v1) = vih~ M~ and g4 (v;) = v;h ™%,
forj=2,...,2g.

In particular, we have an orbit surface G' of M such that 0y, . . . , Vg is a basis for m (G').

Proof.

Let p : M — F be the orbit projection of M and let p : M — G be the orbit projection
of M.

Recall Fy = p(My). By Lemma 3.3.11, there exists a homeomorphism @, : Gy — Fo,
where Fy = p(Mp) and Gy = p(p~*(Mp)). Then there exists a basis {v}, q;}, where
j=1...,gand i = 1,...,r, for m(Go) such that Py(vj) = v; and Py(q;) = g, for
j=1,...,9and fori=1,...,r.

Recall e(v1) = —1, e(vj) = +1, for j = 2,...,2g, and e(g;) = +1, for i = 1,...,7,
where e : 7 (F) — Zy is the valuation homomorphism of M. Let é : m(G) — Za be
the valuation homomorphism of M; by Lemma 3.3.12 we have that ol ) — pHa)
is a covering space, é(vy) = —1, é(vj) = +1,for j = 2,...,2g and é(q;) = +1,fori =1,..., 7.

From Lemma 3.3.9 it follows we have basis {h,v;} and {h,§} for Wl(ﬁ_l(v;)) and

wl(ﬁfl(qg)), respectively, such that go#(ﬁ) = h", pu(0;) = vjh™% and pu(§;) = gih ™",
forj=2,...,2¢gand for:=1...,r.

Recall p1(1) = t;. By Lemma 3.3.10 there is a basis {01, h} for 7 (p~'(v})) such that
@4 (h) = ™ and pu(v1) = vih~ =Y. By construction, 4; and §; intersect each fiber of

ﬁ_l(vé-) and p~1(q}), respectively, in exactly one point.

Since h anticommutes with v; we obtain vy 'h% = h=%iv7 !, Then vih~ 1= Dygh=s2pti=Dy I ps2grt =
v1v2vflv51h252 because h commutes with vs.

Thus

o <q~1 . qr(ngl[@Qj_l,ﬁgj])A) ~ b g h T (T [ (D2 1), 0 (020)]) 7
B kg, ... 4 (151 [v2j-1, vo;|h252) =1
B Skig, Cgeh 2 ‘?:1[@2;'—1,1}23‘])_17 (since [gi, h] = 1)
h—zki_282q1 .. 'Qr(H?:l[UZJ'*l’ U2j])_1
1 (for > ki +2s2 = 0).

1

12

12

12
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Thus 1 - - G- ([T[02j-1, D2;]) ~F ~ 1 for ¢y is injective. Then the curves gy, ..., G, span
a surface G, in My. After some isotopies of G, in M fixing dG{,, we obtain G}, is an orbit
surface. After filling the holes of My, G}, gives rise to G’ as required. O

Lemma 3.3.16 Suppose M = (Nnl,g;51/ou,...,0r /o) is a Seifert manifold. As-
sume h is a reqular fiber of M. Letw : w1 (My) — Sy, be a representation such that w(h) = ey,
where €, = (1,2,...,n). By Remark 3.3.2, w : m1(Mo) — Sy, is defined by

wlh) = e,
w(g) = ekivi=1,...,r and
wv) = el ,¥i=1,...,9.

where Y ki —2% s; =0.
Let ¢ : M — M be the covering defined by w.

Then there are an orbit surface G, of My and a basis o1, . . . , Vg for m(Gy) and curves
i in the boundary of Gjy such that p4(G;) = gh7F 04 (7)) = vjh_(sf), forallj=1...,g.

In particular, we have an orbit surface G' of M such that v1, . . . , g s a basis for m (G').

Proof.

Let p : M — F be the orbit projection of M and let p : M — G be the orbit projection
of M.

Recall Fy = p(Mp) and {v;} is a basis of orientation reversing curves for 71 (F). By
Lemma 3.3.11, there exists a homeomorphism @, : Gog — Fy, where Fy = p(My) and
Go = p(¢~1(Mp)). Then there exists a basis {v},q;}, where j =1,...,gand i =1,...,7,
for m1(Go) such that By(v}) = v; and y(q;) = ¢, forall j =1,...,gand fori =1,... 7

Recall the valuation homomorphism of M, e : 71 (F) — Zo, is trivial. Let € : m(G) — Z2
be the valuation homomorphism of M; by Lemma 3.3.12 we have that ¢| : 571(¢}) — p~(¢:)
is a covering, é(vj) = é(q}) = +1,for j=1,...,gandi=1,... 7

From Lemma 3.3.9 it follows we have a basis {h, ; } for 71 (5~ (q/)) such that p4(h) = h™
and ¢y (@) = gh ™.

Analogously, there is a basis {#;, h} for m (;5_1(1;3-)) such that g4 (h) = h™ and 4 (7)) =
v;h™%, for j = 1,...,g. Note that, by construction, v; and ¢; intersect each fiber of 13*1(1)3»)
and p~1(q}), respectively, in exactly one point.

Since h commutes with v; and ¢;, then:
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qh™ - geh R ([ (vjh™%9)%)

h— 2 kit23 55, g ([To3) ™!, (recall Yo ki — 23755 =0.)
q g (ITvd) 7,
1.

S
B
—
<
=
X
S
-
<3
S~—
_
~
1

1R IR

Thus ¢1--- ¢ (][ 17]2-)_1 ~ 1 for ¢4 is injective.

Then the curves qi,..., ¢ span a surface G{) in My. After some isotopies of Gf in M
fixing 0GY), we obtain Gj, is an orbit surface. After filling the holes of My, G}, gives rise to
G’ as required. O

Lemma 3.3.17 Suppose M = (Nnll,g;p1/c, ..., 0 /o) is a Seifert manifold. As-
sume h is a regular fiber of M. Let w : m(Mp) — Sy, be a representation such that w(h) = &y,
where e, = (1,2,...,n). By Remark 3.3.2, w: w1 (My) — Sy, is defined by

wh) = en
w(g) = ehivi=1,...n
wlvy) = &,
w(vy) = pj,Vi=2,...,9;

where Y k; —2s1 = 0 and p; is a reflection, for j = 2,...,g9. Assume p;j(1) = t;, for
1=2,...,9.

Let ¢ : M — M be the covering defined by w.

Then there are an orbit surface Gy of My and a basis O, ... , g for m(Gy) and curves
Gi in the boundary of Gl such that vu(G) = qh ™", pu(@1) = vih=CY and pu(d;) =
vjh*(tﬂ'*l), forallj=2...,g.

In particular, we have an orbit surface G’ of M such that oy, . . . , g 15 a basis for m (G').

Proof.

Let p : M — F be the orbit projection of M and let p: M — G be the orbit projection
of M.

Recall Fy = p(Mp) and {v;} is a basis of orientation reversing curves for 7 (F). By
Lemma 3.3.11, there exists a homeomorphism @, : Go — Fy, where Fy = p(My) and
Go = p(¢~1(Mp)). Then there exists a basis {v},q;}, where j =1,...,gand i =1,...,7,
for m1(Go) such that Fy(v}) = v; and Py(q;) = ¢, forall j =1,...,gand fori =1,... 7

Recall also the valuation homomorphism of M, e : w1 (F') — Za, is defined by e(v;) = +1
and e(vj) = —1, for j = 2,...,9. Let € : m;(G) — Z3 be the valuation homomorphism of
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M; by Lemma 3.3.12 we have that ¢| : p~(¢}) — p~(g;) is a covering, &(v}) = é(¢}) = +1,
fori=1,...,r, and é(v;.) =-1,ifj=2,...,9.

By Lemma (3.3.9), we have basis {h,1} and {h, G} for m (p~1(v})) and m1 (5~ (q})),
respectively, such that p4(h) = h", @4 (01) = v1h™" and px () = ¢;h 7% . Note that there
is also a basis {0;, h} for Wl(ﬁ_l(vé)) such that @ (h) = h" and pu(v;) = v;h~ %=1 for

j=2,...,g, for Lemma 3.3.10. By construction, v; and ¢; intersect each fiber of p'_l(v;-)

and p~1(q}), respectively, in exactly one point.

Since h anticommutes with vy, then h_(tj_l)vj = Ujh(tj_l) and h_QSlvj = ’UthSl. Con-
sequently h_(tj_l)vjh_(tj_l) = vj, h_2slv]2- = v?h_%l and

12

@rh™ g b (o h =) TSy wjh= (6 Dugp 7 D)
~ bkt g ([T 0f) 7Y (recall ks — 251 = 0.)
~ g q([Tv?) 71,

PH <¢.?1 T er( =1 77]2')_1>

1.
Thus ¢1--- ¢ (][ 17]2-)_1 ~ 1 for ¢4 is injective.
Then the curves qi, ..., ¢ span a surface G, in M. After some isotopies of G| in M
fixing 0G(), we obtain Gj, is an orbit surface. After filling the holes of My, G}, gives rise to
G’ as required. O

Lemma 3.3.18 Suppose M = (Nnlll,g;(1/oq,...,Br/ay) is a Seifert manifold with
orbit projection p : M — F. Assume h is a regular fiber of M. Let w : m(Mpy) — Sp
be a representation such that w(h) = e,, where e, = (1,2,...,n). By Remark 3.3.2, w :
m1(My) — Sy is defined by

wh) = e

w(g) = ehivi=1,...n
wv)) = &,

w(ve) = €2, and

w(vj) = pjVi=3,0

where Y k; — 251 — 259 = 0 and pj is a reflection, for j =3,...,g9. Assume pj(1) =t;, for
71=2,...,9.

Let ¢ : M — M be the covering defined by w.

Then there are an orbit surface Gy, of My and a basis o1, . . . , g for m(Gy) and curves
i in the boundary of Giy such that ¢4 (G;) = qih ™%, (1) = v h~ (1) o4 (U2) = voh~(52)
o4 (0;) = vjh*(tjfl), forallj=3...,g.
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In particular, we have an orbit surface G’ ofM such that vy, . ..,7q is a basis for m (G').

Proof.

Let p: M — F be the orbit projection of M and let p : M — G be the orbit projection
of M.

Recall Fy = p(Mp) and {v;} is a basis of orientation reversing curves for 7 (F). By
Lemma 3.3.11, there exists a homeomorphism @, : Gy — Fpy, where Fy = p(Mp) and
Go = p(p~1(Mp)). Then there exists a basis {v}, q;}, where j =1,...,gand i =1,...,7,
for m1(Go) such that By(v}) = v; and y(g;) = ¢, for all j =1,...,gand fori =1,...,r

The valuation homomorphism of M, e : m(F') — Za, is defined by e(v;) = e(Va) = +1
and e(v;) = —1,for j =3,..., 9. Let € : m1(G) — Z3 be the valuation homomorphism of M;
by Lemma 3.3.12 we have ¢| : 5 1(q}) — p~'(g:) is a covering, é(v}) = é(vh) = é(q}) = +1,
fori=1,...,r,and é(vj) = —1,if j =3,...,9.

By Lemma 3.3.9, we have basis {h, v}, {1:1,172} and {h, G} for m (5~ (0})), w1 (5~ (vh))
and m1(p~1(q})), respectively, such that pu(h) = h", pu(01) = vih™%, @u(va) = voh™*2

and ¢4 (g;) = ¢ih ™% Note that by Lemma 3.3.10 there is also a basis {#;, h} for m (}5_1(123-))

such that cp#(ﬁ) = h"™ and @4 (0;) = vjh_(ti_l)7 for j = 3,...,9. By construction, v; and
¢; intersect each fiber of ]5_1(11;) and p~1(g}), respectively, in exactly one point.

Note that

1R

s <q~1 g - 77]2-)_1> qh kg h R (0 h 512 H?ZQ ,Ujh—(tj—l)vjh—(tj—l))—l

~ pXkit2sig ... ¢ (TT9—, v3) 71, (recall Y k; — 251 = 0.)

o1 J=17
~ q g ([Tvf) ™,
~ 1;
because h commutes with v1,v2 and ¢;; and h anticommutes with v;, for 7 =3,...,g.

Thus ¢1--- ¢ (]| 1732-])_1 ~ 1 because @ is injective.

Then the curves gy, ... ,q, span a surface G in My. After some isotopies of Gy in M
fixing 0GY), we obtain Gj, is an orbit surface. After filling the holes of My, G}, gives rise to
G’ as required. O

Theorem 3.3.15 Let M = (Xx,g;01/a1,...,0-/ay) be a Seifert manifold, where
Xz € {00,0n,No,NnI, NnII,NnIII}. Let h be a regular fiber of M. Write My =
M —Ui_, Vi, where each V; is a fibered neighborhood of an exceptional fiber or a fibered
neighborhood of a regular fiber, for i = 1,...,r, and V; is homeomorphic (under a fiber
preserving homeomorphism) to the torus T(8;/c;). Assume n € N. Let w : w1 (My) — Sy,
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be a representation such that w(h) = e, where e, = (1,2,...,n). Then
w(g) = e vi=1,...;r and
wlvj) = 7

where {h,vj,q;} is a stardad system of generators of mi(My), and 7; is a power of €y, if v;
commutes with h, or a reflection if v; anticommutes with h.

Let ¢ : M — M be the covering of M branched along fibers determined by w. Then M
is in the same class of M and the Seifert symbol of M is:

B B,
Xa, g 2%, ="
( x’g7A17 7AT)’

with
o Bi + ki
" ged{n, Bi + kia;}’

naog

Ai = )
ng{TL, ﬁz + klal}

where ged{n, B; + kia;} denotes the greatest common divisor of n and ; + ki«y.

Proof.
By Remark 3.3.2, w is defined as stated. Also M is in the same class of M because of
Corollary 3.3.1.

Suppose that F, of genus g, is the orbit surface of M. Recall Fy = p(Mp), My = o Y(Mp)
and Gog = p(My), where p: M — G is the orbit projection of M.

Let G be the orbit surface of M.

By Lemma 3.3.11, there exists a homeomorphism @, : Go — Fy. Thus 0G has r com-
ponents because 0Fy has r components. Therefore 0My has r components.

Note that we can obtain M from Mj by glueing solid tori U; to T; with homeomorphisms
fi : OU; — T; such that f;(m;) = qf”hﬁi7 where m; is a meridian of 9V;..

Let G’ be the orbit surface of M obtained in Lemmas 3.3.13, 3.3.14, 3.3.15, 3.3.16, 3.3.17
and 3.3.18. Recall that Lemmas 3.3.13, 3.3.14), 3.3.15, 3.3.16, (3.3.17) and (3.3.18) give us
a basis {9;} for 71(G) and curves §; in G, such that, p4(g) = g;h %

Now we compute B; and A;.
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Because of m; ~ ¢i" h%, we have that w(m;) = w(qio"'hﬁi) = hithivi Let d; = ged{n, B;+
kic;}. Note that the order of w(m;) is n/d; and that ¢~!(m;) has d; components. Let 1m;
be a component of ¢ ~1(m;), then

(i) = mi % = g i/ (3.4)

On the other hand, m; = q~;4 ihBi for some A; and B; positive integer numbers such that
gcd{A;, B;} = 1, then

p(ini) = (qih ") R B = gl pm AL (3.5)
Equating (3.4) and (3.5) we get that

Bt kig Al
t ged{n, Bi + kiai}

d

no;

A= .
ng{n7 /81 + klal}
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Chapter 4

Heegaard genera of coverings of
Seifert manifolds branched along

fibers

4.1 Heegaard genera of Seifert manifolds

Theorem 4.1.1 [B-Z]
Let M = (Oo,g; 1/, .., 0. /a,) be a Seifert manifold; assume o; > 1, and 1 <i <r.

i) If M = (0,0;1/2,1/2,...,1/2,8,/(2\ + 1)), with X > 0, r even and r > 4, then
rank(mi(M))=r—-2<h(M)<r-—1.

ii) Suppose that M does not belong to the case (i) and r > 3, then rank(m(M)) = h(M) =
2g+1r—1.

ii’) If g > 0 and r = 2, then rank(mi(M)) = h(M) = 2g + 1.

iii) If r =1, then rank(m(M)) = h(M) = 2g if f1 = £1.
Otherwise, rank(mi(M)) = h(M) = 2g + 1.

iii’) If r =0, then rank(m(M)) = h(M) = 2g if B1 = £1.
Otherwise rank(mi(M)) = h(M) = 2g + 1.

Theorem 4.1.2 [B-Z]
Let M = (On,g;B1/aq,...,0:/a,) be a Seifert Manifold; suppose a; > 1 and 1 < i <r.

i) If r > 2, then h(M) =g+ r —1.
ii) Suppose r=1.
(a) If By = £1, then h(M) = g.
(b) If 51 # £1 is even, then h(M) =g+ 1.

67
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iii) If r =0, then h(M) = g if 51 = +1; otherwise, h(M) = g+ 1.

Remark 4.1.1 In Theorem 4.1.2, if 81 # *+1 is odd, Boileau and Zieschang claimed
but did not prove that h(M) = g+ 1. According to [Nul] this claim is correct.

Theorem 4.1.3 [Nu/ Let M be a non-orientable Seifert manifold.
(i) If M = (No,g; 1 /aa,-..,Br/ay), where a; > 1, then

(a) If r > 2, then h(M) =2g +r — 1.
(b) Suppose r = 1. If 3y is even, then h(M) =2g+ 1. If 51 = 1, then h(M) = 2g.
(c) Suppose r =0. If B1 is even then h(M) = 2g + 1. If B1 is odd, then h(M) = 2g.

Also, if r =1 and 1 # 1 is odd, then 2g < h(M) < 2g + 1.

() If M = (Xz,9;61/01,...,0 /), where Xa € {NnI, NnII,NnIII}, and o; > 1;
then:

(@) If r > 2, then h(M) =g+ r — 1.
(b) Suppose r = 1. If 3y is even, then h(M) =g+ 1. If 1 = 1, then h(M) = g.
(c) Suppose r =0. If 51 is even, then h(M) = g+ 1. If 1 is odd, then h(M) = g.

Also, if r =1 and 1 # 1 is odd, then g < h(M) < g+ 1.

4.2 Heegaard genera of coverings

Let M be a Seifert manifold with orbit projection p : M — F. Assume ¢ : M — M is a
covering of M branched along fibers. In this section we compare the Heegaard genus of M,
h(M), with the Heegaard genus of M, h(M). We always will assume that M is not in the
following list:

(a) M =(0On,1;8/a),a>1

(b) M = (00,0;p1/a1, B2/az2), a; > 1
(c) M =(00,0;p1/2,52/2,B3/m)
(d) M = (00,0;51/2,52/3,533/3)

(e) M = (00,0;p1/2,52/3,B3/4)

(£) M = (00,0;51/2,32/3, B3/5)

We take out the cases (a) — (f) because these manifolds have finite fundamental group
and in this cases S3 is the universal covering of M. Thus h(M) > h(S®) = 0 if w1 (M) # 1.
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(g) M =(00,0;1/2,1/2,...,1/2,5,/(2A+ 1)), with A > 0, r even and r > 4.

(h) M = (Zz,g;8/a), with Zz € {No, NnI, NnII,NnIII}, § # 1 odd and a > 2. (Non-
orientable Seifert manifolds with exactly one exceptional fiber and 5 # 1 odd.)

We rule out (g) y (h) because we can not compute h(M) precisely. In case (g), we only
know r —2 < h(M) < r —1 and in case (h), h(M) satisfies 2g < h(M) < 2g + 1.

Let M be a Seifert manifold and {h;}]_; be a set of fibers of M which contains all the
exceptional fibers and a finite number of regular fibers. Recall each fiber has a neighbor-
hood V; fiber preserving homeomorphic to a solid fibered torus 7'(;/«;) be the fibered solid
torus homeomorphic to V;, for ¢ = 1,...,r. Note that «; and (3; are coprime numbers and
o; > 1. Define My = M — UV;.

Suppose ¢ : M — M is a covering of M branched along fibers and M is connected. By
Theorem (3.3.1), we know that there are ¢ : M — M’ and ¢ : M’ — M branched coverings
such that the following diagram is commutative

M (4
\
@ M’

/L

M

Also if wy, and w, are the representations associated to ¢ and (, respectively, we have
that wy(h') = e, and w¢(h) = (1), where (1) is the identity permutation in S, and ¢ =
(1,2,...,t); h and I’ are regular fibers of M and M’, respectively.

Thus we will only consider representations w(m (Mp)) — Sy, such that w(h) = (1) and
w(h) = e, where h is a regular fiber of M.

Along this section we use the following notation:

e M is a Seifert manifold with orbit projection p : M — F', and h is a regular fiber of M.

e The surface F' has genus g. Let {h;}]_; be a set of fibers of M which contains all the
exceptional fibers and some regular fibers. Recall each fiber has a neighborhood V;
fiber preserving homeomorphic to a fibered solid torus T'(5;/«;), for i =1,..., 7.

e {v;} is a basis for m(F) and we assume v; is orientation reversing if F' is non-
orientable, for each j.
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o My=M — U;-nzl‘/;'.

Note that OMjy has r components; 11, ..., T,
e ¢ = p(T5).
o w:mi(My) — S, is a transitive representation.

e The identity permutation in S, is denoted by (1) and the standard n—cycle (1,...,n)
is denoted by &y,.

e ¢ : M — M is the covering branched along fibers of M associated to the representation
w:m(Mp) — Sy and p: M — G is the orbit projection of M.

e The surface G has genus g.

e The natural number n is always greater than 2. Otherwise, if n = 1 then ¢ would be
a homeomorphism.

e The Heegaard genus of M is denoted by h(M).

4.2.1 Heegaard genera when w(h) = (1)

Let M = (Xz,9;01/a1,...,0:/a,) be a Seifert manifold, where
Xz € {Oo,0n,No,NnI, NnII, NnIII}. Suppose that w : m1(My) — S, is a transitive
representation defined by

w(h) = (1),
w(g) = oi1--0ig, fori=1,...,r and

w(v;) = pi1Pss

where 01+ 054, and pj1---pjs; are the disjoint cycle decompositions of w(g;) and w(v;),
respectively.

By Theorem 3.3.8,
a) If F is non-orientable, M is the manifold

Bia Bi By1 By, )
el e e ,
A1 Ay, At A,

Yy, g;

where Yy € {Oo,0n,No,NnI,NnII, NnIII} and it is determined by Theorems
3.3.3, 3.3.5, 3.3.6 and (3.3.7). If G is orientable, then

n2-g)+ Y bi—nr
5 :

g=1
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If G is non-orientable, then

an(9—2)+2+mﬂ—z&.

b) If F is orientable, then M is the manifold

_ B By, B, 1 By,

( y g7 Al,l’ 7A17€17 7AT717 ’AT7£T)7

where Yy € {Oo, No} and it is determined by Theorems 3.3.2 and 3.3.4); and

s
5T .
gzl_i_n(g_l)_,_mﬂ%:w_

The numbers B; j, and A, j in the Seifert symbol for M in (a) and (b) are:

B, — order(o; ) - Bi

= d
" ged{ay, order(o )} o

Q;
Ai

)

- ged{a;, order(o; )}

where ged{c;, order(o; 1} denotes the greatest common divisor of a; and order(o; 1).
We hightlight the following equations for future reference.

Note that n > ¥¢; > 1, foralli=1,...,r, (4.1)

because ¢; is the number of disjoint cycles of w(g;) and

A, =1, if and only if, a;|order(o; i) (4.2)
since the definition of A, j.
Let a be a positive number. Assume n > 1. Then
n(a —2)+2 > a if and only if a > 2 (4.3)
and

2+ 2n(a —1) > 2a if and only if a > 1. (4.4)

Lemma 4.2.1 Let M = (Xz,g;51/1), where Xz € {Oo,0n, No,NnI, NnII , NnlII}.
Consider a transitive representation w : w1 (My) — Sy, defined by

wh) = (1),

0'1--'0'e1, and
w(vy) = o1 Py

S
—~
Q
—
~

Il
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where ;1 - 740, and pj1---pjs; are the disjoint cycle decompositions of w(q;) and w(vj),
respectively.

By Theorem 3.3.8, M = (Yy,g;B1/A1,- -+, By, /Av,), with By, = order(oy) -1 and
A =1, fork=1,...,01. Let p: M — F be the orbit projection of M. Let g be the genus
of F. Then:

(a) If F is non-orientable, then h(M) = n(g —2) +n — £, + 3.

(b) If F is orientable, then h(M) =2n(g—1)+n—4¢,+3

Proof.
By Theorem 3.2.1, we can assume M = (Yy,§;nf1/1). Note that nf; # 1 for n > 2
and i is an integer number. Also nf; is even if B is even, this implies that we can compute
h(M), if M is non-orientable.

(a) Suppose F' is non-orientable.

(i) If G is non-orientable, then § = n(g —2) + 2 + n — ¢;, by Lemma 3.3.8. Since
nB1 # 1, then )
hM)=g+1=n(g—2)+n—4{;+3.

(ii) If G is orientable, by Lemma 3.3.8, 2g = n(g — 2) + 2+ n — ;. Thus

WM)=25+1=n(g—2)+n—{, +3,

for nf # 1.

Therefore

M) =25+1=n(g—2)+n— {1 +3.

(b) Suppose F' is orientable. Then G is orientable and by Lemma 3.3.8 we know 2g =
2n(g — 1) +n — £1 + 2. Since nB; # 1 we obtain

hMM)=25+1=2G=2n(g—1)+n—¥{1+3.

Corollary 4.2.1 Let M = (Xz,g;1/1), where Xx € {Oo,0n, No, Nnl, NnII, NnIII}.
Consider a transitive representation w : w1 (My) — Sy, defined by

wh) = (1),
w(Ql) = 0-1"‘0-€17 )
w(vy) = proe Pl
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where 01+ 00, and pj1---pjs; are the disjoint cycle decompositions of w(g;) and
w(vj), respectively.

Let ¢ : M — M be the covering of M branched along fibers associated to w. Then
h(M) = h(M)

Proof.
Consider the following cases:

First case. F is non-orientable. By Lemma 4.2.1, h(]\~4~) =2§+1=n(g—2)+n—~{1+3.
Recalling Equations 4.3 and 4.1 we conclude h(M) > h(M).

Second case. F' is orientable. Then h(M) = 2§ + 1=2g=2n(g—1)+n—"{+3 for
Lemma 4.2.1. By Equation 4.4 we obtain h(M) > h(M).

Lemma 4.2.2 Let M = (Xz,g; (1/a1) with a > 2. Consider a transitive repre-
sentation w : m (Mp) — Sy, defined by

wh) = (),
oo
(o) = Pl

where 051+ 00, and pj1---pjs; are the disjoint cycle decompositions of w(g;) and
w(vj), respectively.

€
—
»Q
=
~—
|

Let o : M — M be covering associated to w. By Theorem 3.3.8 M = (Yy,g;B1/A1,--- ,Be, [ Av,),

where
B, — order(oy) - (1
k= gcd{ay,order(oy)}
and o
Ap !

- gcd{ay,order(og)}

Recall gcd{ay,order(oy)} denotes the greatest common divisor of ay and order(oy).

Let ky = #{ok : a1 1 order(ox)}. Then:

(a) Assume F' is non-orientable.

1. Suppose k1 =0. If By =1, n =y and w(qy) = (1,2,...,01), then h(M) =

n(g —2) +n — £ + 2. Otherwise, h(M) =n(g —2) +n — {1 + 3.
2. Suppose k1 = 1. Then h(M) =n(g—2)+n—0; +3
3. Suppose ki > 2, then h(M) =n(g—2) +n — {1+ ki + 1.

(b) Assume F' is orientable.
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1. Suppose ky = 0. If 1 =1, n=a; and w(q1) = (1,2,..., 1), then h(M) =
2n(g — 1) +n —>_ 01 + 2. Otherwise, h(M) =2n(g — 1) +n — {1 + 3.
2. Suppose ki = 1, then h(M) =2n(g — 1) +n —{, + 3.

3. Suppose k1 > 2, then h(M) =2n(g —1)+n — {1+ k1 + 1.

Proof.
Note that A; = 1if and only if o ]ordergai). Thus k; is the number of exceptional
fibers of M. Let G be the orbit surface of M and let g of G.

(a) Suppose F' is non-orientable.

1. Assume k; = 0. Then «il|order(oy), for all k = 1,...,¢;.. Thus there are
integer numbers p; > 0 such that order(or) = pray. Hence, by Theorem
3.2.1 we can assume that M = (Yy, §; B/1), where B = 31 3 p. Also, if 8
is even then B is even; then it is possible to compute the Heegaard genus
of M when f; is even. Note that B = 1 if and only if 81 = 1, n = a;y and
wiq) =(1,2,...,a1).

(i) If G is non-orientable, then § = n(g—2)+2+n—¢; due to Theorem 3.3.8
Therefore, from Theorems 4.1.1,4.1.2 and 4.1.3 we obtain that h(M) =
g=n(g—2)+n—-0+2,if 51 =1, n=0a and w(q1) = (1,2,...,01);
Otherwise, h(M) =g+ 1=mn(g—2) +n —{, + 3.

(ii) If G is orientable, then 2g = n(g — 2) + 2 + n — ¢; due to Theorem
3.3.8. Therefore, from Theorem 4.1.1, 4.1.2 and 4.1.3 we obtain that
h(M)=g=mn(g—2)+n—0+2,ifn=a; and w(q) = (1,2,...,1);
Otherwise, h(M) =G +1=mn(g—2) +n —{, + 3.

2. Assume k1 = 1. By renumbering the indices, if necessary, we can assume
that A; > 2 and A,, = 1, for each m = 2,...,¢;. Then there are integer
numbers p,, > 0 such that order(o,,) = pmaq, for all m € {2,...,¢;}. Thus,
by Theorem 3.2.1 we have that M = (Y, §; B/A;), where

B = B+ B1A1) pm
Bi(order(c1)+a1 Y. pm)
ged{a,order(o1)}

Note that B is an even number if 31 is even. Then we alwasy can compute
the Heegaard genus of M.

Suppose that B = 1. Then gcd{a, order(o1)} = Bi(order(o1) + a1 > pm)-

From this fact we obtain 1|a; and (order(o1) + a1 Y pm)|order(oy), con-

sequently, f1 = 1 and a3 > py, = 0. Since ag > 0 we conclude ) p,, = 0.

Thus p,, = 0. This contradicts our assumption of p,, > 0.

Therefore B # 1.

(i) If G is non-orientable, then g = n(g—2)+n—¢;+1. Hence by Theorems
4.1.1, 4.1.2 and 4.1.3 we obtain h(M) =25+ 1=n(g —2) +n — {1 + 3.



4.2. HEEGAARD GENERA OF COVERINGS 75

(if) If G is orientable, then 2§ = n(g —2) +n — 1 + 1. By Theorems 4.1.1,
4.1.2 and 4.1.3 we conclude h(M) =g+ 1=n(g —2)+n—¥{; + 3.

3. Assume kq > 2. Recall ky is the number of exceptional fibers of M.

(i) If G is non-orientable, from Theorem 3.3.8 we obtain that § = n(g —
2) +n — 1 +2. By Theorems 4.1.1, 4.1.2 and 4.1.3 we conclude h(M) =
§+k1—1:n(g—2)+n—£1+k1+1.
(ii) If G is orientable, by Theorem 3.3.8 we know that 2g = n(g — 2) +
n — £1 + 2. Since kj is the number of exceptional fibers of M we have
h(M)=25+k —1=n(g—2)+n—01+k +1.
(b) Suppose F is orientable, then G is orientable and 2§ = 2n(g —1+n—¥¢;)+2 due
to Theorem 3.3.8.

1. If &y = 0, then aglo(oy), for all & = 1,...,¢;.. Thus there are integer
numbers pr > 0 such that order(cy) = pray. Hence, by Theorem 3.2.1
we can assume that M = (Yy,§; B/1), where B = 31 Y pi. Also, if 3y is
even then B is even; then it is possible to compute the Heegaard genus of
M when 3; is even. Note that B = 1 if and only if 1 = 1, n = oy and
w(q1) = (1,2,...,a1). Therefore h(M) = 2§ = 2n(g—1)4+n—£01+2, if n = oy
and w(q1) = (1,2,..., ;). Otherwise, h(M) = 2§+1 = 2n(g—1)+n—L1 +3.

2. If ky = 1, by renumbering the indices, if necessary, we can suppose that
Ay > 2 and A, = 1, for each m = 2,...,¢;. Then there exist integer
numbers p,, > 0 such that order(oy,) = pmaa, for all m € {2,...,¢;}. By

Theorem (3.2.1), we can assume M = (Yy, g; B/A1), where

B = Bi+B1A1) pm
Bi(order(o1) + a1 ) pm)

gced{ay,order(o1)}

Note that B is an even number if §; is even. Then we always can compute
the Heegaard genus of M.

Suppose that B = 1. Then gcd{a, order(o1)} = Bi(order(o1) + a1 > pm)-
From this fact we obtain f;|a; and (order(o1) + a1 Y pm)|order(o1), con-
sequently, #1 = 1 and a3 Y pm = 0. Since a; > 0 we conclude > p,, = 0.
Thus p,, = 0 and we obtain a contradiction to our assumption p,, > 0.

Therefore B # 1 and h(M) =25+ 1 =2n(g — 1) +n — £; + 3.
3. If k1 > 2, then h(M) = 23 + k1 — 1 since kp is the number of exceptional
fibers. Therefore h(M) =2n(g—1)+n — {1 + k1 + 1. O
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Corollary 4.2.2 Let M = (Xx,g; 01/a1) where Xx € {Oo,On.No.NnI, NnII, NnIII}
and ap > 2. Consider a transitive representation w : w1(Mp) — S, defined by

wh) = (1),
w(q) o100, Y
w(v) = p1 oy,

where 01+ 00, and pj1---pjs; are the disjoint cycle decompositions of w(q;) and
w(vj), respectively.

Let ¢ : M — M be covering associated to w. Then h(M) > h(M).
Proof.

Recall F and G are the orbit surfaces of M and M, respectively. Let k; be as in
previous lemma.

(a) Suppose F' is non-orientable. Then g > 2 because g = 1 implies M has finite
fundamental group.

1. Assume k| = 0. If 8 =1, n = a1 and w(q1) = (1,...,a1), then h(M) =
n(g—2)+n—~¢1+2, by Lemma 4.2.2. Notice that h(M) = g because 3 = 1.
From Equation 4.3 we get that n(g — 2) + 2 > g. Equation 4.1 yields to
n > ¢,. Therefore h(M) > h(M).

If B #1orn# og orw(q) # (1,...,a1), then (M) = n(g—2)+n—~1+3.
Recalling Equations 4.3 and 4.1 we obtain that n(g—2)+2 > g and n—¢; > 0.
Therefore h(M) > g +1 > h(M).

2. Assume k; = 1. From Lemma 4.2.2 we know that h(M) = n(g—2)+n—~1+3.

Using again Equations 4.3 and 4.1 we conclude h(M) > g+ 1 > h(M).

3. Assume k; > 2. Then h(M) =n(g —2) +n — {1 + k1 + 1 because of Lemma
4.2.2. Since ki > 2, Equation 4.3 implies that n(g—2)+ k1 > g. By Equation

4.1, we conclude that h(M) > h(M) as we stated.

(b) Suppose F is orientable. Note that F is not S2, otherwise M would be a Seifert
manifold with finite fundamental group and we do not want M with finite fun-
damental group. Thus g > 1.

1. Suppose k1 = 0. If 3 =1, n = a; and w(q1) = (1,...,1), then h(M) =
2n(g — 1) + n — ¢1 + 2 for Lemma 4.2.2. Also h(M) = 2g because = 1.
Since g > 1, using Equation 4.4 we obtain that 2n(g — 1) + 2 > 2¢. From
Equation 4.1 we conclude h(M) > h(M).
IfB#1orn#ajorw(q)#(1,...,01), then h(M) = 2n(g—1)+n—~01+3.
By Equations 4.4 and 4.1, we conclude h(M) > 2g + 1 > h(M).
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2. Suppose k1 = 1. In this case, h(]\;{) =2n(g—1)+n—~1+3. Hence Equations
4.4 and (4.1) let us cocnlude h(M) > 2g +1 > h(M)).

3. Suppose k1 > 2. From Lemma 4.2.2 we obtain that h(M) =2n(g—1)+n—
01+ k1 + 1. Equation (4.4) yields to 2n(g — 1) 4+ k1 > 2g. From Equation 4.1

we obtain h(M) > h(M). O

Lemma 4.2.3 Let M = (Xx,g9;01/0a,...,0: /o), where Xz € {Oo,0n, No, Nnl,NnlI,
a; > 2, for each i € {1,...,r}, and r > 2 (A Seifert manifold with at least two
exceptional fibers). Consider a transitive representation w : w1 (My) — S, defined

by
w(h) = (1),
w(g) = oix- oy, fori=1,...,r and
w(vj) = pi1-Phs;s

where 01 -+ 00, and pj1---pjs; are the disjoint cycle decompositions of w(q;)
and w(vj), respectively.
Let ¢ : M — M be the covering associated to w. By Theorem (3.3.8),

~ . By By B, By,
M = (Yy7g; A AR | A - PR AT PR ) AT )’
1,1 1,61 r,1 Ly

where
order(oi) - Bi

B = and

T ged{ay, order (o)}

87}

Aijy = :
ok ged{a, order(o; )}

Let ki = #{ois € w(qi) : o; { order(oi,s)}. By renumbering the indices, if
necessary, we can assume that w(q;) = o1--- 0y, -+~ 0y, in such way that o; 1
order(o; ), for k=1,... k.
(a) Assume F is non-orientable.
1. Suppose > ;_, ki = 0. Note that a;|order(ct,s), fori=1,...,r and for
s=1,...,4;.. Assume that p; s are integer numbers such that order(c; s) =

pisei. Write B=>._, Z?:l Di,sBi-

Then h(M) =n(g — 2) +nr — 3. ; + 2, if B = +1; Otherwise, h(M) =
n(g—2)+nr—> ¢+ 3.

2. Suppose Y ;_, ki = 1. By renumbering indices, if necessary, in this case
we can assume that aq { order(cy1), ailorder(oys), for s = 2,...,41,
and a;lorder(o;s), fori = 2,...,r and for s = 1,... ;. Assume pi g,
for s = 2,...,01 and p;s, for @ = 2,...,7 and for s = 1,...,4;, are
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integers numbers such that order(oys) = p'l,sal, fors=2,...,¢41, and
order(ois) = pisay, fori=2,...,r and for s =1,...,4;. Define

01 r 4
B=DBii+A1(B) s+ > > pishi)-
5=2

1=2 s=1

Then h(M) = n(g —2) +nr — 3. 4; + 2, if B = +1; Otherwise, h(M) =
n(g—2)+nr—> ¢ +3.

. Suppose S ki > 2. Then h(M) =n(g—2) +nr — S 6 + 3 ki + 1.

(b) Assume F is orientable.

1. Suppose > ;_, ki = 0. Note that o;|order(ct,s), fori=1,...,r and for

s=1,...,4.. Let p; s be integer numbers such that order(o;s) = p; sc;.
Define B=73%";_, Zi;l pi,sBi- Then h(M) =2n(g—1) +nr — Yl +2,
if B = +1; Otherwise, h(M) =2n(g—1) +nr —>_¢; + 3.

. Suppose Y ;| ki = 1. We can assume that ay { order(o1,1), ai|order(ois),

fors=2,...,01, and a;lorder(o;s), fori=2,...,r and fors =1,...,¢,.
Assume that p’lvs, for s = 2,...,01 and p;s, for i = 2,...,7 and for
s = 1,...,4;, are integers numbers such that order(o; ) = p’LSal, for
s = 2,...,01, and order(o;s) = pisay, fori = 2,...,r and for s =
1,...,¢4;. Write

01 r 4
B=DBii+A1(B) P+ YD pishi)-
s=2

=2 s=1

Then h(M) = 2n(g —1) +nr — 3. 4; + 2, if B = +1. Otherwise, h(M) =
2n(g — 1) +nr—> 4; + 3.

3. Suppose Y i_1 ki > 2. Then h(M) =2n(g—1) +nr—> ;i + > ki + 1.

Proof.
Note that > k; is the number of exceptional fibers of M because Aip =

a;
ged{oy,order(o; i,

y7 = 1 if and only if a;lorder(o; ). We proceed case by case.

(a) Suppose F' is non-orientable.

1. Assume ) k; = 0. Recall p; s are integer numbers such that order(o; 5) =

Di,s;. From definition of B; 1, A;; and from Theorem 3.2.1 we can as-

sume that M = (Yy, §; B/1), where B = 31_, Zﬁ;l Pi,sBi-

(i) If G is non-orientable, then g = n(g — 2) +nr — > ¢; + 2. Therefore
h(M)=g=n(g—2)+nr—34;+2,if B=+1. Otherwise, h(M) =
g+1=n(g—2)+nr—> ¢+3.

(ii) If G is orientable then 2§ = n(g — 2) 4+ nr — 3. £; + 2. Then h(M) =
25 = n(g—2) +nr—>4;+2,if B = +1. Otherwise, h(M) = 2§+ 1 =
n(g—2)+nr—> 4;+3.
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2. Assume Z kz = 1. Recall B = B1’1+A171<ﬁ1 {;1:2 pll,s—i_Z;’:Q Zgl:l pi,sﬁi:

where p} , for s =2,... 41 and p;s, fori =2,...,randfors =1,...,4;,
are integers numbers such that order(oys) = p’Lsal, for s = 2,...,/4q,
and order(o; ) = piso, for i =2,...,r and for s =1,...,¢;. Then

M = (Yy7§7 Bl,l/Al,luBl,Q/]-a .- '7Bl,€1/1) ey BT,1/17 .. ‘7BT,&«/]')'

By Theorem 3.2.1 and Definition of B; 1., we can consider M = (Yy, §; B/A; 1).

(i) If G is non-orientable, then § = n(g — 2) + nr — > ¢; + 2. Thus
h(M)=g=n(g—2)+nr—>354;+2,if B=+1. Otherwise, h(M) =
g+l=n(g—2)+nr—> 4¢;+3.

(ii) If G is orientable, then 2§ = n(g — 2) + nr — >_ ¢; + 2 and we can
conclude that h(M) = n(g—2) +nr— . £;+2, if B = £1. Otherwise,
h(M) =n(g—2)+nr— > 4;+3.

3. Assume Y k; > 2. Note that if G is non-orientable then § = n(g — 2) +
nr— Y ¢; +2, and if G is orientable then 2g = n(g —2) +nr —>_ ; + 2.
Since 3. k; is the number of exceptional fibers then h(M) = G+ k; — 1,
if F is non-orientable and k(M) = 2§+ 3_ k; — 1, if F is orientable. Then
it is clear that h(M) =n(g—2) +nr — S 4 + > ki + 1.

(b) Suppose F' is orientable. Then 2§ = 2n(g — 1) +nr —>_ ¢; + 2, by Theorem
3.3.8.

1. Assume ) k; = 0. Recall p; s are integer numbers such that order(o; s) =
Di,s;. From definition of B;, A;j and from Theorem 3.2.1 we obtain
that M = (Yy,§; B/1), where B = .0_ 3% | p; ;. Thus h(M) =
2g=2n(g—1)+nr—> 4;+2,if B=41. Otherwise, h(M) =2g+1 =
2n(g — 1) +nr—> 4; + 3.

2. Assume Y k; = 1. Recall B = By 1+A411(5 2?:2 PLst>ies Zﬁ;l Di,sBis

Wherep’lvs, fors=2,...,0yand p; s, fori =2,...,rand fors =1,...,4;,
are integers numbers such that order(oy ) = p’LSal, for s = 2,...,/1,
and order(ois) = pisay, for ¢ = 2,...,r and for s = 1,...,¢;. Then

M = (Yy, g; 3171/14171, BLg/l, ey BLgl/l, ve 7Br,1/1, .o 'gBT,Er/l)’
By Theorem 3.2.1 and Definition of B; j, we can consider M = (Y'y, g; B/A11).
Thus h(M) = 2§ = 2n(g — 1) + nrr — S 4; + 2, if B = +1. Otherwise,
h(M)=25+1=2n(g—1)+nr— 3 0; + 3.

3. Assume > k; > 2. Then h(M) = 2n(g — 1) +nr — S 4+ S k; + 1 for
S k; is the number of exceptional fibers of M. O

Corollary 4.2.3 Let M = (Xz,g;01/a1,...,0:/a,) where Xx € {Oo,0n, No, NnI, NnII, N
and g # 0, and o; > 2, for each i € {1,...,r}, and r > 2 (A Seifert manifold
with at least two exceptional fibers and orbit surface different from S?). Consider
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a transitive representation w : w1 (Mp) — Sy, defined by

w(h) = (1),
w(g) = oi1---0iy, fori=1,...,r and
W(”U]) = P51 pj,Sjv

where o1+ 0;4, and pj1---pjs; are the disjoint cycle decompositions of w(qi)
and w(vj), respectively.

Let ¢ : M — M be the covering associated to w. Then h(M) > h(M).

Proof.

Let r be the number of exceptional fibers of M. Since M has at least two
exceptional fibers, then h(M) = 2g+r—1or h(M) = g+r—1, if F is orientable
or not, respectively. Let k; be as in previous lemma. Recall »_ k; is the number
of exceptional fibers of M. Again we proceed case by case.

(a) If F is non-orientable. Recall g =n(g —2)+2+nr — Y ;_, 4, if G is non-
orientable; otherwise, if G is orientable we have 2g = n(g — 2) + 2 + nr —
2z b

1. If Y k; = 0, then h(M) > n(g — 2) + nr — 3. 4; + 2. Recall a; > 2
and o;|order(o; ), for all i, k, then each cycle of w(g;) has order at least

2. Thusfigg. Also&gn—lsincen—lzg, if n > 2. Then

Yisili < (n—1)(r—2).
Hence

" n n
<L _ _ — —
;:1 G <(n—=1)(r—2)+ 5 + 5

because £,_1 < 5 and £, < 3.
Note that (n —1)(r—2)+n=(n—1)(r—1) + 1.

Since § — h(M) = (n —1)(g — 2) + (n — 1)r — S_4; + 1 and h(M) > g,
then

Gg—h(M)>n-1)(g=2)+n-1)(r-1)=> £;+1=>0.

Therefore h(M) > h(M).
2. IfY ki=1,theng—h(M)=(n—-1)(g—2)+(n—1)r—=> 4;+1.

Recall h(M) > § and ¢; is the number of cycles of w(qy).

From previous lemma, we can suppose a1 1 order(o1,1),01,1|order(o1,s),
for s =2,...,41, and oylorder(o; ), fori =2,... ,rand fors =1,...,¢;.
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Then order(o1,5) > 2, if s # 1; and order(o; ), for i = 2,...,r and for
all s.

Assume n > 3, in this case we have that /; < 2 < n —1, for all i =

2
2,...,r, since order(o; ) > 2, for i > 2. Thus >, _4¢; < (n—1)(r — 3).

1=

Now note that
n — order(oy.1)

2
for w(q1) contains the cycle 011 and the cycles o, for j = 2,...,7,

but the cycles o, for j = 2,...,r, have order at least 2 then we have

at most %T(U“) + 1 cycles in w(q1). Also we have the following in-

+1< ”T_l + 1; it follows for order(o1,1) > 1. Thus

4 < +1

n—order(o1,1)
2

equality
<541

Then

4—1=(n—1)(r—3)+n+1

2

- n n-—1
;:1 ;< (n—1)(r—3)+ 5t 5

because fo < T and /1 < ”Tfl + 1. Since (n — 1)(r —3) +n + % <
(n—1)(r — 1) + 1 we obtain

(n—l)(r—l)—l—l—i&ZO.
i=1
h(M)=(n—-1)(g—2)+ (n—1)r —> ¢ + 1 we conclude
g = h(M).

Recalling g —
that h(M) >

If n = 2, then M has exactly one exceptional fiber if and only if M =
(Xx,9;01/a1,062/2,...,0-/2), where a1 > 2y w(q;) = (1,2), for i =
1,...,7. Thus M = (Yy,9;Bi1,A11,082/1,...,06:/1). It is easy to see in
this case that Y ¢; = r Then § — h(M) = g — 1. Recall g # 0. Therefore
h(M) > h(M).

3. If > ki > 2, notice that

W(M) =h(M) = (n=1)(g =2) + (n=1)r = Qi =D ki)

The inequality

k;
0 < n—>y:y ;rder(ai,s)
follows since ¢; is the number of cycles of w(g;) and order(o; ;) > 2 for
j=k+1,...,7; note also

+k;
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n— Efzzl order(o; )
2

n—1
+ k< —+k
2
since Zf;l order(o;s > 1.

Then Y 0 — > ki < (ngl) On the other hand, § < r —1 for r > 2.
Thus % =i =1 ki) >0 and we obtaln

(n—1)(r—1) Zﬁ —Zk

Therefore h(M) > h(M).

(b) Assume F is orientable. In this case, G is orientable and 2¢g = 2n(g — 1) +
nr— > {;.
1. If Sk; = 0, then h(M) > n(g — 2) + nr — 3. 4; + 2. Recall oy > 2
and o;|order(o; ), for all i, k, then each cycle of w(g;) has order at least
2. Thus ¢; < % Also ¢; < n—1sincen—1 > %, if n > 2. Then
it < (n=1)(r - 2).
Hence .
Sa<m-1r-2+2+2
i=1
because £,_1 < 5 and £, < 5.

It is clear that (n — 1)(r —2)+n=(n—1)(r — 1) + 1.

Since § — h(M) =2(n—1)(g — 1)+ (n — 1)r — 3. 4; + 1 and h(M) > g,
then

25— h(M)>2(n—1)(g—1)+(n—1)(r—1)=> Li+1>0.

Therefore h(M) > h(M).
2. If S k; = 1, Recall h(M) > §. Then

25— h(M)=2(n—1)(g—1)+ (n—1Lr—> £i+1.

By previous Lemma, we can suppose aq,1 { order(o1,1),0u,1|order(o1,s),
for s =2,...,01, and oy|order(o; ), fori =2,...,rand for s =1,..., 4.
Then order(o1,s) > 2, if s # 1; and order(o; ), for i = 2,...,r and for
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all s.

Assume n > 3, in this case we have that ¢; < § < n —1, for all © =
2,...,r, since order(o; ) > 2, for i > 2. Thus y ;_44; < (n—1)(r — 3).
Now note that

n — order(oy.1)

l < 5

1
+1§”T+1.

n—order(o1,1)

The first inequality /1 < + 1 follows for #; is the number of
cycles in w(g1); in w(q1) we have the cycle 11 and the cycles o, for
J =2,...,r, but the cycles o, have order at least 2, for j = 2,...,,

—ord
then we have at most %r(gll)

+1< ”T_l + 1 follows because order(oq,) > 1.

+ 1 cycles in w(g1). The second in-

n—order(o1,1)
2

equality

Then

+1:(n—1)(r—3)+n+%

! n n-—1
i<(n—1)(r—3)+=
;E_(n Jr=3)+ 35+
for fo < § and £ < "T_l—i—l. Since (n—l)(r—3)+n+% <(n=1)(r—1)+1

we obtain .
(n=—1)(r—1)+1-> £>0,
i=1

Therefore h(M) > § > h(M).

If n = 2, then M has exactly one exceptional fiber if and only if M =
(Xz,g;81/1,B2/2,...,0:/2), where an > 2y w(q;) = (1,2), for i =
1...,m. Thus M = (Yy,§; B11,A11,02/1,...,53:/1). It is easy to see in
this case that ) ¢; = r. Then 2§ — h(M) = 2(g — 1) + 1. Because of the
fact g # 0, we conclude h(M) > h(M).

3. If > ki > 2, then

hM)=h(M)=2(n—-1)(g—1)+(n—1r—0O_ti—=> k)
i=1 i=1
Note that

n— Zf;l order(o; s)
4 < :
2
because ¢; is the number of cycles of w(q;) and order(o; ;) > 2 for j =
k—+1,...,7r; note also

+ ki
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n— Zf;l ;rder(am) k< n—1

+ ki
since Zf;l order(o;s > 1.
Therefore % - = ki) > 0.

Since r > 2, then § <7 — 1. Thus

s s

(n=1)(r=1)= O _ti=> k)=>0.
i=1 i=1
Therefore h(M) > h(M).
We can summarize the previous Corollary in the following Theorem.

Theorem 4.2.1 Let M = (Xx,g9;01/0u, ..., 0 /o) where Xx € {Oo,0n, No, NnI, NnII,
and g #0. Let n € N and w : m1(My) — S, be a transitive representation

defined by
w(h) = (1),
w(g) = oi1--0ig,Vi=1,...,r and
w(vj) = Pj1" " Phss

where 0100, and pj1---pjs; are the disjoint cycle decompositions of
w(g;) and w(vj), respectively, and {h,v;,q;} is a standard system of genera-
tors of m (My).

Then h(M) > h(M).

Proof.
The result follows from Corollaries (4.2.1), (4.2.2) and (4.2.3). O

4.2.2 Heegaard genus when w(h) = ¢,

Recalle, = (1,2,...,n) € Sp. Given a Seifert manifold M = (Xz, g; 51/aa,..., 0 /cr),
where Xz € {Oo,0n,No, NnI, NnlI, NnIII}, with orbit projection p :
M — F, where F' has genus g, and given a representation w : w1 (My) — S,

defined by
w(h) = e,
w(g) = e vi=1,...,r and
wlvj) = 7,

7j is a power of the n-cycle g, if e(v;) = +1 or 7; is a reflection pj, if
e(vj) = —1. Then, if ¢ : M — M is the covering determined by w, by
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Theorem 3.3.15 we have that M = (Xx,g; B1/A1,..., Br/A,) where

o Bi + ki
Y ged{n, B; + kia;}

and
nog;

A =
ng{TL, /81 + kiai}7

where ged{n, B;+k;c;} denotes the greatest common divisor of n and §;+k;;
Note that «; > 2 implies that A; > 2.

Lemma 4.2.4 Let M = (Xz,g;01/a1) be a Seifert manifold, where
Xz € {O0,0n,No,NnI,NnII, NnIII} where oy > 1. Suppose that n € N
and w : m (My) — Sy, is a representation defined by

w(h) = ep,
w(q) = €M, and
w(vj) = T4

where T is a power of €y, if v; commutes with h; otherwise, if v; anticom-
mutes with h, 7; is a reflection p;.
Suppose p : M — M is the covering determined by w.

o Assume (1 fn or f1 = +1, then h(M) = h(M).
o Assume (1 # 1 and Bi|n, then hM) =g, if F is orientable; otherwise,
h(M) = 2g, if F is orientable. Furthermore, h(M) < h(M).
Proof. .
Observe that M = (Xz, g; B1/A1), with By =
It is clear that By = 1 if and only if §1|n.
° Ifﬁl)[n, thenﬁl #1, Bl # 1 and

and A = 2%

B _nag
ged{n,B1} ged{n,B1}"

x| 2941, if Fis orientable, or
(M) = h(M) = { g+1, otherwise.
If B; = +1, then By = 1. Thus h(M) = h(M) = g. Therefore h(M) =
h(M).

e Suppose 31 # 1 and B;|n. Thus M = (Xz, g; A%)
(a) If F' is non-orientable, then h(M) = g + 1 (of course, when M is
non-orientable we ask (; be even, in order, to compute h(M); recall if
31 is odd we can not compute h(M)). On the other hand, h(M) = g.
Therefore h(M) < h(M).
(b) If F is orientable, then h(M) = 2g + 1 and h(M) = 2g. Therefore
h(M) < h(M).



86CHAPTER 4. HEEGAARD GENERA OF COVERINGS OF SEIFERT MANIFOLDS BRANCHED ALON

O

Lemma 4.2.5 Let M = (Xz,g;01/a1,...,0-/ay) be a Seifert mani-
fold, where Xz € {Oo,0On,No,NnI, NnlI, NnIII} such that o; > 2 and
r > 2. Consider a representation w : m (My) — Sy, defined by

w(h) = eén,
w(g) = efivi=1,...,r and
wlvy) = 7

such that 7; is a power of €, if vj commutes with h; otherwise, 7; is a
reflection pj, if v; anticommutes with h. )
Let ¢ : M — M be the covering associated to w. Then h(M) = h(M).

Proof.

Let F and G be the orbit surfaces of M and M, respectively. If g is
the genus of F, then G also has genus g since F' and G are homeomorphic
because of Theorem (3.3.15). Note that «; > 2 implies that A; > 2, thus the
number of exceptional fibers of M is equal to . Therefore h(M) = h(M). O

Now we are able to prove the following theorem.

Theorem 4.2.2 Consider M = (Xz,g;1/a1,...,0:/a,) a Seifert man-
ifold, where Xx € {Oo,0n,No, NnI, NnII, NnIII} and assume w : m1(My) —
Sy is a representation defined by

w(h) = eén,
w(g) = ekivi=1,...,r and
wlvy) = 7

such that 7; is a power of e, if v; commutes with h; otherwise, T; is a re-
flection pj, if v; anticommutes with h.

Suppose p : M — M s the covering determined by w. If M = (Xz, g; 5/«),
with o« > 2 (recall § # 1 is even if M is non-orientable) and [(|n, then
h(M) < h(M). Otherwise, h(M) = h(M).

Proof.

The result follows from Lemma (4.2.4) and Lemma (4.2.5). O
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