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w(n) := |{p € P; p divides n}|.
For example, w(54) = w(2 x 3%) = 2. Let J, be a random variable with
uniform distribution over {1,..., n}.

Objectives

- Study the asymptotic law of w(J,), when n is large.
- Generalize to the case where w is replaced by a general function
1 : N — R only satisfying ©(ab) = ¥ (a) + ¥(b) for a, b € N coprime.
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Classical Erdds-Kac theorem (1940)

Starting point: Paul Erdés and Mark Kac proved that

z - w(Jn) — loglog(n) (1)
log log(n)

converges towards a standard Gaussian random variable .

Intuition: Define P, := P N[1, n]. The convergence in (1) can be
heuristically justified by the decomposition

w(Jn) = Z 1¢p divide Jy}- (2)

PEPn
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Can we estimate the approximating error of the Gaussian approximation
with respect to a suitable probability metric? Such as that defined by

dg (X, Y)=sup|P[X < z] - P[Y < Zz]|
zeR

d (X, Y) = sup [E[A(X)] —E[h(Y)]l,

heLip,

where Lip, is the family of Lipschitz functions with Lipschitz constant
less than or equal to one. We define additionally,

drv(X,Y) = sup [P[X € Al—P[Y € Al
AeB(R)
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LeVeque’s conjecture (1949)

LeVeque showed that

(Zo N) < Clogloglog(n)
nes log log(n)#

)
for a constant C > 0 independent of n. He also conjectured that
1

dic(Zn, N') < Cloglog(n)~*.

This was later proved by Rényi and Turan (1958). The main idea

consisted in approximating E[e**(n)].

Main ingredients: Perron's formula, Dirichlet series and some estimations
of the Riemann ¢ function around the band {z € C ; R(z) = 1}.
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For p € P given, we define o, : N = Ny as

k = H pa,,(k)'

pEP

Example: if k =54 = 2 % 33, then...
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= (15(54)
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What is the behavior of a,(J,)?
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Approximations for a,(J,)

Let {{,}pep be a family of independent geometric random variables with

law
Plé, =kl =pK1-p71),

for k € No := NU{0}. Our heuristic is based on the well-known
approximation

(o (n) -+ @ (In)) = (Eprr- - ),

valid for m € N and py, ..., p,, different.
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Central limit theorem for additive functions

Let ) : N — R be such that ¢(ab) = 1(a) + ¢ (b) for a, b co-prime.
Define

1
2

1
= sup WP, cani=| D SEW(YTY]

PEP, peP,

as well as the normalization constants

1
po= 32 2i(p) and oh= Y (P,

PEP, PEP;



Main result for the Kolmogorov distance

Theorem (Chen, Jaramillo, Yang)

Under the above conditions,

di <7,/J(Jn)—/1n N) < 200c¢y,, + 602, 67 log log(n)

)

On On log(n)
" <¢(Jn) = g ,N) < 106¢1,, + 2¢0 4 50 Ioglog(nl)% '
On On log(n)2
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Simplified model: the harmonic distribution H,

Let H, be a random variable with P[H, = k] = ﬁ for k < n, where
Ln:=>4_; +. Notice that

Hn = H pO‘p(Hn).
PEPs

Proposition

Suppose that n > 21. We define the event

A= { H pt < n}. (3)

PEPn

We have

L((ap(Hn) i p € Pn)) = L((5 i p € Pn)lAn) (4)
L(Y(H) = L0 (p* ) = L0 v (p*)IA,).

pEP, pEP,
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Relation with the harmonic distribution

Let {Q(k)}k>1 be a sequence of independent random variables and
independent of (J,, H,), where Q(k) is uniformly distributed over the set

Pr:={1} UPx.

Lemma (Chen, Jaramillo y Yang)
Forn> 21,

log log n
log n

log log n
logn

drv(Jn, HoQ(n/H,)) < 61

P[Q(n/H,) divides H,] < 6.4———

11
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Relation between

Since H, and Q(n/H,) are relatively prime with high probability,
V) & U(HQn/Hp)) 8 ¥(Ha) + H(Qn/Hy)) & (Hn)

On On On On

Recall that conditionally over A, := {HPEPn pér < n},

U(Ha) 23T w(p).

PEPn

The problem reduces to estimate

&p) —
o i (Bt ) ).

We will use Stein’ s method.
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Lemma
Let h: R — R be 1-Lipchitz. Then the equation

f'(x) — xf(x) = h(x) — E[h(N)]
has a unique solution f = f,, which satisfies

sup [fr(w)| <2 sup [fi(w)| < /277 sup [fi(w)| <2.  (5)
weR weR weR

Thereofore, if X is a random variable,

di (X, N) < sup [E[f'(X) — XF(X)]|
f
where f belongs to the family of functions satisfying (5).

13
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Poisson space representation

Define
Zpepn /I/)(psp) — Mn

On

W, =
y In :=14,. One can verify that
[ELZ,F(Wa) — F/(Wo) Al = BIAI [ (W) Wal,] — E[F (W)l
S 2‘E[f( Wn)WnIn] - E[fl(Wn)lnH

To estimate the right hand side, we represent W,, as a functional of a
Poisson process. Consider the space

X:={(p,k): pe P,k e No}.

Let 7 be a Poisson point process over X, with intensity A : X — R given
by

A(p, k) = parap € P,k € N.

1
kpk’

14



Using characteristic functions, one can show that

& 2 kn(p, k), (6)

k>1

which after algebraic manipulations yields
W, = j(pn), (7)
where 7j = n(p, k) — E[n(p, k)] is the compensation of n(p, k) and

pn(k, p) = 0, P(P) L 1pep, k=1)- (8)
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Using characteristic functions, one can show that

& 2 kn(p, k), (6)

k>1

which after algebraic manipulations yields
Wh =~ ij(pn), (7)
where 7j = n(p, k) — E[n(p, k)] is the compensation of n(p, k) and
pn(k, p) == 05 (P)Lpep, k=1}- (8)
As a consequence, if G,(n) for some function G,
(o) Go(1)] = | ()LD G ()N (&), ©)

where D, G,(n) := Gp(n + 0x) — Ga(n).
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Stein’ s formula

For the case where G, = f(W,)l,, by the previous formula,

E[Wof (Wy)ln] = / () E[Ds Ga(m)]A(dk).
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Stein’ s formula

For the case where G, = f(W,)l,, by the previous formula,
BIWa (Wo)l] = | pn()EIDLGo(m)N(a).
X
One can verify the approximation D, (f(W,)l,) = f'(W,)pa(x)1,, so that

MWAMMwAmwwwmmwwzmmmm.
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From the above analysis we get

di(Z,, N)

The result follows from a suitable measurement of the error of the
approximations.
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From the above analysis we get

dl(Zn,N) ~ dl(LaW(W,, ‘ An)7N)
< |E[an(Wn) - f/(Wn)‘An:”
< 2[E[f(W,)) Walo] — E[f'(W,)1o]| ~ 0

The result follows from a suitable measurement of the error of the
approximations.
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Poisson case

Theorem (Chen, Jaramillo y Yang)

Suppose that v takes values in N and let M, be a Poisson random
variable with intensity ji,. Then,

(10)

200¢; , +6c2 . 20y, [¥(p) — 1
A ((Jn), Mp) < R0 220 Zn 5 :
Fen Hn pEP, P
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