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Motivation

Let S be a random variable of interest that is not accessible, and let Ŝ be
a good approximation of S.

How can we describe the fluctuation F = S − Ŝ of this approximation?

Example:

- Ŝ = E[S] =: µ.
- Fluctuation is F = S − µ.
- If S is the sum of n i.i.d. random variables with finite moments,

then F Law≈ σN, with N ∼ N (0, 1) and σ2 = Var [S].
- Berry-Esseen theorem: dK ( S−µ

σ , N) ≤ C/
√

n.

1



Context of the problem

General Objective
Understand the cumulative error when approximating a time series with a
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Context of the problem

General Objective
Understand the cumulative error when approximating a time series with a

good predictor.

Ingredients:

1. A non-accessible time series ξ = {ξk}k≥1.
2. A very good estimator η = {ηk}k≥1 of ξ.

Object of interest:

Cumulative error = (ξ1 − η1) + · · · + (ξn − ηn)
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I observe a real-valued process X = {Xt}t≥0 in stages: at stage i , I can
observe X1/n, . . . , X(i−1)/n.

Quantities of interest
At stage i , I would like to know

ξi := g(X i−1
n

, an∆iX ),

with ∆iX := X i
n

− X i−1
n

, g : R2 → R an appropriate function, and an an
appropriate scaling.

Observation mechanism
At stage i , I only have the information Fi−1 := σ(X 1

n
, . . . , X i−1

n
).

Estimator:

ηi := E[g(X i−1
n

, ∆iX ) | Fi−1].
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Now indeed: the true context of the problem

Suppose that X starts at zero and has independent and stationary
increments.
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Now indeed: the true context of the problem

Suppose that X starts at zero and has independent and stationary
increments.

For t ≥ 0, we define the cumulative error on [0, t] as

Zn(t) := 1√
n

nt󰁛

i=1
(g(X i−1

n
, Ii,n) − E[g(X i−1

n
, Ii,n) | Fi−1]),

with Ii,n := an(X i
n

− X i−1
n

, . . . , X i+m
n

− X i+m−1
n

), and g : Rm+2 → R an
appropriate function.

Assumptions

- The scaling an is such that anX1/n converges in law.
- There exists a constant α > 0 such that P[X ≥ s] ≤ Cts−α.
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First problem of interest

Our object of interest is a process Z = {Zn(t)}t≥0, defined by

Zn(t) = 1√
n

nt󰁛

i=1
(g(X i−1

n
, Ii,n) − E[g(X i−1

n
, Ii,n) | Fi−1]),

Key elements:

- Parameter α indicating non-integrability of X .
- Filter function g .

Questions of interest

- What is the limit of Zn? (if it exists)
- What is the rate of convergence?
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Case where S is a r.v. and N is normal

The discrepancy between F := (S − µ)/σ and N is studied using
expressions of the form

|E[h(F ) − h(N)]|. (1)
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Case where S is a r.v. and N is normal

The discrepancy between F := (S − µ)/σ and N is studied using
expressions of the form

|E[h(F ) − h(N)]|. (1)

Note that F Law= N if the following property holds: “(1) is zero for
sufficiently many test functions h”.

Another property characterizing the normal distribution is...

|E[Nf ′(N) − f ′′(N)]| = 0, (2)

for sufficiently many functions f .

Stein’s heuristic

|E[Ff ′(F ) − f ′′(F )]| ≈ 0 ⇒ |E[h(F ) − h(N)]| ≈ 0.
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Formalization of Stein’s heuristic

For a given function h, consider the equation

x · ∇f (x) − Tr [Hess[f ](x)Σ] = h(x) − E[f (N)].
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Formalization of Stein’s heuristic

For a given function h, consider the equation

x · ∇f (x) − Tr [Hess[f ](x)Σ] = h(x) − E[f (N)].

The solution is given by

f (x) =
󰁝 ∞

0
(E[h(N)] − Ex [h(Yt)])dt,

where Yt is a Markov process starting at x and converging to N.

We obtain

E[F · ∇f (F ) − Tr [Hess[f ](F )Σ]] = E[h(F ) − f (N)].
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Central issue of Stein’s method

If F and N are multivariate and N has covariance Σ, the quantity we
need to control is

|E[F · ∇fΣ(F ) − Tr [Hess[fΣ](F )Σ]]|.
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Central issue of Stein’s method

If F and N are multivariate and N has covariance Σ, the quantity we
need to control is

|E[F · ∇fΣ(F ) − Tr [Hess[fΣ](F )Σ]]|.

Main challenge of the method:

How do we estimate E[F · ∇fΣ(F )]?

Typical approach: use the original ideas from Lindeberg’s (or Stein’s)
method.
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So what if F = Zn? and Σ is random

The key computation is E[Zn · ∇fΣ(Zn)].In this case,

E[Zn · ∇fΣ(Zn)]

= 1√
n

nt󰁛

i=1
E[(g(X i−1

n
, Ii,n) − E[g(X i−1

n
, Ii,n) | Fi−1])) · ∇fΣ(Zn)]

Key observation

0 = 1√
n

nt󰁛

i=1
E[(g(X i−1

n
, Ii,n) − E[g(X i−1

n
, Ii,n) | Fi−1])) · ∇fΣ̇i (Ż i

n)],

where Ż i
n and Σ̇i are like Zn and Σ, but removing the part of X in

[(i − 1)/n, i/n]

9



So what if F = Zn?

Now we can write

E[Zn · ∇fΣ(Zn)]
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So what if F = Zn?

Now we can write

E[Zn · ∇fΣ(Zn)]

= 1√
n

nt󰁛

i=1
E[(g(X i−1

n
, Ii,n) − E[g(X i−1

n
, Ii,n) | Fi−1]))

· ∇(fΣ(Zn) − fΣ̇i (Ż i
n)))]

New bottleneck: understand

fΣ(Zn) − fΣ̇i (Ż i
n)

by means of Taylor approximations.
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The mixed-Gaussian case

An easy criterion for mixed Gaussian convergence:
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The mixed-Gaussian case

An easy criterion for mixed Gaussian convergence:

Theorem (Amorino, Jaramillo, Podolskij)
Consider a sequence Fn, which is G-measurable for some σ-algebra. If the
convergence

E[Y (Fn · ∇f (Fn) − Tr [Hess[f ](Fn)Σ])] → 0,

holds for all bounded G-measurable Y and adequate test functions
h ∈ C2(Rr ;R) then we obtain

Sn
Law→ Σ1/2N,

where N ∼ Nr (0, id) is a standard r -dimensional normal variable defined
on an extended space and independent of G.
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Main results

Let X (1−m), . . . , X (2m) be independent copies of X , and define

gn(x) :=
m󰁛

j=−m
Cov [g(x, anX (1)

1/n, . . . , anX (m+1)
1/n ),

g(x, anX (j+1)
1/n , . . . , anX (j+m+1)

1/n )].
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Main results

Let X (1−m), . . . , X (2m) be independent copies of X , and define

gn(x) :=
m󰁛

j=−m
Cov [g(x, anX (1)

1/n, . . . , anX (m+1)
1/n ),

g(x, anX (j+1)
1/n , . . . , anX (j+m+1)

1/n )].

Theorem (Amorino, Jaramillo, Podolskij, 2023)
If gn converges and α ∈ (0, 1), then

Z (n) Law→ {
󰁝 t

0

󰁴
lim

k
gk(Xs)W (ds)}t≥0,

where W is a Brownian motion independent of X .
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Main results (part II)

Suppose that X is symmetric α-stable (including α = 2), and define

d(µ, ν) := sup
h

󰀏󰀏󰀏󰀏
󰁝

h dµ −
󰁝

h dν

󰀏󰀏󰀏󰀏 ,

where the supremum is taken over all functions h satisfying 󰀂h(i)󰀂∞ ≤ 1
for i = 0, 1, 2, 3.
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Main results (part II)

Theorem (Amorino, Jaramillo, Podolskij, 2023)
Given a fixed t, there exists a constant C > 0 depending only on g, such
that:

- If α ∈ (1, 2),

d
󰀕

Z (n)
t ,

󰁝 t

0

󰁴
lim

k
gk(Xs)W (ds)

󰀖
≤ Cn 1

2 − 1
α .

- If α = 1,

d
󰀕

Z (n)
t ,

󰁝 t

0

󰁴
lim

k
gk(Xs)W (ds)

󰀖
≤ Cn− 1

2 log(n).

- If α ∈ (0, 1),

d
󰀕

Z (n)
t ,

󰁝 t

0

󰁴
lim

k
gk(Xs)W (ds)

󰀖
≤ Cn− 1

2 .
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Main results (part II)

Theorem (Amorino, Jaramillo, Podolskij, 2023)
If g is symmetric and t is fixed, then for all α ∈ (1, 2], we have

d
󰀕

Z (n)
t ,

󰁝 t

0

󰁴
lim

k
gk(Xs)W (ds)

󰀖
≤ Cn− 1

2 ,

even for α = 2.
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The structure of independent and stationary increments is convenient but
not essential.

- Move from high-frequency observations to spaced observations
(observe Xk instead of Xk/n).
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Future work

The structure of independent and stationary increments is convenient but
not essential.

- Move from high-frequency observations to spaced observations
(observe Xk instead of Xk/n).

- Remove stationarity of increments of X . Do we obtain integrals with
time-changed Brownian motion?

- Consider the case when X is a diffusion.
- Remove independence of increments and consider:

(i) Gaussianity, replacing independence by weak dependence.
(ii) Replace independence with exchangeability properties.

- Higher-order approximations (Edgeworth expansions).
- Allow more flexibility on g (e.g., g(x) := δ0(x)).
- Understand the role of regularity of g (comparison with ItÃť

integration).
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Contacto

Arturo Jaramillo
jagil@cimat.mx
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