
TRAJECTORY FORECASTING
FOR AUTONOMOUS VEHICLES

T E S I S
Que para obtener el grado de
Maestro en Ciencias

con Especialidad en
Computación y Matemáticas Industriales

Presenta:
Juan Luis Baldelomar Cabrera

Director de Tesis:
Jean-Bernard Hayet

——————————–
Autorización de la versión final

Guanajuato, Gto., ?? de ?? de 20??

Agradecimientos

Al Dr. Jean-Bernard Hayet, por haberme apoyado y asesorado a lo largo de este proyecto
de investigación. Agradezco tus consejos antes de iniciar mi proyecto de investigación sobre
como dedicir en que orientar mi área de especialización. Gracias también por la paciencia
y gúıa a lo largo de este trayecto que me ha mostrado una pequeña parte de lo que es el
mundo de la investigación.

A la Dra. Claudia Esteves, por haberme apoyado y asesorado en mi año de formación
en DEMAT previo a ingresar a la maestŕıa. Agradezco tus consejos y el apoyo mientras me
preparaba para poder ingresar a CIMAT.

A mi padre, Jose Luis Baldelomar Rivera, y a mi madre, Claudia Maŕıa Cabrera Rosito,
por haberme dado su apoyo incondicional desde el momento en que decid́ı venir a estudiar
a México. Siempre estaré agradecido con ustedes, y este logro es un reflejo del esfuerzo y
apoyo de ustedes hacia mı́. Me han apoyado y acompañado en todo momento.

A mi t́ıa, Alba Elena Baldelomar Rivera, por su apoyo incondicional durante toda mi
vida y también durante este trayecto. Al igual que con mis padres, este logro es un reflejo
del apoyo que he recibido en todo momento por parte de ti.

A mi abuelo, José Luis Baldelomar Ramı́rez, por haberme guiado y enseñado a luchar
por lo que deseo, y haberme enseñado a proyectar mi vida a futuro para saber que debo
hacer para alcanzar lo que quiero. Has sido más que mi abuelo, como otro padre y un amigo
para mı́.

A mi abuela, Rosalba Rivera, porque sé que a pesar de la distancia, estoy siempre en su
mente y corazón y pide constantemente por mı́.

A mi hermano, Juan José Baldelomar Cabrera, por haberme guiado para poder entrar a
CIMAT y haberme ayudado y apoyado en todas mis dudas académicas cuando lo necesitaba.
Gracias por el apoyo.

Al Dr. Adrián Pastor López y al Dr. Mariano Rivera, por formar parte del comité de
evaluadores de este proyecto y darnos un poco de su tiempo para poder retroalimentarnos
sobre el trabajo realizado. Además, agradezco a ambos que fueron mis profesores en cursos
del área de Aprendizaje Máquina y Procesamiento de Lenguaje Natural, y ambos cursos le
dieron un giro y un impulso a mi desarrollo profesional.

2

Al Centro de Investigación en Matemáticas, A.C (CIMAT), por haberme dado la oportu-
nidad de pertenecer a esta honorable institución y haberme abierto las puertas. Estudiar aqúı
me dio la oportunidad de realizarme académicamente en uno de las áreas que me apasionaba
desde que ingresé a mi licenciatura.

Finalmente, al Consejo Nacional de Ciencia y Tecnoloǵıa (CONACyT), por haberme
apoyado econó- micamente a través de su programa de becarios lo cual me permitió realizar
mis estudios aqúı en México.

3

Abstract

The following work is focused on the area of Trajectory Forecasting for autonomous driving
vehicles. This problem has been tackled from different perspectives and for different contexts.
Here, we focus on the prediction of trajectories for driving agents. The problem has two main
dimensions that are relevant to accurately model it and obtain good results: the temporal
dimension and the spatial dimension. Sequence-to-sequence models have been massively used
to model the temporal dimension of the problem as we can see with models based on LSTM
networks. In more recent approaches, Transformers attention mechanisms [13] have been
explored, after the incredible results they achieved on the NLP field. To model the spatial
relationships among agents, graph neural networks have been proposed in several works.
However, mechanisms like the one from the Transformer have not been widely explored to
also model the spatial dimension of the problem, and we carried out that task as the main
contribution of our work.

We propose a model based on the Transformer architecture to tackle both, the temporal
and spatial dimensions of the problem. We use two Transformer Encoders at two dimensions
of the problem, the spatial and the temporal dimensions. The model receives as input a scene
with all the neighbors present in it at specific time steps and outputs the prediction of all
the trajectories for each agent in the scene, which means we are doing the joint prediction
of all the agents rather than predicting the trajectory for each agent by itself. This allows
us to take into consideration spatial relations in the sequence. The model works in the
following way. The first Transformer along with a handcrafted CNN modules are used to
extract spatial features. In this case the input is constructed in a way that we expect the
first encoder to process spatial relations between the agents present in a scene. Those spatial
features are then used as input for what we call a Temporal Transformer, because it works
at the temporal dimension of the problem. This is achieved by doing a transposition of the
temporal and spatial dimension of the output of the first encoder. The decoder then receives
the output of the second encoder as a traditional Transformer model. The model is trained
in an auto-regressive manner as the AgentFormer model [15] because it showed significant
improvements over the more classical Teacher Forcing approach.

We worked with two datasets to train and test the model. NuScenes is an autonomous
driving dataset commonly used for this task. However, for such complex models as Trans-
formers, more data is required. Therefore, we did a little data augmentation process on this
dataset by performing random rotations to the original inputs, and as a result we obtained
better metrics for this dataset. The other dataset used in this work is Shifts. Shifts is a

4

dataset used for the uncertainty estimation problem for several tasks, among which we have
trajectory forecasting for autonomous driving systems. This dataset contains much more
data, and it proved useful to carry out the main training and testing of the models. We
performed ablation studies to assess how much each part of the model contributed to the
final result.

5

Contents

1 Introduction 11

1.1 Related Work . 12

1.1.1 Deterministic and Generative Models 12

1.1.2 Social Interactions . 13

1.2 Background . 14

1.2.1 Trajectory Forecasting . 15

1.3 Objectives . 16

1.4 Thesis Structure . 17

2 Datasets 19

2.1 Relational Database Model . 19

2.2 nuScenes . 24

2.3 Shifts . 27

2.4 Data Format . 30

3 ST-Transformer 33

3.1 Transformers . 33

3.1.1 Architecture . 33

3.1.2 Attention Mechanism. 35

3.1.3 Multihead Attention . 38

3.1.4 Positional Encoding . 39

3.1.5 Advantages and Disadvantages of Transformers 44

3.2 ST-Transformer . 44

3.2.1 Input Sequence Format . 45

3.2.2 Model Architecture . 48

4 Experimentation and Results 51

4.1 Training . 51

4.2 Quantitative Results . 58

4.2.1 Data Augmentation . 60

4.3 Qualitative Results . 60

4.3.1 Spatial Attention . 61

6

5 Conclusions and Future Work 65

A Data Type 67

B More Attention Visualization 69

7

List of Figures

2.1 Initial database diagram . 22
2.2 Final database diagram . 23
2.3 Nuscenes Database Schema . 25
2.4 Nuscenes scene at a specific time . 28
2.5 Nuscenes transition from time steps . 29
2.6 Shifts Scheme . 30
2.7 Dataflow Diagram . 31
2.8 Dataset Model. 32

3.1 Transformer Architecture . 34
3.2 Relative Transformations . 46
3.3 Input Shape . 47
3.4 Input Masking . 47
3.5 Model Architecture . 50

4.1 Learning rate vs. optimization step. 53
4.2 ST-Transformer: Train Loss. 54
4.3 ST-Transformer: Eval Loss. 54
4.4 ST-Transformer without CNN: Train Loss. 55
4.5 ST-Transformer without CNN: Evaluation Loss. 56
4.6 Time Transformer: Train Loss. 56
4.7 Time Transformer: Evaluation Loss. 56
4.8 ST-Transformer: Smoothed Evaluation Loss. 57
4.9 Time Transformer: Smoothed Evaluation Loss. 57
4.10 Qualitative Results . 62
4.11 Qualitative Results . 63
4.12 Spatial Attention Visualization . 64

B.1 Attention Visualization. 70
B.2 Attention Visualization. 71

8

List of Tables

2.1 Employees table with 3 records. 20
2.2 OFFICE and EMPLOYEE tables . 22

4.1 Model Hyper-Parameters . 52
4.2 Optimizer parameters. 53
4.3 Shifts results . 58
4.4 Results reported in Shifts challenge . 59
4.5 NuScenes Results . 59
4.6 NuScenes results with data augmentation . 60

A.1 Scene Data Types . 67
A.2 Sample Data Types . 67
A.3 Instance Data Types . 67
A.4 Sample annotation Data Types . 68
A.5 Sample data Data Types . 68
A.6 Ego pose Data Types . 68

9

Acronyms

ADE Average Displacement Error. 16, 58

CNN Convolutional Neural Network. 8, 48, 55, 56, 58, 59

CVAE Conditional Variational Auto Encoder. 12, 13

FDE Final Displacement Error. 16, 58

GAN Generative Adversarial Network. 13

GRU Gated Recurrent Unit. 13, 15, 37, 39, 44

LSTM Long Short Term Memory. 12, 13, 15, 37, 39, 44

NLP Natural Language Processing. 12–15, 33, 37, 51, 52

RNN Recurrent Neural Network. 12, 13, 15, 17, 35, 37, 39, 44

VAE Variational Auto Encoder. 13

10

Chapter 1

Introduction

Human error is one of the factors that contributes the most to accidents while driving. Several
reasons could be enumerated that cause this problem, but one of them is undeniably the lack
of ability from humans to process big amounts of information for this specific task. To begin
with, human vision is limited and it is at the same time the main source of information
we use while driving. Added to this is the fact that humans, contrary to popular belief,
are not good at multitasking, which leads some of the time to the aforementioned problem.
Therefore, a lot of efforts have been invested recently into removing the human factor from
the driving task.

Making car driving a task for machines is not a simple thing to do. First, cars need
sensors to perceive the real world even better that how humans do. Once the information
is available, signal processing algorithms need to be applied to filter the data that represent
reality from noise. It is also needed to give an interpretation of these data in high level
representations. Then, motion planning algorithms need to be implemented so that the
self-driving vehicle can make decisions as a human being would do (or even better). Among
the data and algorithms that the motion planner uses to make its decision, lays the field in
which this thesis project aims to contribute: Trajectory Forecasting.

The Trajectory Forecasting field has a clear objective: To carry out the predictions of
where agents of interest are going to be in the near future. For autonomous driving systems,
trajectory forecasting aims to predict where agents surrounding the autonomous vehicles
(e.g., other vehicles or pedestrians) will be in the near future to take that information into
account and push the motion planner module to make better decisions. With the rising
popularity and improvement of the performance of deep learning algorithms, a lot of deep
learning models have been proposed to tackle this prediction task. These previous works
have served as an inspiration for the work developed in this project, the ST-Transformer,
which explores more in depth the use of Transformer neural networks along the main two
dimensions of the problem: the spatial and the temporal dimensions. The name of the model
refers to these two dimensions (S from spatial and T from temporal).

11

1.1 Related Work

In the following, we review some related works in the field of trajectory prediction. Note
that we do not pretend to be exhaustive, given the huge volume of literature in this area.

1.1.1 Deterministic and Generative Models

The prediction of trajectories for agents of interest is a problem that concerns more than
just the autonomous driving industry. Robots, as a general concept, are getting more and
more involved in human activities and this leads to the need of predicting the motion of the
agents that surround them to avoid collisions and accidents.

The problem has been modeled from different perspectives, from deterministic approaches
to generative and probabilistic models. The deterministic models usually fall in the range
of deterministic regressors, which use the inputs of the model to produce an output
that indicates the future position of the agent. One of the earliest deterministic models was
named Social Forces [19] and it used a physical approach to model the motion of persons
using the concept of “social force”. This model takes into account the agent’s goal and the
policies to avoid other agents and obstacles (represented as forces) to predict the trajectory.

With the computation power achieved in the last years and with Internet and data avail-
ability, deep learning models have reached incredible results and have soon become the state
of art. CoverNet [2] frames the trajectory prediction problem as a classification problem over
a diverse set of trajectories and make use of a convolutional module. More recent models
represent the trajectories as sequences and work with them within the time series framework.
Recurrent Neural Networks (RNN) models like Social LSTM [22] and Trajectron++ [20] use
LTMS cells to incorporate the time variable of the trajectories and produce their outputs.
Even more, both approaches incorporate a probabilistic approach, outputting a distribution
of trajectories instead of a deterministic output. The work in [11] uses convolutional modules
to process videos and get information about the persons behaviours and the persons interac-
tions. Then it feeds those visual features to a LSTM module and predicts the trajectory. It
also predicts the activity that the person is carrying out, framed as a classification problem
from a predefined set of activities.

Other models that have gained popularity for the high quality of the results they obtained
have been the Transformers. These models have emerged in the natural language process-
ing (NLP) field, but they have soon permeated to the trajectory forecasting area. Giuliari
has proposed using these architectures for the trajectory forecasting task in [13], using the
observed past trajectory to encode information and then to decode the target trajectory.
He has also proposed to cast the forecasting problem as a classification approach (ny) and
confirmed that regression models outperform classification models. The AgentFormer [15] in-
volves temporal and spatial information with a conditional variational auto-encoder (CVAE)
module to output a distribution and account for multimodality.

12

1.1.2 Social Interactions

So far, we have discussed models that have addressed the problem from the temporal di-
mension. Trajectory forecasting, unlike other problems involving sequences like NLP tasks,
depends heavily on spatial information as well as the temporal dimension. When driving,
drivers incorporate spatial information about what other agents around them are doing,
to figure out what they should do next (e.g. to avoid collision). Therefore, modeling the
problem just from the temporal dimension may omit some relevant and valuable information.

Social LSTM [22] models the social context with what they call a Social Pooling layer,
which consists on using different LSTM networks for each trajectory in a scene, and then
using a layer (Social Pooling) in which these LSTM models share information about close
neighbors, hoping that this layer captures spatial relationships between the agents. Social-
GAN [3] uses a similar approach, encoding information from LSTM cells and then passing
that information through a pooling layer, which then feeds (just once) a decoder to generate
the trajectories. They also use a GAN architecture using the discriminator from the GAN
to tell which trajectories are socially acceptable or not. Sophie [23] and Social-Ways [21]
work with a similar architecture incorporating GANs, with the discriminator working at the
decoder and both using an attention module between the encoder and the decoder.

Some substantially different types of work have been done in this area as well. The
work in [1] addresses the social attention problem using a spatio-temporal graph, where the
nodes of this graph represent the persons in a crowd of people, the spatial edges connect
two different humans at the same time step, and temporal edges connect the same human at
adjacent time steps. The Trajectron [5] and Trajectron++ [20] also use a spatio-temporal
graph to model the relations between agents, altogether with LSTM cells to encode the
past information and a CVAE generative model to get a distribution of the trajectories.
PECNet [12] infers distant trajectory endpoints through a VAE and then conditions the
trajectories on these endpoints by using a novel social pooling layer. The aim of conditioning
the trajectory on the inferred endpoint it to obtain socially compliant trajectories. Bitrap [9]
uses a similar approach, with a CVAE for inferring the endpoint and a GRU cell to encode
information of the past trajectories. Then the endpoint predicted is passed as an input to the
decoder, which uses a bidirectional RNN to generate the trajectories. SGNet [7] is a novel
model that estimates the agent’s goals at multiple temporal scales and feeds those goals as
an input to a decoder to take into account several objectives, arguing, based on psychology
and cognitive science, that people base their actions not on a single long-term goal, but a
series of goals at different time scales.

More recent approaches involve Transformer architectures. The AgentFormer [15] in-
volves spatial and neighbors information to account for the social interactions between them
by putting all the agents belonging to the same scene at the same time step as an input
(instead of each input representing each agent) and performing the join prediction for all
the agents. The work in [24] is and end-to-end model that receives as inputs the clouds of
lidar points and models the interaction between agents with a spatial transformer. Then
it produces the target sequence by incorporating a recurrent approach, but it is important

13

to highlight that the Transformer used in this model does not work along the temporal
dimension.

1.2 Background

Trajectory forecasting can be framed as a sequence-to-sequence problem. Sequence-to-
sequence problems are time series problems that consist on predicting a target sequence
based on an observed source sequence. Suppose that we have a source sequence S =
{S1, S2, · · · , Sn} and a target sequence T = {T1, T2, · · · , Tm} where each Si and Tj are
states that encode the needed information for a specific problem. We look for a model F
that is capable of predicting the target sequence as precisely as possible. Hence, the problem
can be formulated as minimizing a sum of loss functions L(T, T̂) where T̂ are the sequences
predicted by our model, F ,

T̂ = F(S) = {T̂1, T̂2, · · · , T̂m}.

Sequence-to-sequence (usually abbreviated as seq2seq in the literature) has its back-
ground in the Natural Language Processing (NLP) field. Several problems from the area
of NLP have a sequence-to-sequence nature. Machine Translation, Question Answering and
Text Summarization are all examples of problems that consist on using a source sequence
and producing a target sequence based on that source sequence. For example, in the Ma-
chine Translation task, that consists on generating a translation for a text in some language
to some other language, the source sequence is the text (sequence of words) in the original
language, and the target sequence is the translation of this text to other desired language
(i.e., another sequence of words). Therefore, several models and techniques used in machine
learning for seq2seq problems also arose in the NLP area.

With the computation power achieved nowadays, Deep Learning models are the state of
art for most of the Machine Learning problems. Transformer architecture models [25] are
not the exception. These models emerged in the NLP area and are categorized as attention
models; they became popular among the scientific community for the results they achieved
for several NLP tasks. Transformer models have been around since 2017 and are the main
research field for several deep learning concerning tasks.

In Chapter 3, the Transformer Architecture is discussed. Some concepts regarding the
basis of these models will be succinctly explained, given the fact that the text would become
unnecessarily long otherwise. If the reader does not feel comfortable with the following
concepts, a quick review of them would make that chapter easier to understand. Those
concepts are:

1. Embeddings. General representations of words emerged in the field of NLP. The
idea is to have a global, vectorial representation for words that could be used and
transferred from task to task. One of the most influential work related to this topic is

14

the paper from Tomas Mikolov, “Efficient Estimation of Word Representations
in Vector Space” [8].

2. Seq2seq models with RNNs. Transformers are definitely not the most natural way
to process a sequence with deep learning models. Recurrent Neural Networks (such
as LSTMs or GRUs) are intuitive models that process a sequence element by element
and incorporate the time factor in an inherent way to the architecture. “Sequence
to Sequence Learning with Neural Networks” [16] proposed a novel approach
by the time it was published as how to tackle these sequence-to-sequence problems,
considering that the source and target sequences might not have the same length.

3. Attention Mechanisms. Sequence-to-sequence models usually process the source
sequence through an encoding phase (encoder) and then produce the target sequence
through a decoding phase (decoder), using a context vector retrieved from the encoder.
The context vector acts as a summary of the source sequence, therefore limiting the
information it can provide to the decoder. Attention mechanisms allow the decoder
to retrieve more information, encoded from the source sequence, and to be able to
determine which parts of that information are more valuable for the decoding phase.
“Neural Machine Translation by Jointly Learning to Align and Translate” [4]
illustrates this concept.

1.2.1 Trajectory Forecasting

So far, we have discussed seq2seq problems in the context of NLP, due to the impact this field
has had on the development of models to tackle those problems. The trajectory forecasting
area has some components that can be analogous to some sequence-to-sequence tasks in
NLP, but there are other components that are quite different.

In the trajectory forecasting field, a simple formulation of the problem is to represent
each source and target state as the position (px, py)t of the agent at a specific moment in
time t and in a fixed 2D coordinate system. It is important to note that, for this specific
problem, the target sequence has to have the form T = {Tn+1, Tn+2, · · · , Tn+m} because the
points predicted belong to the future and go right after the last n observed points in the
past. Then, the past trajectories of all the agents are used as the observed sequences and
the objective is to predict the future trajectories that indicate where each agent in the scene
is going to be in the future.

More complex models can emerge when taking into account more information than just
the position of the agent along the trajectory. It is easy to realize that providing the velocity
of the agent, its acceleration and its angle of rotation could form part of the state of each
agent at all the time steps. And more complex information can be used as well. For example,
bitmaps indicating the area in which the car can drive can be given as inputs as well, hoping
that the models learn which is the drivable area, which are the lanes etc.

Once a model to tackle the problem exists, we need a way to evaluate how good or bad
the model is performing. Given the nature of the problem, it results intuitive to use the

15

distance between each point in the predicted trajectory and the real future trajectory as
a metric to assess how good the model performs. The ideal scenario is when the distance
from all the points in the predicted trajectory are the same as their respective points in the
real trajectory. This is of course impossible due to the uncertainty and the nature of the
problem, but a good model might predict in a fairly reasonable horizon of time a trajectory
with an acceptable error. For this, we use the Average Displacement Error (ADE) metric.
Noting that |T | = m, the ADE can be defined as follows

ADE(Xpred, Xreal) =
1

m

mX

t=1

||ppredt − prealt ||2, (1.1)

where Xpred and Xreal are defined as

Xpred ={ppredt | ppredt ∈ R2 and t = 1, · · · ,m},
Xreal ={prealt | prealt ∈ R2 and t = 1, · · · ,m},

and they represent the set of points that constitute the predicted and real trajectories,
respectively. Note that || · ||2 in equation 1.1 is basically the Euclidean distance formula in
R2.

The ADE basically tells us how accurately the model predicted the trajectory, on average.
A metric that tells how the model performs on the long term from the time perspective could
be useful. For this, we can use the Final Displacement Error (FDE) which represents how
far is the last point in the prediction horizon predicted by the model to the actual end point
in the real trajectory. The FDE then looks like

FDE(Xpred, Xreal) = ||ppredm − prealm ||2. (1.2)

Finally, to evaluate models in this area, several datasets are usually used as benchmarks
to assess a model’s performance. Those datasets usually fall into one of two categories:

1. Datasets in which the data is obtained by a fixed camera and the trajectories are
projected into a fixed coordinate system, like the ETH-UCY dataset.

2. Datasets in which the data is obtained by ego-vehicles equipped with several cameras,
radar and lidar sensors and the trajectories are projected into a fixed coordinate system,
but also contain the position of the agents in relation to the ego-vehicle that retrieved
the data, like NuScenes dataset.

1.3 Objectives

Transformer models have made a huge impact on tasks that require attention mechanisms
while processing sequences. The first work to frame this in the trajectory forecasting area

16

is described in [13]. As we have stated before, the problem of predicting where an agent is
going to be in the future involves both temporal and spatial variables. Based on this, we
have the following objectives:

General Objective: To design and explore attention models at the spatial and temporal
dimension of the problem and perform the joint prediction of the trajectories of the agents
present in a scene to take into account how the actions of several agents in it influence the
actions of the others.

Specific Objectives

• To propose and design a model that takes advantage of Transformer networks for doing
the joint prediction of several agents in a scene that are close to an ego-vehicle.

• To consider spatial and temporal information to make the predictions.

• To explore a new model, named the ST-Transformer, to assess how viable it is to
keep working with these models in the future and evaluate how well does the spatial
transformer captures spatial relations between the agents and its surroundings.

• Testing and performing ablation studies of the proposed model to assess how each
module of the model contributes to the final result.

• To propose future modifications to the designed model to make it better, based on
what the experimentation and ablation studies reveal.

1.4 Thesis Structure

This document is structured as follows

1. Given the fact that we are using a Deep Learning approach, data is a main factor to
take into account. Chapter 2 describes the datasets we have used to train the proposed
model. The chapter starts by taking a brief look into the Relational Database Model
because one of the datasets is structured in that way, and having a little background
in that area might make it easier to understand the dataset.

2. Chapter 3 introduces the Transformer model. It is necessary to point out that a
basic understanding on how neural networks work is mandatory. This should not be a
problem considering that the background gave material of more complex models like
RNNs. After the Transformer model is introduced, a description of the core of this
work, the ST-Transformer, is presented.

3. Chapter 4 addresses the performance of the model and it explains and comments the
ablation studies that were conducted to evaluate how each part of the model contributes
to the final result.

17

4. Finally, the conclusions of the work are presented and what is left as future work will
be discussed in this part as well.

18

Chapter 2

Datasets

Deep Learning models require big amounts of data to be trained successfully. It might be
clear that the data used to train a model, depends on the purpose of the model. In our
case, the model requires data that contains trajectories of agents (vehicles and persons) of
interest. Trajectories in the driving context are retrieved by an ego-vehicle. An ego-vehicle
is a car equipped with different sensors such as cameras, lidar and radar sensors to obtain
data about what surrounds the vehicle. Then, the data is processed and translated into
useful information such as the position of the agents, recordings and images retrieved by
the cameras, a 3D reconstruction of the scene, etc. It is this ego-vehicle that provides the
agent’s trajectories that will be fed into the model. It is necessary to highlight that the data
is sampled at a given frequency (that depends on the sensors), so we have information at
certain moments or time steps of the entire scene. Not all the sensors sample at the same
frequency, therefore it is necessary to unify the retrieved data to get uniform time steps.

In this Chapter, we describe the datasets (NuScenes and Shifts) used for the experimenta-
tion and training of our models as well as the way data is preprocessed to get the information
needed for the tasks of training and predicting. A brief summary of the relational database
model is presented as well, to facilitate the understanding of one the datasets.

2.1 Relational Database Model

Datasets are basically databases that hold very specific information about some area, usually
a practical problem or field of study. It is then useful to have a basic understanding of some
database concepts. In the following, a quick introduction of these concepts is going to be
made for those readers that are not so familiarized with the database terminology. If the
reader feels comfortable with the topic, he/she can skip the following section, and if the
reader wants to go deeper in the subject, [10] is a good reference.

A database has the purpose of storing useful information in a structured way so that we
can later do something with it. Most databases can be seen as a collection of several tables
holding records (rows) of objects in the real world. These records are described by fields
(columns) of these tables representing which attributes are necessary to store from these

19

objects. Most of the tables have a field for storing a unique id for each record that identifies
it among the other ones. This field is known in the database context as primary key.

Consider the following example to fully understand the previous concepts. The reader
can imagine an owner of a store that wants to save information about his employees. This
makes it necessary to have an EMPLOYEE table. He decides that it is useful to store the
name, date of birth and phone number of each employee. These attributes become the fields
or columns of the table. Each employee is then a record or row in it. Finally, to identify
each employee in a unique way, a worker id number is assigned to each one of them as a
primary key. Using the name as a primary key would be a mistake because two employees
could have the same name and therefore the uniqueness of this field would be violated. So,
this table could look similar to Table 2.1.

EMPLOYEE

Worker id Name Date of Birth Phone Number

001 John Fletcher 05/22/1995 473 1000 123
002 Pierre Cardin 06/15/1994 473 2000 456
003 Lois Hestenes 07/28/1997 552 2251 423

Table 2.1: Employees table with 3 records.

The Relational Database Model is a way to store the information in a database in an
efficient manner. The idea of this model is to avoid redundancy in the stored data to save
space and to ensure consistency. Redundancy could be defined in a practical way as storing
the same information or field for a record in different tables. At this point, the reader could
ask himself why it would be necessary to store the same piece of information in different
tables in a database. This is usually a modelling mistake and it will be addressed with
an example in the following paragraphs. The consistency part follows then from avoiding
redundancy. If a database stores the same fields for a record in several tables and then these
fields are modified in one of the tables, then it has to be done in the same way in all the other
tables holding the same information. If not, then the database is not consistent because it
contains different values for a given field for the same record, as a consequence of having
duplicated fields in different tables.

A relational database model is comprised by two main components: entities and rela-
tionships. Entities model the objects (tangible or abstract) in the real world from which we
want to store and retrieve information and they become tables in the database. An instance
of an entity is then presented as a record (row or tuple) in the respective table. Entities
hold relationships between each other. From a technical point of view, these relationships
are defined by the presence of a field in a table, known as foreign key, which refers to an
instance of another entity (another table) and is in fact the primary key of the instance in
the other table. The foreign key can then be seen as a pointer to a record in another table.
Suppose that two entities, entity A and entity B, exist in a database. The relations these
entities could hold between each other can be classified as:

20

1. One to one. One instance of entity A is related to one instance of entity B.

2. One to many. One instance of entity A [B] is related to several instances of entity B
[A].

3. Many to many. One instance of entity A is related to several instances of entity B,
and these instances of B are as well related to several instances of entity A.

As we did before, an example will make it easier to understand these concepts. Consider
again the previous example of the store and the employees. Take now into account the
following considerations due to the business model:

• The store has several branch offices. It is useful to keep track of the following office
attributes: office id, address, and phone number.

• The store sells technology products. Each product has the following attributes: product
id, description, price, stock units. Suppose that the stock units are stored in a central
place and therefore each office displays the same number of stock units for each product.

• An employee can work in only one office.

• Clearly, an office has several employees. It is useful to know at which office an employee
works.

• It is useful to keep track of which products have been sold by an employee.

The first two points immediately yield two more tables, call them OFFICE and PROD-
UCT tables. In the figure 2.1, the reader can see the initial diagram of the database.

As it was stated, it is useful to know in which branch office of the store the employees
works. It is also important to consider that a branch office can have several employees and
therefore is related to several employees (one-to-many relation). Imagine that, at one point,
the owner of the store wants to know the address of the office at which one of his employees
works. A naive way to model this problem, and then to be able to retrieve this information,
would be to store all the fields of the branch office in the EMPLOYEE table. That enables
the owner to know the address of the office where his employees work. This obviously leads
to redundancy, because the attributes of the office are saved into the OFFICE table as well
as into the EMPLOYEE table. The way the relational database model tackles this is by
adding a field to the employee table that refers to the office in which the employee works.
This field contains the primary key of the office it is referring to and is the foreign key
in the EMPLOYEE table. In this way, the information of the store in which the employee
works can be retrieved. Table 2.2 shows how this information would look in a table view in
a database.

The employees-products relation is a little bit different. A product can be sold by several
employees and an employee can sell several products (many to many relation). In this

21

OFFICE

PK office_id

address

phone number

PRODUCT

PK product_id

description

price

stock units

EMPLOYEE

PK worker_id

name

date of birth

phone number

FK office_id

Figure 2.1: Initial database diagram. The PK symbol indicates that the field is in fact the primary
key.

OFFICE

Office id Address Phone Number

off-01 address office 1 800 1001
off-02 address office 2 800 1002
off-03 address office 3 800 1003

EMPLOYEE

Worker id Name Date of Birth Phone Number office id

001 John Fletcher 05/22/1995 473 1000 123 off-01
002 Pierre Cardin 06/15/1994 473 2000 456 off-02
003 Lois Hestenes 07/28/1997 552 2251 423 off-01

Table 2.2: OFFICE and EMPLOYEE tables with 3 records each. Notice that not all the offices
in the OFFICE table need to be referenced in the EMPLOYEE table. However, the office id must
exist in the OFFICE table.

22

OFFICE

PK office_id

address

phone number

PRODUCT

PK product_id

description

price

stock units

EMPLOYEE

PK worker_id

name

date of birth

phone number

FK office_id

MASTER-DETAIL

FK worker_id

FK product_id

date

Figure 2.2: Final database diagram. The FK symbol indicate that the field is a foreign key.
Notice the direction of the lines. The side of the line with the fork indicates the “many” side. One
office is related to several employees, so the fork side of the line is in the EMPLOYEE table. One
employee is related to several products, and one product is related to several employees, then a
Master-Detail tabled is created.

case it is not as straightforward as to add a field to the EMPLOYEE table referencing the
PRODUCT table and doing the analogous for the PRODUCT table. This is because if an
extra field for the EMPLOYEE table is added containing the reference of the product which
was sold by the employee, then it only contains one of the many products the employee
could have sold. An analogous thing happens to the PRODUCT table, it could only save
one of the many employees that could have sold the product. To solve this little problem,
the creation of an extra table, called the Master-Detail table, is mandatory. This table
contains all the pairs of <employee id, product id> that indicate which employee sold which
product and an extra field containing the date the product was sold. The final diagram can
be seen in figure 2.2.

An important thing to highlight is then that whenever a many-to-many relation exists,
a specific Master-Detail table needs to be created to model in a correct way this relation.

23

2.2 nuScenes

NuScenes [6] is a dataset developed by Motional (formerly nuTonomy). The dataset is com-
prised by 1000 driving scenes, where 850 of these scenes are used for training and validation,
and the other 150 scenes are used for testing. Each scene is 20 seconds long and has data
collected by a series of sensors (Lidar, Radar, and Cameras) to provide the information
necessary to formulate several problems and use the information to train models for specific
tasks. As it might be obvious, one of those tasks is the trajectory forecasting for autonomous
vehicles, the focus of this thesis.

In the figure 2.3, we can see the dataset schema as a relational database model. This
makes it easier to understand how the dataset is organized and how the information can
be retrieved. The entire model will not be discussed here, but the main entities and their
fields that aid to retrieve the information needed for the trajectory forecasting task will be
discussed.

To understand the model, it is necessary to point out some specific details of the dataset
schema that can be seen in figure 2.3. The information is presented and can be handled as
a relational database model. The arrows are used to indicate that two entities are related,
but they do not specifically indicate the cardinality of the relation. However, based on the
diagram, it seems like the side without the arrow triangle indicates the “many” side of the
relation. Although cardinality is not stated explicitly, it can be deduced from the foreign
keys and a basic understanding of what the data represents. Every entity has an implicit
field that is not stated in its attributes, and that is the token field as a primary key. So,
for example, the scene entity has a field named token that identifies the scene in a unique
way. The relations are defined as well by the presence of a foreign key. We can see that the
instance entity is related to the category entity, therefore it contains the category token field
as a foreign key that points to the category it is referencing. All the foreign keys follow the
same format for the name of the field, that is “<entity name> token”. The instance
entity is not to be confused with the concept of instance discussed in the Relational
Database Model section. Instance is used in this context as an instance of an agent, for
example a specific vehicle or pedestrian in a scene. Finally, given the nature of the problem,
positions and orientations of the agents are the most valuable information to be used in
the trajectory forecasting task, so it is useful to know how this information is presented.
Positions are encoded in a 3D fixed coordinate system as (x, y, z) and rotations are encoded
as quaternions.

As it was stated before, the complete model will not be discussed. Furthermore, some
entities are basically self-explanatory from their name and attributes and provide a way to
limit the values some fields could take. For example, the category entity contains a limited
number of options in which an agent could be classified. In the next lines, the entities and
their fields that provide useful information needed for the trajectory forecasting task will be
explained.

1. Scene entity. The scene entity is used to model the 20 seconds long driving scene.

24

Figure 2.3: Nuscenes Database Schema. Obtained from: https://www.nuscenes.org/

nuscenes?

25

Each scene is comprised by several instances of the sample entity. It can be deduced
then that the scene has a one-to-many relation with the sample entity. The reader can
also notice that there is an arrow pointing to the sample entity. That is because the
scene entity has two fields pointing to the first and last samples in it.

2. Sample entity. A sample represents an annotated keyframe at 2Hz. It could be
seen more informally as an “instant” in time. The word “annotated” means that, at
this moment, neighboring vehicles and their information are annotated and stored.
Something interesting to note is that it has a self-relation indicated by the arrow
pointing to itself. The next and prev attributes define this self-relation. These foreign
keys point to the next sample and the previous sample, respectively. One of them
contains an empty string when the sample is the first or last of the scene. As it was
mentioned before, a scene is comprised by several sample instances, and these two
attributes allow to know the order of these annotated time steps.

Now that the sample entity has been described, we can address the first sample token
and last sample token fields in the scene entity. These fields contain the references
to the first and last sample of the scene, respectively.

3. Instance entity. An instance models the information of particular agents or objects
in the scene, e.g a particular vehicle or pedestrian. It is important to know that
instances are not tracked across different scenes. The field category token contains
a reference to the category entity which basically contains the categories in which
the agents can be classified, e.g vehicles, pedestrians, etc. To discuss the attributes
first annotation token and last annotation token, it is necessary to first clarify
what the sample annotation represents.

4. Sample annotation entity. As the reader might guess, an instance can be tracked
in several samples because agents might show up (and most likely they do) in several
annotated keyframes. Obviously, a sample has several instances (e.g., several vehicles
and pedestrians showing up in a specific moment in time) in it. So it can be noted
that the sample and instance entities hold a many-to-many relation. It is important to
remember from the Relational Database Model section above that many-to-many
relations require a specific Master-Detail table to deal with them. In this specific case,
the sample annotation table fulfills that function. Basically, this table contains the
record of each agent in time for a given scene. Visually, this entity can be seen as
a 3D box surrounding the agent in the video taken from the cameras, and the size
field contains the dimensions of this box. This entity contains the main information to
build the trajectories that are going to be given as an input to the forecasting model.
The translation attribute contains the position of the agent in the world coordinate
system, and the rotation field contains the rotation of the agent respect to the world
coordinate system axis (as a quaternion). This entity also contains self-referencing
attributes pointing to the next and previous sample annotations of the agent in time.

26

Once again, one of them contains an empty string if the sample annotation is the first
or last across the scene.

Once again, now that the sample annotation entity has been described, we can address
the first annotation token and last annotation token fields in the instance entity. These
fields contain the reference to the first and last annotation of the instance in the scene
respectively.

5. Sample data entity. In each sample, data is retrieved from different sensors. To be
more specific, vehicles are equipped with 5 radar sensors, 3 in the front and 2 in the
back; 6 cameras, 3 in the front and 3 in the back; and one Lidar sensor. All these
sensors have different frequencies, which means that they read information from the
real world at different points in time. The data read by these sensors is then stored
in files in the computer of the vehicle. The sample data entity is used to hold the
information of these files to be able to retrieve it when necessary. The filename field
stores the path where the respective file is located. The width and height fields only
apply when the file is in fact an image. The timestamp field contains the time stamp
in Unix format. This entity also contains self-referencing pointers to the next and
previous sample data from the same sensor that follows or precedes this in time. The
is key frame field (boolean field) indicates if the data belongs to a key frame. If this
is the case, the timestamp should be really close to the timestamp of the sample it
points to.

6. Ego pose entity. This table contains the ego pose of the vehicle retrieving the data
with the sensors. The ego pose contains the translation and rotation of the vehicle and
a timestamp.

Figures 2.4 and 2.5 show some illustrations that can give an easier way to understand
how a scene, or more precisely a sample from a scene, can be seen in the real world. In the
data type subsection of the appendix, the reader can find a data dictionary which contains
the data type for every field in the aforementioned tables.

2.3 Shifts

Shifts [18] is a dataset proposed by Yandex for the field of uncertainty estimation. The
dataset is comprised by 3 sub-datasets for the tasks of weather forecasting, machine transla-
tion and trajectory forecasting for autonomous driving systems. Our work will focus on the
trajectory forecasting dataset and, for the rest of the section, this dataset will be referred to
as the Shifts dataset.

Shifts dataset is easier to understand and to retrieve the data from. In figure 2.6, we
can see the scheme of how the data is stored. The dataset has 378000 scenes to be used
for training and 36000 scenes used for validation/testing. Each scene consists on a list of
50 time steps, and each time step consists on a list of the agents present in it with their

27

Figure 2.4: Nuscenes scene at specific time (sample table) tn. We can visualize how an instant in
time looks for a scene. The ego-vehicle is the one that retrieves data from the real world through
the sensors. There are two instances of vehicles, and two instances of pedestrians. Notice how the
category can have subcategories separated by a dot. Instances are stored in the instance table, and
their position and information through time is saved in the sample annotation table.

28

Figure 2.5: Nuscenes transition from instant tn to tn+1. The transition from tn to tn+1 is stored
in the sample annotation table. Instances have the same token (primary key) but the sample is the
one that is different. Keep in mind that more instances could have appeared or disappeared, e.g.
the red car.

29

Figure 2.6: Shifts Scheme. Each scene consists of 50 time steps. The first 25 of them are used as
the past, and the other 25 as the ground truth future.

respective information (position, rotation, etc...). The ego-vehicle information is stored in
a similar format, a list of 50 time steps. The first 25 time steps are used as the past, and
the other 25 time steps are used as the ground truth future to be compared with a model
prediction. Each time step is sampled at a frequency of 5 Hz, which implies that the task
consists on looking ahead 5 seconds into the future.

2.4 Data Format

As it has been seen in the previous subsections, data is organized in different ways through
each dataset. Nevertheless, neural network models (and machine learning algorithms in
general) receive information in a structured and standardized format through their input
layer. This section has the purpose of describing this format and it should be understood as
a preprocessing stage of the data before it is fed into the model pipeline. Figure 2.7 shows
how the data flows from the datasets to the pipeline model. It can be seen that preprocessed
data is stored on the disk as pickle files (a specific Python protocol) to save time as data is
read from these files when possible to avoid preprocessing the data again.

Preprocessed data is presented as a model comprised by several Python dictionary ob-
jects, which are very similar to a ’.json’ structured document. Figure 2.8 shows the central
scheme in a UML diagram of how both datasets are stored to retrieve the inputs for the
model.

The dataset class has four attributes. The agents attribute is a dictionary that contains
pairs of the form {<id>: agent object} in which the id identifies in a unique way each
agent present in the dataset. The ego-vehicles and non-pred-agents (i.e., those agents that
are not predicted) dictionaries have a similar structure. The ego-vehicles dictionary stores
information about the ego-vehicles and obtain the information through their sensors. It is

30

Figure 2.7: Dataflow Diagram. Preprocessed data can be used if it is available. In case it is not
available or it is necessary to preprocess the data again, data is read from scratch from the datasets
and after the preprocessing stage, a Python dictionary (similar to a .json file) is stored in disk and
in memory and fed into the model pipeline.

important to note that there exists a one-to-one relation between the ego-vehicles and the
scenes they record. The non-pred-agents dictionary stores agents that are not candidates to
have their trajectories predicted. This, in particular, depends on factors like the fact that
some agents may have too few points to build a decent trajectory or to be fed to the model
as input.

The agents class represents the structure for all the agents and ego-vehicles in the dataset.
The ego-id field refers to the id of the ego-vehicle that observed that particular agent. In
the case that the agent itself is an ego-vehicle, then that field contains the same value as the
agent-id field.

Each agent has a dictionary of their time steps identified as well by an id for each of
them in the entire dataset. The Timestep class models the structure of each time step for a
specific agent, and contains basic information such as the x and y coordinates, and the yaw
rotation in the XY plane.

Finally, to model the neighboring relations of each agent, the Context class is used. The
context-id is the same as the time step id used for the time steps for each agent, so once
again there exists a one-to-one relation between each time step and the context they define.
The neighbors dictionary of a context contains the ids of each agent present in a time step
for some scene. This allows to retrieve easily the neighbors each agent has at a specific step
in time.

This central scheme allows a flexible yet easy way to access the information and build
complex inputs as desired for the model. For example, if a model uses as input all the agent
trajectories, the agents dictionary can be used to traverse the timesteps dictionary of each
agent and obtain the needed information.

31

DATASET

+ agents: Dict

+ ego vehicles: Dict

+ contexts: Dict

+ non pred agents: Dict

AGENT

+ agent id: str

+ ego id: str

+ map name: str

+ timesteps: Dict

TIMESTEP

+ x: float

+ y: float

+ rot: float

CONTEXT

+ context id: str

+ neighbors: Dict

+ non pred neighbors: Dict

+ map: str

Figure 2.8: Dataset Model.

32

Chapter 3

ST-Transformer

As it has been mentioned before, seq2seq models have their roots in the NLP field, and
Transformers are not the exception. More explicitly, the Transformer architecture was ini-
tially proposed for the machine translation task, a kind of problem that benefits greatly from
attention models. The model proposed in this work is heavily based on Transformers, so it
becomes mandatory to dig deeper into their architecture to understand our proposal.

3.1 Transformers

The Transformer architecture was proposed in 2017 in the now famous “Attention Is All
You Need” [25] paper. As the name probably gives it away, it describes an attention model.
Attention models are those models that can “pay attention” to parts of a sequence to make
their prediction. This is an abstract concept and, in most cases, it can be seen as a score
that the model assigns to an element of a sequence to indicate how relevant this element is
for the final prediction.

3.1.1 Architecture

Transformer models for sequence-to-sequence problems involve an encoder-decoder archi-
tecture. The encoder is used to obtain information from the source sequence, and the decoder
is used to produce the target sequence based on the information provided by the encoder.

Figure 3.1 shows the Transformer model architecture. The block on the left is the encoder,
and the block on the right is the decoder. Let us consider the Positional Encoding and the
Multi-Head Attention modules as black boxes for the moment (in the following sections, we
will go deeper into those modules), and also keep in mind that the Multi-Head Attention
module receives 3 inputs that we will refer to as Xq, Xk, Xv; they correspond to the three
arrows that point to the Multi-Head attention block.

Both, the encoder and the decoder, receive as input in their first layer the input word
embeddings (keep in mind that it was proposed in the NLP field). Then they have a point-

33

Figure 3.1: Transformer Architecture for word sequence classification. The block on the left is
the encoder, and the block on the right is the decoder. The figure was obtained from the original
paper.

34

wise addition operation with a positional embedding vector that, as remarked before, will be
explained in another section. In the following paragraphs, both modules are briefly explained.

Encoder. This module consists on N identical layers connected to each other, where the
output of the previous layer is used as an input on the following layer. Each layer consists
on a Multi-Head Attention module, a residual connection with a normalization layer (Add
& Norm block) whose output is then fed into a feed forward module with another residual
connection and normalization layer. The first layer among those N receives as inputs in
the attention module the embeddings from the source sequence. They are used as the
aforementioned Xq, Xk, Xv inputs. The following layers receive the output of the previous
layer instead of the embeddings.

Decoder. The decoder has a similar structure to the encoder and consists as well on N
identical layers. The main difference is that the decoder makes use of two different attention
modules, one for the sequence that is being decoded (and that will be the output) and
another one to take into account the encoded information from the source sequence. This
is done by using the encoder output as Xq (queries) and Xk (keys) inputs in the second
attention module. This can be seen in Fig. 3.1 through the arrows that go from the encoder
output to the second attention block. Finally, the output of the decoder goes through a
linear layer and a softmax layer (when the problem being solved is cast as a classification
problem). In the case of solving regression problems, the softmax layer can be removed.

It is worth highlighting that the encoder always receives the source sequence as input,
but the decoder input depends on the mode in which the network is being used. During
training, the decoder could work under a technique called teacher forcing, in which the
ground truth target sequence preceding the element to predict is provided as an input to the
decoder. The other option would be to run the model during training in an autoregressive
manner. In that case, the decoder generates the output sequence from scratch and uses that
output at one time step as an input in the next time step, similarly as how RNNs work.
During inference, the decoder always works in an autoregressive manner.

Another important thing to take into account is that the residual connections (Add &
Norm block) in both the encoder and the decoder aim to attenuate the vanishing gradient
problem, due to the fact that these architectures tend to go deep, meaning that they have
multiple layers stacked one upon the other. Each of these blocks also contains a dropout
layer as a regularizer, to avoid overfitting.1.

3.1.2 Attention Mechanism.

The attention mechanism used in the Multi-Head Attention block in figure 3.1 will be ex-
plained in this section. We will suppose that the inputs Xq, Xk, and Xv are the same as the
embedding vectors stacked in a matrix X as columns, i.e.

1An implementation of the Transformer architecture in the Tensorflow framework can be found on:
https://www.tensorflow.org/text/tutorials/transformer

35

Xq = Xk = Xv = X.

Let us assume that we are given embedding vectors x1, · · · , xn of dimension m of a se-
quence of n elements as an input. Suppose that we also have parameters matricesWQ,WK ,WV

that belong to Rdk×m2. These matrices are used to perform linear transformations of the
vectors xi, with 1 ≤ i ≤ n, to another space of dimension dk and they are the parameters to
be learned. Let us denote then

qi =WQ xi, (3.1)

ki =WK xi, (3.2)

vi =WV xi. (3.3)

The idea is to use the vectors qi (referred to as “queries”) and kj (referred to as “keys”)
for all 1 ≤ j ≤ n to obtain an attention score for the elements xi and xj of the sequence.
Such a score will come weighting the vector vj (referred to as “value”) in the encoding of
the sequence element i. This can be done by using the scaled dot product between the
two aforementioned vectors to obtain a denormalized score,

si,j =
qTi kj
dk

, (3.4)

and then the attention scores are normalized between all the scores obtained for a fixed query
vector and all the key vectors. This is done by applying the softmax function as follows

ai,j =
exp(si,j)Pn
k=1 exp(si,k)

. (3.5)

Note how in equation 3.5 the index i is fixed in all moment, reflecting the fixed query
vector qi, and the index j is used to run through all the key vectors kj. These scores are
used to obtain the attention computation by performing the weighted sum

zi =
nX

k=1

ai,k vk. (3.6)

Now, given the fact that, through the implementation, cache memory operations are
cheaper in a computer, vectors xi are practically row vectors rather than column vectors.
As matrices WK , WQ, WV are parameter matrices to be learned and are initialized with
random numbers, in practice their transpose matrix does not need to be calculated and they
actually belong to Rm×dk . This allows to express the above operations packed as matrices
operations. Hence, if X denotes the sequence embeddings stacked in rows as a matrix, and
Q (all n queries), K (all n keys), V (all n values) denote their respective projections, we
have

2The subindex k in dk is chosen because it denotes the dimension of a vector referred as “key”.

36

Q = XWQ, (3.7)

K = XWK , (3.8)

V = XWV . (3.9)

To sum it up, we have that

Z = Softmax

QKT

dk

!
V, (3.10)

where the Softmax operation is computed through the row axis, which means that the
normalization is applied through row features rather than column features (to implement
Eq. 3.5). Z contains the attention output of the sequence. This attention mechanism is
named self attention when the attention is computed between the elements of the sequence
itself (i.e. q and k have been estimated from the same x). As it was mentioned before, the
operation

QKT

dk
is known as the scaled dot product and it was originally proposed because the authors
found out that it yielded better results.

Masking

The attention mechanism explained above has an advantage over RNNs architectures like
LSTMs and GRUs, and it is that the sequence length is not limited by the memory cell
capacity to store information. Nevertheless, at a practical level, the frameworks used to im-
plement these architectures usually require to establish a maximum length to the sequences,
so that the tensors representing the inputs have a uniform shape. As the reader might
guess, in real life problems, the sequences fed to the model will definitely not have the same
length, so techniques like padding and truncating are used to deal with shorter and longer
sequences, respectively, than the fixed length sequence that was chosen.

Padding consists on filling the sequence with the needed number of items so that the
sequence reaches the maximum length established. The sequence is filled with a special
item (named a padding token in the NLP context). The problem with padding is that the
sequence that is being modified now contains information that does not represent the real
input. Masking helps to “remove” this extra information. This is easily done with the
attention matrix Q×KT from Eq. 3.10, before applying the softmax function. The idea is
that the padded elements of the sequence should not provide information for the problem, so
their weights indicating their contribution to the output is forced to 0 values (or something
very close to 0). The way to achieve this is to add a big negative number like −1e9 to the
product, so that, when the softmax operation is applied, the score obtained is practically
zero. This is implemented by having a matrix M that contains −1e9 in the position of the
inputs that are padded and 0 otherwise. Then the element-wise addition between M and
the attention matrix Q×KT is performed to obtain

37

Z = Softmax

M +

QKT

dk

!
V, (3.11)

where Z contains the output of the attention module, but discarding the masked elements.
Let us imagine a toy example in which we have a sequence of length 3, but the maximum
sequence length has been fixed to 4. Hence, the last element of the sequence is padded.
Matrix M then looks like

M = −1e9

0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

 .

Let us note that the last row, which practically represents the padded element, is not
actually completely masked. This is because, usually, deep learning models go too deep
and it will result in the output respecting the last element to contain values that still need
to be discarded, so a masking process is still needed when calculating the loss function, or
whenever the output of that element is going to be used and has an impact on the next
layer. Hence, the reason for not padding the last row is to avoid unnecessary operations that
require extra time.

Other scenarios in which masking becomes useful, is when some items of the input
sequence are missing. A masking matrix allowing to represent the missing data is built in a
similar fashion. In that way, their contribution to the attention output is removed.

3.1.3 Multihead Attention

The attention mechanism explained in the previous section can be generalized in an easy way
to have several of these attention mechanisms running in parallel. A single of these attention
mechanisms is referred as an attention head. The way the authors justify the need for several
attention heads is by stating that it allows the model to jointly attend to information from
different representation subspaces at different positions, i.e. to have some multi-modality.
This is achieved by making every attention head have its own WQh, WKh, WV h parameter
matrices with 1 ≤ h ≤ # heads. Once again, this can be packed as matrix operations. In
fact, some difference actually exists at the implementation level. The idea consists in having
the dimension dk of the original matrices WQ, WK and WV be a multiple of the number of
attention heads that are desired in the model, and then the dimension dkh of the matrices
of each head is

dkh =
dk

heads
.

So, if the model has dk = 512 and 8 attention heads, then every WQh ∈ Rm×64. The same
applies to the WKh and WV h matrices.

38

Let us suppose that we are given matrices A ∈ Rm×n and B ∈ Rm×p and the row vector
x ∈ Rm (or x ∈ R1×m). Let us denote [A|B] ∈ Rm×(n+p) the matrix that results from
concatenating matrices A and B along their columns. It is known that

x[A|B] = [xA | xB],

where both xA and xB are vectors that belong to R1×n and R1×p respectively.

Based on this, it can be seen that if we have r attention heads, we can pack all the WQh,
WKh and WV h parameter matrices for each attention head as

WQ = [WQ1|WQ2| · · · |WQr], (3.12)

WK = [WK1|WK2| · · · |WKr], (3.13)

WV = [WV 1|WV 2| · · · |WV r]. (3.14)

Using equation 3.7, we have that

Q = XWQ

= [XWQ1|XWQ2| · · · |XWQr]

= [Q1|Q2| · · · |Qr]

and the same goes for K and V . The attention mechanism is then applied as explained
before, and this yields matrices Z1, Z2, · · · , Zr, which are concatenated through their columns
to obtain

Ẑ = [Z1|Z2| · · · |Zr],

which packs the attention outputs of every attention head. Finally, this matrix is multiplied
by another matrix WO ∈ Rdk×dk that is trained in conjunction with the rest of the model to
obtain the attention output

Z = ẐWO. (3.15)

3.1.4 Positional Encoding

Time is a crucial factor in time series problems. Similar elements of a sequence that show up
in a different time step might end up having a remarkable difference in the overall meaning
of the sequence. More so, the meaning of an element in a sequence is usually conditioned
on the elements past to it. Therefore, the management of the time variable is something
models have to take into account. It is clear how RNNs incorporate the time factor into their
architecture. All the elements of a sequence are processed one by one, following the sequence
order. In the case of gated RNNs, like LSTM and GRU cells, the output of the model at
time step t is heavily conditioned on the past elements through the gating mechanisms these

39

cells implement, and it uses the previous output in time step t− 1 as an input of the model.
The Transformer architecture involves several matrix operations, but none of them takes into
account the time variable. To solve this, the authors of [25] propose a mechanism named
Positional Encoding to indicate to the network, in some way, the order of the elements
of the sequence.

Positional encoding aims to force Transformer models to learn time dependencies. Several
ideas might come into mind to accomplish this objective. The first naive solution would be
to add to the input a positive integer that indicates the position of the element along the
sequence. Hence, the first element would include as an input the number 1, the second
element receives the number 2, and so on. The problem with this solution is that the model
might receive sequences of a length it has never seen before, or the sequences seen during
testing could be even bigger than sequences during training and that would hurt the model
performance.

Another solution could be to add a number r ∈ [0, 1] that indicates the relative offset of
an element of the sequence in comparison with the length of the sequence as in

offset

N

where N indicates the total length of the sequence. The problem with this solution is that
the numbers added are not spread uniformly and they depend on the size of the sequence,
so it could be expected that the model behaves differently with really long sequences in
comparison to really small sequences.

The solution proposed in [25] uses sine and cosine functions to tackle the problems men-
tioned above. The intuitive idea behind the following formula is to generalize in some way
the binary counting system. Let xt ∈ Rd be the embedding vector of an element in a se-
quence, where d ≡2 0. The subindex t indicates the position of the element in the sequence.
The authors define the positional embedding (or positional encoding) vector as

pt
i ≜

(
sin(wk+1 · t) if i = 2k,

cos(wk+1 · t) if i = 2k + 1,
(3.16)

where k ∈ N ∪ {0} and

wk =
1

100002k/d
(3.17)

and the super index i indicates the ith entry of the vector that is being calculated. It is easy
to see from the definition of the frequency in the sine and cosine functions that, as the value i
increases, the frequency decreases. This implies that, as i grows, the change of the positional
encoding at that entry becomes smaller, which can be interpreted as a generalization of the
binary counting system in the continuous space. From what we explained, the positional
encoding vector at time step t has the following form

40

pt =

sin(w1 · t)

cos(w1 · t)

...

sin(wd/2 · t)

cos(wd/2 · t)

. (3.18)

A desired characteristic of the positional encoding vectors is that they should be unique
for each time step. The following paragraphs have the objective to prove that the authors
proposal do in fact yield unique vectors for each time step.

The period of a sine function of the form sin(c · x) is p = 2π
c
. Therefore, if t is a natural

number, the values y for which sin(c · y) = sin(c · t) holds, are of the form

y = t+
2nπ

c
= t+ n p, (3.19)

with n ∈ N.

Theorem 1. Suppose that we are given p ∈ I (irrational numbers) and t ∈ N. Suppose that
y has the form

y = t+ np,

with n ∈ N. Then, for any a0 ∈ N we have that

y ̸= t+ a0.

Proof. To prove this, let us assume that the equality holds for some a0 ∈ N. It follows that

t+ a0 = t+ np

⇔ n =
a0
p

⇔ p =
a0
n
.

As we supposed that p ∈ I, then we have reached a contradiction because p would be
rational. Hence, a0 /∈ N. ■

Theorem 1 basically states that if the period of the sine function is irrational, then the
result of the sine function applied to each time step will be unique (since we deal only with
integer time-steps). Now, it can be proven that 2π

wk
yields an irrational number. If wk is a

rational number, then it follows directly that 2π
wk

is irrational. We have to consider then the
case when wk is irrational. For that, we state the following

41

Theorem 2. If c is irrational and is not a rational factor of π, i.e.

c ̸= rπ

with r ∈ Q, then 2π
c
is irrational.

Proof. We will proceed by contra positive. Let us suppose then that 2π
c
is rational. We need

to prove that either c is rational or c can be expressed as c = rπ with r ∈ Q.

As we have supposed that 2π
c
is rational, then it can be expressed as the ratio of p and q

with p and q being relatively prime. So

2π

c
=

p

q

⇔ 2q

p
π = c

⇔ rπ = c

and as we can see from the last equality, c can be expressed as a multiple of a rational
number and π. Hence, if c is irrational and can not be expressed as r times π with r ∈ Q,
then 2π

c
is irrational. ■

The above result states that if the constant c in the period of a sine function is irrational
and not of the form of rπ with r ∈ Q, then the period is irrational. This combined with
the result from Theorem 1 leads to the positional encoding vectors for each time step being
unique. But there is still one piece of the puzzle missing. We need to prove that when
wk, defined as proposed by the authors, yields an irrational number, i.e. that it can not be
expressed as rational multiple of π.

Theorem 3. Given wk ∈ I defined as in equation 3.17 for fixed values k and d. If wk = rπ
holds for a value r, then r /∈ Q.

Proof. We will proceed by contradiction. Let us suppose that

wk = rπ, r ∈ Q.

This implies that there exists positive integers p and q relatively prime such that

p

q
π =

1

100002k/d

⇔ π =
q

p

� 1

100002k

�1/d

.

For ease of manipulation, let us define c = q
p
and y = c

�
1

100002k

�1/d

. We can see that y is

a root for the polynomial

42

xd − cd

100002k

and, as c is a rational number, it implies that y is an algebraic number. We have then
reached a contradiction, because that would imply that π is an algebraic number, and it is
known that π is a transcendental number. Hence, when wk = rπ holds for a given wk ∈ I, r
can not be a rational. ■

With these three theorems, we can now state that for any a0 ∈ N we have that

sin(wk · t) ̸= sin(wk · (t+ a0)), (3.20)

and the same can be deduced for the cosine function. Therefore, the positional encoding
vectors for each time step are unique. Even more, each positional encoding element is unique.

The authors also state that they chose function 3.16 because they hypothesized that it
would allow the model to easily learn relations between relative positions of the elements in
the sequence, given that for any fixed offset m there exists a linear transformation3 T such
that

pt+m = T (pt). (3.21)

The final embedding vectors are then obtained by adding the original embedding vectors
and their respective positional encoding vector, so we have

x̂t = xt + pt, (3.22)

and now it becomes clear why the positional encoding vector dimension was constrained to
have the same dimension as the embedding vector. To summarize, the positional encoding
vector proposed has the following characteristics:

1. It yields a unique position vector for each time step t.

2. It can be generalized without effort to longer sequences that were not seen during
training.

3. The distance between two time steps from sequences with different lengths is uniform
and consistent, i.e, the values for the positional vector are given by an equation that
depends on the position of the embedding and change in a consistent manner, not
depending on the size of the sequence.

4. For any fixed offset m, there exists a linear transformation T such that equation 3.21
holds.

3A proof of this claim can be found on : https://timodenk.com/blog/

linear-relationships-in-the-transformers-positional-encoding/

43

3.1.5 Advantages and Disadvantages of Transformers

As it has been seen all along this section, Transformers are attention models that aim to use
the attention mechanism to get better results. There are other attention models proposed
within the RNN architectures using LSTM or GRU cells, and they implement encoder-
decoder architectures as well. They do not require mechanisms like positional encoding to
include the time variable, so why would a complex architecture like the transformer would
be preferred?

While it is true that positional encoding is not the most natural way to feed the time
variable to the model, and there have been other proposals like using a multilayer perceptron
(still not a natural way), there are advantages of the attention mechanism proposed with the
transformer architecture. One of them is that for problems that do not require a time variable
but could benefit from an attention mechanism, removing the positional encoding yields an
attention model without further efforts. Note that the time factor is managed solely through
the positional encoding and nowhere in the attention mechanism there exists a relation with
time. One could think that the same applies for RNNs with attention mechanisms, but they
usually run over the output of each time step, and therefore the time variable is present at
the attention mechanism as well.

Other of the main advantages Transformers has over RNNs is that they do not limit the
number of elements that a sequence can have. RNNs with gating mechanisms like LSTMs
use their memory cell to process sequential inputs, but, as the number of the sequence starts
to grow beyond certain limit, the performance of the model starts to decrease, given the fact
that they need to share this memory along the entire sequence. Transformers, on the other
hand, do not have this problem; the limit on the sequence they can process depends more
on the hardware rather than on an inherent feature of their architecture.

Given the fact that Transformers process sequences as a whole rather than input by input,
their architectures can be more easily parallelized than RNNs. Nevertheless, as it will become
clearer in the next sections, there are advantages in some cases as processing sequences in
a more “natural” way with an autoregressive approach rather than using mechanisms like
teacher forcing that are easier to parallelize.

3.2 ST-Transformer

Now that the Transformer architecture has been explained, we will go through the architec-
ture we propose as the main focus of this work. The idea of the proposed model is to tackle
the Trajectory Forecasting problem from two dimensions: the spatial dimension and the time
dimension. The time dimension comes with no surprise, given the fact that we are stating
the problem as a seq2seq problem. On the other hand, the spatial dimension does come
as a natural way to frame the problem if you consider how agents move through a physical
space, taking into account how the actions of the other agents affect their own actions. For
example, consider figure 2.4. Imagine the vehicle represented by instance 2 moving to the

44

right lane. This now enables the vehicle represented by instance 1 to be able to go faster
and even occupy the physical space that vehicle 2 left. The idea to model the problem from
a spatial dimension comes from this intuition, and we hoped that this would help the model
in performing a better prediction.

3.2.1 Input Sequence Format

Before we dive into the model architecture, a view of the input sequence shape might help to
ease the understanding of the model. Imagine that we have an agent denoted by the index
a. The features used as input for this agent are the relative position (xa, ya) and the relative
angle θa. When we say relative, we mean relative to a fixed time step for the ego-vehicle (i.e.,
the vehicle from which the sensory data were acquired), so that the position and the angle of
the ego-vehicle at that time step are treated as the origin and the axis rotation respectively
(see figure 3.2). This fixed time step is considered as time step zero and marks the boundary
from the past and the future (the one that will be predicted). The time steps from the past
are represented by a negative integer, and the time steps from the future are represented by
a positive integer. Hence, basically, the input is conformed by all the negative time steps up
to the zero time step, and the future time steps are the ones that the model must predict to
be compared with the ground truth time steps (positive time steps) during training.

All the agents features in each time step are centered and rotated to the new origin and
axis rotation. The idea to represent each input in this format is to have space invariant
features rather than using the global coordinates defined by each dataset. To consider the
spatial relations between the neighbors of a scene at each step, we build matrices that contain
each neighbor’s features along a fixed row for each agent. Then, each time step is represented
by each of those matrices. Figure 3.3 should make it easier to understand. It is important
to understand that each neighbor remains in the same row along the whole sequence.

Figure 3.4 shows how the masking of the inputs works. Masking in this model is really
important because some neighbors could have information missing in some time steps due
to being blocked by other objects or simply because they were out of the detection area of
the sensors. The rows of the mask matrix represent the neighbors and the columns represent
each time step for each neighbor. It is important to note that the mask in the figure has the
first element of the sequence in the most right column and the last element in the sequence
in the first column. It was depicted this way to make it easy for the reader to imagine to
rotate the mask to match the input along the depth dimension and see how each value of
the matrix masks the corresponding row of features in the input.

45

ego-
vehicle

car 1

ego-
vehicle

car 1

Time Step 0

Time Step 1

Figure 3.2: Relative Transformations. Time Step 0 is selected as the origin time step, so the
position of the ego vehicle at that time step, namely (x0, y0)ego, becomes the origin. The red
line indicates the current axis with respect to which rotations are measured. The yellow dashed
line indicates the axis that will be chosen as the new axis. Car 1 position and rotation are then
transformed in all the time steps to the new origin and the new axis. Note that this applies to
negative time steps as well (the past) and to the time steps of the ego-vehicle. Hence, after the
transformation, the position of the ego-vehicle at time step 0 is always (0, 0) and it has a rotation
of 0 degrees.

46

Features

N
eig
h
b
o
rs

Features

N
eig
h
b
o
rs

Features

N
eig
h
b
o
rs

TIME

Figure 3.3: Input Shape. The neighbors dimension is along the rows dimension and the time
dimension is along the depth dimension.

Features
N
eig
h
b
o
rs

Features

N
eig
h
b
o
rs

Features

0 0

1 0

0 1

0

1

0

1st2ndn

Sequence

Neighbors

Figure 3.4: Input Masking. The mask is represented by the table at the bottom corner of the
image. The black rectangles in the input indicate that the values are masked.

47

3.2.2 Model Architecture

Now that the input format has been described, the model will be easier to understand.
Figure 3.5 shows the architecture of the model proposed in this work. The model works with
an encoder-decoder architecture. The encoder is used to process the input of the model,
and the decoder is used to produce the target sequence in an autoregressive manner.

The encoder is conformed by all the blocks up to the Time Encoder. The inputs of this
part of the model consist on the raw inputs in the format explained in the previous section,
and bitmaps indicating the drivable area, lane division, and the position of the agents along
their trajectory. The raw inputs go through a feature embeddings layer (basically a MLP)
to get higher dimensional features. The bitmaps, on the other hand, are processed by a
simple CNN module to produce feature maps. These feature maps are concatenated with
the feature embeddings and then the first transformer comes in the scene. This module pays
attention at a spatial level, because the rows contain the neighbors present at a scene for a
fixed time step. As it was stated in the previous section, Transformers can yield attention
mechanisms for problems that do not require a consideration for the time variable, by simply
removing the positional encoding (subsection 3.1.4).

The output of the spatial encoder is transposed along the neighbors and sequence dimen-
sions to be fed into a Transformer Encoder as the XK (i.e., the keys) input of the attention
mechanism in all the encoder layers. The inputs X for this module come from a repre-
sentation of the inputs parameterized as “speeds” and with the time dimension along the
rows as well. We refer to them as speeds because we represent each input as a difference
vector for each agent a as

∆(t)
a =

�
x(t+1)
a − x(t)

a , y(t+1)
a − y(t)a

�
,

and, as the time between each input is constant, they can be seen as speeds. These values
go through the positional encoding of the time Transformer Encoder and then they are used
as XQ and XV for this second attention mechanism, using then the output of each layer as
the input for the next layer. This module now pays attention at a time level, because the
rows now contain each time step and the neighbors are positioned across the depth of the
input.

Each transformer receives as inputs their respective masks that indicate if a neighbor
information is present or not at a given time step. At this stage, the encoding phase has
finished. The decoding phase involves just a time Transformer Decoder similar to the normal
Transformer, using the same speed format described above. This means that the trajectory
needs to be reconstructed by performing the sum of the outputs at each future time step
to obtain the final trajectory. From figure 3.5 we can see that the decoder works in an
autoregressive manner even during training, rather than with the teacher forcing approach.
This was chosen that way because we saw that it hurt the performance of the model if teacher
forcing was used, something that the work in [15] work also takes into account.

Finally, the loss function used to train the model is the Mean Squared Error (MSE)
function

48

MSE(Ppred, Preal) =
1

T

TX

t=1

1

2

h
(xpredt − xrealt)

2 + (ypredt − yrealt)
2
i
, (3.23)

where Ppred and Preal correspond to the sets of points that conform the predicted and real
trajectory, respectively, and T corresponds to the number of points in the trajectory.

At this point we must take the time to clarify something that might not be as evident
as we would like it to be. Based on figure 3.3 the reader might think that the Transformer
implemented in this work looks really different from the original model in [25], but that is
not the case. As a matter of fact, the attention mechanism comes from the same product of
the matrices QK. The difference from the spatial and temporal attention basically depends
on which dimension is along the rows (the neighbors dimension or the sequence dimension)
and the remaining dimension could be seen as an extended batch dimension. Technically
speaking, the implementation of this model looks like the implementation of the original
Transformer, with differences in the masking mechanism, the use of the positional encoding,
and in case of the Time Transformer the fact that it receives the output of the spatial
encoder as XK rather than the same input as the XQ and XV inputs (like in the original
Transformer).

49

Q

Raw Inputs

Spatial Encoder

Bitmaps

CNN
 Module

Transpose
Neighbors and

Sequence
Dimensions

Concat

Time Encoder

Feature
Embeddings

V

K

Output

Time Decoder

Autoregressive

Raw Inputs
(Speed Format)

K

Q

V

Figure 3.5: Model Architecture. The inputs for the model comprise the input sequence explained
in the previous subsection and their respective masks, that indicate if a neighbor’s information is
present or not at a given time step. The bitmaps used as an extra input contain information of the
drivable areas and their lane divisions. There is a bitmap for each neighbor in the scene because
they also contain each neighbors past time steps stamped in it. The Encoders are almost the same
as the Encoders proposed for the original Transformer, so the interpretation of spatial or temporal
attention comes from the elements that are in the rows. If the neighbors are in the rows of the
input, we call it Spatial Encoder. If the sequence elements are along the rows, then we call it Time
Encoder. In the case of the Time decoder, it is also the same as the original Transformer. In
this case we do not indicate the K, Q, V inputs because they work the same as the Transformer
proposed in the NLP field.

50

Chapter 4

Experimentation and Results

In this chapter, we discuss the results obtained with the model proposed in this work. First,
we start by specifying the hyper parameters used to train the model, as well as the optimizer
chosen to perform the training. We also mention a couple of considerations taken into account
to obtain better results. We specify in which environment the training was executed. Then
the results that we obtained are discussed and compared through ablation studies carried
out to analyze how much each part of the model contributes to the final result. Finally, we
visualize some of the obtained results, altogether with the spatial attention computed by the
spatial module to analyze in which parts is this module focusing its attention.

4.1 Training

In table 4.1, the reader can see the values chosen for the model hyper-parameters. The
temporal and spatial dimensions dk are fixed to a value of 256 as proposed in other papers
like the AgentFormer [15]. We explored other values like 512, but they did not yield better
results and made the training process slower. In the same way, we choose to stick to only 1
layer for the spatial encoder, because more layers did not improve the results and made the
training phase slower and, in some cases, it even degraded the performance of the model. This
could be due to the model having a too large number of parameters to adjust in comparison
to the data available to train the model.

The convolutional module is a hand-crafted module with no greater thought, given the
fact that the bitmaps given as inputs are relatively simple.

At this point, we must mention something important. The original Transformer model
contains a feed-forward layer after each encoding and decoding layer that are supposed to
push the transformer out of local minima. Nevertheless, the model proposed in this work
has those layers removed and it is why the feed forward hidden dimension parameter is
missing from table 4.1. The feed-forward module was removed because the results obtained
were better that way. This could be due to the little data used to train the model in
comparison to the data available to train models in the NLP field. It is left as a future
work to reactivate the feed forward layers and see if better results can be obtained. It is

51

hypothesized that it should be the case given that researchers in [17] explored the function
of the feed forward layers in transformer-based language models and found that they operate
as key-value memories.

The softmax function used for the attention computation in equation 3.11 is also substi-
tuted by a sigmoid function and, as a consequence, the attention modules do not normalize
their attention. This was proposed in [24], arguing that there was no reason for why the
normalized attention would help the model. This comes in opposition to the Transformer in
the NLP context, in which the point of normalizing the attention is to weight how relevant
a word is to another but considering the effect of other words at the same time. The work
in [24] got to see through ablation studies that changing the softmax function by a sigmoid
function, yielded better results.

Model Parameter Value

Spatial Encoder Layers 1
Temporal Encoder Layers 2
Temporal Decoder Layers 2

Spatial dk 256
Temporal dk 256

Attention Heads 8
Convolutional Module

Convolution Layers 4
Output Filters by Conv [16, 16, 16, 1]

Kernel Sizes [5, 5, 5, 7]
Strides [2, 2, 2, 2]

Table 4.1: Model Hyper-Parameters

As it was mentioned in the previous chapter, the loss function that is being minimized
is the Mean Squared Error (MSE)3.23 between the (xpred, ypred) coordinates predicted
by the model and the real (xreal, yreal). Table 4.2 contains the parameters chosen for the
optimizer. We are using the Adam optimizer with 1500 warm-up steps for the learning rate,
after which the learning rate starts to decay. The learning rate equation we use is

LR(step) = dk ·min

(
1√
step

, step · warmup steps−1.5

)
. (4.1)

52

Figure 4.1: Learning rate vs. optimization step.

Figure 4.1 shows the plot of the learning rate vs. the step variable with 1500 warm-up
steps and dk = 256. We hope that this plot makes it easier to see the effect of the parameter
warm-up steps.

The batch size was set to the small value of 64 because, as the model is being trained in
an autoregressive manner, the chain rule needs to be applied multiple times to calculate the
gradient, and that consumes a lot of memory resources. Hence, when the batch size becomes
too big, the GPU runs out of memory.

Optimizer Parameter Value

Optimizer Adam
Learning Rate Custom

Learning Rate Warm-up Steps 1500
β1 0.99
β2 0.9
ϵ 1e− 9

batch size 64

Table 4.2: Optimizer parameters.

The training is carried out in the cluster of CIMAT using a NVIDIA Titan RTX GPU
with 24 GB. Each node of the cluster has access to two of those graphic cards; the experiments
make full use of them because the training phase is divided between both GPUs to save time.
The training process is run during 130 epochs and each epoch of training takes approximately
1 hour to complete.

As it was mentioned at the beginning of the chapter, a few ablation studies are conducted

53

5.5

6

6.5

7

7.5

8

8.5

9

9.5

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Figure 4.2: ST-Transformer: Train Loss.

6

7

8

9

10

11

12

13

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Figure 4.3: ST-Transformer: Eval Loss.

54

7
8
9
10
11
12
13
14
15
16
17
18

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Figure 4.4: ST-Transformer without CNN: Train Loss.

to evaluate how much each part of the model contributes to the final result. We evaluate
the performance of three variants of our model:

1. ST-Transformer. The main model proposed in this work, described in details in
chapter 3.

2. ST-Transformer without CNN module. The same model as the ST-Transformer
but with the convolutional module to process bitmap information removed, i.e. such
that we use only trajectories information.

3. Time Transformer. This model is comprised by the time encoder and the time
decoder of the ST-Transformer. Basically, it is the same as the model proposed in [13]
but trained in an autoregressive manner.

All the models variants are trained with the same number of epochs mentioned above
and in the same environment. Figures from 4.2 to 4.9 make reference to the training of the
models with the Shifts dataset (see Chapter 2). This dataset has been chosen to carry the
main training because it contains much more data and allows a better training of the model.

Figures 4.2 and 4.3 show the loss reported by the ST-Transformer model with the training
and evaluation datasets, respectively. On the other hand, figures 4.4 to 4.7 show the loss
reported by the ST-Transformer without the CNN Module and the Time Transformer alone,
with the training and evaluation datasets. As we can see, the Time Transformer alone starts
to overfit the data really quickly; from epoch 30 to around epoch 85 the general trend is
that the evaluation loss starts to increase while the training loss keeps decreasing, a clear
evidence of overfitting.

Figures 4.8 and 4.9 help to visualize the difference on how the Time Transformer alone
is overfitting the data, in comparison with the ST-Transformer. This was expected, given
the fact that the amount of parameters to adjust for the Time Transformer is much lower
and therefore it does not require a great number of iterations.

55

8

10

12

14

16

18

20

22

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Figure 4.5: ST-Transformer without CNN: Evaluation Loss.

4.5
4.6
4.7
4.8
4.9
5

5.1
5.2
5.3
5.4
5.5
5.6
5.7

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Figure 4.6: Time Transformer: Train Loss.

7
7.2
7.4
7.6
7.8
8

8.2
8.4
8.6
8.8
9

9.2

0 10 20

7
8
9
10
11
12
13
14
15
16
17

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Figure 4.8: ST-Transformer: Smoothed Evaluation Loss.

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

8.8

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Figure 4.9: Time Transformer: Smoothed Evaluation Loss.

57

4.2 Quantitative Results

As we have seen in the previous section, the ablation studies we have conducted involve 3
models, one is the ST-Transformer described in Chapter 3, the second model is the same
with the CNN module removed, and the third module is just the temporal Transformer.
All these models have been trained in an autoregressive manner. In the following, we use
the mean average displacement error (mean ADE) and mean final displacement error (mean
FDE) as metrics.

Table 4.3 show the results obtained for the Shifts dataset (see Chapter 2). We train the
models by taking into account at most 5 neighbors (the closest ones). It is important to
highlight which agents we are considering as neighbors. For this work, we are using only
vehicles as neighbors and the vehicles that are not candidates for the trajectory prediction
task (the dataset creators decide which is and which is not) are ignored. This was done
because it helped to simplify the preprocessing phase, but we are aware that other type of
agents (pedestrians, cyclists. . .) or even the ones that are not candidates could also provide
useful information.

As the Shifts dataset intended, we use 25 observation points as the past and make the
prediction of 25 points into the future. In Table 4.3, we can see that the model proposed
in this work performs the best among the three. We can also see that the ST-Transformer
without the convolutional module outperforms the Time Transformer.

Model Mean ADE Mean FDE

ST-Transformer 1.82 4.49
ST-Transformer no CNN 1.93 4.77

Time Transformer 2.12 4.97

Table 4.3: Results reported in meters by each model on Shifts dataset [18].

To be able to get some reference on how the model is performing, table 4.4 shows the
results publicly available from the 3 best models on the Shifts challenge according to their
website. We can see that there are two new metrics in it, the WADE and the WFDE. WADE
stands for Weighted Average Displacement Error and measures the output of the model in a
weighted manner. It is important to keep in mind that the shifts challenge has the objective
of measuring the uncertainty of a model’s output, which should be a distribution rather than
a single trajectory. So the weighted part tries to capture the output of the model taking into
consideration the probability that the model assigns to a certain trajectory. Likewise, the
WFDE is the weighted version of the Final Displacement Error.

58

Rank Team WADE MIN ADE WFDE MIN FDE

1 SBteam 1.85 0.526 4.43 1.02
2 SBteam 1.84 0.526 4.41 1.02
3 Alexey & Dmitry 1.33 0.495 3.16 0.94

Table 4.4: Results reported in Shifts challenge. The results can be checked in the challenge official
website https://research.yandex.com/shifts/vehicle-motion-prediction

To train the models with the NuScenes dataset (see Chapter 2), we apply transfer learning
because the data available in NuScenes for these models is too little. Table 4.5 shows the
results obtained for the NuScenes dataset. We have also used at most 5 neighbors, using
10 observed points from the past, and predicting 12 points into the future. The first row
serves as a reference with the state of the art Interaction Transformer model proposed
in [24]. We can see that, with this dataset, the model that performs the best is the Time
Transformer. Despite doing transfer learning, we can see that the model’s performance on
this dataset is considerably worst. We think that there might be two factors that have an
impact on the model. The first factor is the frequency at which data is sampled from both
datasets. Let us recall that Shifts samples data at a frequency of 5Hz, in comparison with
the 2Hz frequency of NuScenes. Hence, when doing the initial training of the model with
the 378,000 inputs from Shifts, we might obtain a model that has learned really specific
characteristics from the sampling frequency from Shifts. Some images obtained from the
qualitative evaluation also support that this could be the case, because from those images
you could see that the last prediction of the model for each trajectory of the NuScenes
dataset tended to be much more far away from the ground truth, therefore it might be the
case that the model is taking much more little steps for each prediction (because it learned
that from the Shifts dataset based on the greater frequency) and the final point predicted
for each trajectory is more far away.

The other factor that we think that it might impact on the model, is the fact that
NuScenes contains several scenes from Singapore and vehicles drive on the left side of the
road. And once again, given that the model was heavily pretrained on Shifts dataset, it
could have learned those patterns from the data.

Model Mean ADE Mean FDE

Contextual Perception Transformer 0.76 1.25
ST-Transformer 4.00 8.41

ST-Transformer no CNN 4.81 10.08
Time Transformer 3.84 8.11

Table 4.5: Results reported in meters by each model on NuScenes dataset.

59

4.2.1 Data Augmentation

Data augmentation is also applied on the NuScenes dataset. Data augmentation in these
datasets is relatively easy because one can perform random rotations of the trajectories to
get new data. We have performed 4 rotations to each input in the NuScenes dataset in the
range of [π

4
, π], so we end up with four times the amount of the original data. Nevertheless,

the other models could not be tested with this data augmentation technique because the
Time Transformer alone receives velocities rather than positions, and velocities are invariant
to rotations. Hence, the data augmentation process would yield the same inputs. Table 4.6
show the metrics obtained with the data augmentation approach.

Model Mean ADE Mean FDE

ST-Transformer 4.00 8.41
ST-Transformer data augmentation 3.60 8.30

Table 4.6: Results reported in meters on NuScenes dataset with data augmentation.

4.3 Qualitative Results

Quantitative results allow us to evaluate the model in a rigorous way, but a qualitative
analysis might give some intuition on what is going under the hood, specially when working
with really complex models. In this specific scenario, qualitative results are easy to obtain
given the fact that we can plot the predicted trajectory vs. the real trajectory.

Figures 4.10 and 4.11 show the predicted trajectories in red, and the ground truth trajec-
tories, combined with the observed past, in blue. Something that is not easy to see through
the quantitative evaluation is that the model might benefit from a multimodality behaviour.
With multimodality, we refer to the ability of the model to output not a single trajectory,
but a set of trajectories or a distribution of them. It would be expected that this set of
trajectories would probably capture the real trajectories on the left middle image and right
up corner image in figure 4.10. It is necessary to highlight that the fact that some lines are
dashed and other lines are continuous is because the predicted points are closer and therefore
they create a “continuous” line. This artifact in the visualization helps to understand that
the model is in fact capturing information about the speed at which the agent is moving; an
agent that is moving at a greater speed has its sampled points further away from each other,
and the model replicates that behaviour. As it was stated at the beginning, this is something
we can deduce more directly by observing the trajectories rather than just evaluating the
metrics.

Figure 4.11 shows two interesting things. The left top corner shows an agent that is going
through the not drivable area. This could be due to that the driver is parking the vehicle.
Nevertheless, the model performs a prediction as if the agent goes straight forward, instead of
going over the ‘not drivable area’. But in the same figure, we can see, at the bottom images
where the model is predicting, that the agents go over the not ‘not drivable area’. This makes

60

us think that the model can still be improved in relation to the bitmaps convolutional layers.
Some possible improvement could be to extract more information through the bitmaps.

4.3.1 Spatial Attention

One of the objectives this work was set up to achieve was the exploration and analysis of
how Transformers could perform with spatial features as inputs. The visualization of the
spatial attention computed by the trained model could help us understand where the model
is focusing its attention. Figure 4.12 shows a visualization of the spatial attention. The white
rectangle represents the ego-vehicle that is being analyzed at a specific time step and whose
spatial attention is being visualized. The blue rectangles represent the neighbors surrounding
the ego-vehicle. The dashed green line represents the trajectory of the ego-vehicle. Finally,
the red circles surrounding the neighbors represent where the model is focusing its attention
at that given time step.

The left top corner image shows something interesting. Despite having other neighbors
being closer to the ego-vehicle, they are parked (or that is what the data suggests because
they are not moving). But the neighbor that captures the model’s attention is the furthest
one, but one that is slightly moving and that could interfere directly with the ego-vehicles
path. This is something similar to what the work in [1] says about the importance of
neighbors to an agent and that the attention should not always be in function of the proximity
of those neighbors.

The right top and bottom corner images show how the model is deciding to not pay
attention to neighbors that are too far. In the right bottom corner image and the left middle
image, it even seems like the model is ignoring the neighbors that do not even share a possible
path in common. Let us recall that the bitmaps feature maps are given as an input to the
spatial transformer, so the model could have learned in some way to distinguish when two
agents have a physical impossibility to cross their trajectories. This needs to be studied more
in depth as future work because, in the previous image, we could see a couple of cases in
which the model mistakenly predicted trajectories that were physical impossible, or at least
such that it would be really difficult that they occur in real world data, given the fact that
they did not even resemble to the trajectory a car takes when it is parking.

61

Figure 4.10: Qualitative Results. Multimodal models would be expected to output a trajectory
closer to the ground truth trajectories for the left middle image and right up corner image.

62

Figure 4.11: Qualitative Results. The bottom images let us see that the bitmaps impact on the
overall result can still be improved so the model is able to detect on those cases that the car should
‘not go over the not drivable area’.

63

Figure 4.12: Spatial Attention Visualization. The white rectangle represents the ego-vehicle at
a specific time step. The dashed green line represents the trajectory of the ego-vehicle. The blue
rectangles represent the neighbors surrounding the ego-vehicle and the red circles surrounding the
neighbors represent in which neighbors is the model focusing its attention.

64

Chapter 5

Conclusions and Future Work

Through this work we have discussed how to tackle the problem of trajectory forecasting
for autonomous driving systems. The model proposed in this project, the ST-Transformer,
explores more in depth a new approach making use of the most innovative models in the
field of deep learning. These models require big amounts of data to be trained. Along
Chapter 2, we explored and described the two datasets used during the training of the ST-
Transformer. We have processed each dataset depending on how the data was stored and we
have developed a framework to unify this information and get the inputs for the model. This
framework is easily extensible for other datasets, which enables the model to be tested in
the future with data that could benefit from spatial attention. Even more, the convolutional
module of the model can be deactivated so that it can be trained with datasets that do not
contain bitmaps information.

Chapter 3 provides an overview of the ST-Transformer, and it also gives a more in depth
description of the Transformer, the core of the model proposed in this work. We reviewed
how Transformers attention’s works, and how the temporal variable is incorporated into
their architecture through the positional encoding. We provided a proof that shows that
the generated positional encoding vectors are unique for each time step, which is a desired
characteristic of these vectors. The ST-Transformer can be seen as a combination of two
Transformer networks along the two dimensions of the problem: the spatial dimension and
the temporal dimension. The spatial Transformer of our model is comprised by just the
encoder. We hypothesized that the decoder of the model could benefit as well from a spatial
attention layer, but that was not the case for this specific work. Probably, with the spatial
decoder, there were too many parameters to be adjusted with the data available. It is left
as a future work to incorporate the decoder of this module to see if it helps the model to
achieve better results.

We carried out this project with an exploratory objective in mind. As it could be seen
from the experiments in Chapter 4, the ST-Transformer obtained decent results and despite
not competing with the state of art most recent models, we believe that they show that it is
worth to invest more resources and time into digging more in depth with the model, given
that there is still a lot of room for improvement from different angles. For instance, the

65

optimizer used could have a parameters search to find out if a fine-tuning of them could lead
to better results or the model to converge in less time. This is left as a future work, given
the fact that the amount of time required to train a single model was about 5 days, and the
ablation studies conducted to assess each module of the model were more important from
our perspective.

Another thing that the experiments have revealed is that the model could benefit from
a multimodality approach. Receiving a distribution or a set of trajectories from the model’s
output could make the model to get a trajectory that it is closer to the ground truth. Of
course, when dealing with distributions, the probability that the model assigns to a certain
trajectory is also something to take into consideration. This is a starting point for what
could be done next to improve the model.

As a future work, it could also be a good idea to test the model with more neighbors and
even with different type of neighbors. As we have stated in the results (see Chapter 4), we
made use of only candidate vehicles as neighbors. Other type of neighbors and the ones that
are also not candidates for the prediction task could provide useful information as which
positions or which trajectories are impossible due to physical implications. The bitmaps fed
to the model could also include more information as crosswalks marks, lane direction and
related features that could help the convolutional module to provide more information to
the spatial encoder. And finally, the feed forward layer of the model should be enabled and
test with data augmentation solutions to see if it is able to help the model to improve its
performance.

Transformer-based models are difficult to train given the complexity of their architecture.
Despite using the most innovative optimizers and schedulers, their training in some cases
tends to be unstable and under-performs [14]. Nevertheless, several tasks have shown how
powerful they can be when they are correctly trained. Based on this work, we believe that
it is worth to keep exploring with more configurations of the model and different training
techniques to pursue better results and be able to determine how good are these models for
performing at tasks that require spatial attention mechanisms.

66

Appendix A

Data Type

Scene
Field Type Key

token string Primary Key
name string

description string
log token string Foreign Key (Log table)

nbr samples int
first sample token string Foreign Key (Sample table)
last sample token string Foreign Key (Sample table)

Table A.1: Scene Data Types

Instance
Field Type Key

token string Primary Key
timestamp int
scene token string Foreign Key (Scene table)

next string Foreign Key (Sample table)
prev string Foreign Key (Sample table)

Table A.2: Sample Data Types

Instance
Field Type Key

token string Primary Key
category token string Foreign Key (Category table)
nbr samples int

first annotation token string Foreign Key (Sample annotation table)
last annotation token string Foreign Key (Sample annotation table)

Table A.3: Instance Data Types

67

Sample annotation
Field Type Key

token string Primary Key
sample token string Foreign Key (Sample table)
instance token string Foreign Key (Instance table)
attribute token string Foreign Key (Attribute table)
visibility token string Foreign Key (Visibility table)
translation array[3] float

size array[3] float
rotation array[4] float

num lidar pts int
num radar pts int

next string Foreign Key (Sample annotation table)
prev string Foreign Key (Sample annotation table)

Table A.4: Sample annotation Data Types

Sample data
Field Type Key

token string Primary Key
sample token string Foreign Key (Sample table)
ego pose token string Foreign Key (Ego pose table)

calibrated sensor token string Foreign Key (Calibrated sensor table)
filename string
format string
width int
height int

timestamp int
is key frame bool

next string Foreign Key (Sample data table)
prev string Foreign Key (Sample data table)

Table A.5: Sample data Data Types

Ego pose
Field Type Key

token string Primary Key
translation array[3] float
rotation array[4] float

timestamp int

Table A.6: Ego pose Data Types

68

69

Appendix B

More Attention Visualization

Figure B.1: Attention Visualization.

70

Figure B.2: Attention Visualization.

71

Bibliography

[1] A. Vemula , K. Muelling , and J. Oh. “Social Attention: Modeling Attention in Human
Crowds.” In: IEEE International Conference on Robotics and Automation (ICRA).
arXiv:1710.04689 (2018).

[2] T. Phan-Minh , Elena C. Grigore , Freddy A. Boulton , O. Beijbom , and Eric
M. Wolff. “CoverNet: Multimodal Behavior Prediction using Trajectory Sets.” In:
arXiv:1911.10298 (2020).

[3] A. Gupta , J. Johnson , L. Fei-Fei , S. Savarese , A. Alahi. “Social GAN: Socially
Acceptable Trajectories with Generative Adversarial Networks.” In: Conference on
Computer Vision and Pattern recognition (CVPR). arXiv:1803.10892 (2018).

[4] Dzmitry Bahdanau, K. Cho, Y. Bengio. “Neural Machine Translation by Jointly Learn-
ing to Align and Translate.” In: ICLR. arXiv:1409.0473 (2015).

[5] Marco Pavone Boris Ivanovic. “The Trajectron: Probabilistic Multi-Agent Trajectory
Modeling With Dynamic Spatiotemporal Graphs.” In: IEEE/CVF International Con-
ference on Computer Vision (ICCV). arXiv:1810.05993 (2019).

[6] Holger Caesar et al. “nuScenes: A multimodal dataset for autonomous driving.” In:
arXiv preprint arXiv:1903.11027 (2019).

[7] C Wang , Y. Wang , M. Xu , D. Crandall. “Stepwise Goal-Driven Networks for Trajec-
tory Prediction.” In: IEEE Robotics and Automation Letters. arXiv:2103.14107 (2022).

[8] T. Mikolov, K. Chen, G. Corrado, J. Dean. “Efficient Estimation of Word Represen-
tations in Vector Space.” In: ICLR. arXiv:1301.3781 (2013).

[9] Y. Yao , E. Atkins , M. Johnson-Roberson , R. Vasudevan , X. Du. “BiTraP: Bi-
directional Pedestrian Trajectory Prediction with Multi-modal Goal Estimation.” In:
IEEE Robotics and Automation Letters. arXiv:2007.14558 (2021).

[10] R. Elmasri. Fundamentals Of Database Systems (6th Ed). London: Bantam, 2011.

[11] J. Liang , L. Jiang , Juan C. Niebles , A. Hauptmann , L. Fei-Fei. “Peeking into the
Future: Predicting Future Person Activities and Locations in Videos.” In: IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (2019).

[12] K. Mangalam , H. Girase , S. Agarwal , K. Lee , E. Adeli , J. Malik , A. Gaidon. “It Is
Not the Journey but the Destination: Endpoint Conditioned Trajectory Prediction.”
In: European Conference on Computer Vision (ECCV). arXiv:2004.02025 (2020).

72

[13] F. Giuliari, I. Hasan, M. Cristani, F. Galasso. “Transformer Networks for Trajectory
Forecasting.” In: ICPR. arXiv:2003.08111 (2020).

[14] L. Liu , X. Liu , J. Gao , W. Chen , J. Han. “Understanding the Difficulty of Train-
ing Transformers.” In: Empirical Methods in Natural Language Processing (EMNLP)
(2020).

[15] Y. Yuan , X. Weng , Y. Ou , K. Kitani. “AgentFormer: Agent-Aware Transformers for
Socio-Temporal Multi-Agent Forecasting.” In: arXiv:2103.14023 (2021).

[16] I. Sutskever, O. Vinyals, Quoc V. Le. “Sequence to Sequence Learning with Neural
Networks.” In: NIPS. arXiv:1409.3215 (2014).

[17] M. Geva , R. Schuster , J. Berant , O. Levy. “Transformer Feed-Forward Layers
Are Key-Value Memories.” In: Empirical Methods in Natural Language Processing
(EMNLP) (2021).

[18] Andrey Malinin et al. “Shifts: A Dataset of Real Distributional Shift Across Multiple
Large-Scale Tasks.” In: arXiv preprint arXiv:2107.07455 (2021).

[19] D. Helbing, P. Molnár. “Social force model for pedestrian dynamics.” In: Physical
Review E 51, 4282-4286 (1995). arXiv:cond-mat/9805244 (1995).

[20] T. Salzmann , B. Ivanovic , P. Chakravarty , M. Pavone. “Trajectron++: Dynamically-
Feasible Trajectory ForecastingWith Heterogeneous Data.” In: arXiv:2001.03093 (2021).

[21] J. Amirian , J. Hayet , J. Pettré. “Social Ways: Learning Multi-Modal Distributions of
Pedestrian Trajectories with GANs.” In: IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). arXiv:1904.09507 (2019).

[22] A. Alahi , K. Goel , V. Ramanathan , A. Robicquet , L. Fei-Fei , S. Savarese. “Social
LSTM: Human trajectory prediction in crowded spaces.” In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2016).

[23] A. Sadeghian , V. Kosaraju , A. Sadeghian , N. Hirose , S. Hamid Rezatofighi , S.
Savarese. “SoPhie: An Attentive GAN for Predicting Paths Compliant to Social and
Physical Constraints.” In: IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). arXiv:1806.01482 (2018).

[24] L. Li , B. Yang , M. Liang , W. Zeng , M. Ren , S. Segal , R. Urtasun. “End-to-end
Contextual Perception and Prediction with Interaction Transformer.” In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (2021).

[25] A. Vaswani et al. “Attention Is All You Need.” In: Neural Information Processing
Systems (NIPS). arXiv:1706.03762 (2017).

73

