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Introduction

Goal

If Y (n) = (Y (n)(t); t ≥ 0) are centered Gaussian processes with values in
the set of real symmetric matrices of dimension n

and (µ(n)
t ; n ≥ 1) is the

measure that assigns mass 1
n to each eigenvalue of Y (n)(t).

Question

For r ∈ N fixed and a given F : R→ Rr , what can we say about(∫
R

F (x)µ(n)
t (dx)− E

[∫
R

F (x)µ(n)
t (dx)

]
; t ≥ 0

)
?
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Introduction

Notation

Denote by Rn×n the set of square matrices of dimension n. Let
Y (n) = (Y (n)(t); t ≥ 0) be a sequence of Rn×n-valued processes, defined
in a probability space (Ω,F ,P).

Assume that Y (n)(t) = [Y (n)
i ,j (t)]1≤i ,j≤n is

real and symmetric, with

Y (n)
i ,j (t) =


1√
n Xi ,j(t) if i < j ,
√

2√
n Xi ,i (t) if i = j ,

(1)

where Xi ,j := (Xi ,j(t); t ≥ 0) are i.i.d. centered Gaussian processes with
covariance

R(s, t) := E[X1,1(s)X1,1(t)].
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Introduction

Notation

We will use the notation

σs :=
√

R(s, s) y ρs,t := R(s, t)
σsσt

,

and assume that σ1 = 1,
(H1) There exists α > 1, such that for all T > 0 and t ∈ [0,T ], the

mapping s 7→ R(s, t) is absolutely continuous in [0,T ] and

sup
0≤t≤T

∫ T

0

∣∣∣∣∂R
∂s (s, t)

∣∣∣∣α ds <∞.

(H2) The mapping s 7→ σ2
s is continuously differentiable in (0,∞) and

continuous at zero. Moreover, we have that d
dsσ

2
s ∈ L1[0,T ] for all

T > 0.
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Introduction

Notation

Examples:
Brownian motion.

Fractional Brownian motion with Hurst parameter H ∈ (0, 1).
Ornestein-Uhlenbeck process.
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Introduction

Notation

We will denote by λ(n)
1 (t) ≥ · · · ≥ λ(n)

n (t) the ordered eigenvalues of
Y (n)(t) and by µ(n)

t the spectral empirical distribution

µ
(n)
t (dx) = 1

n

n∑
i=1

δ
λ

(n)
i (t)(dx).
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Introduction

Wigner theorem

Wigner theorem establishes that for all ε > 0 and all function f belonging
to the set Cb(R) of continuous and bounded functions,

ĺım
n→∞

P
(∣∣∣∣∫

R
f (x)µ(n)

1 (dx)−
∫
R

f (x)µsc
1 (dx)

∣∣∣∣ > ε

)
= 0, (2)

where µsc
σ , for σ > 0, denotes the rescaled semicircle distribution

µsc
σ (dx) :=

1[−2σ,2σ](x)
2πσ2

√
4σ2 − x2dx .

Arturo Jaramillo (NUS) Fluctuations of GOE processes April 2019 7 / 24



Introduction

Functional Wigner theorem
In a paper by Jaramillo, Pardo and Pérez (based on previous works by
Rogers, Shi, Cépa, Lepingale and Pérez-Abreu), it was proved that

Theorem
Denote by C(R+, Pr(R)) the set of continuous functions defined in R+,
with values in the set of probability measures. If µ(n)

0 converges in law to
ν, then {(µ(n)

t (dx); t ≥ 0) : n ≥ 1} converges weakly to a function
(µt ; t ≥ 0), such that∫

f (x)µt(dx) =
∫

f (x)ν(dx)

+ 1
2

∫ t

0

∫
R2

f ′(x)− f ′(y)
x − y

d
ds (R(s, s))µs(dx)µs(dy)ds,

for all t ≥ 0 and f : R→ R three times differentiable, with derivatives of
polynomial growth.
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Introduction

Fluctuations of Wigner’s theorem

In a paper by Lytova y Pastur, it was proved (in a much more general
context than the one described before), that

Theorem
for all f ∈ Cb(R),

n
∫
R

f (x)µ(n)
1 (dx)− nE

[ ∫
R

f (x)µ(n)
1 (dx)

]
d→ N (0, σ2

f ), (3)

where N (0, σ2
f ) is a Gaussian random variable with variance

σ2
f := 1

4

∫
R2

( f (x)− f (y)
x − y

)2 4− xy
(4− x2)(4− y2)µ

sc
1 (dx)µsc

1 (dy).
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Introduction

Functional fluctuations of Wigner’s theorem

There are some results on the functional fluctuations of Wigner’s theorem
in the following particular cases:

The entries Xi ,j are Ornstein-Uhlenbeck processes. This problem was
studied by Israelson, Bender and Unterberger. We know that the limit
is Gaussian and the limiting covariance function can be explicitly
described.

The entries Xi ,j are complex Brownian motions and f : R→ R is a
polynomial. This problem has been studied by Pérez-Abreu and
Tudor. It is known that the limit is Gaussian, but the covariance of
the limit hasn’t been described in an explicit way.
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Introduction

Main results (notation)

Consider the set of test functions

P := {f ∈ C3(R;R) | f ′′′ has polynomial growth}.

For f ∈ P,F = (f1, . . . , fr ) ∈ P r and z ∈ (0, 1), define the processes

Z (n)
f (t) := n

∫
R

f (x)µ(n)
t (dx)− nE

[∫
R

f (x)µ(n)
t (dx)

]
Z (n)

F (t) := n
∫
R

F (x)µ(n)
t (dx)− nE

[∫
R

F (x)µ(n)
t (dx)

]
,

and the kernel

Kz(x , y) := 1− z2

z2(x − y)2 − xyz(1− z)2 + (1− z2)2 .
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Introduction

Main results

Theorem (D́ıaz, Jaramillo, Pardo, Pérez)

For all f , g ∈ P,

ĺım
n→∞

Cov
[
Z (n)

f (s),Z (n)
g (t)

]
= 2

∫
R2

f ′(x)g ′(y)νρs,t
σs ,σt (dx , dy),

where

νρs,t
σs ,σt (A,B) =

∫ 1

0

∫
A×B

Kzρs,t (x/σs , y/σt)µsc
σs (dx)µsc

σt (dy)dz .
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Introduction

Main results

Theorem (D́ıaz, Jaramillo, Pardo, Pérez)

There exists a centered Gaussian process with values in Rr , denoted by
ΛF = ((Λf1(t), . . . ,Λfr (t)); t ≥ 0), independent of {Xi ,j ; j ≥ i ≥ 1},
defined in an extended probability space (Ω,G,P), such that

(Z (n)
F (t) ; t ≥ 0) Stably−→ ΛF ,

in the topology of uniform convergence over compact sets.

The law of ΛF
is characterized by

E
[
Λfi (s)Λfj (t)

]
=
∫
R2

f ′i (x)f ′j (y)νρs,t
σs ,σt (dx ,dy).

In addition, we have that dTV (Z (n)
f (t),Λf (t)) ≤ C√

n
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Preliminares de cálculo de Malliavin

Basic definitions

Let T > 0 be fixed and define d := n(n+1)
2 , we can identify the process

(Xi ,j(t) ; 1 ≤ i ≤ j ≤ n, t ≥ 0) with a Rd -valued process
V = (V 1

t , . . . ,V d
t ; t ≥ 0) with i.i.d. entries

We will denote by E the space of step functions over [0,T ]. Consider the
inner product 〈

1[0,s],1[0,t]
〉
H

:= E
[
V 1

s V 1
t

]
, s, t ∈ [0,T ],

defined in E . Let H obtained as the completion of E with respect to the
inner product above.
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Preliminaries on Malliavin calculus

Basic definitions

Example: If X1,1 is a Brownian motion, then H = L2[0,T ].

For all 1 ≤ i ≤ n, the mapping 1[0,t] 7→ V i (1[0,t]) := V i
t can be extended

into a linear isometry, which we will denote by V i (h), for h ∈ H. If f ∈ Hd

is of the form f = (f1, . . . , fd ), we define

V (f ) :=
d∑

i=1
V i (fi ).

Example: If X1,1 is a Brownian motion, then

V (f ) =
d∑

i=1

∫ T

0
fi (t)dV i

t .
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Preliminaries on Malliavin calculus

Chaos decomposition

For q ∈ N fixed, define the q-th Wiener chaos, as the subspace

Hq = span{Hq(V (h)) | ‖h‖Hd = 1} ⊂ L2(Ω),

where Hq denotes the q-th Hermite polynomial, defined by H0 = 1 and
Hq+1(x) = xHq(x)− qHq−1(x).

Theorem (Chaos decomposition)
We have that

L2(Ω,P) =
∞⊕

q=0
Hq.

The projection of an element Y ∈ L2(Ω) over the space Hq, will be
denoted by Jq[Y ].
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Preliminaries on Malliavin calculus

Derivative and divergence operators

For q ∈ N, denote by (Hd )⊗q and (Hd )�q the q-th tensor product and
q-th symmetrized tensor product of Hd .

Definition (Derivative operator)
For a random variable F of the form F = f (V (h1), ...,V (hn)), where
f ∈ C∞(Rn;R), has derivatives with polynomial growth, define the
Malliavin derivative of F as the Hd -valued random vector

DF =
n∑

k=1

∂f
∂xk

(V (h1), ...,V (hn))hk .

For p ≥ 1, the operator D can be extended to a subspace D1,p ⊂ L2(Ω),
closed with respect to the norm ‖F‖D1,p :=

(
E [|F |p] + E

[
‖DF‖pH

]) 1
p .

Define Dr as the r -th iteration of D.
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Derivative and divergence operators

Definition (Divergence operator)
Denote the adjoint of D by δ. Namely,

δ is defined in a domain Dom(δ) ⊂ L2(Ω;Hd ), characterized by the
property that u ∈ Dom(δ) if there exists a constant c > 0, only
depending on u, such that for all F ∈ D1,2,

|E
[
〈DF , u〉Hd

]
| ≤ c‖F‖L2(Ω).

If u ∈ Dom(δ), then δ(u) is characterized by

E [Fδ(u)] = E
[
〈DF , u〉Hd

]
.

analogously, we define δr as the adjoint of Dr .
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The Ornstein-Uhlenbeck semigroup

Definition
The Ornstein-Uhlenbeck semigroup {Pt}t≥0 is defined by
PtF :=

∑∞
q=0 e−qtJq(F ) ∈ L2(Ω),

and the generator of the
Ornstein-Uhlenbeck L, is defined by

LF = −
∞∑

q=1
qJq[F ].

Its domain is formed by the random variables F such that∑∞
q=1 q2E

[
Jq[F ]2

]
<∞.
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Relations between D, δ y L

Mehler’s formula stablishes that F ∈ L2(Ω) and ΨF is a measurable
mapping from RHd to R, such that F = ΨF (V ), then

PθF = Ẽ
[
ΨF (e−θV +

√
1− e−2θṼ )

]
,

where Ṽ is an independent copy of V and Ẽ is the expectation with
respect to Ṽ .

Additionally, we have that F ∈ Dom(L) if and only if
F ∈ D1,2 and DF ∈ Dom(δ), in which case

LF = −δ(DF ).

Furthermore, if F ∈ L2(Ω), then

−L−1F =
∫
R+

PθF dθ.
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]
,
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Contractions

Let {bj}j∈N ⊂ Hd be an orthonormal basis of Hd . Given f ∈ (Hd )�p,
g ∈ (Hd )�q and r ∈ {1, . . . , p ∧ q}, the r -th contraction of f and g is the
element f ⊗r g ∈ (Hd )⊗(p+q−2r) given by

f ⊗r g =
∞∑

i1,...,ir =1
〈f , bi1 , . . . , bir 〉(Hd )⊗r ⊗ 〈g , bi1 , . . . , bir 〉(Hd )⊗r .
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CLT via Malliavin calculus

Theorem (Nourdin, Peccati and Réveillac)

Suppose that r ≥ 1 is fixed. Consider random vectors
Zn = (Z1,n, . . . ,Zr ,n), n ≥ 1, with E [Zi ,n] = 0 and Zi ,n ∈ D2,4. Let C be a
non-negative definite, symmetric matrix of dimensioin r , and let
N = (N1, . . . ,Nr ) ∼ Nr (0,C).

Suppose that:
(i) For all i , j = 1, . . . , r , E [Zi ,nZj,n]→ C(i , j) when n→∞;

(ii) For all i = 1, . . . , r , supn≥1 E
[
‖DZi ,n‖4

H

]
<∞;

(iii) For all i = 1, . . . , r , E
[∥∥D2Zi ,n ⊗1 D2Zi ,n

∥∥2
(Hd )⊗2

]
→ 0 when n→∞.

Then Zn
Law→ N when n→∞. Moreover,

dTV (Z1,n,N1)) ≤ E
[∥∥∥D2Zi ,n ⊗1 D2Zi ,n

∥∥∥2

(Hd )⊗2

] 1
4
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Suppose that r ≥ 1 is fixed. Consider random vectors
Zn = (Z1,n, . . . ,Zr ,n), n ≥ 1, with E [Zi ,n] = 0 and Zi ,n ∈ D2,4. Let C be a
non-negative definite, symmetric matrix of dimensioin r , and let
N = (N1, . . . ,Nr ) ∼ Nr (0,C). Suppose that:

(i) For all i , j = 1, . . . , r , E [Zi ,nZj,n]→ C(i , j) when n→∞;

(ii) For all i = 1, . . . , r , supn≥1 E
[
‖DZi ,n‖4

H

]
<∞;

(iii) For all i = 1, . . . , r , E
[∥∥D2Zi ,n ⊗1 D2Zi ,n

∥∥2
(Hd )⊗2

]
→ 0 when n→∞.

Then Zn
Law→ N when n→∞. Moreover,

dTV (Z1,n,N1)) ≤ E
[∥∥∥D2Zi ,n ⊗1 D2Zi ,n

∥∥∥2

(Hd )⊗2

] 1
4

Arturo Jaramillo (NUS) Fluctuations of GOE processes April 2019 22 / 24



Preliminaries on Malliavin calculus

CLT via Malliavin calculus

Theorem (Nourdin, Peccati and Réveillac)
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Proving tightness

The main observation is that the random variable
∫

f (x)µ(n)
t (dx) satisfies

the following stochastic equation∫
f (x)µ(n)

t (dx)

= f (0) + 1
n 3

2

n∑
i=1

∑
k≤h

∫ t

0
f ′(Φi (Y (n)(s))) ∂Φi

∂yk,l
(Y (n)(s))δXk,h(s)

+ 1
2

∫ t

0

∫
R2
1{x 6=y}

f ′(x)− f ′(y)
x − y µ(n)

s (dx)µn
s (dy)v ′sds

+ 1
2n2

n∑
i=1

∫ t

0
f ′′(Φi (Y (n)(s)))v ′sds,

where vs := σ2
s .
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