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Chapter 1

Introduction

A Seifert manifold M is a 3-manifold which is a disjoint union of circles (fibers). Seifert
manifolds M were defined and classified (up to fiber preserving homeomorphisms) by H.
Seifert [Se] according to a Seifert symbol associated to M . Because of the fact that Seifert
manifolds are classified, they play a useful role in the Theory of 3−manifolds. Since the in-
vention of Seifert manifolds in the 30’s, an interesting problem is to understand the branched
coverings ϕ : M̃ →M when M is a closed Seifert manifold.

Let M be a closed Seifert manifold and suppose ϕ : M̃ →M is a covering of M branched
along fibers, that is, the branching of ϕ is a finite union of fibers of M . It is known that
M̃ is also a Seifert manifold [G-H]. In [Se], H. Seifert also found the Seifert symbol for
the orientation double covering of M . More recently, V. Núñez and E. Ramı́rez-Losada
[N-RL] compute the Seifert symbol for M̃ when M is orientable and ϕ : M̃ →M satisfies
some properties. But in general, if ϕ : M̃ → M is a covering of a Seifert manifold M
branched along fibers, the Seifert Symbol for M̃ is unknown. Therefore a basic problem is
to determine the Seifert symbol of M̃ in terms of ϕ and the Seifert symbol of M . In this
work we solve the above problem (Theorem (3.3.8) and Theorem (3.3.15)).

On the other hand, Heegaard genera for almost all Seifert manifolds are known. M.
Boileau and H. Zieschang [B-Z] computed the Heegaard genera for almost all orientable
Seifert manifolds and V. Núñez [Nu] computed the Heegaard genera for almost all non-
orientable Seifert manifolds. In both cases, orientable or non-orientable, the Heegaard
genus of M is expressed in terms of the Seifert symbol of M .

Let M be a Seifert manifold with infinite fundamental group. Suppose ϕ : M̃ → M is
a covering of M branched along fibers. If we know the Heegaard genus of M , h(M), and
we compute the Seifert symbol of M̃ , we can compare the Heegaard genus of M̃ , h(M̃),
with h(M). What one can “reasonable” expect is that h(M̃) ≥ h(M). But we find a
family of manifolds M , with infinite fundamental group, having a covering M̃ such that
h(M̃) < h(M). This implies (translating into fundamental group) that there is an infinite
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6 CHAPTER 1. INTRODUCTION

family of infinite groups G that have a subgroup H < G of finite index with an unexpected
and surprising property: rank(H) < rank(G).

In Chapter 1, we deal with basic topics to be used along this work. The basic topics to
consider are: Topology of manifolds, Heegaard splittings and Branched coverings. In the
last section of Chapter 1, we write a list of Theorems that we will be needed later.

Let M be a Seifert manifold and ϕ : M̃ → M a branched covering space of M . Sup-
pose M̃ is connected. In chapter 2, we prove that there are coverings ψ : M̃ → M ′ and
ζ : M ′ →M branched along fibers such that the following diagram commutes

M̃

M ′

M
?

ϕ

@
@R
ψ

¡
¡¡ª ζ

and if ωψ and ωζ are the representations associated to ψ and ζ, respectively, we have that
ωψ(h′) = εn and ωζ(h) = (1), where (1) is the identity permutation in Sn and εn is the
stardad n-cycle (1, 2, . . . , n), and h and h′ are regular fibers of M and M ′, respectively.
Thus we reduce the study of coverings of M to coverings ϕ : M̃ → M , such that ωϕ, the
representation associated to ϕ, sends a regular fiber h of M into the identity permutation
or into the n-cycle (1, . . . , n). In both cases, ω(h) = (1) or ω(h) = εn, we calcule the Seifert
symbol of M̃ .

In chapter 3, given a ϕ : M̃ →M covering of M branched along fibers such that ωϕ, the
representation associated to ϕ, sends a regular fiber h of M into the identity permutation
or into the n-cycle (1, . . . , n), we apply the theory in Chapter 2 to compare the Heegaard
genus of M̃ , h(M̃), with the Heegaard genus of M , h(M). The genus h(M̃) is computed in
terms of ωϕ and the Seifert symbol of M . We show that there are Seifert manifolds of M
and coverings M̃ such that h(M̃) < h(M).



Chapter 2

Preliminaries

This chapter is a brief review about facts in low-dimensional topology.

2.1 3-manifolds and Heegaard genus

Definition 2.1.1 Let M be a Hausdorff topological space. We sayM is an n-manifold
if and only if each element x of M has a neighborhood homeomorphic to Rn or Rn+ =
{(x1, . . . , xn) ∈ Rn : xi ≥ 0, ∀i = 1, . . . , n}.

If M is an n-manifold and there is a point in M having no neighborhood homeomorphic
to Rn, we say that M is an n-manifold with boundary and we call this point a boundary
point. The set of boundary points is called the boundary of M and we denote it by ∂M .
The space M − ∂M is called the interior of M and it is denoted by Mo. An n-manifold
M is a closed manifold if it is compact and ∂M = ∅.

Definition 2.1.2 A 3-manifold M is irreducible if every 2−sphere S2 in M bounds
a 3-ball.

Definition 2.1.3 A disk D2 in a 3-manifold with boundary M is said to be properly
embedded if D2 ∩ ∂M = ∂D2.

Definition 2.1.4 Let V be an orientable irreducible compact and connected 3-manifold
with non-empty boundary. If there exist k properly embedded pairwise disjoint 2-disks Dj

such that ∪Dj splits V into a 3-ball, we say that V is a handlebody of genus k.

Note that the boundary of V is a closed, connected and orientable surface of genus k.

Heegaard’s theorem 2.1.1 Let M be a connected closed and
orientable 3−manifold. Then M is union of two handlebodies of genus g, for some g ≥ 0.
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Handlebody

Proof.
It is well-known that M is triangulable [Mo]. Let K be a triangulation for M . Define

V1 to be a regular neighborhood of the 1-skeleton of K and V2 to be M − V1 ¤

Definition 2.1.5 Let M be a connected, closed 3-manifold and let F ⊂M be a closed,
connected and orientable surface. If F splits M into two handlebodies, then (M,F ) is a
Heegaard splitting of M .

Definition 2.1.6 The genus of a Heegaard splitting is the genus of the surface F , and
the Heegaard genus of M , h(M), is the smallest integer h such that M has a Heegaard
splitting of genus h.

Example 2.1.1 h(S3) = 0

2.2 Branched coverings

Definition 2.2.1 Let X and X̃ be two path-connected topological spaces. A surjective
map f : X̃ → X is a covering space map if and only if for every x ∈ X there exists a
neighborhood Vx of x satisfying the following properties:

(a) f−1(Vx) = ∪α∈J Ṽα, with Ṽα ∩ Ṽβ = ∅ if α 6= β and

(b) f | : Ṽα → Vx is a homeomorphism, for all α ∈ J.

If |J | = n is a natural number, then f is a finite covering space and we say that f is
a covering of n-sheets or that f is an n−fold covering .

Let Ω be a set of n elements; we write Sn = S(Ω) for the symmetric group on the n
elements of Ω. When no confussion arises about the set Ω, we only write Sn.

Let Ñ and N be n-manifolds. Suppose f : Ñ → N is a map. We say that f is a proper
map if f−1(∂N) = ∂Ñ. The map f is finite-to-one if f−1(x) is finite, for all x ∈ N

Definition 2.2.2 A proper map f : Ñ → N between two m-manifolds is called a
branched covering if it is finite-to-one and open.
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Usually one can check if an open map f between manifolds is a branched covering by
finding a subcomplex B of N of codimension two such that f | : Ñ − f−1(B) →
N −B is a finite covering space[Fo].

The subcomplex B is called the branch set of f and f−1(B) is called the singular
set of f . In our examples the set B is always a submanifold.

If f |(Ñ −f−1(B)) is an n-fold covering, we say that f is a branched covering of n-sheets
or that f is an n-fold branched covering.

Note that a finite covering space map (unbranched) between manifolds is a branched
covering with B = ∅.

Remark 2.2.1 The following facts about coverings and branched coverings are known:

(a) An n-fold covering space η : X̃ → X determines and is determined by a homomorphism
ωf : π1(X) → Sn, where Sn is the symmetric group on n symbols. This homomor-
phism ω is called a representation of π1(X). Also X̃ is connected if and only if ω
is transitive.

Let ϕ : X̃ → X be a branched covering and let B be the branch set of ϕ.

(b) The covering ϕ| : X̃ −ϕ−1(B) → X −B determines the branched covering ϕ through a
Fox compactification [Fo]. item[(c)] By (a) and (b), a branched covering determines
and is determined by a representation ωf : π1(N - Branch set of f) → Sn

(d) If X is orientable, X̃ is also orientable [B-E], for if w1(X) is the first Stiefel-Whitney
class of X then ϕ∗w1(X) = w1(X̃).

2.3 Some preliminary Theorems

If M is 3−manifold, let w1(M) : H1(M) → Z2 be a homomorphism such that if α ⊂ M
is an orientation preserving curve then w1(α) = 1, and if α is orientation reversing then
w1(α) = −1.

The homomorphism w1(M) is the first Stiefel-Whitney class of M . If ϕ : M̃ →M
is a branched covering of M , it is proved in [B-E] that w1(M̃) = ϕ∗(w1(M)) where
ϕ∗ : H1(M,Z2) → H1(M̃,Z2) is the homomorphism induced by ϕ in the cohomology
groups.

We write PD : H1(M,Z2) → H2(M,Z2) for the Poincaré duality isomorphism associ-
ated to the 3-manifold M .
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Definition 2.3.1 Let M be a non-orientable 3-manifold and F ⊂ M be an orientable
surface. We call F a Stiefel-Whitney surface for M if and only if F is connected and
[F ] = PDw1(M) ∈ H2(M ;Z2).

Assume M is a manifold. Let β : H i(M,Z2) → H i+1(M,Z) denote the Bockstein
homomorphism associated to the short exact sequence of coefficients

0 → Z→ Z→ Z2 → 0.

Lemma 2.3.1 [B-E] Let M be a non-orientable 3-manifold. Then βw1(M) = 0 if and
only if there exists S ⊂M a two-sided Stiefel-Whitney surface for M .

LetM = (Xx, g, β1/α1 . . . , βr/αr) be a Seifert manifold, whereXx ia symbol in {Oo,On,No,NnI,NnII,NnIII}
(See Chapter 3). Write e0(M) =

∑
βi/αi and, λ(M) = lcm{α1, . . . , αr} · e0(M), where

lcm{α1, . . . , αr} denotes the least common multiple of α1, . . . , αr. Notice that λ(M) is an
integer number.

Theorem 2.3.1 [Nu] If M is a non-orientable Seifert manifold with orbit projection
p : M → F , then βw1(M) 6= 0 if and only if either M ∈ NnII or M ∈ NnI, g(F ) is odd
and λ(M) is even.

Theorem 2.3.2 [Nu] Let M be a non-orientable Seifert manifold. Then there exists
a fibered torus T ⊂M , where fibered means that T is a union of fibers of M , such that T is
a Stiefel-Whitney surface for M . In the following cases T is two-sided in M :

(i) M ∈ (No, g).

(ii) M ∈ (NnI, 2g).

(iii) M ∈ (NnIII, g).

And in the following cases T is one-sided in M :

(iv) M ∈ (NnI, 2g + 1).

(v) M ∈ (NnII, g).

Theorem 2.3.3 [Nu] Let M be a non-orientable Seifert manifold and T be a fibered
torus in M .

• Suppose M ∈ (NnI, 2g+1) or M ∈ (NnII, g). If T ⊂M is a two-sided fibered torus,
then M − T is non-orientable;

• Assume M ∈ (No, g) or M ∈ (NnI, 2g) or M ∈ (NnIII, g). If T ⊂ M is an
one-sided fibered torus, then M − T is non-orientable.



Chapter 3

Coverings of Seifert manifolds

3.1 Coverings and bundles

Recall that if Ω is a set of n elements, then Sn = S(Ω) denotes the symmetric group on the
n elements of Ω.

The identity permutation of Sn is the permutation that fix all the elements of Ω. We
denote the identity permutation of Sn by (1).

Let σ ∈ Sn, the order of σ, denoted by order(σ), is the smallest natural number n such
that σn = (1).

A cycle ρ = (a1, . . . , as) in Sn = S(Ω) is the permutation that fixes the elements
in Ω different from ai, for all i = 1, . . . , s, it sends the element ai ∈ Ω into ai+1, for
each i = 1, . . . , s − 1, and sends the element as into a1. One can verify easily that if
ρ = (a1, . . . , as) then order(ρ) = s. Throughout this work the standard n−cycle is the
permutation (1, 2, . . . , n) ∈ Sn and it will be denoted by εn.

Recall that if σ is a permutation in Sn then σ can be represented as a product of disjoint
cycles. Throughout this work all permutations in Sn will be represented as a product of
disjoint cycles, unless explicitly stated.

Definition 3.1.1 Suppose m,n ∈ N− {1} and H ≤ Smn = S(Ω); then we say that H
is m,n−imprimitive if there are ∆1, . . . ,∆n ⊂ Ω such that:

(a) Ω = tni=1∆i, where denotes the disjoint union.

(b) #∆i = m, for all i = 1, . . . , n.

(c) The elements of H leave the sets ∆i invariant, that is σ(∆i) = ∆j, for each i and σ

11



12 CHAPTER 3. COVERINGS OF SEIFERT MANIFOLDS

and for some j ∈ {1, . . . , n}.

The sets ∆1, . . . ,∆n are called sets ofm,n-imprimitivity forH. Note that if H is m,n−imprimitve
then H ≥ Smn.

Given x ∈ Ω, the stabilizer of x is the subgroup St(x) = {σ ∈ S(Ω)|σ(x) = x} ≥ S(ω).

Let H be m,n−imprimitive. The quotient ∆1 t . . . t∆n → {∆1, . . . ,∆n} which sends
all symbols of ∆i into the symbol ∆i for each i, induces a “quotient homomorphism” q :
H → Sn = S({∆1, . . . ,∆n}). If H1 = q−1(St(∆1)), then the “restriction homomorphism”
γ : H1 → Sm = S(∆1) such that γ(σ) = σ|∆1, is a group homomorphism.

Lemma 3.1.1 Let ϕ : X → Y be an mn−fold covering space and let ω : π1(Y ) → Smn
be the associated representation; write H = Im(ω). Then H is m,n−imprimitive if and
only if ϕ factors through an m-fold covering ψ : X → Z and an n− fold covering ζ : Z → Y .

Proof.
If H is m,n−imprimitive, then there exists sets of m,n−imprimitivity, ∆1, . . . ,∆n, for

H. Consider the representation

ωζ : π1(Y ) ω→ H
q→ Sn = S({∆1, . . . ,∆n}),

where q is the quotient homomorphism determined by ∆1, . . . ,∆n. Let ζ : Z → Y be
the n−fold covering associated to ωζ : then Z is a topological space such that π1(Z) ∼=
(q ◦ω)−1(St(∆1)). Notice that ω−1(St(1)) ⊂ (q ◦ω)−1(St(∆1)) by definition of q. Therefore
there is an m−fold covering ψ : X → Z such that ζ ◦ ψ = ϕ.

Note that the representation associated to ψ is

ωψ : π1(Z) ∼= (q ◦ ω)−1(St(∆1))
ω→ q−1(St(∆1))

γ→ Sα = S(∆1),

where ω is the restricition homomorphism determined by ∆1, . . . ,∆n.

Now suppose there are ψ : X → Z and ζ : Z → Y covering spaces of m−sheets and
n−sheets, respectively, such that ϕ = ψ ◦ ζ. Let y0 ∈ Y . Then ζ−1(y0) = {z1, . . . , zn} and

ϕ−1(y0) = {x1,1, . . . , x1,m, x2,1 . . . , x2,m, . . . , xn,1, . . . , xn,α}.
By renumbering the points, if necessary, we can suppose that ψ(xi,j) = zi, for 1 ≤ i ≤ n

and for 1 ≤ j ≤ m. Define ∆i = {xi,1, . . . , xi,m}, for each i ∈ {1, . . . , n}. Using the Path
Lifting Theorem for covering spaces, it is clear that the ∆i’s are sets ofm,n−imprimitivity.¤

Suppose N is an n−manifold and ϕ : Ñ → N is an m−fold covering of F . Let
ω : π1(N) → Sm be the representation determined by ϕ and θ : H1(N) → Z2 be an
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epimorphism, (i.e. θ is a transitive representation).

If ϕθ : Nθ → N is the 2-fold covering associated to θ. Define θ̃ = ϕ∗(θ), where
ϕ∗ : H1(N,Z2) → H1(Ñ ,Z2) is the cohomology induced homomorphism. Notice that θ̃
can be regarded as an element of H1(Ñ ;Z2), that is θ̃ : H1(N) → Z2 is a homomorphism.

Note that if θ is non-trivial, then θ is an epimorphism (i.e. θ is a transitive representa-
tion). Consequently π1(Nθ) ∼= Ker(θ), for ϕθ is regular and thus Ker(θ) = θ−1(St(1)).

Remark 3.1.1 If θ is trivial, then θ̃ is trivial.

Proof.
In this case Nθ = N t N , where t denotes the disjoint union. Suppose α̃ ∈ H1(Ñ),

then θ̃(α̃) = θ(ϕ∗(α̃)) = (1). ¤

Remark 3.1.2 If θ is non-trivial, then θ̃ is trivial if and only if there exists a
m

2
-fold

covering ψ : Ñ → Nθ such that ψ ◦ ϕθ = ϕ.

Proof.

Let us suppose that θ̃ is trivial; then θ̃(α̃) = θ(ϕ∗(α̃)) = (1), for all α̃ ∈ H1(Ñ).
Therefore ϕ∗(H1(Ñ)) ⊂ Ker(θ) and there is a

m

2
-fold covering ψ : Ñ → Nθ satisfying that

ψ ◦ ϕθ = ϕ.
On the other hand, if there exists a covering ψ : Ñ → Nθ such that ψ ◦ ϕθ = ϕ, then

ϕ∗(H1(Ñ)) ⊂ Ker(θ) and thus θ̃ is trivial. ¤

Theorem 3.1.1 Assume N is an n−manifold and ϕ : Ñ → N is an m−fold covering
of F . Let ω : π1(N) → Sm be the representation determined by ϕ and θ : H1(N) → Z2 be a
homomorphism. Let θ̃ = ϕ∗(θ). Suppose that θ is non-trivial.

Then θ̃ is trivial if and only if Im(ω) is
m

2
, 2−imprimitive and there are sets of

m

2
, 2−imprimitivity

for Im(ω), ∆1 and ∆2, such that the quotient homomorphism q : Im(ω) → S2 satisfies that
q ◦ ω = θ.

Proof.
If θ̃ is trivial, by Remark 3.1.2 there exists an

m

2
-fold covering ψ : Ñ → Nθ such that

ψ ◦ ϕθ = ϕ. Then, by Lemma 3.1.1, there exist ∆1 and ∆2 sets of
m

2
, 2−imprimitivity for

Im(ω) such that the representation induced by ϕθ is q◦ω : π1(N) → S2. Therefore q◦ω = θ.
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On the other hand, if there are sets of
m

2
, 2−imprimitivity for Im(ω), ∆1 and ∆2, such

that q ◦ ω = θ, then by Lemma 3.1.1 there is a covering ψ : Ñ → Nθ of m
2 -sheets such that

ϕ = ψ ◦ ϕθ. Thus, by Remark 3.1.2, θ̃ is trivial. ¤

Definition 3.1.2 Let N be a connected m−manifold and let n ∈ N. Assume ω :
π1(N) → Sn is a transitive representation and θ ∈ H1(N,Z2). We say that ω tri-
vializes the bundle of θ if and only if Im(ω) is

m

2
, 2−imprimitive and there are sets

of
m

2
, 2−imprimitivity for Im(ω), ∆1 and ∆2, such that the quotient homomorphism q :

Im(ω) → S2 satisfies that q ◦ ω = θ.

When a permutation in an imprimitive subgroup contains an odd order cycle, computa-
tions are somewhat eased. For example, let us consider the permutations a = (1, 2, 3)(4, 5, 6)
and b = (1, 4)(2, 5)(3, 6) in S6. Let H = 〈a, b〉 be the subgroup in S6 generated by the per-
mutations a and b. It can be seen that H is 3, 2−imprimitive. Let us calculate a system of
3, 2−imprimitivity for H. There exist sets of 3, 2−imprimitivity, ∆1 and ∆2 for H. Note
that a ·∆1 must be equal to ∆1 or ∆2 because ∆1 is a set of 3, 2−imprimitivity. Assume
1 ∈ ∆1.

If a ·∆1 = ∆1, then 2, 3 ∈ ∆1 for a(1) = 2 and a(2) = 3; thus {1, 2, 3} ⊂ ∆1 and we get
∆1 = {1, 2, 3} because #∆1 = 3.

Note that a · ∆1 = ∆2 cannot happen. If a · ∆1 = ∆2, then 2 ∈ ∆2 for 1 ∈ ∆1 and
a(1) = 2. Of course 3 should belong to ∆2 because a(3) = 1; otherwise, if 3 ∈ ∆1 we have
1 ∈ ∆2. But 3 ∈ ∆2 implies that a ·∆2 = ∆2 for a(2) = 3 and 2, 3 ∈ ∆2. Thus 1 ∈ ∆2 since
a(3) = 1 and this contradicts our assumption that 1 ∈ ∆1.

Therefore ∆1 = {1, 2, 3} and ∆2 = {4, 5, 6} are the only sets of 3, 2−imprimitivity for
H. One can see easily that if q : H → S2 is the quotient homomorphism associated to ∆1

and ∆2, then q(a) is the identity in S2 = S({∆1,∆2}) and q(b) = (∆1,∆2) ∈ S({∆1,∆2}).

In general, we obtain the following corollary.

Corollary 3.1.1 Assume N is an n−manifold and ϕ : Ñ → N is an m−fold covering of
F . Let ω : π1(N) → Sm be the representation determined by ϕ and θ : H1(N) → Z2 be
a homomorphism. Let θ̃ = ϕ∗(θ). Suppose that vj is a generator for π1(N) such that in
the disjoint cycle decomposition of ω(vj) there is a cycle (aj,1, . . . , aj,k) of odd order and
θ(vj) = (1, 2).

Then θ̃ is non-trivial.

Proof.
Assume that θ̃ is trivial. Then there are sets ∆1 and ∆2 of

m

2
, 2−imprimitive for Im(ω).
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Since (aj,1 · · · aj,k) has odd order and ω(vj) must leave the sets ∆1 and ∆2 invariant, it fo-
llows that {aj,1, . . . , aj,k} ⊂ ∆1 or {aj,1, . . . , aj,k} ⊂ ∆2. Without loss of generality, we
suppose that {aj,1, . . . , aj,k} ⊂ ∆1, thus (q ◦ ω(vj))(∆1) = ∆1 and q ◦ ω 6= θ. Therefore θ̃ is
non-trivial. ¤

Let N be a manifold and let θ be equal to w1(N), the first Stiefel-Whitney class of N ,
and recall that if ϕ : Ñ → N is a covering space then w1(Ñ) = ϕ∗(w1(N)). Then we can
apply the previous theorem to get the following corollary.

Corollary 3.1.2 Suppose that N is a non-orientable manifold and consider a transitive
representation ω : π1(N) → Sm. Let ϕ : Ñ → N be the covering space associated to ω and
w1(N) be the first Stiefel-Whitney class of N .

Then Ñ is orientable if and only if Im(ω) trivializes the bundle of w1(N).

Remark 3.1.3 Let F be a non-orientable surface of genus k and let {vj}kj=1 be a basis
for π1(F ) such that vj is an orientation reversing loop, for all j ∈ {1, . . . , k}. Suppose that
n ≥ 2, ϕ : F̃ → F is a covering space and let ω : π1(F ) → Sn be the representation
associated to ϕ. By Corollary (3.1.1) and Corollary (3.1.2)

1. If the order of a cycle of ω(vm) is odd, for some m ∈ {1, . . . , k}, then F̃ is non-
orientable.

2. If n is an odd number, F̃ is non-orientable.

3. Suppose that all the cycles of w(vj) have even order (therefore n is an even number),
for each j = 1, . . . , k; then G is orientable if and only if Im(ω) trivializes the bundle
of w1(F ).

3.2 Seifert manifolds

Let α and β be coprime integers numbers and αi ≥ 1; Suppose r : D2 → D2 is the rotation
defined by r(x) = xe2πi(α/β). Then the fibered solid torus T (β/α) is the quotient space

D2 × I

(x, 0) ∼ (r(x), 1)
, where I = [0, 1].

The fibers of T (β/α) are the images of the intervals {x}× I (under the identification).
Note that almost all fiber in T (β/α) is the union of the images of β intervals; the only ex-
ception is the core of T (β/α) because this fiber is the image of just the interval from {0}×I.

Suppose T (β/α) and T (β′/α′) are fibered solid tori. A fiber preserving homeomor-
phism f of T (β/α) and T (β′/α′) is a homeomorphism f : T (β/α) → T (β′/α′) that sends
each fiber of T (β/α) onto one fiber of T (β′/α′).
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Definition 3.2.1 A Seifert manifold M is a connected closed 3-manifold that can
be decomposed into disjoint circles called fibers of M , such that for every fiber h there
exist a neighborhood Vh, and coprime integer numbers α ≥ 1 and β, and a fiber preserving
homeomorphism f : Vh → T (β/α) such that f(h) is the core of T (β/α).

If α ≥ 2, the core of Vh is called an exceptional fiber of multiplicity α of M ,
otherwise it is a regular fiber of M .

Note that by collapsing each fiber into a point we get a well-defined quotient p : M → F ,
where F is a closed surface of genus g; F is orientable or non-orientable. This quotient is
called the orbit quotient of M or the orbit projection of M , and F is called the
orbit surface of M . Since each fiber h in M has a neighborhood Vh homeomorphic to a
fibered solid torus, one can show that {p(Vh)◦} is a basis for the topology of F . The image of
a regular fiber is a regular point and the image of an exceptional fiber is an exceptional point.

Given a triangulation T of F it is possible to construct a system of neighborhoods of
fibers of M , where each neighborhood is homeomorphic to a fibered solid torus and projects
onto a triangle of F . Also we can pick T , in such way, that every triangle contains at most
one exceptional point. We will consider only triangulations of F with this property.

Assume F is triangulated by T . Let x1, y1 ∈ F and suppose there is a triangle T1 which
misses exceptional points. Let c1 ⊂ T1 be a path joining x1 and y1. Let us fix an orientation
of p−1(x1). Since p−1(x) and p−1(y) are fibers of the fibered solid torus p−1(T1), we can
induce an orientation on the fiber p−1(y1) by translating the fiber p−1(x) along the path c1
and we say that p−1(y) has the orientation induced by p−1(x) along c.

In general, let x, y ∈ F and suppose there is a path c, connecting x with y, which misses
exceptional points, we may assume, refining T , if necessary, that there exist a finite number
of s triangles Ti without exceptional points, where i = 1, . . . , s, such that c ⊂ ∪si=1Ti. Let
Vi be the solid torus determined by Ti, for all i = 1, . . . , s. Note that we can also suppose
that the set ci = c∩Ti does not contain the vertices of Ti. If p−1(x) has an orientation then
we can induce an orientation on the fiber p−1(y) by translating the orientation of p−1(x),
triangle by triangle, along the curves ci. Then if x = y and the fiber p−1(x) is oriented
we can follow the induced orientation of p−1(x) along loops c based at x. Thus we have a
homomorphism e : π1(F ) → Z2 such that e(c) = +1, if c preserves the orientation of the
fiber when the fiber is translated along c; otherwise, if c reverses the orientation of the fiber,
e(c) = −1. This homomorphism is called the valuation homomorphism . Of course, it
is enough to define e in a basis for π1(F ) or H1(F ).

Since M is compact, the number of exceptional fibers in a Seifert manifold is finite.

Seifert manifolds were classified by H. Seifert [Se] according to a Seifert symbol and six
classes, depending on the orientability of F , the valuation homomorphism and the multiplic-
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ities of exceptional fibers. In order to state the classification in classes of Seifert manifolds
we fix the following facts and notation.

Let {hi}ri=1 be a set of fibers of M which contains all the exceptional fibers and some
regular fibers. Recall each fiber has a neighborhood Vi fiber preserving homeomorphic to
a fibered solid torus. Let T (βi/αi) be the fibered solid torus homeomorphic to Vi, for all
i = 1, . . . , r. Recall that αi and βi are coprime numbers and αi ≥ 1. We always will ask
to αi be greater than or equal to 1 and coprime with βi.

We write M0 = M − ∪Vi. Note that we have a quotient p| : M0 → F0, where F0 is a
surface with boundary. The boundary of F0 has r components, one for each component of
∂M0. Let q1, . . . , qr be the components of ∂F0 and h be a regular fiber. It is very important
to note that e(qi) = +1 since qi bounds a disk in F .

Now the list of classes of Seifert manifolds is the following (we use the notations of the
previous paragraphs).

(Oo) M is orientable, the orbit surface F is orientable of genus g and e is the trivial ho-
momorphism.

The Seifert symbol associated to this manifold is

M = (Oo, g;β1/α1, . . . , βr/αr).

If {vi}2g
i=1 is a basis for π1(F ), presentations for the fundamental groups of M and M0

are the following:

π1(M) ∼= 〈v1, . . . , v2g, q1, . . . , qr, h; [h, vj ] = 1, [h, qi] = 1,

q1q2 · · · qr =
g∏

j=1

[v2j−1, v2j ], qαi
i h

βi = 1〉.

π1(M0) ∼= 〈v1, . . . , v2g, q1, . . . , qr, h; [h, vj ] = 1, [h, qi] = 1,

q1q2 · · · qr =
g∏

j=1

[v2j−1, v2j ]〉.

(On) M is orientable, the orbit surface F ofM is non-orientable of genus g and if {v1, . . . , vg}
is a basis for π1(F ) such that each vj is orientation reversing then e(vj) = −1, for
j = 1, . . . , g.

The Seifert symbol associated to this manifold is

M = (On, g;β1/α1, . . . , βr/αr).
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Presentations for the fundamental groups of M and M0 are

π1(M) ∼= 〈v1, . . . , vg, q1, . . . , qr, h; vjhv−1
j = h−1, [h, qi] = 1,

q1q2 · · · qr =
g∏

j=1

v2
j , q

αi
i h

βi = 1〉.

π1(M0) ∼= 〈v1, . . . , vg, q1, . . . , qr, h; vjhv−1
j = h−1, [h, qi] = 1,

q1q2 · · · qr =
g∏

j=1

v2
j 〉.

(No) M is non-orientable, the orbit surface F is orientable of genus g and if {vj} is a basis
for π1(F ) then e(v1) = −1 and e(vj) = +1, for j ≥ 2.

The Seifert symbol associated to this manifold is

M = (No, g;β1/α1, . . . , βr/αr).

Fundamental groups of M and M0 are isomorphic to the following presentations:

π1(M) ∼= 〈v1, . . . , v2g, q1, . . . , qs, h; q1q2 · · · qr =
g∏

j=1

[v2j−1, v2j ],

[h, qi] = 1, qαi
i h

βi = 1, v1hv−1
1 = h−1, [vj , h] = 1 for j ≥ 2〉 > .

π1(M0) ∼= 〈v1, . . . , v2g, q1, . . . , qs, h; q1q2 · · · qr =
g∏

j=1

[v2j−1, v2j ],

[h, qi] = 1, v1hv−1
1 = h−1, [vj , h] = 1 for j ≥ 2〉.

(NnI) M is non-orientable, the orbit surface F is non-orientable of genus g and the valu-
ation is trivial.

The Seifert symbol for this class is

M = (NnI, g;β1/α1, . . . , βr/αr).

In this case, If {vj} is a basis for π1(F ) of orientation reversing curves, then presen-
tations for the fundamental groups of M and M0 are

π1(M) ∼= 〈v1, . . . , vg, q1, . . . , qr, h; [vj , h] = 1, [h, qi] = 1,

q1q2 · · · qr =
g∏

j=1

v2
j , q

αi
i h

βi = 1〉.
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π1(M0) ∼= 〈v1, . . . , vg, q1, . . . , qr, h; [vj , h] = 1, [h, qi] = 1,

q1q2 · · · qr =
g∏

j=1

v2
j 〉.

(NnII) M is non-orientable, the orbit surface F is non-orientable of genus g ≥ 2 and if
{vj} is a orientation reversing basis for π1(F ), then e(v1) = +1 and e(vj) = −1, for
all j ≥ 2.

The Seifert symbol associated to this Seifert manifolds is

M = (NnII, g;β1/α1, . . . , βr/αr),

and, in this case, presentations for the fundamental groups of M and M0 are

π1(M) ∼= 〈v1, . . . , vg, q1, . . . , qr, h; [h, qi] = 1, q1q2 · · · qr =
g∏

j=1

v2
j ,

qαi
i h

βi = 1, [v1, h] = 1, vjhv−1
j = h−1, for each j ≥ 2〉.

π1(M0) ∼= 〈v1, . . . , vg, q1, . . . , qr, h; [h, qi] = 1, q1q2 · · · qr =
g∏

j=1

v2
j ,

[v1, h] = 1, vjhv−1
j = h−1, for each j ≥ 2〉.

(NnIII) M is non-orientable, the orbit surface F is non-orientable of genus g ≥ 3 and
if {vj} is a orientation reversing basis for π1(F ), then e(v1) = e(v2) = +1 and
e(vj) = −1, for each j ≥ 2.

The Seifert symbol associated to these manifolds is

M = (NnIII, g;β1/α1, . . . , βr/αr).

The fundamental groups of M and M0 have the following presentations:

π1(M) ∼= 〈v1, . . . , vg, q1, . . . , qr, h; [h, qi] = 1, q1q2 · · · qr =
g∏

j=1

v2
j ,

qαi
i h

βi = 1, [v1, h] = 1, [v2, h] = 1, vjhv−1
j = h−1, for each j ≥ 3〉.

π1(M0) ∼= 〈v1, . . . , vg, q1, . . . , qr, h; [h, qi] = 1, q1q2 · · · qr =
g∏

j=1

v2
j ,

[v1, h] = 1, [v2, h] = 1, vjhv−1
j = h−1, for each j ≥ 3〉.
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The set {h, qi, vj} is called a standard system of generators of π1(M) and of
π1(M0)

The Seifert Classification Theorem is:

Theorem 3.2.1 [Se] Two Seifert symbols represent homeomorphic Seifert manifolds
by a fiber preserving homeomorphism if and only if one of the symbols can be changed into
the other by a finite sequence of the following moves:

1. Permute the ratios.

2. Add or delete 0/1.

3. Replace the pair βi/αi, βj/αj by (βi + kαi)/αi, (βj − kαj)/αj

Definition 3.2.2 The rational number e0(M) =
∑r

i=1 βi/αi is called the Euler num-
ber of M .

3.3 Coverings of Seifert manifolds branched along fibers

Definition 3.3.1 If M is a Seifert manifold and ϕ : M̃ → M is a branched covering
space of M , we say ϕ is branched along fibers if the branch set of ϕ is a finite union
of fibers of M .

Let {hi}ri=1 be a set of fibers of M which contains all the exceptional fibers of M and
a finite number of regular fibers of M . Recall each fiber has a fibered neighborhood Vi
fiber preserving homeomorphic to a fibered solid torus T (βi/αi), for i = 1, . . . , r. Recall
M0 = M − ∪Vi. Note that M0 is equal to M with all the exceptional fibers and some
regular fibers drilled out.

Remember also that qi = p(∂Vi), where p : M → F is the orbit projection.
A covering of M branched along fibers is determined by a representation ω : π1(M −

∪ri=1hi) → Sn and therefore by a representation ω : π1(M0) → Sn.

To describe a covering of M branched along fibers our procedure is as follows:

• Let M be a Seifert manifold and consider the subspace M0.

• Consider a representation ω : π1(M0) → Sn. This determines a finite covering space
ϕ0 : M̃0 →M0.

• Let Ti = qi × h. Let fi : ∂Vi → Ti be the glueing homeomorphisms. Using ϕ0, lift
the homeomorphisms fi : ∂Vi → Ti to glueing homeomorphisms f̃i : Ṽi → T̃i, where
T̃i ⊂ ϕ−1(Ti) is a component.
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• In this way we obtain a covering ϕ : M̃ →M of M branched along fibers.

Lemma 3.3.1 Suppose M is a Seifert manifold and ω : π1(M0) → Sn is a transitive
representation. Assume ω(h) 6= (1) and ω(h) = σ1 · · ·σk, is the disjoint cycle decomposition
of ω(h).
Then order(σ1) = order(σ2) = · · · = order(σk).

Proof.
Note that the subgroup generated by h, denoted by 〈h〉, is a normal subgroup of π1(M0);

thus 〈ω(h)〉 is normal in Im(ω). Let σ1 = (a1,1, . . . , a1,m); then A = {a1,1, . . . , a1,m} is an
orbit of 〈ω(h)〉.

Let as,1 ∈ {1, . . . , n}. We assume that as,1 appears in the orbit non-trivial of the cycle
σs. Since ω is transitive there an α ∈ π1(M0) such that ω(α)(a1,1) = as,1. Let us write
ω(α)(A) = {as,1, . . . , as,m}.

Also
〈ω(h)〉 (ω(α)(A)) = (〈ω(h)〉ω(α))(A)

= (ω(α)〈ω(h)〉) (A) since 〈ω(h)〉 is normal,
= ω(α) (〈ω(h)〉(A))
= ω(α)(A) since A is an orbit of 〈ω(h)〉.

Thus {as,1, . . . , as,m} is an orbit of 〈ω(h)〉 and σs = (as,1 · · · as,m). ¤

Using Lemma (3.1.1) we can prove the following theorem which is our main tool to
study coverings of a Seifert manifold.

Theorem 3.3.1 Let M be a Seifert manifold and assume that ϕ : M̃ →M is an n-fold
covering branched along fibers of M . Assume M̃ is connected. Then there are coverings
ψ : M̃ → M ′ and ζ : M ′ → M branched along fibers such that the following diagram is
commutative

M̃

M ′

M
?

ϕ

@
@R
ψ

¡
¡¡ª ζ

Also if ωψ and ωζ are the representations associated to ψ and ζ, respectively, we have that
ωψ(h′) = εt and ωζ(h) = (1), where (1) is the identity permutation of Sn, εt = (1, 2, . . . , t)
is the standard t−cycle, and h and h′ are regular fibers of M and M ′, respectively.
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Proof.

Since M̃ is connected then ωϕ, the representation determined by ϕ, is transitive. If
ω(h) = σ1 · · ·σk is the disjoint cycle decomposition of ω(h) in the proof of the previ-
ous lemma we also proved that each cycle σs = (as,1 · · · as,m) of ω(h) gives us a set of
m, k−imprimitivity for Im(ω), namely, ∆s = {as,1, . . . , as,m}.

The quotient homomorphism q : Im(ω) → S({∆1, . . . ,∆k}) satisfies that q(ω(h))(∆i) =
∆i. Therefore q ◦ ω(h) = (∆1), the identity permutation in S({∆1, . . . ,∆k}).

Also ω(h) ∈ H1 = q−1(St(∆1)) and γ1 : H1 → Sm = S(∆1) sends h into an m−cycle.¤

Therefore in order to understand the connected coverings of a Seifert manifold M
branched along fibers, we only need to study representations that send a regular fiber
h of M into the identity permutation and representations that send a regular fiber h of M
into an standard n−cycle.

3.3.1 The case ω(h) = (1), the identity permutation

IfM = (Xx, g;β1/α1, . . . , βr/αr), whereXx is a symbol in {Oo,On,No,NnI,NnII,NnIII},
we will write M0 for the manifold obtained from M by drilling out the fibers correponding
to the ratios β1/α1, . . . , βr/αr.

Along this section ω : π1(M0) → Sn is a transitive representation such that

ω(h) = (1),
ω(qi) = σi,1 · · ·σi,`i , for i = 1, . . . , r and
ω(vj) = ρj,1 · · · ρj,sj ,

where σi,1 · · ·σi,`i and ρj,1 · · · ρj,sj are the disjoint cycle decompositions of ω(qi) and
ω(vj), respectively.

Let M̃0 = ϕ−1(M0).

Lemma 3.3.2 Suppose that M is a Seifert manifold with orbit surface F and n ∈ N.
Let ω : π1(M0) → Sn be a representation defined by

ω(h) = (1),
ω(qi) = σi,1 · · ·σi,`i , for i = 1, . . . , r and
ω(vj) = ρj,1 · · · ρj,sj .

where σi,1 · · ·σi,`i and ρj,1 · · · ρj,sj are the disjoint cycle decompositions of ω(qi) and ω(vj),
respectively.
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Let ϕ : M̃ →M be the branched covering associated to ω and let p̃ : M̃ → G be the orbit
projection of M̃ . Assume g̃ is the genus of G.

i) Suppose F is non-orientable. If G is orientable, then

g̃ = 1− n(2− g) +
∑r

i=1 `i − nr

2
;

otherwise,

g̃ = n(g − 2) + 2 + nr −
r∑

i=1

`i.

ii) If F is orientable, then g̃ = 1 + n(g − 1) + nr−Pr
i=1 `i

2 .

Proof.

This is essentially the Riemann-Hurwitz formula. Let F0 be the orbit surface of M0 and
G0 be the orbit surface of M̃0 = ϕ−1(M0).

Note that ϕ−1(h) has n-components, h̃1, . . . , h̃n. Thus if x̃, ỹ ∈ h̃t, for some t ∈
{1, . . . , n}, we have p̃(x̃) = p̃(ỹ) and p(ϕ(x̃)) = p(ϕ(ỹ)); by the Universal Property of
Quotients we have a covering of n−sheets ϕ : G0 → F0 such that the following diagram is
commutative:

M̃0 M0

G0 F0

-ϕ|

?

p̃

?

p

p p p p p p p-
ϕ

The representation ω : π1(F0) → Sn associated to ϕ is defined as

ω(qi) = σi,1 · · ·σi,`i , for i = 1, . . . , r and
ω(vj) = ρj,1 · · · ρj,sj , for j = 1, . . . , g.

That is ϕ = ϕ|G0. Since ω is transitive and ω(h) = (1), F̃ = ϕ−1(F ) is connected and
let F̃0 = F̃ ∩ M̃0. It is easy to see that F̃0 is a horizontal surface, then p̃| : F̃0 → G0 is a
covering. Also we know that ϕ| : F̃0 → F0 is a covering of n sheets.
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Then there exists a commutative diagram

F̃0

G0

F0

?

ϕ|

@
@R
p̃|

¡
¡ª ϕ

Thus F̃0
∼= G0 and we conclude F̃ ∼= G.

Since F̃0 is a covering of n sheets of F0, then χ(F̃0) = nχ(F0). Since ω(qi) = σi,1 · · ·σi,s,
therefore ϕ−1(qi) has `i components; thus ∂F̃0 has

∑r
i=1 `i components for ∂F0 = tqi.

Hence

χ(F̃ ) = nχ(F0) +
r∑

i=1

`i (3.1)

i) Suppose F is non-orientable; then χ(F0) = 2 − g − r and Equation (3.1) has the
following form

χ(F̃ ) = n(2− g − r) +
r∑

i=1

`i.

If G is orientable, then G has Euler characteristic equal to 2− 2g̃ and

g̃ = 1− n(2− g) +
∑r

i=1 `i − nr

2
.

If G is non-orientable, we know that χ(G) = 2− g̃. Therefore,

g̃ = n(g − 2) + 2 + nr −
r∑

i=1

`i.

ii) When F is orientable, G is also orientable. Since χ(F0) = 2−2g−r and χ(G) = 2−2g̃,
by (3.1) we conclude

g̃ = 1 + n(g − 1) +
nr −∑r

i=1 `i
2

¤

Since M0 is an S1−bundle over F and ω(h) = (1), then M̃0 is the pullback of M0 by
ϕ : G0 → F0 and the following lemma follows.
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Lemma 3.3.3 If M is a Seifert manifold and ω : π1(M0) → Sn is a representation
defined by

ω(h) = (1),
ω(qi) = σi,1 · · ·σi,`i , for i = 1, . . . , r and
ω(vj) = ρj,1 · · · ρj,sj ,

where σi,1 · · ·σi,`i and ρj,1 · · · ρj,sj are the disjoint cycle decompositions of ω(qi) and ω(vj),
respectively. Let ϕ : M̃ →M be the covering determined by ω.
Then ẽ = ϕ∗(e), where e and ẽ are the valuations of M and M̃, respectively.

Lemma 3.3.4 Let M be a non-orientable Seifert manifold. Let F and G be the or-
bit surfaces of M and M̃ , respectively. Consider the orbit projections p̃ : M̃ → G and
p : M → F . Suppose ϕ : G → F is the induced covering of orbit surfaces. Recall that
ϕ = ϕ|G. Let F0 and G0 be the orbit surfaces of M0 and M̃0 = ϕ−1(M0), respectively.

If v is a simple closed curve in F0 and if ṽ ⊂ G0 is the component of ϕ−1(v) correspond-
ing to the cycle ρ = (a1, . . . , ar) of ω(v), then:

(a) ϕ| : p̃−1(ṽ) → p−1(v) is an r-fold covering space.

(b) If e(v) = +1, then ẽ(ṽ) = +1.

(c) Suppose that e(v) = −1. Then ẽ(ṽ) = +1 if and only if order(ρ) is even.

Proof.
Note that p−1(v) and p̃−1(ṽ) are S1-bundles over v and ṽ, respectively.

(a) It is easy to see that ϕ(p̃−1(ṽ)) = p−1(v) because ϕ(ṽ) = v and the following diagram
commutes.

M̃0 M0

G0 F0

-ϕ

?

p̃

?

p

-ϕ|

Thus ϕ| : p̃−1(ṽ) → p−1(v) is a covering space and the representation associated to
this covering is ω′ : π1(p−1(v)) → Sr = S({a1, . . . , ar}) defined by

ω′(h) = (1) and
ω′(v) = ρ.

(b) Since p−1(v) and p̃−1(ṽ) are S1-bundles over v and ṽ, respectively, ϕ| : p̃−1(ṽ) → p−1(v)
is a covering, ϕ(ṽ) = v and e(v) = +1 then by Remark (3.1.1) we get ẽ(ṽ) = +1.
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(c) Note that r odd implies ẽ(ṽ) = −1 (Corollary 3.1.1). Thus ẽ(ṽ) = +1 only if r is even.
On the other hand, suppose r even and let ρ = (1 · · · r). Define ∆1 = {a1, a3, . . . , ar−1}
and ∆2 = {a2, a4, , . . . , ar}, then q : Im(ω′) → S2 = S({∆1,∆2}) sends v into (∆1,∆2)
and we have q ◦ ω = e. Therefore ẽ is trivial and ẽ(ṽ) = +1 (See Remark 3.1.1) ¤

Lemma 3.3.5 Suppose that X and X ′ are n-manifolds with boundary. Let Y and Y ′ be
connected sub-manifolds of ∂X and ∂X ′, respectively. If f : Y → Y ′ is a homeomorphism,
then Z = X tX ′/f is orientable if and only if X and X ′ are orientable.

Proof.
Assume Oz is an orientation of Z. Then Oz|X and Oz|X ′ are orientations for X and

X ′, respectively.

Now, suppose O and O′ are orientations of X and X ′, respectively.

• If f is orientation reversing, it is clear that O ∪O′ is an orientation of Z.

• Is f is orientation preserving, then O ∪ (−O′) is an orientation for Z.

¤

Suppose M is a Seifert manifold with orbit projection p : M → F. Let ω : π1(M0) → Sn be
a representation such that

ω(h) = (1),
ω(qi) = σi,1 · · ·σi,`i , for i = 1, . . . , r and
ω(vj) = ρj,1 · · · ρj,sj ,

where σi,1 · · ·σi,`i and ρj,1 · · · ρj,sj are the disjoint cycle decompositions of ω(qi) and ω(vj),
respectively, and M0 is the Seifert manifold M with the exceptional fibers drilled out and
without some singular fibers that appear in the Seifert symbol, σi,k and ρj,t are cycles.

Assume ϕ : M̃ → M is the covering of M branched along fibers associated to ω. Let
p̃ : M̃ → G be the orbit projection of M̃ and recall ϕ| : G→ F is a covering.

Write F0 = p(M0) and note that a presentation for π1(F0) is 〈v1, . . . , vk, q1, . . . , r : −〉:
Let M̃0 = ϕ−1(M0) and G0 = ϕ−1(F0). Note that G0 = G ∩ M̃0 and ϕ| : G0 → F0 is a
covering.

In order to determine what class of Seifert manifold M̃ belong to, we analyze two cases:
M orientable and M non-orientable. By Lemma (3.3.5), to see if M̃ and G are orientable
we only need to determine the orientability of M̃0 = ϕ−1(M0) and G0 = G ∩ M̃0.
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(a) The case M orientable.
Assume M = (Oo, g;β1/α1, . . . , βr/αr) is an orientable Seifert manifold with ori-
entable orbit surface F of genus g. Recall also that α ≥ 1 and βi are coprime
numbers. The numbers βi/αi in the Seifert symbol are defined by a fibered torus
T (βi/αi) which is a fibered neighborhood of some fiber hi of M . All the exceptional
fibers are contained in the set {hi}ri=1. Recall that M0 = M − tT (βi/αi). Note that
∂M0 = tri=1Ti, where Ti is a torus for i = 1, . . . , r and tri=1Ti denotes the disjoint
union of the tori Ti. Let qi = p(Ti), where p : M → F is the orbit projection of M .

If {vi}2g
i=1 is a basis for π1(F ), a presentation for the fundamental groups of M and

M0 are

π1(M) ∼= 〈v1, . . . , v2g, q1, . . . , qr, h; [h, vj ] = 1, [h, qi] = 1,

q1q2 · · · qr =
g∏

j=1

[v2j−1, v2j ], qαi
i h

βi = 1〉.

π1(M0) ∼= 〈v1, . . . , v2g, q1, . . . , qr, h; [h, vj ] = 1, [h, qi] = 1,

q1q2 · · · qr =
g∏

j=1

[v2j−1, v2j ] >〉.

Theorem 3.3.2 Suppose that M = (Oo, g;β1/α1, . . . , βr/αr) and ω : π1(M0) →
Sn is a transitive representation defined by

ω(h) = (1),
ω(qi) = σi,1 · · ·σi,`i , for i = 1, . . . , r and
ω(vj) = ρj,1 · · · ρj,sj , for j = 1, . . . , 2g;

where σi,1 · · ·σi,`i and ρj,1 · · · ρj,sj are the disjoint cycle decompositions of ω(qi) and
ω(vj), respectively, and {h, qi, vj} is a standard system of generators of M0. Assume
that ϕ : M̃ →M is the covering branched along fibers associated to ω and p̃ : M̃ → G
is the orbit projection of M̃ .

Then M̃ ∈ Oo, that is, M is orientable and G is orientable.

Proof.
Since M and F are orientable, then M0 and F0 are orientable. Thus the first

Stiefel-Whitney classes of M0 and F0, w1(M0) and w1(F0), respectively, are trivial.
Recall we have coverings ϕ| : M̃0 → M and ϕ| : G0 → F0, where M̃0 = ϕ−1(M0) and
G0 = G ∩ M̃0 = ϕ−1(F0). Then M̃0 and G0 are orientable since w1(M̃0) and w1(G0)
are (Remark 3.1.1). Therefore M̃ is orientable and G is orientable. ¤
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Let M = (On, g;β1/α1, . . . , βr/αr) be a Seifert manifold: M is orientable and the
orbit surface F of M is non-orientable of genus g. Again the numbers βi/αi in the
Seifert symbol are defined by a fibered torus T (βi/αi) which is a neighborhood of
some fiber hi of M . All exceptional fibers belong to the set {hi}ri=1. Consider the
manifold with boundary M0 = M − tT (βi/αi). Note that ∂M0 = tri=1Ti, where Ti
is a torus for i = 1, . . . , r. Let qi = p(Ti), where p : M → F is the orbit projection ofM .

If {v1, . . . , vg} is a basis for π1(F ) such that each vj is orientation reversing, then a
presentation for the fundamental groups of M and M0 are

π1(M) ∼= 〈v1, . . . , vg, q1, . . . , qr, h; vjhv−1
j = h−1, [h, qi] = 1,

q1q2 · · · qr =
g∏

j=1

v2
j , q

αi
i h

βi = 1〉.

π1(M0) ∼= 〈v1, . . . , vg, q1, . . . , qr, h; vjhv−1
j = h−1, [h, qi] = 1,

q1q2 · · · qr =
g∏

j=1

v2
j 〉. .

Theorem 3.3.3 Let M = (On, g;β1/α1, . . . , βr/αr). Suppose ω : π1(M0) → Sn
is a representation such that

ω(h) = (1),
ω(qi) = σi,1 · · ·σi,`i , for i = 1, . . . , r and
ω(vj) = ρj,1 · · · ρj,sj , for j = 1, . . . , g;

where σi,1 · · ·σi,`i and ρj,1 · · · ρj,sj are the disjoint cycle decompositions of ω(qi) and
ω(vj), respectively, and {h, qi, vj} a standard system of generators of π1(M0). As-
sume ϕ : M̃ → M is the covering of M branched along fibers determined by ω and
p̃ : M̃ → G is the orbit projection of M̃ .
Then M̃ ∈ Oo (M̃ and G are orientable) or M̃ ∈ On (M̃ is orientable and G is
non-orientable).

Also M̃ ∈ Oo if and only if ω|π1(F0) trivializes the bundle of w1(F0), where w1(F0)
is the first Stiefel-Whitney class of F0.

Proof.
Note that M0 is orientable since M is orientable. Then the first Stiefel-Whitney

class of M0, w1(M0), is trivial. By Lemma 3.1.1, we have that the first Stiefel-Whitney
class of M̃0 = ϕ−1(M0), w1(M̃0), is trivial. Thus M̃0 is orientable and we conclude M̃
is orientable.
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We have only two classes of orientable Seifert manifolds, namely, Oo and On. There-
fore M̃ ∈ Oo or M̃ ∈ On. By Corollary 3.1.2, the surface G0 is orientable (and
M̃ ∈ Oo) if and only if ω|π1(F0) has sets of

n

2
, 2−imprimitivity, ∆1 and ∆2, such that

the quotient homomorphism q : Im(ω|π1(F0)) → S2 satisfies that q ◦ ω = w1(F0). ¤

Example 3.3.1

Let M = (On, 1; 1/2). Since M ∈ On, M is orientable and the orbit surface of M , F ,
is non-orientable. The genus of F is 1, that is, F is a projective plane. Let T (1/2) be
the solid fibered torus homeomorphic (under a fiber preserving homeomorphism) to
a neighborhood of the only exceptional fiber. The boundary of M0 = M − T (1/2) is
a torus T1. Let q1 = p(T1), where p : M → F is the orbit projection of M . Let v1 be
the generator of π1(F ) and let h be a regular fiber of M .

Note that
π1(M0) ∼= 〈v1, q1, h : [h, q1] = 1, v1hv−1

1 = h, q1 = v2
1〉

and
π1(M) ∼= 〈v1, q1, h : [h, q1] = 1, v1hv−1

1 = h−1, q1 = v2
1, q

2
1h = 1〉

• Consider the representation ω : π1(M0) → S2 defined by

ω(h) = (1),
ω(q1) = (1, 2) and
ω(v1) = (1).

Assume ϕ : M̃ → M is the covering determined by ω. Note that the only sets
of 1, 2−imprimitivity for Im(ω|π1(F0)) are ∆1 = {1} and ∆2 = {2}. It is clear
that q : Im(ω|π1(F0)) → S2 = S({∆1,∆2}) holds the relation: q(v1) = (∆1), the
identity permutation in S2. Thus M̃ ∈ On (Cf. Theorem 3.3.3).

• If we consider ω : π1(M0) → S2 defined by

ω(h) = (1),
ω(q1) = (1, 2) and
ω(v1) = (1, 2),

then M̃ is the 2-fold covering space of orientation and M̃ ∈ Oo (Cf. Theorem
3.3.2).

(b) The case M non-orientable.
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(i) The case M ∈ No.
Assume M = (No, g;β1/α1, . . . , βr/αr). Recall that in this kind of Seifert man-
ifolds M is non-orientable and the orbit surface F is orientable of genus g; The
numbers βi/αi in the Seifert symbol are defined by a fibered torus T (β/αi)
which is a fibered neighborhood of some fiber hi of M . The set of exceptional
fibers is contained in the set {hi}ri=1. Recall M0 = M − tT (βi/αi). Note that
∂M0 = tri=1Ti, where Ti is a torus for i = 1, . . . , r. Let qi = p(Ti), where
p : M → F is the orbit projection of M .

If h is a regular fiber and {vj}2g
i=1 is a basis for π1(F ) then the valuation homo-

morphism e : π1(M) → Sn satisfies e(v1) = −1 and e(vj) = +1, for j ≥ 2.

Fundamental groups of M and M0 have the following presentations:

π1(M) ∼= 〈v1, . . . , v2g, q1, . . . , qs, h; q1q2 · · · qr =
g∏

j=1

[v2j−1, v2j ],

[h, qi] = 1, qαi
i h

βi = 1, v1hv−1
1 = h−1, [vj , h] = 1 for j ≥ 2〉.

π1(M0) ∼= 〈v1, . . . , v2g, q1, . . . , qs, h; q1q2 · · · qr =
g∏

j=1

[v2j−1, v2j ],

[h, qi] = 1, v1hv−1
1 = h−1, [vj , h] = 1 for j ≥ 2〉.

The orbit projection of M0 is p| : M0 → F0, where F0 ⊂ F is a surface. If
e′ : π1(F0) → Sn is the valuation homomorphism in M0 then e′ = i# ◦ e, where
e is the valuation homomorphism of M and i : M0 →M is the natural inclusion
map.

Theorem 3.3.4 Consider M = (No, g;β1/α1, . . . , βr/αr) and suppose {v1, . . . , v2g}
is a basis for the orbit surface F of M . Assume that ω : π1(M0) → Sn is a rep-
resentation defined by

ω(h) = (1),
ω(qi) = σi,1 · · ·σi,`i , for i = 1, . . . , r and
ω(vj) = ρj,1 · · · ρj,sj , for j = 1, . . . , 2g,

where σi,1 · · ·σi,`i and ρj,1 · · · ρj,sj are the disjoint cycle decompositions of ω(qi)
and ω(vj), respectively. Assume ϕ : M̃ → M is the covering of M branched
along fibers determined by ω and p̃ : M̃ → G is the orbit projection of M̃ . Let
e′ : π1(F0) → S2 be the valuation homomorphism of M0.

Then M̃ ∈ Oo (M̃ and G are orientable) or M̃ ∈ No (M̃ is non-orientable and
G is orientable). Furthermore M̃ ∈ Oo if and only if ω|π1(F0) trivializes the
bundle of e′.
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Proof.

Recall M̃0 = ϕ−1(M0), G0 = G ∩ M̃0 = ϕ−1(F0). We have coverings ϕ| : M̃0 →
M0 and ϕ| : G0 → F0. Since the first Stiefel-Whitney class of F0, w1(F0), is
trivial then w1(G0) is trivial (Remark 3.1.1). Therefore M̃ ∈ No or M̃ ∈ Oo.

By Remark 2.2.1.(b), the valuation homomorphism e : π1(F ) → Z2
∼= S2 gives

us a covering ϕe : (Fe)0 → F0 of 2-sheets.

Let e′ : π1(F0 → Z2
∼= S2 be the valuation homomorphism of M0. According to

Lemma 3.3.3 and Theorem 3.1.1, e′ is trivial if and only if ω|π1(F0) trivializes
the bundle of e′. In the class No the valuation homomorphism is non-trivial.
Therefore M̃ ∈ Oo if and only if ω|π1(F0) trivializes the bundle of e′. ¤

Remark 3.3.1 Let M = (No, g;β1/α1, . . . , βr/αr) with orbit projection p :
M → F . Suppose {vj}2g

j=1 is a basis for π1(F ) and M0 = M − tT (βi/αi), where
T (βi/αi) is a fibered neighborhood of either a exceptional fiber or a regular fiber.
Recall F0 = F ∩M0. Assume ϕ : M̃ →M is an n−fold covering of M branched
along fibers, where M̃ is connected. Let ω : π1(M0) → Sn be the transitive repre-
sentation determined by ϕ, and let h be a regular fiber of M .

If ω(h) = (1), the identity permutation in Sn, a useful criterion to determine if
M̃ ∈ No or M̃ ∈ Oo is the following:

1. If n is odd, then M̃ ∈ No
2. If ω(v1) has a cycle of odd order then M̃ ∈ No
3. If Im(ω|π1(F0)) is not

n

2
, 2−imprimitive then M̃ ∈ No.

4. If Im(ω|π1(F0)) is
n

2
, 2−imprimitive, then M̃ ∈ Oo if and only if ω|π1(F0)

trivializes the bundle of e′, where e′ : π1(F0) → Z2
∼= S2 is the valuation

homomorphism of M0.

Example 3.3.2

Let M = (No, 1; 1/2). The manifold M is non-orientable and F , the orbit surface
ofM , is an orientable surface of genus 1. Note thatM has exactly one exceptional
fiber h′. Then there exists a fibered neighborhood of h′ homeomorphic to the
solid fibered torus T (1/2). Consider M0 = M − T (1/2) and {v1, v2} a basis for
π1(F ). Note that ∂M0 is a torus T1. Let q1 = p(T1), where p : M → F is the
orbit projection of M and let h be a regular fiber of M .
Presentations for the fundamental groups of M0 and M are
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π1(M0) ∼= 〈v1, v2, q1, h : v1hv−1 = h−1, [v2, h] = 1, [h, q1] = 1, q1 = [v1, v2]〉

and

π1(M0) ∼= 〈v1, v2, q1, h : v1hv−1 = h−1, [v2, h] = 1, [h, q1] = 1, q1 = [v1, v2], q21h = 1〉.

• Let ω : π1(M0) → S4 be the representation defined by

ω(h) = (1),
ω(v1) = (1, 2)(3, 4),
ω(v2) = (1, 3)(2, 4), and
ω(q1) = (1).

Suppose ϕ : M̃ →M is the covering of M determined by ω.

Observe that ∆1 = {1, 3} and ∆2 = {2, 4} are sets of 2, 2-imprimitivity for
Im(ω|π1(F0)) such that q : Im(ω|π1(F0)) → S({∆1,∆2}) satisfies

q(v1) = (∆1,∆2)
q(v2) = (∆1), the identity permutation in S({∆1,∆2}), and
q(q1) = (∆1).

On the other hand,
e(v1) = (1, 2) = −1
e(v2) = (1) = +1, and
e(q1) = (1) = +1.

Therefore M̃ ∈ Oo (Cf Theorem 3.3.4).
• Suppose ω : π1(M0) → S3 is the representation such that

ω(h) = (1),
ω(v1) = (1, 2, 3)
ω(v2) = (1, 2, 3) and
ω(q1) = (1).

Let ϕ : M̃ →M be the covering of M determined by ω. In this case M̃ ∈ No
because 3 is odd (Cf. Theorem 3.3.4).

(ii) The case M ∈ NnI.
Suppose M = (NnI, g;β1/α1, . . . , βr/αr). That is M is non-orientable, the orbit
surface F is non-orientable of genus g and the valuation is trivial. Consider
M0 = M − T (βi/αi), where T (βi/αi) is the solid fibered torus corresponding to
the ratio βi/αi. Note that ∂M0 = tri=1Ti, where Ti is a torus for i = 1, . . . , r.
Let F0 = p(M0) and qi = p(Ti), where p : M → F is the orbit projection of M .
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If h is a regular fiber of M and {vj} is a basis for π1(F ) of orientation reversing
curves, then presentations for the fundamental groups of M and M0 are:

π1(M) ∼= 〈v1, . . . , vg, q1, . . . , qr, h; [vj , h] = 1, [h, qi] = 1,

q1q2 · · · qr =
g∏

j=1

v2
j , q

αi
i h

βi = 1〉.

π1(M0) ∼= 〈v1, . . . , vg, q1, . . . , qr, h; [vj , h] = 1, [h, qi] = 1,

q1q2 · · · qr =
g∏

j=1

v2
j 〉.

The valuation homomorphism of M0, e′ : π1(F0) → Sn, also is trivial.

Theorem 3.3.5 Let M = (NnI, g;β1/α1, . . . , βr/αr) be a non-orientable
Seifert manifold. Consider a representation ω : π1(M0) → Sn defined by

ω(h) = (1),
ω(qi) = σi,1 · · ·σi,`i , for i = 1, . . . , r and
ω(vj) = ρj,1 · · · ρj,sj ,

where σi,1 · · ·σi,`i and ρj,1 · · · ρj,sj are the disjoint cycle decompositions of ω(qi)
and ω(vj), respectively. Suppose ϕ : M̃ →M is the covering associated to ω. Let
M̃ → G be the orbit projection of M̃.

Then M̃ ∈ Oo or M̃ ∈ NnI. Moreover, M̃ ∈ Oo if and only if ω|π1(F0) trivializes
the bundle of w1(F0), where w1(F0) is the first Stiefel-Whitney class of F0.

Proof.

Recall M̃0 = ϕ−1(M0) and G0 = ϕ−1(F0). Let ẽ : π1(G0) → S2 be the valua-
tion homomorphism of M0. Since e is trivial we have ẽ trivial by Lemma 3.3.3
and Remark 3.1.1. There are only two classes of Seifert manifolds having trivial
valuation homomorphism, namely, M̃ ∈ Oo or M̃ ∈ NnI. Therefore M̃ ∈ Oo or
M̃ ∈ NnI.

Since ϕ| : G→ F is a covering, by Corollary (3.1.2), G0 is orientable if and only
if there are sets of n

2 , 2−imprimitivity, ∆1 and ∆2, such that q ◦ (ω|π1(F0)) =
w1(F0). Therefore M̃ ∈ Oo if and only if there are sets of n

2 , 2−imprimitivity,
∆1 and ∆2, such that q ◦ (ω|π1(F0)) = w1(F0). ¤

Example 3.3.3
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Consider M = (NnI, 1; 1/2). Suppose p : M → F is the orbit projection of
M . In this case, F is a non-orientable surface of genus 1. Note that M has
exactly one exceptional fiber h′. Then there exists a fibered neighborhood of h′

homeomorphic to the solid fibered torus T (1/2). Consider M0 = M − T (1/2)
and let {v1} be a basis for π1(F ). Note that ∂M0 is a torus T1. Let F0 = p(M0)
and q1 = p(T1), where p : M → F is the orbit projection of M and let h be a
regular fiber of M .
Presentations for the fundamental groups of M0 and M are the following:

π1(M0) ∼= 〈v1, q1, h : [v1, h] = 1, [q1, h] = 1, q1 = v2
1〉

and
π1(M0) ∼= 〈v1, q1, h : [v1, h] = 1, [q1, h] = 1, q1 = v2

1, q
2
1h = 1〉.

• Assume that ω : π1(M0) → S3 is the representation such that

ω(h) = (1),
ω(q1) = (1, 3, 2) and
ω(v1) = (1, 2, 3).

Let ϕ : M̃ → M be the covering determined by ω. Suppose G is the
orbit surface of M̃ . Then G is non-orientable because n is odd. Therefore
M̃ ∈ NnI (Cf. Theorem 3.3.5)

• If ω : π1(M0) → S4 is a representation defined by

ω(h) = (1),
ω(q1) = (1, 3)(2, 4) and
ω(v1) = (1, 2, 3, 4).

Suppose ϕ : M̃ → M be the covering associated to ω and G is the orbit
surface of M̃ .

Then ∆1 = {1, 3} and ∆2 = {2, 4} are sets of 2, 2−imprimitivity for Im(ω|π1(F0)),
such that q(v1) = (∆1,∆2) and q(q1) = (∆1), the identity permutation in
S({∆1,∆2}). Of course, w1(F0)(v1) = (1, 2) and w1(F0)(q1) = (1). Therefore
M̃ ∈ Oo (Cf. Theorem 3.3.5).

(iii) The case M ∈ NnII.
Suppose M = (NnII, g;β1/α1, . . . , βr/αr) and p : M → F is the orbit projec-
tion. Since M ∈ NnII then F is non-orientable. Assume that the genus of
F is g. Write M0 = M − T (βi/αi), where T (βi/αi) is the solid fibered torus
homeomorphic to a neighborhood of either a exceptional fiber or a singular fiber.
Then ∂M0 = tri=1Ti, where Ti is a torus for i = 1, . . . , r. Let F0 = p(M0) and
qi = p(Ti). If h is a regular fiber of M and {vj}gj=1 is a basis for π1(F ) of orien-
tation reversing curves, then presentations for the fundamental groups of M and
M0 are:
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π1(M) ∼= 〈v1, . . . , vg, q1, . . . , qr, h; [h, qi] = 1, q1q2 · · · qr =
g∏

j=1

v2
j ,

qαi
i h

βi = 1, [v1, h] = 1, vjhv−1
j = h−1, for each j ≥ 2〉.

π1(M0) ∼= 〈v1, . . . , vg, q1, . . . , qr, h; [h, qi] = 1, q1q2 · · · qr =
g∏

j=1

v2
j ,

[v1, h] = 1, vjhv−1
j = h−1, for each j ≥ 2〉.

Lemma 3.3.6 Suppose that M = (NnII, g;β1/α1, . . . , βr/αr) and ω : π1(M0) →
Sn is a representation such that

ω(h) = (1),
ω(qi) = σi,1 · · ·σi,`i , for i = 1, . . . , r and
ω(vj) = ρj,1 · · · ρj,sj , for j=1,. . . ,g,

where σi,1 · · ·σi,`i and ρj,1 · · · ρj,sj are the disjoint cycle decompositions of ω(qi)
and ω(vj), respectively. Let ϕ : M̃ → M be the covering associated to ω and let
p̃ : M̃ → G be the orbit projection of M̃ . Assume the valuation homomorphism
e : π1(F ) → Z2

∼= S2 is non-trivial and M̃ is non-orientable (i.e. M ∈ NnII or
M ∈ NnIII).
1. If the number of cycles of ω(v1) having odd order is odd, then M ∈ NnII.
2. If the number of cycles of ω(v1) having odd order is even, then M ∈ NnIII.

Proof.
Note that v1 is an orientation reversing curve in M0 because v1 is orientation

reversing in F0 and e(v1) = +1. Then p−1(v1) is a 2-sided vertical torus T 2. Let
N (p−1(v1)) be an open regular neighborhood of p−1(v1). Then M −N (p−1(v1))
is orientable for v2, . . . , vg, q1, . . . , qr and h are orientation preserving curves in
M0.

Let ṽ1,j be the components of ϕ−1(v1) corresponding to ρ1,j . Then ϕ−1(T 2) =
ts1j=1(ṽi,j × S1).

Suppose N (t(ṽ1,j × S1)) is an open regular neighborhood of t(ṽ1,j × S1). It is
clear that M̃ − N (t(ṽ1,j × S1)) is orientable because T 2 is a Stiefel-Whitney
surface for M0 (Theorem 2.3.2).

Let PD : H1(M,Z2) → H2(M,Z2) denote the Poincaré duality isomorphism
associated to M .
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Since ϕ∗(w1(M0)) = w1(M̃0) then

PDw1(M̃0) = [ϕ−1(T 2)]
= [ts1j=1(ṽ1,j × S1)]
= [ts1j=1(ṽ1,j × S1)]
= [ṽ1,1 × S1] + [ṽ1,2 × S1] + · · ·+ [ṽ1,s1 × S1],

where possibly some classes [ṽj×S1] are trivial. Since the cycles ρ1,j are disjoint
and the homology groups are abelian, without loss of generality, we may assume
that there is a k ∈ {1, . . . , s1}, such that [Tj ] is trivial for all k < j ≤ s1. Thus
PDw1(M̃) = [ṽ1,1×S1] + [ṽ1,2×S1] + · · ·+ [ṽ1,k×S1]. Of course, if ρ1,j has odd
order then 1 ≤ j ≤ k since ṽ1,j is the core of a Moebius strip contained in G0

and this is a non-separating curve in G0; consequently p̃−1(ṽ1,j) = ṽ1,j × S1 is a
non-separating surface in M̃0 and the class [p̃−1(ṽj)] is non-trivial in H2(M̃0).
Let ṽ be a simple closed curve in G0 homologous to ṽ1,1 + · · · + ṽ1,k and note
that PDw1(M̃0) = [ṽ × S1]; it means ṽ × S1 is a Stiefel-Whitney surface for M̃0

and for M̃ . Thus ṽ×S1 is a vertical torus which is a Stiefel-Whitney surface. Of
course, ṽ × S1 is one-sided in M0 and M if and only if ṽ is one sided in F0. By
Theorem (2.3.3), if the number of cycles of ω(v1) having odd order is odd then
M̃ ∈ NnII; Otherwise, M̃ ∈ NnIII. ¤

Theorem 3.3.6 Assume that M = (NnII, g;β1/α1, . . . , βr/αr) and n ∈ N.
Consider a representation ω : π1(M0) → Sn such that

ω(h) = (1),
ω(qi) = σi,1 · · ·σi,`i , for i = 1, . . . , r and
ω(vj) = ρj,1 · · · ρj,sj for j = 1, . . . , g,

where σi,1 · · ·σi,`i and ρj,1 · · · ρj,sj are the disjoint cycle decompositions of ω(qi)
and ω(vj), respectively. Let ϕ : M̃ → M be the covering associated to ω and let
p̃ : M̃ → G be the orbit projection of M̃ . Let e′ : π1(F0) → Sn be the valuation
homomorphism of M0.

(a) Suppose that n is an odd number.

(1) If ω(v1) has an odd number of cycles of odd order, then M̃ ∈ NnII.
(2) If ω(v1) has an even number of cycles of odd order, then M̃ ∈ NnIII.

(b) Assume that n is an even number and that there exists vj, such that ω(vj)
has at least a cycle of odd order.
(1) Suppose that the number of cycles of ω(v1) having odd order is a non-

zero even number.
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If there exists k 6= 1 such that ω(vk) has a cycle of odd order then
M̃ ∈ NnIII.
Otherwise, if for k 6= 1 each cycle of ω(vk) has even order, then M̃ ∈
NnI or M̃ ∈ NnIII.

Moreover M̃ ∈ NnI if and only if ω|π1(F0) trivializes the bundle of e′.
(2) If every cycle of ω(v1) has even order, then M̃ ∈ On or M̃ ∈ NnIII.

Furthermore, M̃ ∈ On if and only if ω trivializes the bundle of w1(M0),
where w1(M0) is the first Stiefel-Whitney class of M0.

(c) If n is an even number and every cycle of ω(vj) has even order, for j =
1, . . . , g, then M̃ /∈ NnII. In this case it is possible M̃ ∈ Oo, or M̃ ∈ On,
or M̃ ∈ No, or M̃ ∈ NnI or M̃ ∈ NnIII .

Proof.
Suppose {vj} is a basis of orientation reversing curves for π1(F ). The val-

uation homomorphism e : π1(F ) → Z2
∼= S2 is such that e(v1) = +1 and

e(vj) = −1, for j ≥ 2.

Recall we have e′ : π1(F0) → S2, the valuation homomorphism of M0, and
w1(F0) : π1(F0) → S2, the first Stiefel-Whitney class of F0, and w1(M0) :
π1(M0) → S2, the first Stiefel-Whitney class of M0. Let ẽ be the valuation
homomorphism of M̃.

(a) If n is an odd number. Corollary 3.1.1 applied to w1(M0) and to w1(F0)
give us that w1(M̃0) and w1(G0) are non-trivial, where M̃0 = ϕ−1(M0) and
G0 = G ∩ M̃0 = ϕ−1(F0). Therefore M̃0 and G0 are non-orientable Then
M̃ and G are non-orientable. Applying Theorem 3.1.1 to the valuation ho-
momorphism e, we obtain that ẽ, the valuation homomorphism of M̃ , is
non-trivial. Therefore M̃ ∈ NnII or M̃ ∈ NnIII; The result follows from
Lemma 3.3.6.

(b) Recall {vj} is a basis of reversing orientation curves for π1(F ).

Since n is an even number and there exists vj such that ω(vj) has at least one
cycle of odd order, then the orbit surface G of M̃ is non-orientable (Corollary
3.1.1).

(1) Note that M̃ is non-orientable since Corollary (3.1.1) applied to θ =
w1(M0) gives us w1(M̃0) is non-trivial.
If there exists k 6= 1 such that vk has a cycle of odd order, then the val-
uation homomorphism of M̃ , ẽ, is non-trivial by Corollary 3.1.1 applied
to e. Since the number of cycles of ω(v1) having odd order is even, by
Lemma 3.3.6 we obtain M̃ ∈ NnIII.
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If each cycle of ω(vk) has even order, for all k 6= 1, then M̃ ∈ NnI or
M̃ ∈ NnIII and the result follows from Theorem (3.1.1).

(2) First note that G0 is non-orientable and the valuation homomorphism
of M̃ , ẽ, is non-trivial, by Corollary 3.1.2. Also, by Lemma 3.3.6, we
conclude M̃ /∈ NnII. Thus M̃ ∈ On or M̃ ∈ NnIII. We can decide if
M̃ ∈ On applying Theorem (3.1.1) to θ = w1(M0) as required.

(c) If n is an even number and every cycle of ω(vj) has even order, for all
j = 1, . . . , g, then we have the following cases:

If Im(ω|π1(M0)) and Im(ω|π1(F0)) are not
n

2
, 2−imprimitive, then w1(F̃0),

w1(M̃0) and ẽ are non-trivial by Theorem (3.1.1) applied to e, to w1(M0)
and to w1(F0). Therefore M̃ and G are non-trivial. Since every cycle of
ω(v1) has even order and ẽ is non-trivial then M̃ ∈ NnIII by Lemma 3.3.6.

Assume Im(ω|π1(M0)) is
n

2
, 2−imprimitive. If w1(M̃0) is trivial we have that

M̃ ∈ Oo or M̃ ∈ On. If w1(M̃0) is non-trivial, then M̃ ∈ No, or M̃ ∈ NnI,
or M̃ ∈ NnIII. Note that M̃ /∈ NnII due to Lemma 3.3.6. ¤

(iv) The case M ∈ NnIII
Let M = (NnIII, g;β1/α1, . . . , βr/αr) and let F be the non-orientable orbit
surface of M . Assume that the genus of F is g. Consider M0 = M − T (βi/αi),
where T (βi/αi) is the solid fibered torus homeomorphic to a neighborhood of
either a exceptional fiber or a singular fiber. Notice that ∂M0 = tri=1Ti, where
Ti is a torus for i = 1, . . . , r. Let F0 = p(M0) and qi = p(Ti). Let h be a regular
fiber of M and {vj}gj=1 be a basis for π1(F ) of orientation reversing curves.
The fundamental groups of M and M0 have the following presentations:

π1(M) ∼= 〈v1, . . . , vg, q1, . . . , qr, h; [h, qi] = 1, q1q2 · · · qr =
g∏

j=1

v2
j ,

qαi
i h

βi = 1, [v1, h] = 1, [v2, h] = 1, vjhv−1
j = h−1, for each j ≥ 3〉.

π1(M0) ∼= 〈v1, . . . , vg, q1, . . . , qr, h; [h, qi] = 1, q1q2 · · · qr =
g∏

j=1

v2
j ,

[v1, h] = 1, [v2, h] = 1, vjhv−1
j = h−1, for each j ≥ 3〉.

If e : π1(M) → Z2 is the valuation homomorphism ofM , then e(v1) = e(v2) = +1
and e(vj) = −1 for j ≥ 3.
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Recall β : H i(M,Z2) → H i+1(M,Z) is the Bockstein homomorphism associated
to the short exact sequence of coefficients

0 → Z→ Z→ Z2 → 0.

Suppose that M ∈ NnIII and consider a branched covering ϕ : M̃ → M , then
βw1(M̃) = 0 for βw1(M) = 0 and β is natural with respect to continuous func-
tions (ϕ∗β = βϕ∗). Thus M̃ ∈ Oo or M̃ ∈ On or M̃ ∈ No or M̃ ∈ NnI or
M̃ ∈ NnIII by Theorem 2.3.1 (and M̃ ∈ NnII).

Theorem 3.3.7 Suppose M ∈ NnIII with p : M → F , the orbit projection
of M . Let n ∈ N. Assume {vj} is a basis of reversing orientation curves for
π1(F ) Let ω : π1(M0) → Sn be a representation defined by

ω(h) = (1),
ω(qi) = σi,1 · · ·σi,`i , for i = 1, . . . , r and
ω(vj) = ρj,1 · · · ρj,sj , for j = 1, . . . , g,

where σi,1 · · ·σi,`i and ρj,1 · · · ρj,sj are the disjoint cycle decompositions of ω(qi)
and ω(vj), respectively. Suppose ϕ : M̃ →M is the covering determined by ω and
p̃ : M̃ → G is the orbit projection of M̃. Let e′ : π1(F0) → S2 be the evaluation
of M0.

(a) If n is an odd number, then M̃ ∈ NnIII.

(b) Suppose that n is an even number and there exists vj such that ω(vj) has at
least one cycle of odd order.
(i) If each cycle of ω(v1) and ω(v2) has even order, then M̃ ∈ On or M̃ ∈

NnIII. Also, M̃ ∈ On if and only if ω trivializes the bundle of w1(M0),
where w1(M0) is the first Stiefel-Whitney class of M0.

(ii) If ω(v1) or ω(v2) have a cycle of odd order, then M̃ ∈ NnI or M̃ ∈
NnIII.

(c) If n is an even number and each cycle of ω(vj) has even order, for all j =
1, . . . , g, then M̃ ∈ Oo or M̃ ∈ No or M̃ ∈ NnI or M̃ ∈ NnIII.
Proof.

Let ẽ be the valuation homomorphism of M̃.

(a) If n is an odd number, then w1(G0) and w1(M̃0) are non-trivial by Corol-
lary 3.1.2; the homomorphism ẽ is also non-trivial by Theorem 3.1.1. Thus
M̃ and G are non-orientable. Thus M̃ ∈ NnIII for ẽ is non-trivial and
β(w1(M̃)) = 0.
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(b) Since there is one ω(vj) having a cycle of odd order, then w1(G0) is non-
trivial because of Corollary (3.1.2). Thus G is non-orientable.

Recall e(v1) = e(v2) = +1 and e(vk) = −1, for k ≥ 3.
(i) Since vj 6= v1 and vj 6= v2, then ẽ is non-trivial due to Corollary 3.1.1.

Therefore M̃ ∈ On or M̃ ∈ NnIII. By Theorem 3.1.1 applied to w1(M0)
we can decide when M̃ ∈ On as stated.

(ii) Suppose that ω(v1) or ω(v2) have a cycle of odd order. Note that v1
and v2 are orientation reversing curves in M0 since they are 1-sided
in F0 and e(v1) = e(v2) = +1. By Corollary 3.1.1, w1(M̃0) is non-
trivial and we conclude M̃ is non-orientable. Recall G is non-orientable.
Therefore M̃ ∈ NnI or M̃ ∈ NnIII. Furthermore, M̃ ∈ NnI if and
only if ω|π1(F0) trivializes the bundle of e′.

(c) Assume n is an even number and every cycle of ω(vj) has even order for all
j = 1, . . . , g. Then we have the following cases:

• If Im(ω|π1(F0)) is
n

2
, 2−imprimitive. Then

1. Suppose ω|π1(F0)) trivializes the bundle of e′. Then ẽ is trivial (The-
orem 3.1.1). Thus, if ω|π1(F0) trivializes the bundle of w1(M0) then
M̃ ∈ OO. Otherwise, M̃ ∈ NnI.

2. Suppose ω|π1(F0)) does not trivialize the bundle of e′. Then ẽ is non-
trivial (Theorem 3.1.1). Therefore, if ω|π1(F0) trivializes the bundle
of w1(F0), then w1(G0) and w1(G) are trivial (Theorem 3.1.1). Thus
G is orientable and we conclude M̃ ∈ No; Otherwise, if ω does not
trivialize the bundle w1(F0), then M̃ ∈ NnIII or M̃ ∈ On. Again we
can decide if M̃ ∈ On by means of Theorem 3.1.1 applied to w1(M0).

• If Im(ω|π1(F0)) is not
n

2
, 2−imprimitive, we proceed as before in (2).

To finish our study about representations of Seifert manifolds that send a regular fiber
into the identity we prove the following Theorem which let us to compute the Seifert symbol
for M̃.

Theorem 3.3.8 Let M = (Xx, g; β1

α1
, . . . , βr

αr
) be a Seifert manifold with orbit projection

p : M → F , where Xx ∈ {Oo,On,No,NnI,NnII,NnIII}. Suppose that F is the orbit
surface of M and let g be the genus of F . Consider {vj} a basis for π1(F ) such that every
curve vj is orientation reversing in F , if F is non-orientable. Let h be a regular fiber of M .
Write M0 = M − tri=1Vi, where each Vi is a fibered neighborhood of the fiber corresponding
to βi/αi, for i = 1, . . . , r. Note that ∂M0 is the union of r tori, T1t· · ·tTr. Let qi = p(Ti),
for i = 1, . . . , r. Let n ∈ N and ω : π1(M0) → Sn be a transitive representation defined by

ω(h) = (1),
ω(qi) = σi,1 · · ·σi,`i , for i = 1, . . . , r and
ω(vj) = ρj,1 · · · ρj,sj ,
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where σi,1 · · ·σi,`i and ρj,1 · · · ρj,sj are the disjoint cycle decompositions of ω(qi) and ω(vj),
respectively. Let ϕ : M̃ → M be the covering associated to ω. Let p̃ : M̃ → G is the orbit
projection of M̃ and G has genus g̃.

a) Suppose F is non-orientable, then M̃ is the manifold

(Y y, g̃;
B1,1

A1,1
, . . . ,

B1,`1

A1,`1

, . . . ,
Br,1
Ar,1

, . . . ,
Br,`r
Ar,`r

),

where Y y ∈ {Oo,On,No,NnI,NnII,NnIII} is determined by Theorems 3.3.3, 3.3.5,
3.3.6 and 3.3.7. If G is orientable, then

g̃ = 1− n(2− g) +
∑r

i=1 `i − nr

2
;

otherwise,

g̃ = n(g − 2) + 2 + nr −
r∑

i=1

`i.

b) If F is orientable, then M̃ is the manifold

(Y y, g̃;
B1,1

A1,1
, . . . ,

B1,`1

A1,`1

, . . . ,
Br,1
Ar,1

, . . . ,
Br,`r
Ar,`r

),

where Y y ∈ {Oo,No} is determined by Theorems 3.3.2 and 3.3.4; and

g̃ = 1 + n(g − 1) +
nr −∑r

i=1 `i
2

.

The numbers Bi,k and Ai,k in the Seifert symbol for M̃ in both (a) and (b) are given by:

Bi,k =
order(σi,k) · βi

gcd{αi, order(σi,k)} , and

Ai,k =
αi

gcd{αi, order(σi,k)} ,

where gcd{αi, order(σi,k} denotes the greatest common divisor of αi and order(σi,k).

Proof.
The genus of G, g̃, is determined by Lemma 3.3.2 and the class Y y is determined by

Theorems 3.3.2, 3.3.3, 3.3.4, 3.3.5, 3.3.6 and 3.3.7.

We compute the numbers Bi,k and Ai,k.
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Recall G0 = ϕ−1(F0) = G ∩ M̃0, where M̃0 = ϕ−1(M0). Then ϕ| : G→ F is a covering.
The representation associated to ϕ| : G→ F is ω| : π1(F0) → Sn.

The manifold M is obtained from M0 by glueing a solid tori Ui to Ti∂M0 with homeo-
morphisms fi : ∂Ui → Ti such that fi(mi) = qαi

i h
βi , where mi is a meridian of ∂Ui.

If i ∈ {1, . . . , r} and we consider the torus Ti = qi × h, then ϕ−1(Ti) has `i components
for ϕ : G0 → F0 is a covering and ω(qi) is a product of `i cycles, in particular, ϕ−1(qi) has
`i components.

Let Ti,k be a component of ϕ−1(Ti), for k ∈ {1, . . . `i}. Note that Ti,k is a torus and
that ϕ induces a covering ϕi,k : Ti,k → Ti with order(σi,k) sheets such that, if h̃ is a
component of ϕ−1(h) and q̃i,k is the pre-image of qi in the torus Ti,k, then {h̃, q̃i,k} is a basis
for π1(Ti,k) for ϕ| : G→ F is a covering. Note that q̃i,k is the union of order(oσi,k) liftings

of qi. Then ϕi,k(h̃) = h and ϕi,k(q̃i,k) = q
order(σi,k)
i . Since {h̃, q̃i,k} is a basis for π1(Ti,k), if

m̃i,k ⊂ ϕ−1
i,k (mi) then there are Ai,k and Bi,k integer numbers such that m̃i,k = q̃

Ai,k

i,k h̃Bi,k ,
and

ϕi,k(m̃i,k) = ϕi,k(q̃
Ai,k

i,k h̃Bi,k) = q
order(σi,k)Ai,k

i hBi,k . (3.2)

On the other hand, associated to ϕi,k we have a representation ωi,k : Ti → Sorder(σi,k)

such that ω(h) = (1), the identity permutation in Sorder(σi,k), and ω(qi) = εorder(σi,k),
the standard order(σi,k)−cycle in Sorder(σi,k). Note that ωi,k satisfies that ωi,k(mi) =
ωi,k(qαihβi) = (σi,k)αi . This implies

ϕi,k(m̃i,k) = m
order((σi,k)αi )
i = (qαi·order((σi,k)αi)

i )(hβi·order((σi,k)αi)). (3.3)

But in fact order(σi,k)αi) = order(σi,k)
gcd{αi,order(σi,k)} , hence by recalling Equations 3.2 and 3.3, we

obtain

Bi,k =
order(σi,k) · βi

gcd{αi, order(σi,k)} ,

and
Ai,k =

αi
gcd{αi, order(σi,k)}

for k = 1, . . . , li and either i = 1, . . . , g, if F is non-orientable or i = 1, . . . , 2g, if F is
orientable. ¤

3.3.2 The case ω(h) = εn, the stardad n-cycle

Suppose M is a Seifert manifold and h is a regular fiber of M , in this section we focus in
representations ω : π1(M0) → Sn such that ω(h) = εn, where εn is the standard n−cycle of
Sn.
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Definition 3.3.2 Let P be an n−sided regular polygon with vertices labeled with the
numbers from 1 to n. A reflection ρ in Sn is a permutation determined by a reflection
of P restricted to the vertices of P .

S 3

1

2 3

41 1

r=(1  5)(2  4)

S 4 S 6

r=(1  3) r=(1  4)(2  3)

2

3

2

6

3 4

5

Figure 3.1: Reflections

Note that by definition a reflection ρ has order 2.

We say that σ ∈ Sn anticommutes with εn if σεnσ−1 = ε−1
n .

Lemma 3.3.7 Let σ ∈ Sn. Then σ anticommutes with εn if and only if σ is a reflection.

Proof.
Let P be a n−sided regular polygon and σ ∈ Sn be a reflection. Note that εn is induced

by a rotation of P through an angle 2π/n; by inspections it is easy to see that σ anticom-
mutes with εn.

In a n−sided regular polygon P we have n reflections, then if A = {h ∈ Sn : hεnh−1 =
ε−1
n } we have that |A| ≥ n.

Now we prove |A| = n.

Suppose ρ ∈ A, then ρεnρ−1 = ε−1
n . Let · : Sn×Sn → Sn be the group action defined by

g·h = ghg−1. With this action the stabilizer of εn is the subgroup Stabilizer(εn) = {g ∈ Sn :
g · εn = εn} = {g ∈ Sn : gεng−1 = εn}. Consider Sn/Stabilizer(εn) = {g(Stabilizer(εn)) :
g ∈ Sn} and note that r ∈ ρ(Stabilizer(εn)) if and only if rεnr−1 = ρεnρ

−1. Thus
σ(Stabilizer(εn)) = {r ∈ Sn|rεnr−1 = ε−1

n } = A.
On the other hand, the orbit of εn under this action is the set Oεn = {h ∈ Sn|h =
gεng

−1for some g ∈ Sn}. Note that Oεn is the set of n−cycles for the conjugates of an
n-cycle have also order n.

We have a bijection Sn/Stabilizer(εn) → Oεn . Then n! = |Sn| = (|Stabilizer(εn)|)(|Oεn |).
Since |Oεn | = (n− 1)!, we obtain |Stabilizer(ε)| = n.
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Therefore |A| = n because |A| = |ρ(Stabilizer(εn))| = |Stabilizer(εn)| = n. ¤

Lemma 3.3.8 Let σ ∈ Sn. Then σ commutes with εn if and only if there is k ∈ Z such
that σ = εkn.

Proof.

Consider again the group action · : Sn × Sn → Sn given by g · h = ghg−1. Recall
from the proof of the previous lemma that |Stabilizer(ε)| = n. Since {(1), εn, . . . , εn−1

n } ⊂
Stabilizer(εn) we obtain Stabilizer(ε) = {(1), εn, . . . , εn−1

n }. Therefore, σ = εkn, for some
k ∈ Z. ¤

Lemma 3.3.9 (Torus Lemma)[N-RL] Let T be a torus and let h, q ⊂ T be a basis
for π1(T ). Let n ∈ Z and assume that ω : π1(T ) → Sn is the representation such that

ω(h) = εn,
ω(q) = εkn,

where εn = (1, 2, . . . , n) is the standard n−cycle. Suppose that ϕ : T̃ → T is the covering
space defined by ω. Then there exist a basis h̃, q̃ ⊂ T̃ for π1(T̃ ) such that ϕ(h̃) = hn and
ϕ(q̃) = qh−k.

Proof.
Cut T along h and q to get the identification square S shown in Figure 3.2.

q +

h
_

q
_

h
+

S

Figure 3.2: Square S

The boundary of S is the union of h+, h−, q+ and q−. If S(1), . . . , S(n) are n copies of
S and the boundary of S(i) is the union of h(i)+, h(i)−, q(i)+, q(i)−, we can construct T̃ by
glueing q(i)+ ⊂ S(i) with q(εn(i))− ⊂ S(εn(i)) and h(i)+ with h(εn(i))−.
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q

h(1) +
h(2) + h(n−1)+ h(n) +

q(1)+

h(k+1) +

q(n)
_

~

x

x

S(1) S(2) S(n)S(n−1)S(k)

h(1) h(2) h(n)h(n−1)
_ _ _ __

h(k+1)

Figure 3.3: T̃

Suppose x ∈ h(1)+ and let y ∈ h(k + 1)+ be the image of x under the identification.
Let h̃ = ϕ−1(h) and q̃ a shortest curve in S(1) ∪ · ∪ S(n) connecting x and y, as shown in
Figure 3.3. Observe that h̃∩ q̃ = {x}, then it is clear that h̃, q̃ ⊂ T̃ is a basis for π1(T ). By
construction ϕ(h̃) = hn and ϕ(q̃) = qh−k. ¤

Lemma 3.3.10 (Klein Bottle Lemma) Let K be a Klein bottle with π1(K) = 〈h, v :
vhv−1 = h−1〉. Consider a representation ω : π1(K) → Sn such that ω(h) = εn, where
εn = (1, 2 . . . , n). Assume ϕ : K̃ → K is the covering associated to ω. Then ω(v) is a
reflection ρ, the covering space K̃ is also a Klein bottle and, if ρ(1) = t, then there exists a
basis {h̃, ṽ} for K̃ such that ϕ(h̃) = hn and ϕ(ṽ) = vh−(t−1).

Proof.
Note that ω(v)εnω(v)−1 = ε−1, for ω(h) = εn and vhv−1 = h−1. By Lemma (3.3.7),

ω(v) is a reflection ρ. The surface K̃ is a closed surface. Also χ(K̃) = nχ(K) = 0 for
χ(K) = 0, where χ(K̃) and χ(K) are the Euler characteristic of K̃ and K, respectively.
Thus K̃ could be either a Klein bottle or a torus.

To construct K̃, cut K along h and v to get the identification square S shown in Figure
3.4.

The boundary of S is the union of h+, h−, v+ and v−. If S(1), . . . , S(n) are n copies of
S and the boundary of S(i) is the union of h(i)+, h(i)−, v(i)+, v(i)−, then K̃ is constructed
by glueing v(i)+ ⊂ S(i) along v(εn(i))− ⊂ S(εn(i)) and h(i)+ with h(ρ(i))−.

Suppose x ∈ h(1)+ and let y ∈ h(t)− be the image of x under the identification. Let
h̃ = ϕ−1(h) and ṽ be a shortest curve in S(1) ∪ · · · ∪ S(n) connecting x and y, as shown in
the Figure 3.5 Then ϕ#(h̃) = hn, ϕ#(ṽ) = vh−(t−1) by construction.
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h
_

h
+

S
v + v

_

Figure 3.4: Square S

h(1) +
h(2) + h(n−1)+ h(n) +

v(n)
_

~

x

x

S(1) S(2) S(n)S(n−1)S(k)

h(1) h(2) h(n)h(n−1)
_ _ _

v(1) +

v

h(t) +

h(t)
_ _

Figure 3.5: T̃

Notice that

ϕ#(ṽh̃ṽ−1h̃) = ϕ#(ṽ)ϕ#(h̃)ϕ#(ṽ−1)ϕ#(h̃)
= (vh−(t−1))hn(h(t−1)v−1)hn

= vhnv−1hn

= vhv−1vhv−1 · · · vhv−1︸ ︷︷ ︸
n−times

hn

= h−nhn (because of the relation vjhv − j−1 = h−1)
= 1.

Thus ṽh̃ṽ−1 = h̃−1 for ϕ# is injective.

Observe that h̃ intersects transversally ṽ only in one single point, thus K̃ must be a
Klein bottle. Otherwise, {h̃, ṽ} would be a non-commuting pair in π1(K), the fundamental
group of the torus K̃. Finally, {h̃, ṽ} is a basis for π1(K̃) because the complement of these
curves is a 2-disk, by construction. ¤

Remark 3.3.2 Suppose M is a Seifert manifold with orbit projection p : M → F . As-
sume F is of genus g. Let {hi}ri=1 be a set of fibers of M which contains all the exceptional
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fibers and a finite number of regular fibers. Recall each fiber has a neighborhood Vi fiber
preserving homeomorphic to a fibered solid torus T (βi/αi).

Write M0 = M − ∪Vi. Note that we have a quotient p| : M0 → F0, where F0 is a surface
with boundary. Recall F0 = F ∩M0. The boundary of F0 has r components, one for each
component of ∂M0. Let q1, . . . , qr be the components of ∂F0 and h be a regular fiber in M0.

Suppose {vj} is a basis for π1(F ) such that vj is orientation reversing in F , if F is
non-orientable.

• Assume M ∈ Oo, a presentation for π1(M0) is

π1(M0) ∼= 〈v1, . . . , v2g, q1, . . . , qr, h; [h, vj ] = 1, [h, qi] = 1,

q1q2 · · · qr =
g∏

j=1

[v2j−1, v2j ]〉.

Let ω : π1(M0) → Sn be a representation such that ω(h) = εn, where εn = (1, 2, . . . , n).
Then ω(vj) and ω(qi) commute with εn, for [h, vj ] = [h, qi] = 1, j = 1, . . . , 2g and
i = 1, . . . , r, By Lemma (3.3.8), there are integer numbers ki and sj such that

ω(qi) = εki
n ,∀i = 1, . . . , r and

ω(vj) = ε
sj
n , ∀j = 1, . . . , 2g.

In π1(M0) we have the relation q1 · · · qr =
∏

[v2j−1, v2j ]. Then

ω(q1 · · · qr(
∏

[v2j−1, v2j ])−1) = ε
P
ki = (1).

Since εn has order n, there is an integer number p such that
∑
ki = np. Define

k′1 = k1 − np and k′j = kj, if j 6= 1. Then we get a representation ω′ : π1(M0) → Sn
such that

ω′(h) = εn

ω′(qi) = ε
k′i
n , ∀i = 1, . . . , r and

ω′(vj) = ε
sj
n , ∀j = 1, . . . , 2g.

Clearly
∑
k′i = 0 and εk1n = ε

k′1
n because εn has order n. Therefore ω′ = ω and we can

always assume
∑
ki = 0.

• If M ∈ On, then a presentation for π1(M0) is

π1(M0) ∼= 〈v1, . . . , vg, q1, . . . , qr, h; vjhv−1
j = h−1, [h, qi] = 1,

q1q2 · · · qr =
g∏

j=1

v2
j 〉.
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Let ω : π1(M0) → Sn be a representation such that ω(h) = εn, where εn = (1, 2, . . . , n).
Note that ω(vj) anticommutes with εn, that is, ω(vj)εnω(vj)−1 = ε−1, and ω(qi)
commute with εn, since we have that relations vjhv−1

j = h−1 and [h, qi] = 1, j =
1, . . . , 2g and i = 1, . . . , r, By Lemmas 3.3.8 and 3.3.7 there are integer numbers ki
and reflections ρj such that ω : π1(M0) → Sn is defined by

ω(h) = εn
ω(qi) = εki

n , ∀i = 1, . . . , r and
ω(vj) = ρj , ∀j = 1, . . . , g.

Since we have the relation q1 · · · qr =
∏
v2
j in π1(M0) and reflections have order 2,

then
ω(q1 · · · qr(

∏
v2
j )
−1) = ε

P
ki = (1).

Therefore there is an integer number p such that
∑
ki = np. Let k′1 = k1 − np and

k′j = kj, if j 6= 1. We define a representation ω′ : π1(M0) → Sn by

ω′(h) = εn

ω′(qi) = ε
k′i
n , ∀i = 1, . . . , r and

ω′(vj) = ρj ,∀j = 1, . . . , g.

Note that ω′ = ω and
∑
k′i = 0. Therefore we can always assume

∑
ki = 0.

• If M ∈ No, then a presentation for π1(M0) is

π1(M0) ∼= 〈v1, . . . , v2g, q1, . . . , qs, h; q1q2 · · · qr =
g∏

j=1

[v2j−1, v2j ],

[h, qi] = 1, v1hv−1
1 = h−1, [vj , h] = 1 for j ≥ 2〉.

Assume ω : π1(M0) → Sn is a representation such that ω(h) = εn, where εn =
(1, 2, . . . , n). Then ω(v1) anticommutes with εn for v1hv−1

1 ; ω(vj) and ω(qi) commute
with εn, for [h, vj ] = [h, qi] = 1, j = 2, . . . , 2g and i = 1, . . . , r, By Lemma 3.3.7,
there is a reflection ρ1 and by Lemma 3.3.8 there are integer numbers k1, . . . , kr,
s2, s3, . . . , s2g−1 and s2g such that ω : π1(M0) → Sn is defined by

ω(h) = εn
ω(qi) = εki

n ,∀i = 1, . . . , r and
ω(v1) = ρ1

ω(vj) = ε
sj
n , ∀j = 2, . . . , 2g.

. In π1(M0) we have the relation q1 · · · qr =
∏

[v2j−1, v2j ]. Then

ω(q1 · · · qr(
∏

[v2j−1, v2j ])−1) = ε
P
ki+2s2 = (1).
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Thus there is an integer number p such that
∑
ki + 2s2 = np. Define k′1 = k1 − np

and k′j = kj, if j 6= 1. We get a representation ω′ : π1(M0) → Sn such that

ω′(h) = εn

ω′(qi) = ε
k′i
n ,∀i = 1, . . . , r and

ω′(v1) = ρ1

ω′(vj) = ε
sj
n ,∀j = 2, . . . , 2g.

It is easy to see
∑
k′i + 2s2 = 0 and εk1n = ε

k′1
n for εn has order n. Therefore ω′ = ω

and we can always assume
∑
ki + 2s2 = 0.

• If M ∈ NnI, then a presentation for π1(M0) is

π1(M0) ∼= 〈v1, . . . , vg, q1, . . . , qr, h; [vj , h] = 1, [h, qi] = 1,

q1q2 · · · qr =
g∏

j=1

v2
j 〉.

Suppose ω : π1(M0) → Sn is a representation such that ω(h) = εn, where εn =
(1, 2, . . . , n). Then ω(vj) and ω(qi) commute with εn, for [h, vj ] = [h, qi] = 1. By
Lemma (3.3.8), j = 1, . . . , 2g and i = 1, . . . , r, there are integer numbers ki and sj
such that

ω(qi) = εki
n ,∀i = 1, . . . , r and

ω(vj) = ε
sj
n , ∀j = 1, . . . , g.

Recall in π1(M0) we have the relation q1 · · · qr =
∏
v2
j . Then

ω(q1 · · · qr(
∏

v2
j )
−1) = ε

P
ki−2

P
sj = (1).

Since εn has order n, there is an integer number p such that
∑
ki−2

∑
sj = np. Define

k′1 = k1 − np and k′j = kj, if j 6= 1. Then we get a representation ω′ : π1(M0) → Sn
such that

ω′(h) = εn

ω′(qi) = ε
k′i
n , ∀i = 1, . . . , r and

ω′(vj) = ε
sj
n , ∀j = 1, . . . , g.

Clearly
∑
k′i − 2

∑
sj = 0 and εk1n = ε

k′1
n because εn has order n. Therefore ω′ = ω

and we can always assume
∑
ki − 2

∑
sj = 0.

• If M ∈ NnII, then a presentation for π1(M0) is
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π1(M0) ∼= 〈v1, . . . , vg, q1, . . . , qr, h; [h, qi] = 1, q1q2 · · · qr =
g∏

j=1

v2
j ,

[v1, h] = 1, vjhv−1
j = h−1, for each j ≥ 2〉.

Assume ω : π1(M0) → Sn is a representation such that ω(h) = εn, where εn =
(1, 2, . . . , n). Then ω(v1) and ω(qi) commute with εn for [v1, h] = [h, qi] = 1; if j ≥ 2,
then ω(vj) anticommutes with εn because [h, vj ] = [h, qi] = 1, for j ≥ 2. By Lemma
3.3.7 and 3.3.8, there are reflections ρj, j ≥ 2, and there are integer numbers ki and
s1 such that ω : π1(M0) → Sn is defined by

ω(h) = εn
ω(qi) = εki

n , ∀i = 1, . . . , r
ω(v1) = εs1n , and
ω(vj) = ρj ,∀j = 2, . . . , g.

Note that
ω(q1 · · · qr(

∏
v2
j )
−1) = ε

P
ki−2s1 = (1)

because of relation q1 · · · qr =
∏
v2
j and because reflections have order 2.

Thus there is an integer number p such that
∑
ki − 2s1 = np. Define k′1 = k1 − np

and k′j = kj, if j 6= 1. We get a representation ω′ : π1(M0) → Sn such that

ω′(h) = εn

ω′(qi) = ε
k′i
n ,∀i = 1, . . . , r;

ω′(v1) = εs1n , and
ω′(vj) = ρj , for j = 2, . . . , g.

It is easy to see
∑
k′i − 2s1 = 0 and εk1n = ε

k′1
n since εn has order n. Therefore ω′ = ω

and we can always assume
∑
ki − 2s1 = 0.

• If M ∈ NnIII, then a presentation for π1(M0) is

π1(M0) ∼= 〈v1, . . . , vg, q1, . . . , qr, h; [h, qi] = 1, q1q2 · · · qr =
g∏

j=1

v2
j ,

[v1, h] = 1, [v2, h] = 1, vjhv−1
j = h−1, for each j ≥ 3〉.

Suppose ω : π1(M0) → Sn is a representation such that ω(h) = εn, where εn =
(1, 2, . . . , n). Then ω(v1), ω(v2) and ω(qi) commute with εn for [v1, h] = [v2, h] =
[h, qi] = 1; if j ≥ 3, then ω(vj) anticommutes with εn for if j ≥ 3 then [h, vj ] =
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[h, qi] = 1. By Lemma (3.3.7) and (3.3.8), there are reflections ρj, j ≥ 3, and there
are integer numbers ki, s1 and s2 such that ω : π1(M0) → Sn is defined by

ω(h) = εn
ω(qi) = εki

n , ∀i = 1, . . . , r
ω(v1) = εs1n ,
ω(v2) = εs2n , and
ω(vj) = ρj , ∀j = 3, . . . , g.

Note that

ω(q1 · · · qr(
∏

v2
j )
−1) = ε

P
ki−2s1−2s2 = (1)

since q1 · · · qr =
∏
v2
j and because reflections have order 2.

Thus there is an integer number p such that
∑
ki − 2s1 − 2s2 = np. Let k′1 = k1 − np

and k′j = kj, if j 6= 1. We obtain a representation ω′ : π1(M0) → Sn such that

ω′(h) = εn

ω′(qi) = ε
k′i
n , ∀i = 1, . . . , r

ω′(v1) = εs1n ,
ω′(v2) = εs2n , and
ω′(vj) = ρj , ∀j = 3, . . . , g;

It is easy to see
∑
k′i − 2s1 − 2s2 = 0 and εk1n = ε

k′1
n for εn has order n. Therefore

ω′ = ω and we can always assume
∑
ki − 2s1 − 2s2 = 0.

Lemma 3.3.11 Let M be a Seifert manifold. Assume M0, F and F0 are as in las
remark. Suppose h is a regular fiber of M and ω : π1(M0) → Sn is a representation such
that ω(h) = εn. Let ϕ : M̃ →M be the covering of M branched along fibers of M determined
by ω. Assume p̃ : M̃ → G is the orbit projection of M̃. Then F ∼= G.

Proof.
Let M̃0 = ϕ−1(M0), F̃0 = ϕ−1(F0) and G0 = p̃(M̃0). Then ϕ| : F̃0 → F0 is a covering

space of n sheets. Since ω(h) = εn, each fiber of M̃0 is the preimage of a fiber h′ in M0

under ϕ. Thus the projection p̃| : F̃0 → G0 is also an n-fold covering for each fiber of M̃0

intersects F̃0 in n points. Suppose that x̃, ỹ ∈ F̃0 and p̃(x̃) = p̃(ỹ). Then there is one fiber
h̃ in M̃0 such that x̃, ỹ ∈ h̃ ∩ F̃0. Also there is a fiber h′ of M0 such that ϕ(h̃) = (h′)n for
ω(h) = εn. We conclude ϕ|(x̃) = ϕ|(ỹ) for ϕ|(x̃), ϕ|(ỹ) ∈ h′ ∩F0 and each fiber intersects F0
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in one single point. Thus there exists the following commutative diagram:

F̃0

G0

F0

?

ϕ|

@
@R
p̃|

ppppª ϕ0

The map ϕ0 : G0 → F0 is defined as usual: Let x ∈ G0 and consider x̃ ∈ (p̃|)−1(x) then
ϕ0(x) = ϕ|(x̃). Of course, ϕ0(x) does not depend on x̃ because (ϕ|)((p̃|)−1(x)) is one point.
Note that ϕ0 is a covering of 1 sheet for p̃| : F̃0 → G0 and ϕ| : F̃0 → F0 are n−fold cover-
ings and for the diagram above is a commutative diagram. Thus ϕ0 is a homeomorphism.
Therefore there is a homeomorphism ϕ : G→ F. ¤

Note that in this context M̃ is no longer a pullback.

Lemma 3.3.12 Let M be a Seifert manifold and ϕ : M̃ → M be a covering of M
branched along fibers. Assume p̃ : M̃ → G and p : M → F are the orbit projections
of M̃ and M , respectively. Let h be a regular fiber of M . Let ω : π1(M0) → Sn be the
representation determined by ϕ. Suppose ω(h) = εn. Let G0 and F0 be as the proof of the
previous lemma. Let ϕ0 : G0 → F0 be the homeomorphism obtained in the previous lemma.
Recall π(F ) → Z2 is the valuation homomorphism. Let ṽ ⊂ G0 and v ⊂ F0 be simple closed
curves such that ϕ0(ṽ) = v.
Then:

(a) The map ϕ| : p̃−1(ṽ) → p−1(v) is an n−fold covering space.

(b) If e(v) = +1, then ẽ(ṽ) = +1.

(c) If e(v) = −1, Then ẽ(ṽ) = −1.

Proof.

(a) Note that the following diagram commutes.

M̃0 M0

G0 F0

-ϕ

?

p̃

?

p

-ϕ|
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Thus ϕ| : p̃−1(ṽ) → p−1(v) is a covering space and ω′ : π1(p−1(v)) → Sr = S({a1, . . . , ar}),
the representation associated to this covering, sends h into εn. Note that p̃−1(ṽ) and
p−1(v) are S1−bundles over the simple closed curves ṽ and v, respectively. Then
p̃−1(ṽ) and p−1(v) are either tori or Klein bottles depending on the triviality of the
S1−bundles.

(b) Since e(v) = +1, then p−1(v) is a torus and p̃−1(ṽ) is a torus. Thus ẽ(ṽ) = +1 for
p̃−1(ṽ) is an S1−bundle over ṽ.

(c) If e(v) = −1, then p−1(v) is a Klein bottle. According to Lemma 3.3.10, we conclude
p̃−1(ṽ) is a Klein bottle and therefore ẽ(ṽ) = −1. ¤

Theorem 3.3.9 Assume M = (Oo, g;β1/α1, . . . , βr/αr) is a Seifert manifold. Let vj
and qi be as in Remark 3.3.2 and ω : π1(M0) → Sn be a representation defined by

ω(h) = εn
ω(qi) = εki

n , ∀i = 1, . . . , r and
ω(vj) = ε

sj
n , ∀j = 1, . . . , 2g;

where
∑
ki = 0.

Let ϕ : M̃ →M be the covering defined by ω. Then M̃ ∈ Oo.

Proof.
Let p : M → F be the orbit projection of M and let p̃ : M̃ → G be the orbit projection

of M̃ . By Lemma 3.3.11, there exists a homeomorphism ϕ : G→ F. Then G is orientable.
Let M̃0 = ϕ−1(M0). Since ϕ| : M̃0 →M0 is a covering and M0 is orientable, then M̃0, and
consequently, M̃ are orientable by Lemma 3.3.5 and Corollary 3.1.2. Therefore M̃ ∈ Oo.¤

Theorem 3.3.10 Assume M = (On, g;β1/α1, . . . , βr/αr) is a Seifert manifold. Let vj
and qi be as in Remark 3.3.2 and ω : π1(M0) → Sn be a representation defined by

ω(h) = εn
ω(qi) = εki

n , ∀i = 1, . . . , r and
ω(vj) = ρj , ∀j = 1, . . . , g;

where
∑
ki = 0 and ρj is a reflection, for j = 1, . . . , g.

Let ϕ : M̃ →M be the covering defined by ω. Then M̃ ∈ On.
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Proof.
Let p : M → F be the orbit projection of M and let p̃ : M̃ → G be the orbit projection

of M̃ .
By Lemma 3.3.11, there exists a homeomorphism ϕ : G→ F. Then G is non-orientable.

Let M̃0 = ϕ−1(M0). Since ϕ| : M̃0 → M0 is a covering and M0 is orientable, then M̃0 is
orientable; M̃ as also orientable by Lemma 3.3.5 and Corollary 3.1.2. Therefore M̃ ∈ On.¤

Theorem 3.3.11 Assume M = (No, g;β1/α1, . . . , βr/αr) is a Seifert manifold. Let vj
and qi be as in Remark 3.3.2 and ω : π1(M0) → Sn be a representation defined by

ω(h) = εn
ω(qi) = εki

n , ∀i = 1, . . . , r and
ω(v1) = ρ1

ω(vj) = ε
sj
n , ∀j = 2, . . . , 2g;

where
∑
ki + 2s2 = 0 and ρ1 is a reflection. Suppose ρ1(1) = t1{1, . . . , n}.

Let ϕ : M̃ →M be the covering defined by ω. Then M̃ ∈ No.

Proof.
Let p : M → F be the orbit projection of M and let p̃ : M̃ → G be the orbit projection

of M̃ . Recall e : π1(F ) → Z2, the valuation homomorphism of M , is defined by e(v1) = −1
and e(v2) = +1, for i = 2, . . . , 2g. By Lemma 3.3.11, there is a homeomorphism ϕ : G→ F.
Thus G is orientable. Let {v′j}2g

j=1 be a basis for π1(G) such that ϕ(v′j) = vj . By Lemma
(3.3.12), the map ϕ| : p̃−1(v′j) → p−1(vj) is a covering and ẽ(v′j) = e(vj), for j = 1, . . . , 2g,
where ẽ : π1(G) → Z2 is the valuation homomorphism of M̃ . Therefore M̃ ∈ No. ¤

Theorem 3.3.12 Assume M = (NnI, g;β1/α1, . . . , βr/αr) is a Seifert manifold. Let
vj and qi be as in Remark 3.3.2 and ω : π1(M0) → Sn be a representation defined by

ω(h) = εn
ω(qi) = εki

n , ∀i = 1, . . . , r and
ω(vj) = ε

sj
n ,∀j = 1, . . . , g;

where
∑
ki − 2

∑
sj = 0.

Let ϕ : M̃ →M be the covering defined by ω. Then M̃ ∈ NnI.

Proof.
Let p : M → F be the orbit projection of M and let p̃ : M̃ → G be the orbit projection

of M̃ .
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Recall {vj} is a basis of orientation reversing curves for π1(F ) and e : π1(F ) → Z2,
the valuation homomorphism of M , is trivial. By Lemma 3.3.11, there is an homeomor-
phism ϕ : G → F. Thus G is non-orientable. Since ϕ is a homeomorphism, there exists a
basis {v′j}gj=1 of orientation reversing curves for π1(G) such that ϕ(v′j) = vj . By Lemma
3.3.12, the map ϕ| : p̃−1(v′j) → p−1(vj) is a covering and ẽ : π1(G) → Z2 is trivial, where
ẽ : π1(G) → Z2 is the valuation homomorphism of M̃ . Therefore M̃ ∈ NnI. ¤

Theorem 3.3.13 Assume M = (NnII, g;β1/α1, . . . , βr/αr) is a Seifert manifold. Let
vj and qi be as in Remark 3.3.2 and ω : π1(M0) → Sn be a representation defined by

ω(h) = εn
ω(qi) = εki

n , ∀i = 1, . . . , r
ω(v1) = εs1n , and
ω(vj) = ρj , ∀j = 2, . . . , g;

where
∑
ki − 2s1 = 0 and ρj is a reflection, for all j = 2, . . . , g.

Let ϕ : M̃ →M be the covering defined by ω. Then M̃ ∈ NnII.
Proof.

Let p : M → F be the orbit projection of M and let p̃ : M̃ → G be the orbit projection
of M̃ .

Recall {vj} is a basis of orientation reversing curves for π1(F ) and e : π1(F ) → Z2, the
valuation homomorphism of M , is defined by e(v1) = +1 and e(vj) = −1, for j = 2, . . . , g.
By Lemma 3.3.11, there is an homeomorphism ϕ : G→ F. Then G is non-orientable. Also
there exists a basis {v′j}gj=1 of orientation reversing curves for π1(G) such that ϕ(v′j) =
vj ,because ϕ is a homeomorphism. By Lemma 3.3.12, the map ϕ| : p̃−1(v′j) → p−1(vj)
is a covering and ẽ(v′j) = e(vj), for j = 1, . . . , g, where ẽ : π1(G) → Z2 is the valuation
homomorphism of M̃ . Therefore M̃ ∈ NnII. ¤

Theorem 3.3.14 Assume M = (NnIII, g;β1/α1, . . . , βr/αr) is a Seifert manifold.
Let vj and qi be as in Remark 3.3.2 and ω : π1(M0) → Sn be a representation defined by

ω(h) = εn
ω(qi) = εki

n , ∀i = 1, . . . , r
ω(v1) = εs1n ,
ω(v2) = εs2n , and
ω(vj) = ρj , ∀j = 3, . . . , g;

where
∑
ki − 2s1 − 2s2 = 0 and ρj is a reflection, for j = 3, . . . , g.

Let ϕ : M̃ →M be the covering defined by ω. Then M̃ ∈ NnIII.
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Proof.
Let p : M → F be the orbit projection of M and let p̃ : M̃ → G be the orbit projection

of M̃ .
Recall {vj} is a basis of orientation reversing curves for π1(F ) and e : π1(F ) → Z2, the

valuation homomorphism of M , is defined by e(v1) = +1 and e(vj) = −1, for j = 2, . . . , g.
By Lemma 3.3.11, there is an homeomorphism ϕ : G→ F. Then G is non-orientable. Also
there exists a basis {v′j}gj=1 of orientation reversing curves for π1(G) such that ϕ(v′j) = vj ,

for ϕ is a homeomorphism. By Lemma 3.3.12, the map ϕ| : p̃−1(v′j) → p−1(vj) is a covering
and ẽ(v′j) = e(vj), for j = 1, . . . , g, where ẽ : π1(G) → Z2 is the valuation homomorphism
of M̃ . Therefore M̃ ∈ NnIII. ¤

Corollary 3.3.1 Let M = (Xx, g;β1/α1, . . . , αr/βr) and M0 as in Remark ?? Assume h
is a regular fiber of M . Let ω : π1(M0) → Sn be a representation such that ω(h) = εn and
let ϕ : M̃ →M be covering space determined by ω.
Then M̃ is in the same class of M .

Lemma 3.3.13 Suppose M = (Oo, g;β1/α1, . . . , βr/αr) is a Seifert manifold. Assume
h is a regular fiber of M . Let ω : π1(M0) → Sn such that ω(h) = εn, where εn = (1, 2, . . . , n).
By Remark 3.3.2, ω : π1(M0) → Sn is defined by

ω(h) = εn
ω(qi) = εki

n , ∀i = 1, . . . , r and
ω(vj) = ε

sj
n ,∀j = 1, . . . , 2g;

where vj and qi are considered as in Remark 3.3.2 and
∑
ki = 0.

Let ϕ : M̃ →M be the covering defined by ω.

Then there are an orbit surface G′0 of M̃0 and a basis ṽ1, . . . , ṽg for π1(G′0) and curves
q̃i in the boundary of G′0 such that ϕ#(q̃i) = qih

−ki, ϕ#(ṽj) = vjh
−sj , for all j.

In particular, we have an orbit surface G′ of M̃ such that ṽ1, . . . , ṽg is a basis for π1(G′).

Proof.
Let p : M → F be the orbit projection of M and let p̃ : M̃ → G be the orbit projection

of M̃ .
Recall F0 = p(M0). By Lemma 3.3.11, there exists a homeomorphism ϕ0 : G0 → F0,

where F0 = p(M0) and G0 = p̃(ϕ−1(M0)). Then there exists a basis {v′j , q′i}, where
j = 1, . . . , 2g and i = 1, . . . , r, for π1(G0) such that ϕ0(v′j) = vj and ϕ0(q′i) = qi, for
all j = 1, . . . , 2g and for i = 1, . . . , r.
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Recall e : π1(F ) → Z2, the valuation homomorphism of M , is trivial. By Lemma 3.3.12
ẽ(v′j) = ẽ(q′i) = +1, where ẽ : π1(G) → Z2 is the valuation homomorphism of M̃.

By Lemma 3.3.12, ϕ| : p̃−1(q′i) → p−1(qi) is a covering space; using Lemma 3.3.9 we
obtain a basis {h̃, q̃i} for π1(p̃−1(q′i)) such that ϕ#(h̃) = hn and ϕ#(q̃i) = qih

−ki .

Analogously, there is a basis {ṽj , h̃} for π1(p̃−1(v′j)) such that ϕ#(h̃) = hn and ϕ#(ṽj) =
vjh

−sj , for all j. Note that, by construction, ṽj and q̃i intersect every fiber of p̃−1(v′j) and
p̃−1(q′i), respectively, in exactly one point.

Since h commutes with vj , for j = 1, . . . , 2g, we obtain

ϕ#

(
q̃1 · · · q̃r(

∏
[ṽ2j−1, ṽ2j ])−1

) ' q1h
−k1 · · · qrh−kr(

∏
[v2l−1, v2l])−1

' h−
P
kiq1 · · · qr(

∏
[v2l−1, v2l])−1 (recall

∑
ki = 0.)

' q1 · · · qr(
∏

[v2l−1, v2l])−1

' 1,

where all homotopies are rel∂I. Thus q̃1 · · · q̃r(
∏

[ṽ2j−1, ṽ2j ])−1 ' 1 for ϕ# is injective.
Then the curves q̃1, . . . , q̃r span a surface G′0 in M0. After some isotopies of G′0 in M̃

fixing ∂G′0, we obtain G′0 is an orbit surface. After filling the holes of M̃0, G′0 gives rise to
G′ as required. ¤

Lemma 3.3.14 Suppose M = (On, g;β1/α1, . . . , βr/αr) is a Seifert manifold. Assume
h is a regular fiber of M . Let M0 be as in Remark 3.3.2 and ω : π1(M0) → Sn such that
ω(h) = εn, where εn = (1, 2, . . . , n). By Remark 3.3.2, ω : π1(M0) → Sn is defined by

ω(h) = εn
ω(qi) = εki

n , ∀i = 1, . . . , r and
ω(vj) = ρj , ∀j = 1, . . . , g;

where
∑
ki = 0 and ρj is a reflection, for j = 1, . . . , g. Suppose ρj(1) = tj ∈ {1, . . . , n},

for j = 1, . . . , g.

Let ϕ : M̃ →M be the covering defined by ω.

Then there are an orbit surface G′0 of M̃0 and a basis ṽ1, . . . , ṽg for π1(G′0) and curves
q̃i in the boundary of G′0 such that ϕ#(q̃i) = qih

−ki, ϕ#(ṽj) = vjh
−(tj−1), for all j.

In particular, we have an orbit surface G′ of M̃ such that ṽ1, . . . , ṽg is a basis for π1(G′).

Proof.
Let p : M → F be the orbit projection of M and let p̃ : M̃ → G be the orbit projection

of M̃ .
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Recall F0 = p(M0) and {vj} is a basis of orientation reversing curves for π1(F ). By
Lemma 3.3.11, there exists a homeomorphism ϕ0 : G0 → F0, where F0 = p(M0) and
G0 = p̃(ϕ−1(M0)). Then there exists a basis {v′j , q′i}, where j = 1, . . . , g and i = 1, . . . , r,
for π1(G0) such that ϕ0(v′j) = vj and ϕ0(q′i) = qi, for all j = 1, . . . , g and for i = 1, . . . , r.

Recall e : π1(F ) → Z2, the valuation homomorphism of M , is defined by e(vj) = −1,
for j = 1, . . . , g, and e(qi) = +1, for i = 1, . . . , r. Let ẽ : π1(G) → Z2 be the valuation
homomorphism of M̃ ; by Lemma 3.3.12 we have that ϕ| : p̃−1(q′i) → p−1(qi) is a covering,
ẽ(v′j) = −1 and ẽ(q′i) = +1.

From Lemma 3.3.9 it follows that we have a basis {h̃, q̃i} for π1(p̃−1(q′i)) such that
ϕ#(h̃) = hn and ϕ#(q̃i) = qih

−ki .

Recall ρj(1) = tj . By Lemma 3.3.10 there is a basis {ṽj , h̃} for π1(p̃−1(v′j)) such that
ϕ#(h̃) = hn and ϕ#(ṽj) = vjh

−(tj−1), for j = 1, . . . , g.

Note that, by construction, ṽj and q̃i intersect each fiber of p̃−1(v′j) and p̃−1(q′i), respec-
tively, in exactly one point.

Since h anticommutes with vj , we obtain vjh
−(tj−1) = h(tj−1)vj and vjh

(tj − 1) =
h−(tj−1)vj , for j = 1, . . . , 2g. Then vjh−(tj−1)vjh

(−(tj−1)) = h(tj−1)−(tj−1)v2
j = v2

j .

Note that

ϕ#

(
q̃1 · · · q̃r(

∏
ṽ2
j )
−1

)
' q1h

−k1 · · · qrh−kr(
∏

(vjh−(tj−1))2)−1

' h−
P
kiq1 · · · qr(

∏
vjh

−(tj−1)vjh
−(tj−1))−1, (recall

∑
ki = 0.)

' q1 · · · qr(
∏
v2
j )
−1,

' 1.

Thus q̃1 · · · q̃r(
∏
ṽ2
j ])

−1 ' 1 because for ϕ# is injective.
Then the curves q̃1, . . . , q̃r span a surface G′0 in M0. After some isotopies of G′0 in M̃

fixing ∂G′0, we obtain G′0 is an orbit surface. After filling the holes of M̃0, G′0 gives rise to
G′ as required. ¤

Lemma 3.3.15 Suppose M = (No, g;β1/α1, . . . , βr/αr) is a Seifert manifold. Assume
h is a regular fiber of M . Let M0 be as in Remark 3.3.2 and ω : π1(M0) → Sn such that
ω(h) = εn, where εn = (1, 2, . . . , n). Let ω : π1(M0) → Sn be a representation is defined by

ω(h) = εn
ω(qi) = εki

n , ∀i = 1, . . . , r and
ω(v1) = ρ1

ω(vj) = ε
sj
n , ∀j = 2, . . . , 2g;
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where
∑
ki + 2s2 = 0 and ρ1 is a reflection. Suppose ρ1(1) = t1 ∈ {1, . . . , n}.

Let ϕ : M̃ →M be the covering defined by ω.

Then there are an orbit surface G′0 of M̃0 and a basis ṽ1, . . . , ṽg for π1(G′0) and curves q̃i
in the boundary of G′0 such that ϕ#(q̃i) = qih

−ki, ϕ#(ṽ1) = v1h
−(t1−1) and ϕ#(ṽj) = vjh

−sj ,
for j = 2, . . . , 2g.

In particular, we have an orbit surface G′ of M̃ such that ṽ1, . . . , ṽg is a basis for π1(G′).

Proof.
Let p : M → F be the orbit projection of M and let p̃ : M̃ → G be the orbit projection

of M̃ .
Recall F0 = p(M0). By Lemma 3.3.11, there exists a homeomorphism ϕ0 : G0 → F0,

where F0 = p(M0) and G0 = p̃(ϕ−1(M0)). Then there exists a basis {v′j , q′i}, where
j = 1, . . . , g and i = 1, . . . , r, for π1(G0) such that ϕ0(v′j) = vj and ϕ0(q′i) = qi, for
j = 1, . . . , g and for i = 1, . . . , r.

Recall e(v1) = −1, e(vj) = +1, for j = 2, . . . , 2g, and e(qi) = +1, for i = 1, . . . , r,
where e : π1(F ) → Z2 is the valuation homomorphism of M . Let ẽ : π1(G) → Z2 be
the valuation homomorphism of M̃ ; by Lemma 3.3.12 we have that ϕ| : p̃−1(q′i) → p−1(qi)
is a covering space, ẽ(v′1) = −1, ẽ(v′j) = +1, for j = 2, . . . , 2g and ẽ(q′i) = +1, for i = 1, . . . , r.

From Lemma 3.3.9 it follows we have basis {h̃, ṽj} and {h̃, q̃i} for π1(p̃−1(v′j)) and
π1(p̃−1(q′i)), respectively, such that ϕ#(h̃) = hn, ϕ#(ṽj) = vjh

−sj and ϕ#(q̃i) = qih
−ki ,

for j = 2, . . . , 2g and for i = 1 . . . , r.

Recall ρ1(1) = t1. By Lemma 3.3.10 there is a basis {ṽ1, h̃} for π1(p̃−1(v′1)) such that
ϕ#(h̃) = hn and ϕ#(ṽ1) = v1h

−(t1−1). By construction, ṽj and q̃i intersect each fiber of
p̃−1(v′j) and p̃−1(q′i), respectively, in exactly one point.

Since h anticommutes with v1 we obtain v−1
1 hsj = h−sjv−1

1 . Then v1h−(t1−1)v2h
−s2h(t1−1)v−1

1 hs2v−1
2 =

v1v2v
−1
1 v−1

2 h2s2 because h commutes with v2.

Thus

ϕ#

(
q̃1 · · · q̃r(

∏g
j=1[ṽ2j−1, ṽ2j ])−1

)
' q1h

−k1 · · · qrh−kr(
∏g
j=1[ϕ#(ṽ2j−1), ϕ#(ṽ2j)])−1

' h−
P
kiq1 · · · qr(

∏g
j=1[v2j−1, v2j ]h2s2)−1

' h−
P
kiq1 · · · qrh−2s2(

∏g
j=1[v2j−1, v2j ])−1, (since [qi, h] = 1)

' h−
P
ki−2s2q1 · · · qr(

∏g
j=1[v2j−1, v2j ])−1

' 1 (for
∑
ki + 2s2 = 0).
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Thus q̃1 · · · q̃r(
∏

[ṽ2j−1, ṽ2j ])−1 ' 1 for ϕ# is injective. Then the curves q̃1, . . . , q̃r span
a surface G′0 in M0. After some isotopies of G′0 in M̃ fixing ∂G′0, we obtain G′0 is an orbit
surface. After filling the holes of M̃0, G′0 gives rise to G′ as required. ¤

Lemma 3.3.16 Suppose M = (NnI, g;β1/α1, . . . , βr/αr) is a Seifert manifold. As-
sume h is a regular fiber of M . Let ω : π1(M0) → Sn be a representation such that ω(h) = εn,
where εn = (1, 2, . . . , n). By Remark 3.3.2, ω : π1(M0) → Sn is defined by

ω(h) = εn
ω(qi) = εki

n , ∀i = 1, . . . , r and
ω(vj) = ε

sj
n ,∀j = 1, . . . , g.

where
∑
ki − 2

∑
sj = 0.

Let ϕ : M̃ →M be the covering defined by ω.

Then there are an orbit surface G′0 of M̃0 and a basis ṽ1, . . . , ṽg for π1(G′0) and curves
q̃i in the boundary of G′0 such that ϕ#(q̃i) = qih

−ki, ϕ#(ṽj) = vjh
−(sj), for all j = 1 . . . , g.

In particular, we have an orbit surface G′ of M̃ such that ṽ1, . . . , ṽg is a basis for π1(G′).

Proof.
Let p : M → F be the orbit projection of M and let p̃ : M̃ → G be the orbit projection

of M̃ .
Recall F0 = p(M0) and {vj} is a basis of orientation reversing curves for π1(F ). By

Lemma 3.3.11, there exists a homeomorphism ϕ0 : G0 → F0, where F0 = p(M0) and
G0 = p̃(ϕ−1(M0)). Then there exists a basis {v′j , q′i}, where j = 1, . . . , g and i = 1, . . . , r,
for π1(G0) such that ϕ0(v′j) = vj and ϕ0(q′i) = qi, for all j = 1, . . . , g and for i = 1, . . . , r.

Recall the valuation homomorphism ofM , e : π1(F ) → Z2, is trivial. Let ẽ : π1(G) → Z2

be the valuation homomorphism of M̃ ; by Lemma 3.3.12 we have that ϕ| : p̃−1(q′i) → p−1(qi)
is a covering, ẽ(v′j) = ẽ(q′i) = +1, for j = 1, . . . , g and i = 1, . . . , r.

From Lemma 3.3.9 it follows we have a basis {h̃, q̃i} for π1(p̃−1(q′i)) such that ϕ#(h̃) = hn

and ϕ#(q̃i) = qih
−ki .

Analogously, there is a basis {ṽj , h̃} for π1(p̃−1(v′j)) such that ϕ#(h̃) = hn and ϕ#(ṽj) =
vjh

−sj , for j = 1, . . . , g. Note that, by construction, ṽj and q̃i intersect each fiber of p̃−1(v′j)
and p̃−1(q′i), respectively, in exactly one point.

Since h commutes with vj and qi, then:
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ϕ#

(
q̃1 · · · q̃r(

∏
ṽ2
j )
−1

)
' q1h

−k1 · · · qrh−kr(
∏

(vjh−sj )2)−1

' h−
P
ki+2

P
sjq1 · · · qr(

∏
v2
j )
−1, (recall

∑
ki − 2

∑
sj = 0.)

' q1 · · · qr(
∏
v2
j )
−1,

' 1.

Thus q̃1 · · · q̃r(
∏
ṽ2
j )
−1 ' 1 for ϕ# is injective.

Then the curves q̃1, . . . , q̃r span a surface G′0 in M0. After some isotopies of G′0 in M̃
fixing ∂G′0, we obtain G′0 is an orbit surface. After filling the holes of M̃0, G′0 gives rise to
G′ as required. ¤

Lemma 3.3.17 Suppose M = (NnII, g;β1/α1, . . . , βr/αr) is a Seifert manifold. As-
sume h is a regular fiber of M . Let ω : π1(M0) → Sn be a representation such that ω(h) = εn,
where εn = (1, 2, . . . , n). By Remark 3.3.2, ω : π1(M0) → Sn is defined by

ω(h) = εn
ω(qi) = εki

n , ∀i = 1, . . . , r,
ω(v1) = εs1n ,
ω(vj) = ρj , ∀j = 2, . . . , g;

where
∑
ki − 2s1 = 0 and ρj is a reflection, for j = 2, . . . , g. Assume ρj(1) = tj, for

j = 2, . . . , g.

Let ϕ : M̃ →M be the covering defined by ω.

Then there are an orbit surface G′0 of M̃0 and a basis ṽ1, . . . , ṽg for π1(G′0) and curves
q̃i in the boundary of G′0 such that ϕ#(q̃i) = qih

−ki, ϕ#(ṽ1) = v1h
−(s1) and ϕ#(ṽj) =

vjh
−(tj−1), for all j = 2 . . . , g.

In particular, we have an orbit surface G′ of M̃ such that ṽ1, . . . , ṽg is a basis for π1(G′).

Proof.
Let p : M → F be the orbit projection of M and let p̃ : M̃ → G be the orbit projection

of M̃ .
Recall F0 = p(M0) and {vj} is a basis of orientation reversing curves for π1(F ). By

Lemma 3.3.11, there exists a homeomorphism ϕ0 : G0 → F0, where F0 = p(M0) and
G0 = p̃(ϕ−1(M0)). Then there exists a basis {v′j , q′i}, where j = 1, . . . , g and i = 1, . . . , r,
for π1(G0) such that ϕ0(v′j) = vj and ϕ0(q′i) = qi, for all j = 1, . . . , g and for i = 1, . . . , r.

Recall also the valuation homomorphism of M , e : π1(F ) → Z2, is defined by e(v1) = +1
and e(vj) = −1, for j = 2, . . . , g. Let ẽ : π1(G) → Z2 be the valuation homomorphism of
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M̃ ; by Lemma 3.3.12 we have that ϕ| : p̃−1(q′i) → p−1(qi) is a covering, ẽ(v′1) = ẽ(q′i) = +1,
for i = 1, . . . , r, and ẽ(v′j) = −1, if j = 2, . . . , g.

By Lemma (3.3.9), we have basis {h̃, ṽ1} and {h̃, q̃i} for π1(p̃−1(v′1)) and π1(p̃−1(q′i)),
respectively, such that ϕ#(h̃) = hn, ϕ#(ṽ1) = v1h

−s1 and ϕ#(q̃i) = qih
−ki . Note that there

is also a basis {ṽj , h̃} for π1(p̃−1(v′j)) such that ϕ#(h̃) = hn and ϕ#(ṽj) = vjh
−(tj−1), for

j = 2, . . . , g, for Lemma 3.3.10. By construction, ṽj and q̃i intersect each fiber of p̃−1(v′j)
and p̃−1(q′i), respectively, in exactly one point.

Since h anticommutes with v1, then h−(tj−1)vj = vjh
(tj−1) and h−2s1vj = vjh

2s1 . Con-
sequently h−(tj−1)vjh

−(tj−1) = vj , h−2s1v2
j = v2

jh
−2s1 and

ϕ#

(
q̃1 · · · q̃r(

∏g
j=1 ṽ

2
j )
−1

)
' q1h

−k1 · · · qrh−kr((v1h−s1)2
∏g
j=2 vjh

−(tj−1)vjh
−(tj−1))−1

' h−
P
ki+2s1q1 · · · qr(

∏g
j=1 v

2
j )
−1, (recall

∑
ki − 2s1 = 0.)

' q1 · · · qr(
∏
v2
j )
−1,

' 1.

Thus q̃1 · · · q̃r(
∏
ṽ2
j )
−1 ' 1 for ϕ# is injective.

Then the curves q̃1, . . . , q̃r span a surface G′0 in M0. After some isotopies of G′0 in M̃
fixing ∂G′0, we obtain G′0 is an orbit surface. After filling the holes of M̃0, G′0 gives rise to
G′ as required. ¤

Lemma 3.3.18 Suppose M = (NnIII, g;β1/α1, . . . , βr/αr) is a Seifert manifold with
orbit projection p : M → F . Assume h is a regular fiber of M . Let ω : π1(M0) → Sn
be a representation such that ω(h) = εn, where εn = (1, 2, . . . , n). By Remark 3.3.2, ω :
π1(M0) → Sn is defined by

ω(h) = εn
ω(qi) = εki

n ,∀i = 1, . . . , r,
ω(v1) = εs1n ,
ω(v2) = εs2n , and
ω(vj) = ρj , ∀j = 3, . . . , g;

where
∑
ki − 2s1 − 2s2 = 0 and ρj is a reflection, for j = 3, . . . , g. Assume ρj(1) = tj, for

j = 2, . . . , g.

Let ϕ : M̃ →M be the covering defined by ω.

Then there are an orbit surface G′0 of M̃0 and a basis ṽ1, . . . , ṽg for π1(G′0) and curves
q̃i in the boundary of G′0 such that ϕ#(q̃i) = qih

−ki, ϕ#(ṽ1) = v1h
−(s1), ϕ#(ṽ2) = v2h

−(s2),
ϕ#(ṽj) = vjh

−(tj−1), for all j = 3 . . . , g.
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In particular, we have an orbit surface G′ of M̃ such that ṽ1, . . . , ṽg is a basis for π1(G′).

Proof.
Let p : M → F be the orbit projection of M and let p̃ : M̃ → G be the orbit projection

of M̃ .
Recall F0 = p(M0) and {vj} is a basis of orientation reversing curves for π1(F ). By

Lemma 3.3.11, there exists a homeomorphism ϕ0 : G0 → F0, where F0 = p(M0) and
G0 = p̃(ϕ−1(M0)). Then there exists a basis {v′j , q′i}, where j = 1, . . . , g and i = 1, . . . , r,
for π1(G0) such that ϕ0(v′j) = vj and ϕ0(q′i) = qi, for all j = 1, . . . , g and for i = 1, . . . , r.

The valuation homomorphism of M , e : π1(F ) → Z2, is defined by e(v1) = e(V2) = +1
and e(vj) = −1, for j = 3, . . . , g. Let ẽ : π1(G) → Z2 be the valuation homomorphism of M̃ ;
by Lemma 3.3.12 we have ϕ| : p̃−1(q′i) → p−1(qi) is a covering, ẽ(v′1) = ẽ(v′2) = ẽ(q′i) = +1,
for i = 1, . . . , r, and ẽ(v′j) = −1, if j = 3, . . . , g.

By Lemma 3.3.9, we have basis {h̃, ṽ1}, {h̃, ṽ2} and {h̃, q̃i} for π1(p̃−1(v′1)), π1(p̃−1(v′2))
and π1(p̃−1(q′i)), respectively, such that ϕ#(h̃) = hn, ϕ#(ṽ1) = v1h

−s1 , ϕ#(ṽ2) = v2h
−s2

and ϕ#(q̃i) = qih
−ki . Note that by Lemma 3.3.10 there is also a basis {ṽj , h̃} for π1(p̃−1(v′j))

such that ϕ#(h̃) = hn and ϕ#(ṽj) = vjh
−(tj−1), for j = 3, . . . , g. By construction, ṽj and

q̃i intersect each fiber of p̃−1(v′j) and p̃−1(q′i), respectively, in exactly one point.

Note that

ϕ#

(
q̃1 · · · q̃r(

∏g
j=1 ṽ

2
j )
−1

)
' q1h

−k1 · · · qrh−kr((v1h−s1)2
∏g
j=2 vjh

−(tj−1)vjh
−(tj−1))−1

' h−
P
ki+2s1q1 · · · qr(

∏g
j=1 v

2
j )
−1, (recall

∑
ki − 2s1 = 0.)

' q1 · · · qr(
∏
v2
j )
−1,

' 1;

because h commutes with v1, v2 and qi; and h anticommutes with vj , for j = 3, . . . , g.

Thus q̃1 · · · q̃r(
∏
ṽ2
j ])

−1 ' 1 because ϕ# is injective.
Then the curves q̃1, . . . , q̃r span a surface G′0 in M0. After some isotopies of G′0 in M̃

fixing ∂G′0, we obtain G′0 is an orbit surface. After filling the holes of M̃0, G′0 gives rise to
G′ as required. ¤

Theorem 3.3.15 Let M = (Xx, g;β1/α1, . . . , βr/αr) be a Seifert manifold, where
Xx ∈ {Oo,On,No,NnI,NnII,NnIII}. Let h be a regular fiber of M . Write M0 =
M − tri=1Vi, where each Vi is a fibered neighborhood of an exceptional fiber or a fibered
neighborhood of a regular fiber, for i = 1, . . . , r, and Vi is homeomorphic (under a fiber
preserving homeomorphism) to the torus T (βi/αi). Assume n ∈ N. Let ω : π1(M0) → Sn
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be a representation such that ω(h) = εn, where εn = (1, 2, . . . , n). Then

ω(qi) = εki
n , ∀i = 1, . . . , r and

ω(vj) = τj ,

where {h, vj , qi} is a stardad system of generators of π1(M0), and τj is a power of εn if vj
commutes with h, or a reflection if vj anticommutes with h.

Let ϕ : M̃ → M be the covering of M branched along fibers determined by ω. Then M̃
is in the same class of M and the Seifert symbol of M̃ is:

(Xx, g;
B1

A1
, . . . ,

Br
Ar

),

with

Bi =
βi + kiαi

gcd{n, βi + kiαi} ,

Ai =
nαi

gcd{n, βi + kiαi} ,

where gcd{n, βi + kiαi} denotes the greatest common divisor of n and βi + kiαi.

Proof.
By Remark 3.3.2, ω is defined as stated. Also M̃ is in the same class of M because of

Corollary 3.3.1.

Suppose that F , of genus g, is the orbit surface ofM . Recall F0 = p(M0), M̃0 = ϕ−1(M0)
and G0 = p̃(M̃0), where p̃ : M̃ → G is the orbit projection of M̃.

Let G be the orbit surface of M̃.

By Lemma 3.3.11, there exists a homeomorphism ϕ0 : G0 → F0. Thus ∂G0 has r com-
ponents because ∂F0 has r components. Therefore ∂M̃0 has r components.

Note that we can obtain M from M0 by glueing solid tori Ui to Ti with homeomorphisms
fi : ∂Ui → Ti such that fi(mi) = qαi

i h
βi , where mi is a meridian of ∂Vi..

Let G′ be the orbit surface of M̃ obtained in Lemmas 3.3.13, 3.3.14, 3.3.15, 3.3.16, 3.3.17
and 3.3.18. Recall that Lemmas 3.3.13, 3.3.14), 3.3.15, 3.3.16, (3.3.17) and (3.3.18) give us
a basis {ṽj} for π1(G) and curves q̃i in G, such that, ϕ#(q̃i) = qih

−ki .

Now we compute Bi and Ai.
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Because of mi ∼ qαi
i h

βi , we have that ω(mi) = ω(qαi
i h

βi) = εβi+kiαi . Let di = gcd{n, βi+
kiαi}. Note that the order of ω(mi) is n/di and that ϕ−1(mi) has di components. Let m̃i

be a component of ϕ−1(mi), then

ϕ(m̃i) = m
n/di

i = q
nαi/di

i hnβi/di . (3.4)

On the other hand, m̃i = q̃Ai
i h̃Bi for some Ai and Bi positive integer numbers such that

gcd{Ai, Bi} = 1, then

ϕ(m̃i) = (qih−ki)AihnBi = qAi
i h−Aiki+nBi . (3.5)

Equating (3.4) and (3.5) we get that

Bi =
βi + kiαi

gcd{n, βi + kiαi} , and

Ai =
nαi

gcd{n, βi + kiαi} .

¤
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Chapter 4

Heegaard genera of coverings of
Seifert manifolds branched along
fibers

4.1 Heegaard genera of Seifert manifolds

Theorem 4.1.1 [B-Z]
Let M = (Oo, g;β1/α1, . . . , βr/αr) be a Seifert manifold; assume αi > 1, and 1 ≤ i ≤ r.

i) If M = (O, 0; 1/2, 1/2, . . . , 1/2, βr/(2λ + 1)), with λ > 0, r even and r ≥ 4, then
rank(π1(M)) = r − 2 ≤ h(M) ≤ r − 1.

ii) Suppose that M does not belong to the case (i) and r ≥ 3, then rank(π1(M)) = h(M) =
2g + r − 1.

ii’) If g > 0 and r = 2, then rank(π1(M)) = h(M) = 2g + 1.

iii) If r = 1, then rank(π1(M)) = h(M) = 2g if β1 = ±1.
Otherwise, rank(π1(M)) = h(M) = 2g + 1.

iii’) If r = 0, then rank(π1(M)) = h(M) = 2g if β1 = ±1.
Otherwise rank(π1(M)) = h(M) = 2g + 1.

Theorem 4.1.2 [B-Z]
Let M = (On, g;β1/α1, . . . , βr/αr) be a Seifert Manifold; suppose αi > 1 and 1 ≤ i ≤ r.

i) If r ≥ 2, then h(M) = g + r − 1.

ii) Suppose r=1.

(a) If β1 = ±1, then h(M) = g.

(b) If β1 6= ±1 is even, then h(M) = g + 1.

67
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iii) If r = 0, then h(M) = g if β1 = ±1; otherwise, h(M) = g + 1.

Remark 4.1.1 In Theorem 4.1.2, if β1 6= ±1 is odd, Boileau and Zieschang claimed
but did not prove that h(M) = g + 1. According to [Nu1] this claim is correct.

Theorem 4.1.3 [Nu] Let M be a non-orientable Seifert manifold.

(i) If M = (No, g;β1/α1, . . . , βr/αr), where αi > 1, then

(a) If r ≥ 2, then h(M) = 2g + r − 1.

(b) Suppose r = 1. If β1 is even, then h(M) = 2g + 1. If β1 = 1, then h(M) = 2g.

(c) Suppose r = 0. If β1 is even then h(M) = 2g + 1. If β1 is odd, then h(M) = 2g.

Also, if r = 1 and β1 6= 1 is odd, then 2g ≤ h(M) ≤ 2g + 1.

(ii) If M = (Xx, g;β1/α1, . . . , βr/αr), where Xx ∈ {NnI,NnII,NnIII}, and αi > 1;
then:

(a) If r ≥ 2, then h(M) = g + r − 1.

(b) Suppose r = 1. If β1 is even, then h(M) = g + 1. If β1 = 1, then h(M) = g.

(c) Suppose r = 0. If β1 is even, then h(M) = g + 1. If β1 is odd, then h(M) = g.

Also, if r = 1 and β1 6= 1 is odd, then g ≤ h(M) ≤ g + 1.

4.2 Heegaard genera of coverings

Let M be a Seifert manifold with orbit projection p : M → F . Assume ϕ : M̃ → M is a
covering of M branched along fibers. In this section we compare the Heegaard genus of M̃ ,
h(M̃), with the Heegaard genus of M , h(M). We always will assume that M is not in the
following list:

(a) M = (On, 1;β/α), α ≥ 1

(b) M = (Oo, 0;β1/α1, β2/α2), αi ≥ 1

(c) M = (Oo, 0;β1/2, β2/2, β3/m)

(d) M = (Oo, 0;β1/2, β2/3, β3/3)

(e) M = (Oo, 0;β1/2, β2/3, β3/4)

(f) M = (Oo, 0;β1/2, β2/3, β3/5)

We take out the cases (a)− (f) because these manifolds have finite fundamental group
and in this cases S3 is the universal covering of M . Thus h(M) > h(S3) = 0 if π1(M) 6= 1.
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(g) M = (Oo, 0; 1/2, 1/2, . . . , 1/2, βr/(2λ+ 1)), with λ > 0, r even and r ≥ 4.

(h) M = (Zz, g;β/α), with Zz ∈ {No,NnI,NnII,NnIII}, β 6= 1 odd and α ≥ 2. (Non-
orientable Seifert manifolds with exactly one exceptional fiber and β 6= 1 odd.)

We rule out (g) y (h) because we can not compute h(M) precisely. In case (g), we only
know r − 2 ≤ h(M) ≤ r − 1 and in case (h), h(M) satisfies 2g ≤ h(M) ≤ 2g + 1.

Let M be a Seifert manifold and {hi}ri=1 be a set of fibers of M which contains all the
exceptional fibers and a finite number of regular fibers. Recall each fiber has a neighbor-
hood Vi fiber preserving homeomorphic to a solid fibered torus T (βi/αi) be the fibered solid
torus homeomorphic to Vi, for i = 1, . . . , r. Note that αi and βi are coprime numbers and
αi ≥ 1. Define M0 = M − ∪Vi.

Suppose ϕ : M̃ →M is a covering of M branched along fibers and M̃ is connected. By
Theorem (3.3.1), we know that there are ψ : M̃ →M ′ and ζ : M ′ →M branched coverings
such that the following diagram is commutative

M̃

M ′

M
?

ϕ

@
@R
ψ

¡
¡¡ª ζ

Also if ωψ and ωζ are the representations associated to ψ and ζ, respectively, we have
that ωψ(h′) = εt and ωζ(h) = (1), where (1) is the identity permutation in Sn and εt =
(1, 2, . . . , t); h and h′ are regular fibers of M and M ′, respectively.

Thus we will only consider representations ω(π1(M0)) → Sn such that ω(h) = (1) and
ω(h) = εn, where h is a regular fiber of M .

Along this section we use the following notation:

• M is a Seifert manifold with orbit projection p : M → F , and h is a regular fiber of M .

• The surface F has genus g. Let {hi}ri=1 be a set of fibers of M which contains all the
exceptional fibers and some regular fibers. Recall each fiber has a neighborhood Vi
fiber preserving homeomorphic to a fibered solid torus T (βi/αi), for i = 1, . . . , r.

• {vj} is a basis for π1(F ) and we assume vj is orientation reversing if F is non-
orientable, for each j.
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• M0 = M − ∪ri=1Vi.

Note that ∂M0 has r components; T1, . . . , Tr

• qi = p(Ti).

• ω : π1(M0) → Sn is a transitive representation.

• The identity permutation in Sn is denoted by (1) and the standard n−cycle (1, . . . , n)
is denoted by εn.

• ϕ : M̃ →M is the covering branched along fibers ofM associated to the representation
ω : π1(M0) → Sn and p̃ : M̃ → G is the orbit projection of M̃ .

• The surface G has genus g̃.

• The natural number n is always greater than 2. Otherwise, if n = 1 then ϕ would be
a homeomorphism.

• The Heegaard genus of M is denoted by h(M).

4.2.1 Heegaard genera when ω(h) = (1)

Let M = (Xx, g;β1/α1, . . . , βr/αr) be a Seifert manifold, where
Xx ∈ {Oo,On,No,NnI,NnII,NnIII}. Suppose that ω : π1(M0) → Sn is a transitive
representation defined by

ω(h) = (1),
ω(qi) = σi,1 · · ·σi,`i , for i = 1, . . . , r and
ω(vj) = ρj,1 · · · ρj,sj ;

where σi,1 · · ·σi,`i and ρj,1 · · · ρj,sj are the disjoint cycle decompositions of ω(qi) and ω(vj),
respectively.

By Theorem 3.3.8,

a) If F is non-orientable, M̃ is the manifold

(Y y, g̃;
B1,1

A1,1
, . . . ,

B1,`1

A1,`1

, . . . ,
Br,1
Ar,1

, . . . ,
Br,`r
Ar,`r

),

where Y y ∈ {Oo,On,No,NnI,NnII,NnIII} and it is determined by Theorems
3.3.3, 3.3.5, 3.3.6 and (3.3.7). If G is orientable, then

g̃ = 1− n(2− g) +
∑r

i=1 `i − nr

2
.
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If G is non-orientable, then

g̃ = n(g − 2) + 2 + nr −
r∑

i=1

`i.

b) If F is orientable, then M̃ is the manifold

(Y y, g̃;
B1,1

A1,1
, . . . ,

B1,`1

A1,`1

, . . . ,
Br,1
Ar,1

, . . . ,
Br,`r
Ar,`r

),

where Y y ∈ {Oo,No} and it is determined by Theorems 3.3.2 and 3.3.4); and

g̃ = 1 + n(g − 1) +
nr −∑r

i=1 `i
2

.

The numbers Bi,k and Ai,k in the Seifert symbol for M̃ in (a) and (b) are:

Bi,k =
order(σi,k) · βi

gcd{αi, order(σi,k)} , and

Ai,k =
αi

gcd{αi, order(σi,k)} ,

where gcd{αi, order(σi,k} denotes the greatest common divisor of αi and order(σi,k).

We hightlight the following equations for future reference.

Note that n ≥ `i ≥ 1, for all i = 1, . . . , r, (4.1)

because `i is the number of disjoint cycles of ω(qi) and

Ai,k = 1, if and only if, αi|order(σi,k) (4.2)

since the definition of Ai,k.
Let a be a positive number. Assume n > 1. Then

n(a− 2) + 2 ≥ a if and only if a ≥ 2 (4.3)

and
2 + 2n(a− 1) ≥ 2a if and only if a ≥ 1. (4.4)

Lemma 4.2.1 Let M = (Xx, g;β1/1), where Xx ∈ {Oo,On,No,NnI,NnII,NnIII}.
Consider a transitive representation ω : π1(M0) → Sn defined by

ω(h) = (1),
ω(q1) = σ1 · · ·σ`1 , and

ω(vj) = ρj1 · · · ρjsj ,
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where σi,1 · · ·σi,`i and ρj,1 · · · ρj,sj are the disjoint cycle decompositions of ω(qi) and ω(vj),
respectively.

By Theorem 3.3.8, M̃ = (Y y, g̃;B1/A1, · · · , B`1/A`1), with Bk = order(σk) · β1 and
Ak = 1, for k = 1, . . . , `1. Let p : M → F be the orbit projection of M. Let g be the genus
of F . Then:

(a) If F is non-orientable, then h(M̃) = n(g − 2) + n− `1 + 3.

(b) If F is orientable, then h(M̃) = 2n(g − 1) + n− `1 + 3

Proof.
By Theorem 3.2.1, we can assume M̃ = (Y y, g̃;nβ1/1). Note that nβ1 6= 1 for n ≥ 2

and β1 is an integer number. Also nβ1 is even if β1 is even, this implies that we can compute
h(M̃), if M̃ is non-orientable.

(a) Suppose F is non-orientable.

(i) If G is non-orientable, then g̃ = n(g − 2) + 2 + n − `1, by Lemma 3.3.8. Since
nβ1 6= 1, then

h(M̃) = g̃ + 1 = n(g − 2) + n− `1 + 3.

(ii) If G is orientable, by Lemma 3.3.8, 2g̃ = n(g − 2) + 2 + n− `1. Thus

h(M̃) = 2g̃ + 1 = n(g − 2) + n− `1 + 3,

for nβ1 6= 1.

Therefore
h(M̃) = 2g̃ + 1 = n(g − 2) + n− `1 + 3.

(b) Suppose F is orientable. Then G is orientable and by Lemma 3.3.8 we know 2g̃ =
2n(g − 1) + n− `1 + 2. Since nβ1 6= 1 we obtain

h(M̃) = 2g̃ + 1 = 2g̃ = 2n(g − 1) + n− `1 + 3.

¤

Corollary 4.2.1 Let M = (Xx, g;β1/1), where Xx ∈ {Oo,On,No,NnI,NnII,NnIII}.
Consider a transitive representation ω : π1(M0) → Sn defined by

ω(h) = (1),
ω(q1) = σ1 · · ·σ`1 , y

ω(vj) = ρj1 · · · ρjsj ,
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where σi,1 · · ·σi,`i and ρj,1 · · · ρj,sj are the disjoint cycle decompositions of ω(qi) and
ω(vj), respectively.

Let ϕ : M̃ → M be the covering of M branched along fibers associated to ω. Then
h(M̃) ≥ h(M)

Proof.
Consider the following cases:

First case. F is non-orientable. By Lemma 4.2.1, h(M̃) = 2g̃+1 = n(g−2)+n−`1+3.
Recalling Equations 4.3 and 4.1 we conclude h(M̃) ≥ h(M).

Second case. F is orientable. Then h(M̃) = 2g̃+ 1 = 2g̃ = 2n(g− 1) + n− `1 + 3 for
Lemma 4.2.1. By Equation 4.4 we obtain h(M̃) ≥ h(M).

Lemma 4.2.2 Let M = (Xx, g;β1/α1) with α ≥ 2. Consider a transitive repre-
sentation ω : π1(M0) → Sn defined by

ω(h) = (1),
ω(q1) = σ1 · · ·σ`1 , y

ω(vj) = ρj1 · · · ρjsj ,

where σi,1 · · ·σi,`i and ρj,1 · · · ρj,sj are the disjoint cycle decompositions of ω(qi) and
ω(vj), respectively.

Let ϕ : M̃ →M be covering associated to ω. By Theorem 3.3.8 M̃ = (Y y, g̃;B1/A1, · · · , B`1/A`1),
where

Bk =
order(σk) · β1

gcd{α1, order(σk)}
and

Ak =
α1

gcd{α1, order(σk)} .

Recall gcd{α1, order(σk)} denotes the greatest common divisor of α1 and order(σk).

Let k1 = #{σk : α1 - order(σk)}. Then:

(a) Assume F is non-orientable.

1. Suppose k1 = 0. If β1 = 1, n = α1 and ω(q1) = (1, 2, . . . , α1), then h(M̃) =
n(g − 2) + n− `1 + 2. Otherwise, h(M̃) = n(g − 2) + n− `1 + 3.

2. Suppose k1 = 1. Then h(M̃) = n(g − 2) + n− `1 + 3
3. Suppose k1 ≥ 2, then h(M̃) = n(g − 2) + n− `1 + k1 + 1.

(b) Assume F is orientable.
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1. Suppose k1 = 0. If β1 = 1, n = α1 and ω(q1) = (1, 2, . . . , α1), then h(M̃) =
2n(g − 1) + n−∑

`1 + 2. Otherwise, h(M̃) = 2n(g − 1) + n− `1 + 3.
2. Suppose k1 = 1, then h(M̃) = 2n(g − 1) + n− `1 + 3.
3. Suppose k1 ≥ 2, then h(M̃) = 2n(g − 1) + n− `1 + k1 + 1.

Proof.
Note that Ai = 1 if and only if α1|order(σi). Thus k1 is the number of exceptional

fibers of M̃. Let G be the orbit surface of M̃ and let g̃ of G.

(a) Suppose F is non-orientable.

1. Assume k1 = 0. Then α1|order(σk), for all k = 1, . . . , `1.. Thus there are
integer numbers pk > 0 such that order(σk) = pkα1. Hence, by Theorem
3.2.1 we can assume that M̃ = (Y y, g̃;B/1), where B = β1

∑
pk. Also, if β1

is even then B is even; then it is possible to compute the Heegaard genus
of M̃ when β1 is even. Note that B = 1 if and only if β1 = 1, n = α1 and
ω(q1) = (1, 2, . . . , α1).
(i) If G is non-orientable, then g̃ = n(g−2)+2+n−`1 due to Theorem 3.3.8

Therefore, from Theorems 4.1.1,4.1.2 and 4.1.3 we obtain that h(M̃) =
g̃ = n(g − 2) + n − `1 + 2, if β1 = 1, n = α1 and ω(q1) = (1, 2, . . . , α1);
Otherwise, h(M̃) = g̃ + 1 = n(g − 2) + n− `1 + 3.

(ii) If G is orientable, then 2g̃ = n(g − 2) + 2 + n − `1 due to Theorem
3.3.8. Therefore, from Theorem 4.1.1, 4.1.2 and 4.1.3 we obtain that
h(M̃) = g̃ = n(g − 2) + n− `1 + 2, if n = α1 and ω(q1) = (1, 2, . . . , α1);
Otherwise, h(M̃) = g̃ + 1 = n(g − 2) + n− `1 + 3.

2. Assume k1 = 1. By renumbering the indices, if necessary, we can assume
that A1 ≥ 2 and Am = 1, for each m = 2, . . . , `1. Then there are integer
numbers pm > 0 such that order(σm) = pmα1, for all m ∈ {2, . . . , `1}. Thus,
by Theorem 3.2.1 we have that M̃ = (Y y, g̃;B/A1), where

B = B1 + β1A1
∑
pm

= β1(order(σ1)+α1
P
pm)

gcd{α1,order(σ1)}

Note that B is an even number if β1 is even. Then we alwasy can compute
the Heegaard genus of M̃ .

Suppose that B = 1. Then gcd{α1, order(σ1)} = β1(order(σ1) + α1
∑
pm).

From this fact we obtain β1|α1 and (order(σ1) + α1
∑
pm)|order(σ1), con-

sequently, β1 = 1 and α1
∑
pm = 0. Since α1 > 0 we conclude

∑
pm = 0.

Thus pm = 0. This contradicts our assumption of pm > 0.
Therefore B 6= 1.
(i) If G is non-orientable, then g̃ = n(g−2)+n−`1+1. Hence by Theorems

4.1.1, 4.1.2 and 4.1.3 we obtain h(M̃) = 2g̃ + 1 = n(g − 2) + n− `1 + 3.
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(ii) If G is orientable, then 2g̃ = n(g − 2) + n− `1 + 1. By Theorems 4.1.1,
4.1.2 and 4.1.3 we conclude h(M̃) = g̃ + 1 = n(g − 2) + n− `1 + 3.

3. Assume k1 ≥ 2. Recall k1 is the number of exceptional fibers of M̃ .
(i) If G is non-orientable, from Theorem 3.3.8 we obtain that g̃ = n(g −

2) +n− `1 + 2. By Theorems 4.1.1, 4.1.2 and 4.1.3 we conclude h(M̃) =
g̃ + k1 − 1 = n(g − 2) + n− `1 + k1 + 1.

(ii) If G is orientable, by Theorem 3.3.8 we know that 2g̃ = n(g − 2) +
n − `1 + 2. Since k1 is the number of exceptional fibers of M̃ we have
h(M̃) = 2g̃ + k1 − 1 = n(g − 2) + n− `1 + k1 + 1.

(b) Suppose F is orientable, then G is orientable and 2g̃ = 2n(g− 1+n− `1)+2 due
to Theorem 3.3.8.

1. If k1 = 0, then α1|o(σk), for all k = 1, . . . , `1.. Thus there are integer
numbers pk > 0 such that order(σk) = pkα1. Hence, by Theorem 3.2.1
we can assume that M̃ = (Y y, g̃;B/1), where B = β1

∑
pk. Also, if β1 is

even then B is even; then it is possible to compute the Heegaard genus of
M̃ when β1 is even. Note that B = 1 if and only if β1 = 1, n = α1 and
ω(q1) = (1, 2, . . . , α1). Therefore h(M̃) = 2g̃ = 2n(g−1)+n−`1+2, if n = α1

and ω(q1) = (1, 2, . . . , α1). Otherwise, h(M̃) = 2g̃+1 = 2n(g−1)+n−`1+3.
2. If k1 = 1, by renumbering the indices, if necessary, we can suppose that
A1 ≥ 2 and Am = 1, for each m = 2, . . . , `1. Then there exist integer
numbers pm > 0 such that order(σm) = pmα1, for all m ∈ {2, . . . , `1}. By
Theorem (3.2.1), we can assume M̃ = (Y y, g̃;B/A1), where

B = B1 + β1A1
∑
pm

=
β1(order(σ1) + α1

∑
pm)

gcd{α1, order(σ1)}

Note that B is an even number if β1 is even. Then we always can compute
the Heegaard genus of M̃ .

Suppose that B = 1. Then gcd{α1, order(σ1)} = β1(order(σ1) + α1
∑
pm).

From this fact we obtain β1|α1 and (order(σ1) + α1
∑
pm)|order(σ1), con-

sequently, β1 = 1 and α1
∑
pm = 0. Since α1 > 0 we conclude

∑
pm = 0.

Thus pm = 0 and we obtain a contradiction to our assumption pm > 0.

Therefore B 6= 1 and h(M̃) = 2g̃ + 1 = 2n(g − 1) + n− `1 + 3.
3. If k1 ≥ 2, then h(M̃) = 2g̃ + k1 − 1 since k1 is the number of exceptional

fibers. Therefore h(M̃) = 2n(g − 1) + n− `1 + k1 + 1. ¤
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Corollary 4.2.2 Let M = (Xx, g;β1/α1) where Xx ∈ {Oo,On.No.NnI,NnII,NnIII}
and α1 ≥ 2. Consider a transitive representation ω : π1(M0) → Sn defined by

ω(h) = (1),
ω(q1) = σ1 · · ·σ`1 , y

ω(vj) = ρj1 · · · ρjsj ,

where σi,1 · · ·σi,`i and ρj,1 · · · ρj,sj are the disjoint cycle decompositions of ω(qi) and
ω(vj), respectively.

Let ϕ : M̃ →M be covering associated to ω. Then h(M̃) ≥ h(M).

Proof.

Recall F and G are the orbit surfaces of M and M̃, respectively. Let k1 be as in
previous lemma.

(a) Suppose F is non-orientable. Then g ≥ 2 because g = 1 implies M has finite
fundamental group.

1. Assume k1 = 0. If β1 = 1, n = α1 and ω(q1) = (1, . . . , α1), then h(M̃) =
n(g−2)+n− `1 +2, by Lemma 4.2.2. Notice that h(M) = g because β = 1.
From Equation 4.3 we get that n(g − 2) + 2 ≥ g. Equation 4.1 yields to
n ≥ `1. Therefore h(M̃) ≥ h(M).

If β1 6= 1 or n 6= α1 or ω(q1) 6= (1, . . . , α1), then h(M̃) = n(g−2)+n−`1 +3.
Recalling Equations 4.3 and 4.1 we obtain that n(g−2)+2 ≥ g and n−`1 ≥ 0.
Therefore h(M̃) ≥ g + 1 ≥ h(M).

2. Assume k1 = 1. From Lemma 4.2.2 we know that h(M̃) = n(g−2)+n−`1+3.
Using again Equations 4.3 and 4.1 we conclude h(M̃) ≥ g + 1 ≥ h(M).

3. Assume k1 ≥ 2. Then h(M̃) = n(g − 2) + n− `1 + k1 + 1 because of Lemma
4.2.2. Since k1 ≥ 2, Equation 4.3 implies that n(g−2)+k1 ≥ g. By Equation
4.1, we conclude that h(M̃) ≥ h(M) as we stated.

(b) Suppose F is orientable. Note that F is not S2, otherwise M would be a Seifert
manifold with finite fundamental group and we do not want M with finite fun-
damental group. Thus g ≥ 1.

1. Suppose k1 = 0. If β = 1, n = α1 and ω(q1) = (1, . . . , α1), then h(M̃) =
2n(g − 1) + n − `1 + 2 for Lemma 4.2.2. Also h(M) = 2g because β = 1.
Since g ≥ 1, using Equation 4.4 we obtain that 2n(g − 1) + 2 ≥ 2g. From
Equation 4.1 we conclude h(M̃) ≥ h(M).
If β 6= 1 or n 6= α1 or ω(q1) 6= (1, . . . , α1), then h(M̃) = 2n(g−1)+n−`1+3.
By Equations 4.4 and 4.1, we conclude h(M̃) ≥ 2g + 1 ≥ h(M).
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2. Suppose k1 = 1. In this case, h(M̃) = 2n(g−1)+n−`1+3. Hence Equations
4.4 and (4.1) let us cocnlude h(M̃) ≥ 2g + 1 ≥ h(M)).

3. Suppose k1 ≥ 2. From Lemma 4.2.2 we obtain that h(M̃) = 2n(g− 1) +n−
`1 + k1 + 1. Equation (4.4) yields to 2n(g− 1) + k1 ≥ 2g. From Equation 4.1
we obtain h(M̃) ≥ h(M). ¤

Lemma 4.2.3 Let M = (Xx, g;β1/α1, . . . , βr/αr), where Xx ∈ {Oo,On,No,NnI,NnII,NnIII},
αi ≥ 2, for each i ∈ {1, . . . , r}, and r ≥ 2 (A Seifert manifold with at least two
exceptional fibers). Consider a transitive representation ω : π1(M0) → Sn defined
by

ω(h) = (1),
ω(qi) = σi,1 · · ·σi,`i , for i = 1, . . . , r and
ω(vj) = ρj,1 · · · ρj,sj ,

where σi,1 · · ·σi,`i and ρj,1 · · · ρj,sj are the disjoint cycle decompositions of ω(qi)
and ω(vj), respectively.

Let ϕ : M̃ →M be the covering associated to ω. By Theorem (3.3.8),

M̃ = (Y y, g̃;
B1,1

A1,1
, . . . ,

B1,`1

A1,`1

, . . . ,
Br,1
Ar,1

, . . . ,
Br,`r
Ar,`r

),

where

Bi,k =
order(σi,k) · βi

gcd{αi, order(σi,k)} , and

Ai,k =
αi

gcd{αi, order(σi,k)} .

Let ki = #{σi,s ∈ ω(qi) : αi - order(σi, s)}. By renumbering the indices, if
necessary, we can assume that ω(qi) = σ1 · · ·σki · · ·σ`1 in such way that αi -
order(σi,k), for k = 1, . . . , ki.

(a) Assume F is non-orientable.
1. Suppose

∑r
i=1 ki = 0. Note that αi|order(σi, s), for i = 1, . . . , r and for

s = 1, . . . , `i.. Assume that pi,s are integer numbers such that order(σi,s) =
pi,sαi. Write B =

∑r
i=1

∑`i
s=1 pi,sβi.

Then h(M̃) = n(g − 2) + nr −∑
`i + 2, if B = ±1; Otherwise, h(M̃) =

n(g − 2) + nr −∑
`i + 3.

2. Suppose
∑r

i=1 ki = 1. By renumbering indices, if necessary, in this case
we can assume that α1 - order(σ1,1), α1|order(σ1,s), for s = 2, . . . , `1,
and αi|order(σi,s), for i = 2, . . . , r and for s = 1, . . . , `i. Assume p′1,s,
for s = 2, . . . , `1 and pi,s, for i = 2, . . . , r and for s = 1, . . . , `i, are
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integers numbers such that order(σ1,s) = p′1,sα1, for s = 2, . . . , `1, and
order(σi,s) = pi,sαi, for i = 2, . . . , r and for s = 1, . . . , `i. Define

B = B1,1 +A1,1(β1

`1∑

s=2

p′1,s +
r∑

i=2

`i∑

s=1

pi,sβi).

Then h(M̃) = n(g − 2) + nr −∑
`i + 2, if B = ±1; Otherwise, h(M̃) =

n(g − 2) + nr −∑
`i + 3.

3. Suppose
∑r

i=1 ki ≥ 2. Then h(M̃) = n(g − 2) + nr −∑
`i +

∑
ki + 1.

(b) Assume F is orientable.
1. Suppose

∑r
i=1 ki = 0. Note that αi|order(σi, s), for i = 1, . . . , r and for

s = 1, . . . , `i.. Let pi,s be integer numbers such that order(σi,s) = pi,sαi.
Define B =

∑r
i=1

∑`i
s=1 pi,sβi. Then h(M̃) = 2n(g − 1) + nr −∑

`i + 2,
if B = ±1; Otherwise, h(M̃) = 2n(g − 1) + nr −∑

`i + 3.
2. Suppose

∑r
i=1 ki = 1. We can assume that α1 - order(σ1,1), α1|order(σ1,s),

for s = 2, . . . , `1, and αi|order(σi,s), for i = 2, . . . , r and for s = 1, . . . , `i.
Assume that p′1,s, for s = 2, . . . , `1 and pi,s, for i = 2, . . . , r and for
s = 1, . . . , `i, are integers numbers such that order(σ1,s) = p′1,sα1, for
s = 2, . . . , `1, and order(σi,s) = pi,sαi, for i = 2, . . . , r and for s =
1, . . . , `i. Write

B = B1,1 +A1,1(β1

`1∑

s=2

p′1,s +
r∑

i=2

`i∑

s=1

pi,sβi).

Then h(M̃) = 2n(g− 1) +nr−∑
`i + 2, if B = ±1. Otherwise, h(M̃) =

2n(g − 1) + nr −∑
`i + 3.

3. Suppose
∑r

i=1 ki ≥ 2. Then h(M̃) = 2n(g − 1) + nr −∑
`i +

∑
ki + 1.

Proof.
Note that

∑
ki is the number of exceptional fibers of M̃ because Ai,k =

αi
gcd{αi,order(σi,k)} = 1 if and only if αi|order(σi,k). We proceed case by case.

(a) Suppose F is non-orientable.
1. Assume

∑
ki = 0. Recall pi,s are integer numbers such that order(σi,s) =

pi,sαi. From definition of Bi,k, Ai,k and from Theorem 3.2.1 we can as-
sume that M̃ = (Y y, g̃;B/1), where B =

∑r
i=1

∑`i
s=1 pi,sβi.

(i) If G is non-orientable, then g̃ = n(g − 2) + nr−∑
`i + 2. Therefore

h(M̃) = g̃ = n(g − 2) + nr −∑
`i + 2, if B = ±1. Otherwise, h(M̃) =

g̃ + 1 = n(g − 2) + nr −∑
`i + 3.

(ii) If G is orientable then 2g̃ = n(g− 2)+nr−∑
`i+2. Then h(M̃) =

2g̃ = n(g−2)+nr−∑
`i+2, if B = ±1. Otherwise, h(M̃) = 2g̃+1 =

n(g − 2) + nr −∑
`i + 3.
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2. Assume
∑
ki = 1. RecallB = B1,1+A1,1(β1

∑`1
s=2 p

′
1,s+

∑r
i=2

∑`i
s=1 pi,sβi,

where p′1,s, for s = 2, . . . , `1 and pi,s, for i = 2, . . . , r and for s = 1, . . . , `i,
are integers numbers such that order(σ1,s) = p′1,sα1, for s = 2, . . . , `1,
and order(σi,s) = pi,sαi, for i = 2, . . . , r and for s = 1, . . . , `i. Then

M̃ = (Y y, g̃;B1,1/A1,1, B1,2/1, . . . , B1,`1/1, . . . , Br,1/1, . . . , Br,`r/1).

By Theorem 3.2.1 and Definition ofBi,k, we can consider M̃ = (Y y, g̃;B/A1,1).

(i) If G is non-orientable, then g̃ = n(g − 2) + nr − ∑
`i + 2. Thus

h(M̃) = g̃ = n(g − 2) + nr −∑
`i + 2, if B = ±1. Otherwise, h(M̃) =

g̃ + 1 = n(g − 2) + nr −∑
`i + 3.

(ii) If G is orientable, then 2g̃ = n(g − 2) + nr −∑
`i + 2 and we can

conclude that h(M̃) = n(g−2)+nr−∑
`i+2, if B = ±1. Otherwise,

h(M̃) = n(g − 2) + nr −∑
`i + 3.

3. Assume
∑
ki ≥ 2. Note that if G is non-orientable then g̃ = n(g − 2) +

nr−∑
`i + 2, and if G is orientable then 2g̃ = n(g− 2) + nr−∑

`i + 2.
Since

∑
ki is the number of exceptional fibers then h(M̃) = g̃+

∑
ki−1,

if F is non-orientable and h(M̃) = 2g̃+
∑
ki−1, if F is orientable. Then

it is clear that h(M̃) = n(g − 2) + nr −∑
`i +

∑
ki + 1.

(b) Suppose F is orientable. Then 2g̃ = 2n(g− 1) + nr−∑
`i + 2, by Theorem

3.3.8.
1. Assume

∑
ki = 0. Recall pi,s are integer numbers such that order(σi,s) =

pi,sαi. From definition of Bi,k, Ai,k and from Theorem 3.2.1 we obtain
that M̃ = (Y y, g̃;B/1), where B =

∑r
i=1

∑`i
s=1 pi,sβi. Thus h(M̃) =

2g̃ = 2n(g− 1) + nr−∑
`i + 2, if B = ±1. Otherwise, h(M̃) = 2g̃+ 1 =

2n(g − 1) + nr −∑
`i + 3.

2. Assume
∑
ki = 1. RecallB = B1,1+A1,1(β1

∑`1
s=2 p

′
1,s+

∑r
i=2

∑`i
s=1 pi,sβi,

where p′1,s, for s = 2, . . . , `1 and pi,s, for i = 2, . . . , r and for s = 1, . . . , `i,
are integers numbers such that order(σ1,s) = p′1,sα1, for s = 2, . . . , `1,
and order(σi,s) = pi,sαi, for i = 2, . . . , r and for s = 1, . . . , `i. Then
M̃ = (Y y, g̃;B1,1/A1,1, B1,2/1, . . . , B1,`1/1, . . . , Br,1/1, . . . , Br,`r/1).
By Theorem 3.2.1 and Definition ofBi,k, we can consider M̃ = (Y y, g̃;B/A1,1).
Thus h(M̃) = 2g̃ = 2n(g − 1) + nr − ∑

`i + 2, if B = ±1. Otherwise,
h(M̃) = 2g̃ + 1 = 2n(g − 1) + nr −∑

`i + 3.
3. Assume

∑
ki ≥ 2. Then h(M̃) = 2n(g − 1) + nr −∑

`i +
∑
ki + 1 for∑

ki is the number of exceptional fibers of M̃ . ¤

Corollary 4.2.3 Let M = (Xx, g;β1/α1, . . . , βr/αr) where Xx ∈ {Oo,On,No,NnI,NnII,NnIII},
and g 6= 0, and αi ≥ 2, for each i ∈ {1, . . . , r}, and r ≥ 2 (A Seifert manifold
with at least two exceptional fibers and orbit surface different from S2). Consider
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a transitive representation ω : π1(M0) → Sn defined by

ω(h) = (1),
ω(qi) = σi,1 · · ·σi,`i , for i = 1, . . . , r and
ω(vj) = ρj,1 · · · ρj,sj ,

where σi,1 · · ·σi,`i and ρj,1 · · · ρj,sj are the disjoint cycle decompositions of ω(qi)
and ω(vj), respectively.

Let ϕ : M̃ →M be the covering associated to ω. Then h(M̃) ≥ h(M).

Proof.
Let r be the number of exceptional fibers of M . Since M has at least two

exceptional fibers, then h(M) = 2g+ r−1 or h(M) = g+ r−1, if F is orientable
or not, respectively. Let ki be as in previous lemma. Recall

∑
ki is the number

of exceptional fibers of M̃. Again we proceed case by case.

(a) If F is non-orientable. Recall g̃ = n(g − 2) + 2 + nr −∑r
i=1 `i, if G is non-

orientable; otherwise, if G is orientable we have 2g̃ = n(g − 2) + 2 + nr −∑r
i=1 `i.

1. If
∑
ki = 0, then h(M̃) ≥ n(g − 2) + nr − ∑

`i + 2. Recall αi ≥ 2
and αi|order(σi,k), for all i, k, then each cycle of ω(qi) has order at least
2. Thus `i ≤ n

2 . Also `i ≤ n − 1 since n − 1 ≥ n
2 , if n ≥ 2. Then∑r−2

i=1 `i ≤ (n− 1)(r − 2).
Hence

r∑

i=1

`i ≤ (n− 1)(r − 2) +
n

2
+
n

2

because `r−1 ≤ n
2 and `r ≤ n

2 .

Note that (n− 1)(r − 2) + n = (n− 1)(r − 1) + 1.

Since g̃ − h(M) = (n − 1)(g − 2) + (n − 1)r −∑
`i + 1 and h(M̃) ≥ g̃,

then

g̃ − h(M) ≥ (n− 1)(g − 2) + (n− 1)(r − 1)−
∑

`i + 1 ≥ 0.

Therefore h(M̃) ≥ h(M).
2. If

∑
ki = 1, then g̃ − h(M) = (n− 1)(g − 2) + (n− 1)r −∑

`i + 1.

Recall h(M̃) ≥ g̃ and `1 is the number of cycles of ω(q1).

From previous lemma, we can suppose α1,1 - order(σ1,1),α1,1|order(σ1,s),
for s = 2, . . . , `1, and αi|order(σi,k), for i = 2, . . . , r and for s = 1, . . . , `i.



4.2. HEEGAARD GENERA OF COVERINGS 81

Then order(σ1,s) ≥ 2, if s 6= 1; and order(σi,s), for i = 2, . . . , r and for
all s.

Assume n ≥ 3, in this case we have that `i ≤ n
2 ≤ n − 1, for all i =

2, . . . , r, since order(σi,k) ≥ 2, for i ≥ 2. Thus
∑r

i=3 `i ≤ (n− 1)(r − 3).

Now note that
`1 ≤ n− order(σ1,1)

2
+ 1

for ω(q1) contains the cycle σ1,1 and the cycles σj,k, for j = 2, . . . , r,
but the cycles σj,k, for j = 2, . . . , r, have order at least 2 then we have
at most n−order(σ1,1)

2 + 1 cycles in ω(q1). Also we have the following in-
equality n−order(σ1,1)

2 + 1 ≤ n−1
2 + 1; it follows for order(σ1,1) ≥ 1. Thus

l1 ≤ n−1
2 + 1.

Then
r∑

i=1

`i ≤ (n− 1)(r − 3) +
n

2
+
n− 1

2
+ 1 = (n− 1)(r − 3) + n+

1
2

because `2 ≤ n
2 and `1 ≤ n−1

2 + 1. Since (n − 1)(r − 3) + n + 1
2 ≤

(n− 1)(r − 1) + 1 we obtain

(n− 1)(r − 1) + 1−
r∑

i=1

`i ≥ 0.

Recalling g̃ − h(M) = (n− 1)(g − 2) + (n− 1)r −∑
`i + 1 we conclude

that h(M̃) ≥ g̃ ≥ h(M).

If n = 2, then M̃ has exactly one exceptional fiber if and only if M =
(Xx, g;β1/α1, β2/2, . . . , βr/2), where α1 > 2 y ω(qi) = (1, 2), for i =
1, . . . , r. Thus M̃ = (Y y, g̃;B1,1, A1,1, β2/1, . . . , βr/1). It is easy to see in
this case that

∑
`i = r Then g̃− h(M) = g− 1. Recall g 6= 0. Therefore

h(M̃) ≥ h(M).
3. If

∑
ki ≥ 2, notice that

h(M̃)− h(M) = (n− 1)(g − 2) + (n− 1)r − (
∑

`i −
∑

ki)

The inequality

`i ≤ n−∑ki
i=1 order(σi,s)

2
+ ki

follows since `i is the number of cycles of ω(qj) and order(σi,j) ≥ 2 for
j = k + 1, . . . , r; note also
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n−∑ki
i=1 order(σi,s)

2
+ ki ≤ n− 1

2
+ ki

since
∑ki

i=1 order(σi,s ≥ 1.

Then
∑
`i −

∑
ki ≤ (n−1)r

2 . On the other hand, r
2 ≤ r − 1 for r ≥ 2.

Thus (n−1)(r−1)
2 − (

∑r
i=1 `i −

∑r
i=1 ki) ≥ 0 and we obtain

(n− 1)(r − 1)− (
r∑

i=1

`i −
r∑

i=1

ki) ≥ 0.

Therefore h(M̃) ≥ h(M).

(b) Assume F is orientable. In this case, G is orientable and 2g̃ = 2n(g − 1) +
nr −∑

`i.

1. If
∑
ki = 0, then h(M̃) ≥ n(g − 2) + nr − ∑

`i + 2. Recall αi ≥ 2
and αi|order(σi,k), for all i, k, then each cycle of ω(qi) has order at least
2. Thus `i ≤ n

2 . Also `i ≤ n − 1 since n − 1 ≥ n
2 , if n ≥ 2. Then∑r−2

i=1 `i ≤ (n− 1)(r − 2).
Hence

r∑

i=1

`i ≤ (n− 1)(r − 2) +
n

2
+
n

2

because `r−1 ≤ n
2 and `r ≤ n

2 .

It is clear that (n− 1)(r − 2) + n = (n− 1)(r − 1) + 1.

Since g̃ − h(M) = 2(n− 1)(g − 1) + (n− 1)r −∑
`i + 1 and h(M̃) ≥ g̃,

then

2g̃ − h(M) ≥ 2(n− 1)(g − 1) + (n− 1)(r − 1)−
∑

`i + 1 ≥ 0.

Therefore h(M̃) ≥ h(M).
2. If

∑
ki = 1, Recall h(M̃) ≥ g̃. Then

2g̃ − h(M) = 2(n− 1)(g − 1) + (n− 1)r −
∑

`i + 1.

By previous Lemma, we can suppose α1,1 - order(σ1,1),α1,1|order(σ1,s),
for s = 2, . . . , `1, and αi|order(σi,k), for i = 2, . . . , r and for s = 1, . . . , `i.
Then order(σ1,s) ≥ 2, if s 6= 1; and order(σi,s), for i = 2, . . . , r and for
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all s.

Assume n ≥ 3, in this case we have that `i ≤ n
2 ≤ n − 1, for all i =

2, . . . , r, since order(σi,k) ≥ 2, for i ≥ 2. Thus
∑r

i=3 `i ≤ (n− 1)(r − 3).
Now note that

`1 ≤ n− order(σ1,1)
2

+ 1 ≤ n− 1
2

+ 1.

The first inequality `1 ≤ n−order(σ1,1)
2 + 1 follows for `1 is the number of

cycles in ω(q1); in ω(q1) we have the cycle σ1,1 and the cycles σj,k, for
j = 2, . . . , r, but the cycles σj,k have order at least 2, for j = 2, . . . , r,
then we have at most n−order(σ1,1)

2 + 1 cycles in ω(q1). The second in-
equality n−order(σ1,1)

2 + 1 ≤ n−1
2 + 1 follows because order(σ1,1) ≥ 1.

Then

r∑

i=1

`i ≤ (n− 1)(r − 3) +
n

2
+
n− 1

2
+ 1 = (n− 1)(r − 3) + n+

1
2

for `2 ≤ n
2 and `1 ≤ n−1

2 +1. Since (n−1)(r−3)+n+ 1
2 ≤ (n−1)(r−1)+1

we obtain

(n− 1)(r − 1) + 1−
r∑

i=1

`i ≥ 0.

Therefore h(M̃) ≥ g̃ ≥ h(M).

If n = 2, then M̃ has exactly one exceptional fiber if and only if M =
(Xx, g;β1/α1, β2/2, . . . , βr/2), where α1 > 2 y ω(qi) = (1, 2), for i =
1 . . . , r. Thus M̃ = (Y y, g̃;B1,1, A1,1, β2/1, . . . , βr/1). It is easy to see in
this case that

∑
`i = r. Then 2g̃− h(M) = 2(g− 1) + 1. Because of the

fact g 6= 0, we conclude h(M̃) ≥ h(M).
3. If

∑
ki ≥ 2, then

h(M̃)− h(M) = 2(n− 1)(g − 1) + (n− 1)r − (
r∑

i=1

`i −
r∑

i=1

ki)

Note that

`i ≤ n−∑ki
i=1 order(σi,s)

2
+ ki

because `i is the number of cycles of ω(qj) and order(σi,j) ≥ 2 for j =
k + 1, . . . , r; note also
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n−∑ki
i=1 order(σi,s)

2
+ ki ≤ n− 1

2
+ ki

since
∑ki

i=1 order(σi,s ≥ 1.

Therefore (n−1)(r−1)
2 − (

∑r
i=1 `i −

∑r
i=1 ki) ≥ 0.

Since r ≥ 2, then r
2 ≤ r − 1. Thus

(n− 1)(r − 1)− (
r∑

i=1

`i −
r∑

i=1

ki) ≥ 0.

Therefore h(M̃) ≥ h(M).
We can summarize the previous Corollary in the following Theorem.

Theorem 4.2.1 Let M = (Xx, g;β1/α1, . . . , βr/αr) where Xx ∈ {Oo,On,No,NnI,NnII,NnIII}
and g 6= 0. Let n ∈ N and ω : π1(M0) → Sn be a transitive representation
defined by

ω(h) = (1),
ω(qi) = σi,1 · · ·σi,`i , ∀i = 1, . . . , r and
ω(vj) = ρj,1 · · · ρj,sj ,

where σi,1 · · ·σi,`i and ρj,1 · · · ρj,sj are the disjoint cycle decompositions of
ω(qi) and ω(vj), respectively, and {h, vj , qi} is a standard system of genera-
tors of π1(M0).

Then h(M̃) ≥ h(M).

Proof.
The result follows from Corollaries (4.2.1), (4.2.2) and (4.2.3). ¤

4.2.2 Heegaard genus when ω(h) = εn

Recall εn = (1, 2, . . . , n) ∈ Sn.Given a Seifert manifoldM = (Xx, g;β1/α1, . . . , βr/αr),
where Xx ∈ {Oo,On,No,NnI,NnII,NnIII}, with orbit projection p :
M → F, where F has genus g, and given a representation ω : π1(M0) → Sn
defined by

ω(h) = εn,
ω(qi) = εki

n , ∀i = 1, . . . , r and
ω(vj) = τj ,

τj is a power of the n-cycle εn, if e(vj) = +1 or τj is a reflection ρj , if
e(vj) = −1. Then, if ϕ : M̃ → M is the covering determined by ω, by
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Theorem 3.3.15 we have that M̃ = (Xx, g;B1/A1, . . . , Br/Ar) where

Bi =
βi + kiαi

gcd{n, βi + kiαi}
and

Ai =
nαi

gcd{n, βi + kiαi},

where gcd{n, βi+kiαi} denotes the greatest common divisor of n and βi+kiαi
Note that αi ≥ 2 implies that Ai ≥ 2.

Lemma 4.2.4 Let M = (Xx, g;β1/α1) be a Seifert manifold, where
Xx ∈ {Oo,On,No,NnI,NnII,NnIII} where α1 ≥ 1. Suppose that n ∈ N
and ω : π1(M0) → Sn is a representation defined by

ω(h) = εn,
ω(q1) = εk1 , and
ω(vj) = τj ,

where τj is a power of εn, if vj commutes with h; otherwise, if vj anticom-
mutes with h, τj is a reflection ρj.
Suppose ϕ : M̃ →M is the covering determined by ω.

• Assume β1 - n or β1 = ±1, then h(M̃) = h(M).
• Assume β1 6= 1 and β1|n, then h(M̃) = g, if F is orientable; otherwise,
h(M̃) = 2g, if F is orientable. Furthermore, h(M̃) < h(M).
Proof.
Observe that M̃ = (Xx, g;B1/A1), withB1 = β1

gcd{n,β1} andA = nα1
gcd{n,β1} .

It is clear that B1 = 1 if and only if β1|n.
• If β1 - n, then β1 6= 1, B1 6= 1 and

h(M) = h(M̃) =
{

2g + 1, if F is orientable, or
g + 1, otherwise.

If β1 = ±1, then B1 = 1. Thus h(M̃) = h(M) = g. Therefore h(M̃) =
h(M).

• Suppose β1 6= 1 and β1|n. Thus M̃ = (Xx, g; 1
A1

).
(a) If F is non-orientable, then h(M) = g + 1 (of course, when M is

non-orientable we ask β1 be even, in order, to compute h(M); recall if
β1 is odd we can not compute h(M)). On the other hand, h(M̃) = g.
Therefore h(M̃) < h(M).

(b) If F is orientable, then h(M) = 2g + 1 and h(M̃) = 2g. Therefore
h(M̃) < h(M).
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¤
Lemma 4.2.5 Let M = (Xx, g;β1/α1, . . . , βr/αr) be a Seifert mani-

fold, where Xx ∈ {Oo,On,No,NnI,NnII,NnIII} such that αi ≥ 2 and
r ≥ 2. Consider a representation ω : π1(M0) → Sn defined by

ω(h) = εn,
ω(qi) = εki

n ,∀i = 1, . . . , r and
ω(vj) = τj ,

such that τj is a power of εn, if vj commutes with h; otherwise, τj is a
reflection ρj, if vj anticommutes with h.
Let ϕ : M̃ →M be the covering associated to ω. Then h(M̃) = h(M).

Proof.
Let F and G be the orbit surfaces of M and M̃ , respectively. If g is

the genus of F , then G also has genus g since F and G are homeomorphic
because of Theorem (3.3.15). Note that αi ≥ 2 implies that Ai ≥ 2, thus the
number of exceptional fibers of M̃ is equal to r. Therefore h(M̃) = h(M). ¤

Now we are able to prove the following theorem.
Theorem 4.2.2 Consider M = (Xx, g;β1/α1, . . . , βr/αr) a Seifert man-

ifold, where Xx ∈ {Oo,On,No,NnI,NnII,NnIII} and assume ω : π1(M0) →
Sn is a representation defined by

ω(h) = εn,
ω(qi) = εki

n ,∀i = 1, . . . , r and
ω(vj) = τj ,

such that τj is a power of εn if vj commutes with h; otherwise, τj is a re-
flection ρj, if vj anticommutes with h.

Suppose ϕ : M̃ →M is the covering determined by ω. If M = (Xx, g;β/α),
with α ≥ 2 (recall β 6= 1 is even if M is non-orientable) and β|n, then
h(M̃) < h(M). Otherwise, h(M̃) = h(M).

Proof.
The result follows from Lemma (4.2.4) and Lemma (4.2.5). ¤
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