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1. Introduction.

Immigration branching particle systems and their (measure-valued) superprocess lim-
its have been investigated by several authors, e.g. Dawson [D], Dynkin [Dy2], Gorostiza
and López-Mimbela [GLM], Konno and Shiga [KS], Li [L1, L2, L3], Li and Shiga [LS]. In
the papers of Li a theory for immigration systems has been developed by introducing and
using the definition of skew-convolution semigroups, which are also connected with the
generalized Mehler semigroups investigated by Bogachev, Röckner and Schmuland [BRS].
Fluctuation limits of immigration systems lead to S ′(Rd)-valued Ornstein-Uhlenbeck (OU)
processes [GL1, GL2]. Concerning the properties of these processes the following ques-
tion arises: for which space dimensions d do they have self-intersection local time (SILT)?
Questions of this type were investigated originally by Adler, Feldman and Lewin [AFL],
and Adler and Rosen [AR] for the special case of density processes, which do not involve
branching or immigration.

In this paper we study existence and path continuity of SILT for the two S ′(Rd)-OU
processes found in [GL1, GL2]. The techniques are refinements of those developed in
[BG3]. We will put this problem in a general context, explain why the methods of [BG3]
are not applicable in the present cases, and carry out the necessary analytical extensions
to deal with them.

In [BG3] we studied existence and path continuity of SILT for a class of S ′(Rd)-
OU processes related to inhomogeneous fields. The covariances of those processes are
expressed, in one way or another, in terms of some measures on Rd. In several of the
examples that have served as motivations and test cases these measures were related to
the intensity of the spatial configuration of a system of particles. In [BG3] the main point
regarding those measures was that the random fields on Rd associated with them were
not necessarily homogeneous, and this required developing new techniques for studying
SILT. In addition the measures were assumed to be finite and this played a significant role
in the proofs. There are examples of S ′-OU processes whose convariance structures are
similar to those in [BG3] (and in previous papers referred to therein) and are also related
to inhomogeneous random fields, but whose associated measures are not finite. Hence a
natural question is if the methods of [BG3] can be extended to cover this setting. Our
aim in the present paper is to give an answer to this question. While it seems difficult
to obtain results of such generality as in [BG3], it is possible to extend the methods to
investigate existence and continuity of SILT for the two above mentioned processes [GL1,
GL2], which cannot be treated with the previous techniques or simple extensions of them.
In both cases there is an underlying process in Rd (representing particle motion), which is
the spherically symmetric α-stable process. The measures on Rd that arise in both cases
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are of the form
γ =

∫ ∞
0

νTtdt,

where (Tt) is the semigroup of the motion process and ν is a finite (non-zero) measure. It
is clear that the measure γ is not finite. Measures of this form are excessive measures for
(Tt) and they constitute a basic part of the structures of the two S ′-OU processes.

We will focus on the stationary cases for both processes. However, the techniques
are useful for non-stationary cases as well. Stationary S ′-OU processes are a natural an
important class of processes [BJ], and in our previous work on SILT relatively little care
was devoted to them (in fact, only the simplest density process was a stationary one).
We also found it worthwhile to exhibit an interesting phenomenon that for the stationary
processes we are dealing with it is the convolution integral part of the process, and not
the one coming from the stationary distribution, which determines whether the process
has SILT or not (see e.g. Proposition 3.3 and Remark 3.18).

Our objective is to determine the range of space dimensions d for which the SILT’s of
the two S ′(Rd)-processes exist and to show that they have continuous paths. Although
the basic ideas of the proofs are similar to those in [BG3], the main technical problem is
that some of the analytical estimations used in that paper are no longer useful. Some of
estimations need to be more subtle and others have to be replaced where extensions of
the previous method fail.

We refer the reader to [BG3] for our motivations for studying this kind of problem
and for the definitions, notation and technical background, which we will use freely in
this paper, as well as references (here we give only a minimal bibliography which we need
to refer to).

2. Two stationary S ′-OU processes related to immigration branching systems.

Recall that S ′(Rd)-OU processes are of the form

Xt = T ′tX0 +
∫ t

0
T ′t−sdWs, t > 0,(2.1)

(we will restrict to t ∈ [0, 1]), where X0 is an S ′(Rd)-valued centered Gaussian random
variable, (Wt) is an S ′(Rd)-Wiener process independent of X0, (Tt) is a semigroup on
S(Rd), and T ′t is the adjoint of Tt. Here (Tt) is the semigroup of the spherically sym-
metric α-stable process in Rd, α ∈ (0, 2] (Brownian motion corresponds to α = 2). The
infinitesimal generator of (Tt) is denoted by ∆α. The S ′-OU process X in (2.1) is the
solution of the Langevin equation

dXt = ∆′αXtdt+ dWt,

where ∆′α is the adjoint of ∆α. The processes (T ′tX0)t∈[0,1] and (
∫ t

0 T
′
t−sdWs)t∈[0,1] on the

right–hand side of (2.1) are called the flow process and the convolution integral process,
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respectively. See [BG3] for existence of these S ′-processes and the sense in which (2.1) is
the solution of the Langevin equation.

We denote the convariance functionals of X0 and (Wt), respectively, by

KX0(ϕ, ψ) = Cov (〈X0, ϕ〉, 〈X0, ψ〉)

and
KW (s, ϕ; t, ψ) = Cov (〈Ws, ϕ〉, 〈Wt, ψ)〉, s, t ∈ [0, 1],

where ϕ, ψ ∈ S(Rd).
We consider the measure γ on Rd defined by

γ =
∫ ∞

0
νTtdt,(2.2)

where ν is a finite measure. Note that γ is an excessive measure for (Tt) (e.g. [Dy1]). It
is easy to see that, for d > α, γ is a well-defined tempered measure and it has a density
given by

γ(x) = κ
∫
R
d

1

|x− y|d−α
ν(dy),(2.3)

where κ > 0 is a constant.

Example 1: KX0 and KW are given by

K
(1)
X0

(ϕ, ψ) =
∫ ∞

0
〈γ, (Ttϕ)(Ttψ)〉dt(2.4)

and
K

(1)
W (s, ϕ; t, ψ) = (s ∧ t)q(1)(ϕ, ψ),(2.5)

where
q(1)(ϕ, ψ) = 〈γ, ϕψ〉.(2.6)

This example refers to a measure-valued immigration process with α-stable motion in Rd,
critical branching mechanism and immigration corresponding to the entrance law νTt.
See [L1] for a detailed description of a general class of such processes. The particular
entrance law νTt corresponds to immigration according to a space-time Poisson random
measure with intensity ν⊗dt (for the underlying branching particle system). In [GL1] the
fluctuations of this process around γ are considered, and the limit in law of the fluctuations
as the branching intensity tends to zero is obtained. This limit yields an S ′(Rd)-OU
process which is Gaussian in the case of finite variance branching. This process has a
stationary distribution and it is the stationary process which is characterized by (2.4),
(2.5), (2.6). In the non-stationary case obtained in [GL1] the initial condition is X0 = 0,
so the OU process then coincides with the convolution integral process.

Example 2: KX0 and KW are given by

K
(2)
X0

(ϕ, ψ) = 〈γ, ϕψ〉+ c
∫ ∞

0
〈γ, (Ttϕ)(Ttψ)〉dt(2.7)
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and
K

(2)
W (s, ϕ; t, ψ) = 〈s ∧ t)q(2)(ϕ, ψ),(2.8)

where
q(2)(ϕ, ψ) = 〈γ, cϕψ − ϕ∆αψ − ψ∆αϕ〉,(2.9)

and c ≥ 0 is a constant. This example comes from an immigration particle system in Rd

with α-stable particle motion, critical finite variance branching and immigration according
to the entrance law νTt. The meaning of this entrance law is as in the previous example.
The constant c is related to the second moment of the branching law. In [GL2] it is shown
that the fluctuations of this system around the mean converge in law as the density of
particles tends to infinity, and the limit is an S ′(Rd)-OU process. This process has a
stationary distribution and the stationary process is characterized by (2.7), (2.8), (2.9).

In the non-stationary case obtained in [GL2] only the term 〈γ, ϕψ〉 appears in K
(2)
X0

.
Example 2 is similar to Example 4.4 in [BG3], but now the non-finite measure γ plays

a basic role, whereas in [BG3] we had only finite measures. We shall see that a necessary
and sufficient condition for existence (and continuity) of SILT of the S ′(Rd)-OU process
is α < d < 2α (Theorem 3.16, Remarks 3.17 and 3.18). This means that the α-stable
particle motion is transient (d > α) and the paths intersect (d < 2α) [Ta]. The second
part of this condition is consistent with the “particle picture” interpretation of existence
of SILT for Example 4.4 in [BG3] (see the comments in the Introduction of [BG3]). Note
that α < d < 2α holds in the following cases: d = 1 and 1

2
< α < 1, d = 2 and 1 < α ≤ 3

2
,

d = 2 and 3 and 1 < α ≤ 3
2
, d = 3 and α = 2. The value α = 1 (in the interval (1

2
, 2] ),

which corresponds to the Cauchy process, is excluded.

Remark. In [GL1, GL2] the particle motion in Rd was assumed to have a differential
inifinitesimal generator for simplicity (instead of ∆α). The results can be extended to the
α-stable case with some additional technical work.

In all cases the covariance KF of the flow process is given by

KF (s, ϕ; t, ψ) = KX0(Tsϕ, Ttψ),(2.10)

the covariance KCI of the convolution integral process is given by

KCI(s, ϕ; t, ψ) =
∫ s∧t

0
q(Ts−rϕ, Tt−rψ)dr,(2.11)

and the covariance KX of the OU -process X, denoted by

KX(s, ϕ; t, ψ) = Cov (〈Xs, ϕ〉, 〈Xt, ψ〉),

is given by
KX = KF +KCI .(2.12)
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In both examples the covariance KX has some of the general structures considered
in [BG1], but there is a significant difference which is the source of the new technical
difficulties: the density γ(x) given by (2.3) is in general not a bounded fuction. This
function plays the role of m(x) in the covariances in Section 3.2 of [BG1], but there it
was essential for the proofs of sufficient conditions for existence of SILT that this function
be bounded. It turns out that the methods of [BG3] can be extended to cover this new
situation, but in the present cases the analysis of finiteness or infiniteness of the integrals,
which are analogous to those in [BG3], is considerably more intricate. Moreover, although
the measure γ plays the role of the measures denoted by θ, µ or ν in [BG3], it does not
have the same interpretation as in the examples of [BG3].

3. Results.

We denote Sd ≡ S(Rd) and S ′d ≡ S ′(Rd). In what follows α ∈ (0, 2] is fixed and d > α.
Recall that ϕ̃ and µ̃ denote the Fourier transforms of a function ϕ ∈ Sd and a tempered
measure µ on Rd, respectively.

We start with Example 1.

3.1. Lemma. K
(1)
X0

given by (2.4) is a well-defined, continuous inner product in Sd, and
one has

K
(1)
X0

(ϕ, ψ) =
1

(2π)2d

∫
R

2d

ν̃(z + z′)

(|z|α + |z′|α)|z + z′|α
ϕ̃(z)ψ̃(z′)dzdz′.(3.1)

Formula (3.1) permits to derive the following theorem.

3.2. Theorem. The following conditions are sufficient for the existence of SILT for

(a) the flow process associated with K
(1)
X0

:

∫
R

4d

|ν̃(z + z′)|
(1+ |z|α)(1+ |z′|α)(|z|α+ |z′|α)|z+ z′|α

|ν̃(y + y′)|
(1 + |y|α)(1 + |y′|α)(|y|α+ |y′|α)|y + y′|α

(3.2)

·|ϕ(z + y)||ϕ(z′ + y′)|dzdz′dydy′ <∞;

(b) the convolution integral process associated with q(1):

∫
R

4d

|ν̃(z + z′)|
(1 + |z|α)(1 + |z′|α)|z + z′|α

|ν̃(y + y′)|
(1 + |y|α)(1 + |y′|α)|y + y′|α

(3.3)

·|ϕ(z + y)||ϕ(z′ + y′)|dzdz′dydy′ <∞;

(c) the corresponding OU process:
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∫
R

4d

|ν̃(z + z′)|(2 + |z|α + |z′|α)

(1+ |z|α)(1+|z′|α)(|z|α+|z′|α)|z+z′|α
|ν̃(y+ y′)|(2+ |y|α+ |y′|α)

(1+ |y|α)(1+ |y′|α)(|y|α+ |y′|α)|y+ y′|α
(3.4)

·|ϕ(z + y)||ϕ(z′ + y′)|dzdz′dydy′ <∞.

All these integrals should be finite for each ϕ ∈ Sd.

A relationship between these conditions is given in the next proposition.

3.3. Proposition. Condition (3.3) is equivalent to (3.4) and it implies (3.2).

Conditions (3.2)–(3.4) are not easy to check. The following criterion is more conve-
nient.

3.4. Theorem. Let

p0 = p0(d) = inf

{
p ≥ 1 :

∫
|z|>1

|ν̃(z)|2p

|z|2αp
dz <∞

}
.(3.5)

(a) If

α < d <
6p0

2p0 − 1
α,(3.6)

then the flow process associated with K
(1)
X0

has SILT, which is a continuous process
in S ′d.

(b) If

α < d <
4p0

2p0 − 1
α,(3.7)

then the convolution integral process associated with q(1) as well as the corresponding
OU process have SILT’s which are continuous processes in S ′d.

3.5. Remark. We have not formulated analogues to Theorems 3.14 and 3.17 of [BG3]
concerning continuity of SILT, though, as will be seen in the proof of Theorem 3.4, such
analogues do hold. As it was recently shown by A. Talarczyk [T], our Theorem 3.17 [BG3]
and Proposition 4.4 [BG2] on continuity of SILT of the convolution integral process can
be improved (after rather hard work).

3.6. Corollary.

(a) (i) If α < d < 4α, then the flow process associated with K
(1)
X0

has (continuous) SILT
for each finite measure ν.

(ii) If α < d < 6α, then the flow process has (continuous) SILT for each finite
measure ν having an L2-density.
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(b) (i) If α < d < 3α, then both the convolution integral process associated with q(1) and
the corresponding OU process have (continuous) SILT’s for each finite measure ν.

(ii) If α < d < 4α, then these process have (continuous) SILT’s for each finite
measure ν having an L2-density.

Observe that the maximal upper bound on the dimension d resulting from (3.6) is 6α,
while the corresponding bound resulting from (3.7) is 4α. The next proposition shows
that the latter bound is the right one.

3.7. Proposition. The condition α < d < 4α is necessary for existence of SILT for the
convolution integral process associated with q(1), as well as for the OU process.

We do not have an analogous result for the flow process (an obvious candidate is 6α).

Combining Corollary 3.6 (b) (ii) and Proposition 3.7 we obtain immediately the fol-
lowing corollary.

3.8. Corollary. If ν has on L2-density, then a necessary and sufficient condition for
existence of SILT for the convolution integral process associated with q(1), as well as for
the corresponding OU process, is α < d < 4α.

Also “the worst” cases (4α for flow, 3α for convolution integral) can occur. Namely,
we have the following proposition.

3.9. Proposition. If ν = δa for a fixed a ∈ R
d, then the necessary and sufficient

condition for existence of SILT for the flow process associated with K
(1)
X0

is α < d < 4α,
and an analogous condition for the convolution integral process and the OU process is
α < d < 3α.

Finally, for use in the next example we discuss briefly the flow process associated with
q(1), i.e. the process whose convariance is 〈γ, (Tsϕ)(Ttψ)〉.

3.10. Proposition.

(a) A sufficient condition for existence and continuity of SILT of the flow process asso-
ciated with q(1) is given by condition (3.7) of Theorem 3.4.

(b) A necessary condition is α < d < 4α.

(c) The assertion of Corollary 3.6 (b) applies to this process as well.

We now pass to Example 2.
Note that the covariance K

(2)
X0

of the stationary distribution has the form

K
(2)
X0

(ϕ, ψ) = q(1)(ϕ, ψ) + cK
(1)
X0

(ϕ, ψ).(3.8)
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Hence the flow process associated with K
(2)
X0

presents no problem. If we compare Theorem

3.4 (a) and Proposition 3.10 we see that in the convariance K
(2)
X0

(Tsϕ, Ttψ) of the flow the
summand corresponding to q(1) prevails, so we obtain the following corollary.

3.11. Corollary. Proposition 3.10 remains true for the flow process associated with K
(2)
X0

.
To investigate the convolution integral and OU processes we need the following lemma.

3.12. Lemma. q(2) given by (2.9) is a well defined, continuous inner product in Sd, and
one has

q(2)(ϕ, ψ) =
1

(2π)2d

∫
R

2d

c+ |z|α + |z′|α

|z + z′|α
ν̃(z + z′)ϕ̃(z)ψ̃(z′)dzdz′.(3.9)

Then, analogously as before (Theorem 3.2) we obtain

3.13. Proposition. If∫
R

4d

|ν̃(z + z′)|
(1 + |z|α)(1 + |z′|α)

c+ |z|α + |z′|α

|z + z′|α
|ν̃(y + y′)|

(1 + |y|α)(1 + |y′|α)

c+ |y|α + |y′|α

|y + y′|α
(3.10)

·|ϕ(z + y)||ϕ(z′ + y′)|dzdz′dydy′ <∞

for each ϕ ∈ Sd, then the convolution integral process associated with q(2) has SILT.

Note that condition (3.10) is obviously satisfied if

∫
R

4d

c+ |z|α + |z′|α

(1 + |z|α)(1 + |z′|α)|z + z′|α
c+ |y|α + |y′|α

(1 + |y|α)(1 + |y′|α)|y + y′|α
(3.11)

·|ϕ(z + y)||ϕ(z′ + y′)|dzdz′dydy′ <∞.

It turns out that in fact (3.10) and (3.11) are equivalent, and we can determine exactly
when (3.10) holds.

3.14. Proposition. Condition (3.10) holds for each ϕ ∈ Sd if and only if α < d < 2α.
In particular, if α < d < 2α, then the convolution integral process associated with q(2) has
(continuous) SILT.

We are not able to prove in full generality that SILT for the convolution integral does
not exist if d ≥ 2α. We have only the following corollary.

3.15. Corollary. The condition α < d < 2α is necessary (and sufficient) for existence
of SILT for the convolution integral process associated with q(2) if either γ = δa for some
a ∈ Rd, or ν̃ > 0.

So we see (taking, for instance, ν to be a symmetric Gaussian measure) that in the
present example smoothness of the measure ν has no effect on the range of dimensions for
which SILT exists. Therefore no result involving integrability properties like Theorem 3.4
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should be expected. For the stationary OU process corresponding to this example such a
theorem is not even needed since for this process the problem of existence of SILT turns
out to have a complete solution.

3.16. Theorem. The stationary OU process has (continuous) SILT if and only if α <
d < 2α.

3.17. Remark. It will be seen from the proof that this result is the same for the
non-stationary OU process obtained in [GL2].

3.18. Remark. We have seen that in our two examples the existence of SILT for the
stationary OU process was related to the existence of SILT of the convolution integral
rather than to that of the corresponding flow process (SILT for the flow may exist for a
wider range of dimensions). It is worthwhile to note that the same situation occurs in the
case of homogeneous fields. Indeed, assume that

KW (ϕ, ψ) =
∫
R
d
ϕ̃(z)ψ̃(z)σ(dz),

where σ is a symmetric tempered measure in Rd (see [BG2, BJ]). It is shown in [BJ] that
there exists an invariant distribution for the corresponding Langevin equation if and only
if ∫

|z|<1

σ(dz)

|z|α
<∞,

and then the invariant distribution has covariance

KX0(ϕ, ψ) =
1

2

∫
R
d
ϕ̃(z)ψ̃(z)

σ(dz)

|z|α
.

On the other hand, by [BG2] (Theorem 4.2) it is known that the convolution integral
process associated with KW has SILT if and only if∫

R
2d
|ϕ(z + z′)| σ(dz)

1 + |z|2α
σ(dz′)

1 + |z′|2α
<∞

for any ϕ ∈ Sd, and the flow process associated with KX0 has SILT if and only if∫
R

2d
ϕ(z + z′)| σ(dz)

|z|α(1 + |z|2α)

σ(dz′)

|z′|α(1 + |z|2α)
<∞.

So we see that, once again, if the convolution integral has SILT then so does the flow
process, and by [BG2] (Theorem 4.3) the stationary OU process has SILT if and only if
the convolution integral process has SILT.

4. Proofs.

C,C1, C2, . . . will denote generic positive constants, and we put dependencies in paren-
thesis.
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We will make use several times of the following lemma.

4.1. Lemma.

(a) The integral

I =
∫
|z|≤1

|z′|≤1

1

(|z|α + |z′|α)|z + z′|α
dzdz′

is finite if and only of d > α.

(b) The integral

I(ϕ, ψ) =
∫
R

2d

1

(|z|α + |z′|α)|z + z′|α
ϕ(z)ψ(z′)dzdz′

is finite for each ϕ, ψ ∈ Sd if and only if d > α. If d > α, it is a continuous
functional on Sd × Sd.

Proof. (a) Assume d > α. We have

I ≤
∫
|z|≤1

|z′|≤1

1

|z|α/2|z′|α/2|z + z′|α
dzdz′ =

∫
R
d
g(z)(g ∗ g1)(z)dz,

where
g(z) = |z|−α/21[0,1](|z|), g1(z) = |z|−α1[0,2](|z|).

The latter integral is finite since g ∈ L2(Rd) and g1 ∈ L1(Rd) (so g ∗ g1 ∈ L2(Rd)).
Now suppose that d ≤ α. We have

I ≥ C
∫
|z|≤1

|z′|≤1

(|z|2α + |z′|2α)−1dzdz′ = C1

∫
[0,1]2

(r2α + (r′)2α)−1rd−1(r′)d−1drdr′

= C2

∫
[0,1]2

(s+ s′)−1s
d−2α

2α (s′)
d−2α

2α dsds′.

Straightforward calculations show that the latter integral is infinite if d = α, and it is
clear that it is then infinite for d > α as well.

(b) Necessity follows from part (a). If d > α we write

I(ϕ, ψ) = I1 + I2 + I3,

where
I1 =

∫
|z+z′|≤2
|z|≤1

, I2 =
∫
|z+z′|≤2
|z|>1

, I3 =
∫
|z+z′|>2

.
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We then have

|I1| ≤ C sup
z
|ϕ(z)| sup

z′
|ψ(z′)| by (a),

|I2| ≤
∫
R
d
|ϕ(z)|dz sup

z′
|ψ(z′)|

∫
|y|≤2
|y|−αdy,

|I3| ≤
∫
R
d
|ϕ(z)|dz

∫
R
d
|ψ(z′)|dz′,

hence the assertion follows. 2

Let µt = νTt. We have µ̃t(z) = e−t|z|
α
ν̃(z). As in [BG3] we denote by pt the standard

α-stable density. To prove Lemma 3.1 we need the following simple lemma.

4.2. Lemma. For the measure µt equality (2.4.4) of [BG3] holds for each ϕ, ψ ∈ L2(Rd).
Explicitly,∫

R
d
ϕ(x)ψ(x)

∫
R
d
pt(x− y)ν(dy)dx =

1

(2π)2d

∫
R

2d
ϕ̃(z)ψ̃(z′)e−t|z+z

′|α ν̃(z + z′)dzdz′.

Proof. If suffices to use the fact that Sd is dense in L2(Rd), that µt has a bounded
density, that the Fourier transform is a continuous mapping L2(Rd)→ L2(Rd), and that
the convolution is a continuous mapping L1(Rd)× L2(Rd)→ L2(Rd). 2

Proof of Lemma 3.1. It is well known that Ttϕ ∈ L2(Rd) for ϕ ∈ Sd, so we can apply
Lemma 4.2 to Tsϕ, Tsψ to obtain∫

R
d
(Tsϕ)(x)(Tsψ)(x)µt(dx)(4.1)

=
1

(2π)2d

∫
R

2d
ϕ̃(z)ψ̃(z′)e−s(|z|

α+|z′|α)e−t|z+z
′|α ν̃(z + z′)dzdz′.

Integrating
∫∞

0

∫∞
0 . . . dtds and using Lemma 4.1 we see that the right-hand side of (3.1)

is well defined and continuous in ϕ, ψ. To complete the proof it suffices to observe (taking
first ϕ, ψ ≥ 0) that∫ ∞

0

∫
R
d
(Tsϕ)(x)(Tsψ)(x)µt(dx)dt =

∫
R
d
(Tsϕ)(x)(Tsψ)(x)γ(dx).

2

Remark. By Lemma 4.1 it is seen that there is no possibility to extend the definition of
K

(1)
X0

to lower dimensions (d ≤ α) by means of formula (3.1).

Proof of Theorem 3.2. By Lemma 3.1 the flow process associated with K
(1)
X0

has
covariance

K
(1)
F (s, ϕ; t, ψ) = K

(1)
X0

(Tsϕ, Ttψ)(4.2)

=
1

(2π)2d

∫
R

2d
ϕ̃(z)ψ̃(z′)e−s|z|

α

e−t|z
′|α ν̃(z + z′)

(|z|α + |z′|α)|z + z′|α
dzdz′.

12



Applying formula (4.1) and repeating the argument of the poof of Lemma 3.1 we see that
the convolution integral process associated with q(1) has covariance

K
(1)
CI (s, ϕ; t, ψ) =

∫ s∧t

0

∫
R
d
(Ts−τψ)(x)(Tt−τψ(x))γ(dx)dτ(4.3)

=
1

(2π)2d

∫ s∧t

0

∫
R

2d
ϕ̃(z)ψ̃(z′)e−(s−τ)|z|αe−(t−τ)|z′|α ν̃(z + z′)

|z + z′|α
dzdz′dτ.

After straightforward calculations we then obtain the covariance of the correspondig OU
process:

K
(1)
X (s, ϕ; t, ψ) = K

(1)
F (s, ϕ; t, ψ) +K

(1)
CI (s, ϕ; t, ψ)(4.4)

=
1

(2π)2d

∫
R

2d
ϕ̃(z)ψ̃(z′)e−|t−s|(|z

′|α1{t≥s}+|z|α1{t<s})
ν̃(z + z′)

(|z|α + |z′|α)|z + z′|α
dzdz′.

It is clear that all three processes exist.
Now, sufficiency of the conditions (3.2) and (3.3) is obtained form (4.2) and (4.3) in

an analogous way as in [BG3], using (2.1.1), (2.1.2), (2.1.3), (5.6), (5.7) of [BG3] and
replacing the function h in that paper by 1

(|z|α+|z′|α)|z+z′|α in the case of the flow, and by
1

|z+z′|α in the case of the convolution integral. The same argument can be applied to derive

(3.4), using (4.4). One should additionally observe that∫
[0,1]2

e−|t−s|(|z
′|α1{t≥s}+|z|α1{t<s})dtds ≤ C

(
1

1 + |z|α
+

1

1 + |z′|α

)
.

2

We shall need the following generalization of Lemma 5.1 of [BG3].

4.3. Lemma. If Ψ1 ∈ Lp(R2d) and Ψ2 ∈ Lq(R2d), where 1 ≤ q ≤ p

p− 1
, then the integral

∫
R

4d
Ψ1(y, y′)Ψ2(z, z′)|ϕ(y + z)||ϕ(y′ + z′)|dzdz′dydy′(4.5)

is finite for each ϕ ∈ Sd.

Proof. Put r = pq
2pq−p−q . By assumption, 0 ≤ 2 − 1

p
− 1

q
≤ 1, hence r ≥ 1. We have

ϕ⊗ϕ ∈ Lr(R2d). So, by the Young inequality, Ψ2∗|ϕ⊗ϕ| ∈ Lp
′
(R2d), where 1

p′
= 1

q
+ 1
r
−1 =

p−1
p

. Hence the assertion follows because (4.5) has the form
∫

Ψ1(Ψ∗2 ∗ (|ϕ| ⊗ |ϕ|)), where

Ψ∗2(z, z′) := Ψ2(−z,−z′). 2

Proof of Proposition 3.3. It is obvious that (3.4) implies (3.2) and (3.3), so it suffices
to prove that (3.3) implies (3.4).

The integral in (3.4) is always finite over the set {|z| ≤ 1, |z′| ≤ 1, |y| ≤ 1, |y′| ≤ 1}
by Lemmas 4.1 and 4.3. On the set {|z| > 1, |y| > 1}, as well as on the other sets of this
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form, (3.4) is clearly equivalent to (3.3). Hence it remains to consider the sets of the form
{|z| ≤ 1, |z′| ≤ 1, |y| > 1}.

Denote
ϕ1(y) = sup

|z|≤1
|ϕ(z + y)|, ϕ2(y) = inf

|z|≤1
|ϕ(z + y)|.

(3.3) implies∫
|z|≤1

|z′|≤1

|ν(z + z′)|
(1 + |z|α)(1 + |z′|α)|z + z′|α

dzdz′
∫
|y|>1

|ν̃(y + y′)|
(1 + |y|α)(1 + |y′|α)|y + y′|α

ϕ2(y)ϕ2(y′)dydy′

<∞

for each ϕ ∈ Sd. On the other hand, the integral in (3.4) on the considered set is bounded
above by

C
∫
|z|≤1

|z′|≤1

1

(|z|α + |z′|α)|z + z′|α
dzdz′

∫
|y|>1

|ν̃(y + y′)|
(1 + |y|α)(1 + |y′|α)|y + y′|α

ϕ1(y)ϕ1(y′)dydy′.

The first factor is finite by Lemma 4.1. To complete the proof is suffices to observe that
for any ϕ ∈ Sd there exists ψ ∈ Sd such that |ϕ(x)| ≤ ψ2(x) for x ∈ Rd, since then we
shall have also that for any ϕ ∈ Sd there exists ψ ∈ Sd with the property ϕ1(x) ≤ |ψ(x)|,
x ∈ Rd. This fact can be proved, e.g., by repeating the argument at the beginning of
the proof of Lemma 6.2 in [BG2]. We define ψ(x) =

∑∞
n=0 anλn(x), where λn ∈ C∞(Rd),

λn ≥ 0, suppλn ⊂ {x ∈ Rd : n ≤ |x| ≤ n + 2}, n = 0, 1, 2, . . . ,
∑∞
n=0 λn ≡ 1, and an =

supn−1≤|x|≤n+2|ϕ(x)| for n = 1, 2, . . ., a0 = sup|x|≤2|ϕ(x)|. 2

Proof of Theorem 3.4.

Step 1. Observe that if α < d ≤ 2α, then p0 = 1 (see (3.5)) and (3.6), (3.7) are obviously
satisfied. In this step we prove that if α < d ≤ 2α then all three processes have SILT.

By Proposition 3.3 it suffices to show that condition (3.3) is satisfied. To this end it
is enough to prove that∫

R
4d

1

(1 + |z|α)(1 + |z′|α)|z + z′|α
1

(1 + |y|α)(1 + |y′|α)|y + y′|α
(4.6)

·|ϕ(z + y)||ϕ(z′ + y′)|dzdz′dydy′ <∞.

for each ϕ ∈ Sd, if α < d ≤ 2α.
The latter integral can be written as I1 + I2 + I3 + I4, where

I1 =
∫
|z+z′|≤1

|y+y′|≤1

, I2 =
∫
|z+z′|>1

|y+y′|≤1

, I3 =
∫
|z+z′|≤1

|y+y′|>1

, I4 =
∫
|z+z′|>1

|y+y′|>1

.

I1 has the form (4.5) with

Ψ1(z, z′) = Ψ2(z, z′) =
1

(1 + |z|α)(1 + |z′|α)|z + z′|α
1[0,1](|z + z′|).
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Fix p such that 1 < p < d
α

(≤ 2). We have∫
R

2d
Ψp

1(z, z′)dzdz′ ≤ C
∫
R

2d

1

(1 + |z|αp)(1 + |z′|αp)|z + z′|αp
1[0,1](|z + z′|)dzdz′

= C
∫
R
d
g1(z)(g1 ∗ g2)(z)dz,

where

g1(z) =
1

1 + |z|αp
, g2(z) =

1

|z|αp
1[0,1](|z|).

Now, g1 ∈ L2 since p > 1 ≥ d/2α, and g2 ∈ L1 because αp < d. Hence g1 ∗ g2 ∈ L2 and
we obtain that Ψ1 ∈ Lp(R2d). By Lemma 4.3 applied with q = p (≤ p

p−1
since p ≤ 2) we

conclude that I1 <∞.
In I2 we take Ψ1 as before and

Ψ2(z, z′) =
1

(1 + |z|α)(1 + |z′|α)|z + z′|α
1(1,∞)(|z + z′|).(4.7)

We prove that Ψ2 ∈ L2(Rd). Indeed, we have∫
R

2d
Ψ2(z, z′)dzdz′ ≤ C

∫
R
d
g1(z)(g1 ∗ g2)(z)dz,

where this time

g1(z) =
1

1 + |z|2α
, g2(z) =

1

|z|2α
1(1,∞)(|z|).

It is clear that g1, g2 ∈ Lp for each p > 1 since 2αp > 2α ≥ d. Fix p ∈ (1, 2) and let
q = p

2p−2
(> 1). As g1 ∈ Lp and g2 ∈ Lq, the Young inequality implies that g1 ∗ g2 ∈ Lp

′

with 1
p′

= 1
p

+ 1
q
− 1 = p−1

p
, so ∫

R
d
g1(z)(g1 ∗ g2)(z)dz <∞.

We now apply Lemma 4.3 with q = 2 (since p ≤ 2 ≤ p
p−1

) and we obtain I2 <∞.
I3 <∞ by symmetry.
In I4 we take Ψ1 = Ψ2 given by (4.7) and we apply Lemma 4.3 with p = q = 2 to

obtain I4 <∞.
Thus (4.6) is proved.

Step 2. We prove that if (3.6) is satisfied, then the flow process has SILT. By Step 1 we
can additionaly assume that d > 2α.

By Lemma 4.3 with p = q = 2, condition (3.2) is satisfied if∫
R

2d

1

(1 + |z|α)2(1 + |z′|α)2(|z|α + |z′|α)2

|ν̃(z + z′)|2

|z + z′|2α
dzdz′ <∞.(4.8)
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Let us consider this integral on the sets {|z| ≤ 1, |z′| ≤ 1}, {|z| > 1, |z′| ≤ 1, |z− z′| ≤ 2},
{|z| > 1, |z′| ≤ 1, |z − z| > 2}, {|z| ≤ 1, |z′| > 1}, {|z| > 1, |z′| > 1}, denoting the
corresponding integrals by I1, I

′
2, I
′′
2 , I3, I4.

Now,

I1 ≤ C
∫
|z|≤1

|z′|≤1

1

(|z|2α + |z′|2α)|z + z′|2α
drdr′ <∞

by Lemma 4.1, since d > 2α. I ′2 <∞ by the same reasoning (we have |z| ≤ 3).
Let

m(z) =
|ν̃(z)|2

|z|2α
.(4.9)

We have

I ′′2 ≤
∫
|z′|≤1

(∫
|z|>1

|z+z′|>2

1

|z|4α
m(z + z′)dz

)
dz′.(4.10)

We can find p ≥ p0 such that m1{|z|>2} ∈ Lp(Rd) and d < 6p
2p−1

α. But 6p
2p−1

α < 4p
p−1

α,

hence the function z 7→ 1
|z|4α1{|z|>1} belongs to Lp/(p−1)(Rd). So the inner integral on the

right-hand side of (4.10) is a bounded function as the convolution of a function in Lp with
a function in Lp/(p−1). Hence I ′′2 <∞.

I3 <∞ by symmetry.
Finally

I4 ≤
∫
|z|>1

|z′|>1

1

|z|3α|z′|3α
m(z)dzdz′.

We have the same situation as in Proposition 3.3 of [BG3] with 3
2
α instead of α (it is

not important here that 3
2
α may be bigger than 2, also the form of m is irrelevant). In

consequence we obtain that I4 <∞ provided that d < 4p0

2p0−1
3
2
α = 6p0

2p0−1
α.

Thus (4.8) is proved.

Step 3. We prove that if (3.7) is satisfied then both the convolution integral and OU
processes have SILT’s. Again, by Step 1 we may additionally assume that d > 2α. By
Proposition 3.3 it suffices to prove that (3.3) is satisfied, and this will be shown again by
Lemma 4.3 with p = q = 2, if we prove that∫

R
2d

1

(1 + |z|α)2(1 + |z′|α)2
m(z + z′)dzdz′ <∞.

Finiteness of this integral is obtained by the same argument as in the proof of Proposition
3.3 of [BG3] as the form of the function m is irrelevant here.

Step 4. It remains to prove continuity of the SILT’s. We can repeat the arguments
of the proof of Theorem 3.14 of [BG3] with h(z, z′) = 1

(|z|α+|z′|α)|z+z′|α for the flow and

h(z, z′) = 1
|z+z′|α for the convolution integral. In consequence we obtain that if there
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exists ε ∈ (0, 1) such that

∫
R

4d

|ν̃(z + z′)|
(1 + |z|α(1−ε))(1 + |z′|α(1−ε))(|z|α + |z′|α)|z + z′|α

(4.11)

· |ν̃(y + y′)|
(1+ |y|α(1−ε))(1+ |y′|α(1−ε)(|y|α+ |y′|α)|y+ y′|α

|ϕ(z+ y)||ϕ(z′+ y′)|dzdz′dydy′ <∞

for each ϕ ∈ Sd, then the SILT of the flow process is continuous, and if there exists
ε ∈ (0, 1) such that

∫
R

4d

|ν̃(z + z′)|
(1 + |z|α(1−ε))(1 + |z′|α(1−ε))|z + z′|α

|ν̃(y + y′)|
(1 + |y|α(1−ε))(1 + |y′|α(1−ε))|y + y′|α

(4.12)

·|ϕ(z + y)||ϕ(z′ + y′)|dzdz′dydy′ <∞

for each ϕ ∈ Sd, the the SILT of the convolution integral process is continuous.
Looking carefully at the previous steps of the proof, we see that if (3.6) and (3.7) hold

we can find ε ∈ (0, 1) such that (4.11) and (4.12) are satisfied, respectively.
Continuity of the SILT of the OU process can be proved analogously as in [BG3]

(Corollary 3.20), using the bounds derived for the flow and convolution integral processes.
2

Proof of Corollary 3.6. (a), (b), (i): By Theorem 3.4 we know that if α < d ≤ 2α, then
the SILT’s exists. Assume d > 2α. If ν makes no contribution in (3.5), then p0 = d/2α, so
in (3.6) we obtain d < 3dα

d−α (hence d < 4α), and in (3.7) we have d < 2dα
d−α (hence d < 3α).

(a), (b), (ii): The argument is identical with p0 = 1. 2

Proof of Proposition 3.7. Recall that the covariance of the convolution integral process
is

K
(1)
CI (s, ϕ; t, ψ) =

∫ s∧t

0

∫
R
d

∫
R

2d
ps−τ (x, z)pt−τ (x, z

′)ϕ(z)ψ(z′)dzdz′γ(dx)dτ(4.13)

(see (4.3)), so it has the same form as the covariance in [BG3] (see the formula immediately
after (5.11)), with γ instead of µτ . Therefore we can repeat the proof of Theorem 3.11 of
[BG3] provided that we know that the function

(z, z′) 7→
∫
R
d
ps(x, z)pt(x, z

′)γ(dx)
∫
R
d

∫
R
d

ps(x, z)pt(x, z
′)

|x− y|d−α
dxν(dy)

is bounded continuous for s, t fixed. To show boundedness it suffices to prove that the
function

F (y, z, z′) =
∫
R
d

ps(x, z)pt(x, z
′)

|x− y|d−α
dx
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is bounded, because ν is a finite measure. We have

F (y, z, z′) =
∫
|x−y|≤1

+
∫
|x−y|>1

≤ C(s, t)
∫
|x−y|≤1

1

|x− y|d−α
dx+

∫
R
d
ps(x, z)pt(x, z

′)dx

≤ C1(s, t) + ps+t(z, z
′) ≤ C2(s, t),

so the boundedness is proved. Continuity can be shown in a similar way.
Finally, non-existence of SILT for the OU process if d > 4α follows from the definition

of SILT, from the fact that K
(1)
X0

(s, ϕ; t, ψ) ≥ 0 and K
(1)
CI (s, ϕ; t, ψ) ≥ 0 for ϕ, ψ ≥ 0, and

from the non-existence proof for the convolution integral process. 2

Proof of Proposition 3.9. We start from the convolution integral and OU processes.
By Corollary 3.6 (b)(i) and by the argument at the end of the previous proof it suffices
to show that if d ≥ 3α then the convolution integral process does not have SILT.

By (4.13) it is clear that Js,r,u,v (see (2.1.1)–(2.1.3) and the notation before Definition
2.1.1 of [BG3]) has the form (5.6) of [BG3] with h(z, z′) = 1

|z+z′|α , µτ = ν = δa. Fix f ∈ F
such that f̃ > 0, and ϕ ∈ Sd such that ϕ̃a > 0, where ϕa(x) := ϕ(x+ a). Analogously as
in the proof for Example 4.1 (b) of [BG3] we have

Js,r,u,v(Φ
f
ε,ϕΦf

ε,ϕ)

=
1

(2π)4d

∫ s∧u

0

∫ r∧v

0

∫
R

4d
e−(s−τ)|z|αe−(u−τ)|z′|αe−(r−τ ′)|y|αe−(v−τ ′)|y′|α

· 1

|z + z′|α
1

|y + y′|α
f̃ε(z)f̃ε(z

′)ϕ̃a(z + y)ϕ̃a(z
′ + y′)dzdz′dydy′dτ ′dτ

+ the other (similar) term.

If the SILT existed we would have, by Fatou’s lemma,

∞ > lim inf
ε→0

∫
[0,1]4

Js,r,u,v(Φε,ϕ,Φ
f
ε,ϕ)dsdrdudv(4.14)

≥ 1

(2π)4d

∫
R

4d
Ψ(z, z′)Ψ(y, y′)ϕ̃a(z + y)ϕ̃a(z

′ + y′)dzdz′dydy′,

where

Ψ(z, z′) =
∫

[0,1]2

∫ s∧u

0
e−(s−τ)|z|αe−(u−τ)|z′|α 1

|z + z′|α
dτduds.

Using (5.4) of [BG3] we obtain

Ψ(z, z′) ≥ C|z|−α|z′|−α|z + z′|−α
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on the set {|z| > 1, |z′| > 1}, so we are led to the same situation as in the proof for
Example 4.1 (d) of [BG3]. Hence we know that the integral on the right-hand side of
(4.14) is infinite if d ≥ 3α.

For the flow process the argument is analogous and we omit it. We only point out
that everything reduces to showing that∫

|z|>1

|z′|>1

|z+z′|>1

1

|z|2α|z′|2α(|z|α + |z′|α)2|z + z′|2α
dzdz′ =∞

if d ≥ 4α. By similar transformations as in the proof for Example 4.1 (d) of [BG3] this
integral can be proved to be bounded from below by

C
∫

v>1

u1/2α−v1/2α>1

u
d−4α

2α v
d−4α

2α (u+ v)−2dudv ≥ C
∫

v>1

u1/2α−v1/2α>1

(u+ v)−2dudv =∞

if d ≥ 4α. 2

Proof of Proposition 3.10. The covariance functional of the flow process associated
with q(1) is∫

R
d
(Tsϕ)(Ttψ)dγ =

∫
R

3d
ps(x, z)pt(x, y)ϕ(z)ψ(y)γ(x)dzdydx(4.15)

=
1

(2π)2d

∫
R

2d
e−s|z|

α

e−t|z
′|αϕ̃(z)ψ̃(z′)

ν̃(z + z′)

|z + z′|α
dzdz′,

where the second equality is obtained analogously as before, using Lemma 4.2. Note that
the integral in the middle of (4.15) has the form (3.2.3) of [BG1], but we cannot use
the sufficiency criterion of [BG1] because γ(·) given by (2.3) is not a bounded function.
However, the necessity criterion does apply because in order to use Proposition 3.2.1 (b)
of [BG1] we only need that γ(x) ≥ 0 and γ(x) > ε > 0 for some ε and for x in a set of
positive Lebesgue measure. These requirements are obviously satisfied in our case, so we
know that SILT does not exists if d ≥ 4α.

The second equality in (4.15) permits to derive, by the same argument as in the proof
of Theorem 3.2, the following sufficient SILT existence condition:∫

[0,1]4

∫
R

4d
e−s|z|

α−u|z′|α−r|y|α−v|y′|α |ν̃(z + z′)||ν̃(y + y′)|
|z + z′|α|y + y′|α

·|ϕ̃(z + y)||ϕ̃(z′ + y′)|dzdz′dydy′dsdrdudv <∞

for each ϕ ∈ Sd. This condition is clearly equivalent to (3.3) (since d > α). Hence all the
remaining assertions of Proposition 3.10 follow. 2

Proof of Lemma 3.12. Formula (3.9) is derived by an argument as in the proof of
Lemma 3.1. Note, however, that while it is clear that q(2) is well defined, bilinear and
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continuous (by (3.9)), the fact that q(2)(ϕ, ϕ) ≥ 0 does not seem evident. This property
relies on the fact that γ is an excessive measure. We refer to [GL2] for the proof of this
property of q(2).

Proof of Proposition 3.14. Assume α < d < 2α and fix ϕ ∈ Sd. We will prove that
(3.11) holds. In the proof we will apply several times Lemma 4.3, but we will also have
to use some estimations more subtle than those resulting from that lemma.

(3.11) will be proved if we show that (we omit the differentials)∫
|z|≤1

|z′|≤1

∫
|y|≤1

|y′|≤1

1

|z + z′|α
1

|y + y′|α
|ϕ(z + y)||ϕ(z′ + y′)| <∞,(4.16)

∫
|z|≤1

|z′|≤1

∫
|y|>1

|y′|≤1

1

|z + z′|α
1

|y + y′|α
|ϕ(z + y)||ϕ(z′ + y′)| <∞,(4.17)

∫
|z|>1

|z′|≤1

∫
|y|>1

|y′|≤1

1

|z + z′|α
1

|y + y′|α
|ϕ(z + y)||ϕ(z′ + y′)| <∞,(4.18)

∫
|z|≤1

|z′|≤1

∫
|y|>1

|y′|>1

1

|z + z′|α
1

|y|α|y + y′|α
|ϕ(z + y)||ϕ(z′ + y′)| <∞,(4.19)

∫
|z|≤1

|z′|>1

∫
|y|>1

|y′|>1

1

|z + z′|α
1

|y|α|y + y′|α
|ϕ(z + y)||ϕ(z′ + y′)| <∞,(4.20)

∫
|z|>1

|z′|>1

∫
|y|>1

|y′|>1

1

|z′|α|z + z′|α
1

|y′|α|y + y′|α
|ϕ(z + y)||ϕ(z′ + y′)| <∞.(4.21)

Apparently we have not exhausted all cases, but some of them are immediate by
symmetry and others will be clarified during the proof.

It is convenient to introduce the following notation:

g1(z) =
1

|z|α
1[0,1](|z|),

g2(z) =
1

|z|α
1(1,∞)(|z|),

g3(z, z′) =
1

|z′|α|z + z′|α
1(1,∞)(|z|)1(1,∞)(|z′|),

ϕ1(z) = sup
|y|≤1
|ϕ(z + y)|.

We have g1 ∈ L1(Rd) and

g2 ∈ Lp(Rd) for p >
d

α
,(4.22)

in particular, g2 ∈ L2(Rd). Hence we obtain that

g3(z, z′)1(1,∞)(|z + z′|) ∈ Lp(R2d) for p >
d

α
,(4.23)
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since ∫
R

2d
gp3(z, z′)1(1,∞)(|z + z′|)dzdz′ =

∫
|z|>1

gp2 ∗ g
p
2(z)dz.

We have also ϕ1 ∈ Lp(Rd) for p ≥ 1, and moreover∫
|z|≤1

|z′|≤1

1

|z + z′|d
dzdz′ <∞,(4.24)

∫
|z|≤1

|z+z′|≤1

1

|z + z′|2α
dzdz′ <∞,(4.25)

∫
|z|≤1

|z+z′|>1

1

|z + z′|2α
dzdz′ <∞.(4.26)

Now, (4.16) is obvious by (4.24). The integral in (4.17) has the form (4.5) with

Ψ2(z, z′) =
1

|z + z′|α
1[0,1]2(|z|, |z′|) ∈ L1(R2d)

and
Ψ1 = Ψ

(1)
1 + Ψ

(2)
1 ,

where

Ψ
(1)
1 (y, y′) = g1(y + y′)1(1,∞)(|y|)1[0,1](|y′|) ∈ L1(R2d) by (4.25),

Ψ
(2)
1 (y, y′) = g2(y + y′)1(1,∞)(|y|)1[0,1](|y′|) ∈ L2(R2d) by (4.26).

Hence (4.17) holds by Lemma 4.3 applied to Ψ
(1)
1 ,Ψ2 and to Ψ

(2)
1 ,Ψ2.

(4.18) is obtained the same way because now the integral has the form (4.5) with Ψ1

as before and Ψ2 = Ψ
(1)
2 + Ψ

(2)
2 , where Ψ

(1)
2 = Ψ

(1)
1 ,Ψ

(2)
2 = Ψ

(2)
1 .

The same argument applies to all integrals where exactly one of |z|, |z′| is ≤ 1 and
exactly one of |y|, |y′| is ≤ 1.

Next, the integral in (4.19) is bounded above by

∫
|z|≤1

|z′|≤1

1

|z + z′|α
dzdz′

∫
|y|>1

|y′|>1

ϕ1(y)

|y|α
1

|y + y′|α
ϕ1(y′)dy′dy

≤ C
∫
R
d
ϕ1(y)(ϕ∗1 ∗ g1)(y)dy + C

∫
R
d
ϕ1(y)(ϕ∗1 ∗ g2)(y)dy

(recall that ϕ∗1(x) = ϕ1(−x)). We have ϕ1 ∈ L2(Rd), ϕ∗1 ∗ g1 ∈ L2(Rd), so the first integral
is finite. Also ϕ∗1 ∗ g2 ∈ L2(Rd) since g2 ∈ L2(Rd) (by (4.22)) and ϕ∗1 ∈ L1(Rd), so the
second integral is finite as well.
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We write the integral in (4.20) as the sum I1 + I2, where

I1 =
∫
...

∫
...

|y+y′|>1

, I2 =
∫
...

∫
...

|y+y′|≤1

.

I1 has the form (4.5) with

Ψ2(z, z′) =
1

|z + z′|α
1[0,1](|z|)1(1,∞)(|z′|), Ψ1(y, y) = g3(y′, y)1(1,∞)(|y + y′|).

We already know that Ψ2 is the sum of two functions, one of them in L1(R2d), the other
one in L2(R2d), and Ψ1 ∈ L2(R2d) by (4.23). Therefore I1 < ∞ by Lemma 4.3. Now,

I2 = I
(1)
2 + I

(2)
2 , where

I
(1)
2 =

∫
...

|z+z′|≤1

∫
...
, I

(2)
2 =

∫
...

|2+2′|>1

∫
...
.

We have

I
(1)
2 ≤ sup

x
|ϕ(x)|

∫
|z|≤1

|z′|>1

|z+z′|≤1

1

|z + z′|α
dzdz′

∫
|y′|>1

∫
|y|>1

ϕ1(y)

|y|α
1

|y + y′|α
1[0,1](|y + y′|)dydy′

≤ C
∫
|y′|>1

ϕ∗1 ∗ g1(y′)dy′ (by (4.25))

< ∞,

since ϕ1, g1 ∈ L1(Rd).

I
(2)
2 =

∫
|z|≤1

∫
R
d

1

|z + z′|α
1(1,∞)(|z + z′|)1(1,∞)(|z′|)

∫
|y′|>1

|ϕ(z′ + y′)|

·
∫
|y|>1

|ϕ(z + y)|
|y|α

1

|y + y′|α
1[0,1](|y + y′|)dydy′dzdz′

≤
∫
|z|≤1

g2 ∗ (|ϕ| ∗ (ϕ1 ∗ g1))(z)dz.

We have |ϕ| ∗ (ϕ1 ∗g1) ∈ L2(Rd) since |ϕ| ∈ L2(Rd) and ϕ1 ∗g1 ∈ L1(Rd); also g2 ∈ L2(Rd)
by (4.22). Hence the function under the integral is bounded and the integral is finite.
Thus (4.20) is proved. Note, moreover, that if in (4.20) we replace 1

|y′|α by 1
|y|α , then the

argument for I1 remains unchanged, and in I2 it suffices to observe that 1
|y′|α ≤

2α

|y|α if

|y′| > 1, |y + y′| ≤ 1, so we are led to previous case.
Finally, the integral in (4.21) can be written as I1 + I2 + I3 + I4, where

I1 =
∫

...
|z+z′|≤1

∫
...

|y+y′|≤1

, I2 =
∫

...
|z+z′|>1

∫
...

|y+y′|≤1

, I3 =
∫

...
|z+z′|≤1

∫
...

|y+y′|>1

,

I4 =
∫

...
|z+z′|>1

∫
...

|y+y′|>1

.
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We have

I1 ≤ sup
x
|ϕ(x)|

∫
|z|>1
|y|>1

∫
R

2d

1

|z + z′|α
1[0,1](|z + z′|) 1

|y + y′|α
1[0,1](|y + y′|)

· 1

|z′|α
1(1,∞)(|z′|)

1

|y′|α
1(1,∞)(|y′|)|ϕ(z′ + y′)|dz′dy′dzdy

= sup
x
|ϕ(x)|

∫
|z|>1
|y|>1

(g1 ⊗ g1) ∗ F (z, y)dzdy,

where

F (z′, y′) =
1

|z′|α
1(1,∞)(|z′|)

1

|y′|α
1(1,∞)(|y′|)|ϕ(z′ + y′)|.

As g1 ⊗ g1 ∈ L1(R2d), to obtain I1 <∞ it suffices to show that F ∈ L1(R2d). But∫
R

2d
F (z′, y′)dz′dy′ =

∫
R
d
g2(z′)(g2 ∗ |ϕ|)|z′|dz′ <∞,

since g2 ∈ L2(Rd) and g2 ∗ |ϕ| ∈ L2(R2d).
Note that, by the remark above, 1

|y′|α can be replaced by 1
|y|α here, and the same is

true for |z|, |z′|.
Next, in I2 we put y = x− y′. Then

I2 =
∫
|z|>1

|z′|>1

|z+z′|>1

∫
|x−y′|>1

|y′|>1

|x|≤1

1

|z′|α|z + z′|α
1

|y′|α
1

|x|α
|ϕ(z + x− y′)||ϕ(z′ + y′)|dxdy′dzdz′

≤
∫
|z|>1

|z′|>1

|z+z′|>1

∫
|y′|>1

1

|z′|α|z + z′|α
1

|y′|α
∫
|x|≤1

1

|x|α
dxϕ1(z − y′)|ϕ(z′ + y′)|dy′dzdz′

= C
∫
|w+y′|>1

|z′|>1

|w+y′+z′|>1

∫
|y′|>1

1

|z′|α|w + y′ + z′|α
1

|y′|α
ϕ1(w)|ϕ(z′ + y′)|dy′dwdz′

≤ C
∫
|z′|>1

∫
|y′|>1

1

|z′|α|y′|α
∫
|w+y′+z′|>1

1

|w + y′ + z′|α
ϕ1(w)dw|ϕ(z′ + y′)|dy′dz′

= C
∫
R
d
g2(z′)(g2 ∗ ((g2 ∗ ϕ1)|ϕ∗|))(z′)dz′.

Since g2 ∈ L2(Rd), to show that this integral is finite it suffices to observe that (g2 ∗
ϕ1)|ϕ∗| ∈ L1(Rd), as ϕ1, |ϕ∗| ∈ L2(Rd).

Here, again we can replace 1
|y′|α by 1

|y|α and then the integrability for the pairs 1
|z|α ,

1
|y|α

and 1
|z|α ,

1
|y′|α is obtained by a substitution z ↔ z′, y ↔ y′.

I3 <∞ by symmetry.
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Finally, I4 <∞ by Lemma 4.3 with Ψ1 = Ψ2 = g31(1,∞)(|z+z′|), p = q = 2 (see (4.23).
It is clear that nothing is changed here if we take other configurations of z, z′ and y, y′.

So we have proved that if α < d < 2α, then the convolution integral process has SILT.
Continuity of the SILT can be proved again by repeating the argument of the proof

of Theorem 3.14 of [BG3] and then carrying out carefully once more the estimations of
the proof above. Some small amount of extra work is needed due to the fact that terms
of the form |z|α

1+|z|α(1−ε) will appear. We omit details.

We skip the proof of the converse, i.e., that if d ≥ 2α then (3.10) does not hold for
any measure ν, because this fact is not of central interest for us. We only point out that
it suffices to prove that for a fixed ϕ > 0,∫

|z|>1

|z′|>1

|z+z′|≤1

∫
|y|>1

|y′|>1

|y+y′|≤1

1

|z′|α|z + z′|α
1

|y′|α
ϕ(z + y)ϕ(z′ + y′)dydy′dzdz′ =∞(4.27)

if d ≥ 2α. 2

Proof of Corollary 3.15. Sufficiency is proved. To show neccessity we fix ϕ ∈ Sd such
that ϕ̃a > 0 in the case ν = δa, or ϕ̃ > 0 in the case ν̃ > 0. In both cases we can repeat
the beginning of the proof of Proposition 3.9 (with h(z, z) = c+|z|α+|z′|α

|z+z′|α this time), to find

that existence of SILT for some d ≥ 2α would be in contradiction to (4.27). 2

Proof of Theorem 3.16. The sufficiency part can be deduced from the proofs of
Proposition 3.10 and 3.14. To prove necessity we write the covariance of the convolution
integral process associated with q(2) using formula (2.7). We have

K
(2)
CI (s, ϕ; t, ψ) =

∫ s∧t

0
q(2)(Ts−τϕ, Tt−τψ)dτ

=
∫ s∧t

0
〈γ, c(Ts−τϕ)(Tt−τψ)− (Ts−τϕ)(∆αTt−τψ)− (Tt−τψ)(∆αTs−τϕ)〉dτ.

But

−(Ts−τϕ)(∆αTt−τψ)− (Tt−τψ)(∆αTs−τϕ) =
d

dτ
(Ts−τϕ)(Tt−τψ)

by the semigroup property, hence

K
(2)
CI (s, ϕ; t, ψ) = c

∫ s∧t

0
〈γ, (Ts−tϕ)(Tt−τψ)〉dτ

+〈γ, (Ts−s∧tϕ)(Tt−s∧tψ)〉 − 〈γ, (Tsϕ)(Ttψ)〉
= cK

(1)
CI (s, ϕ; t, ψ) + 〈γ, (Ts−s∧tϕ)(Tt−s∧tψ)〉 −K(1)

F (s, ϕ; t, ψ).

In consequence the covariance functional of the OU process is, by (3.8),

K
(2)
X (s, ϕ; t, ψ) = K

(2)
X0

(Tsϕ, Ttψ) +K
(2)
CI (s, ϕ; t, ψ)

= 〈γ, (Ts−s∧tϕ)(Tt−s∧tψ)〉+ cK
(1)
X (s, ϕ; t, ψ).
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As c ≥ 0 and K
(1)
X (s, ϕ; t, ψ) ≥ 0 for ϕ, ψ ≥ 0, we then have for s < u, r < v,Φ(1),Φ(2) ∈

S(R2d),Φ(1),Φ(2) ≥ 0,

Js,r,u,v(Φ
(1),Φ(2)) ≥

∫
R

4d
Φ(1)(x, x′)Φ(2)(z, z′)pu−s(x, z)pv−r(x

′, z′)γ1(x)γ1(x′)dzdz′dxdx′,

where γ1(x) := 1 ∧ γ(x) (see Section 2 of [BG3]). Hence, for ϕ > 0, by Fatou’s lemma,

lim
ε→0

∫
[0,1]4

Js,r,u,v(Φ
f
ε,ϕ,Φ

f
ε,ϕ)dsdrdudv(4.28)

≥
∫
s<u
r<v

lim inf
ε→0

∫
R

4d
fε(x− x′)ϕ(x)fε(z − z′)ϕ(z)pu−s(x, z)pv−r(x

′, z′)

·γ1(x)γ1(x′)dxdzdx′dz′dsdrdudv.

The function (x, z) 7→ ϕ(x)ϕ(z)pu−s(x, z)γ1(x) is bounded continuous, hence

lim
ε→0

∫
R

2d
fε(x− x′)fε(z − z′)ϕ(x)ϕ(z)pu−s(x, z)γ1(x)dxdz = ϕ(x′)ϕ(z′)pu−s(x

′, z′)γ1(x′),

and the right-hand side of (4.28) is bounded from below by∫
s<u
r<v

∫
R

2d
ϕ(x′)ϕ(z′)pu−s(x

′, z′)pv−r(x
′, z′)γ2

1(x′)dx′dz′dsdrdudv.

Now we can apply Lemma 6.2.3 of [BG1] to obtain that this integral is bounded from
below by

C(ϕ)
∫
s<u
r<v

(u− s+ v − r)−
d
αdsdrdudv,

which is infinite if d ≥ 2α. Therefore SILT does not exist in this case (see Theorem 2.1.2
of [BG3]). 2
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