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Let S be a random variable of interest that is not accessible, and let S be
a good approximation of S.

How can we describe the fluctuation F = S — § of this approximation?

Example:

- 5=E[S] = p.

- Fluctuationis F =S — p.

If S is the sum of ni.i.d. random variables with finite moments,
then F 2 o N, with N ~ A'(0,1) and o = Var[S].
Berry-Esseen theorem: dK(%, N) < C/+/n.
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Context of the problem

General Objective
Understand the cumulative error when approximating a time series with a
good predictor.

Ingredients:

1. A non-accessible time series & = {&x }x>1.

2. A very good estimator 17 = {7 }x>1 of &.

Object of interest:

Cumulative error = (& —m) + -+ + (& — 1)
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| observe a real-valued process X = {X;};>0 in stages: at stage i, | can
observe Xi/pn, ..., X(i—1)/n-

Quantities of interest
At stage i, | would like to know

& = g(Xiz1, a,AiX),

with A; X := X; — Xi—1, g : R> = R an appropriate function, and a, an
appropriate scaling.

Observation mechanism

At stage i, | only have the information F;_1 := o(X1,..., Xi-1).

1
n

Estimator:

ni = E[g(X$,A,-X) | Fiz1]-
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Now indeed: the true context of the problem

Suppose that X starts at zero and has independent and stationary
increments.

For t > 0, we define the cumulative error on [0, t] as
1 nt
Zy(t) = =3 (e(Xa Ti) ~ Elg(Xia Tin) | Fical)
i=1

with Z; , == an(X: — Xiz1, ..., Xitm — Xam-1), and g : R™"2 - R an
appropriate function.
Assumptions

- The scaling a, is such that a,X;,, converges in law.

- There exists a constant o > 0 such that P[X > s] < Cts~ .



First problem of interest

Our object of interest is a process Z = {Z,(t)} >0, defined by

nt

Z(t) = %
i=1

(g(X%a-’Zi,n) - ]E[g(X%»Ii,n) | }—ifl]):

Key elements:

- Parameter « indicating non-integrability of X.

- Filter function g.

Questions of interest

- What is the limit of Z,? (if it exists)

- What is the rate of convergence?
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Case where S is a r.v. and N is normal

The discrepancy between F := (S — u)/o and N is studied using
expressions of the form

[E[A(F) — h(N)]|- (1)
Note that F 2 N if the following property holds: “(1) is zero for

sufficiently many test functions h".

Another property characterizing the normal distribution is...
[E[NF'(N) — £"(N)]| =0, (2)

for sufficiently many functions f.

Stein’s heuristic

[E[Ff'(F) = f"(Fll=0 = [E[h(F) - h(N)]| = 0.
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Formalization of Stein’s heuristic

For a given function h, consider the equation
x - Vf(x) — Tr[Hess[f](x)X] = h(x) — E[f(N)].
The solution is given by
()= [ (BLAN) ~ Exh( Yo e

where Y; is a Markov process starting at x and converging to N.

We obtain

E[F - Vf(F) — Tr[Hess[f](F)Z]] = E[h(F) — f(N)].
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Central issue of Stein’s method

If F and N are multivariate and N has covariance ¥, the quantity we
need to control is

|E[F - Vis(F) — Tr[Hess[fs](F)X]]|.
Main challenge of the method:

How do we estimate E[F - V= (F)]?

Typical approach: use the original ideas from Lindeberg's (or Stein's)
method.
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So what if F = 27,7 and ¥ is random

The key computation is E[Z, - Vfz(Z,)].In this case,
MZ-V&QW]

ZE[ (Xia 1, Tin) — E[g(X%:Ii,n) | Fic1l)) - Vi(Z,)]

Key observation

= 75 D Bll80Xes, Tin) ~ Elg(Xis Tin) | Fia])- V(2]

where Z/ and Y/ are like Z, and X, but removing the part of X in

(i =1)/n,i/n]



So what if F = 27,7

Now we can write
E[Z, - V(Z,)]
1 nt
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So what if F = 27,7

Now we can write
E[Z, - V(Z,)]
1 nt
S E Xiz1 I,'n —E Xﬂ;Iin fi=
ﬁ; [(8(Xz2,Tin) — Elg(Xizr, Zin) | Fial))

V(f(Zn) = £:(2)))]

New bottleneck: understand

fz(zn) - fz,(Z,’,)

by means of Taylor approximations.

10



The mixed-Gaussian case

An easy criterion for mixed Gaussian convergence:
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The mixed-Gaussian case

An easy criterion for mixed Gaussian convergence:

Theorem (Amorino, Jaramillo, Podolskij)
Consider a sequence F,,, which is G-measurable for some o-algebra. If the
convergence

E[Y(F, - Vf(F,) — Tr[Hess[f](F,)Z])] — O,

holds for all bounded G-measurable Y and adequate test functions
h € C?(R";R) then we obtain

S, 2 yi2N,
where N ~ N, (0, id) is a standard r-dimensional normal variable defined

on an extended space and independent of G.

11
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Main results

Let X(=m) . X(@m) he independent copies of X, and define

gn(x) == Z Cov[g(x, 3nX1(}217 cee a,,Xl(;",j_l))7

j=—m

g(x, anXl(J/tl), e a,,Xl(J;mH))].

Theorem (Amorino, Jaramillo, Podolskij, 2023)
If g, converges and o € (0,1), then

200 [ fim e (KIW(es) o

where W is a Brownian motion independent of X.
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Main results (part 1)

Suppose that X is symmetric a-stable (including o = 2), and define

d(p,v) = sup‘/hdu—/hdu
h

where the supremum is taken over all functions h satisfying ||h()||,, < 1
fori=0,1,2,3.

3
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Main results (part 1)

Theorem (Amorino, Jaramillo, Podolskij, 2023)
Given a fixed t, there exists a constant C > 0 depending only on g, such

that:
- Ifae(1,2),
t
(&) i < Cni—=
d (Zt ,/0 /I|,r<‘ngk(Xs)W(ds)) <(Cn
- Ifa=1,
t
(n) i < -3
d (Zt ,/0 /I|lr3wgk(Xs)W(ds)> < Cn™2 log(n).
- Ifa€(0,1),

d (Zt(”),/ot WW(&)) < Cne.
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Main results (part 1)

Theorem (Amorino, Jaramillo, Podolskij, 2023)
If g is symmetric and t is fixed, then for all o € (1,2], we have

ot
(m) : < Cn—t
d <Zt ,/0 /I|£ngk(Xs)W(ds)> < Cn 2,

even for o = 2.
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The structure of independent and stationary increments is convenient but
not essential.

- Move from high-frequency observations to spaced observations
(observe X instead of X /p).

- Remove stationarity of increments of X. Do we obtain integrals with
time-changed Brownian motion?

- Consider the case when X is a diffusion.

- Remove independence of increments and consider:
(i) Gaussianity, replacing independence by weak dependence.
(ii) Replace independence with exchangeability properties.

- Higher-order approximations (Edgeworth expansions).
- Allow more flexibility on g (e.g., g(x) := do(x)).
- Understand the role of regularity of g (comparison with ItAt

integration).
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Gracias!

Contacto
Arturo Jaramillo
jagil@cimat.mx
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