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Abstract

We give a necessary and sufficient condition for existence and continuity of self-

intersection local time (SILT) of the fluctuation limit of a two-type particle system

in Rd, were the particles evolve according to symmetric stable motions with different

stability parameters, and switch from type one to type two at random times with given

distribution. We show that existence of SILT is determined by the “most mobile” of

the stable motions.

1. Introduction

Let X = (X(t))t∈[0,1] be a centered, continuous, Gaussian process with values in the space

S ′(Rd) of tempered distributions on Rd. An intuitive definition of self-intersection local time

(SILT) of X up to time t ∈ [0, 1] is given by the formal expression

∫ t

0

∫ t

0
〈X(s)⊗X(r), δ(x− y)ϕ(x)〉 ds dr, (1.1)

where ⊗ denotes the tensor product in S ′(Rd), ϕ ∈ S(Rd) (the C∞ rapidly decreasing

functions), δ is the Dirac distribution, and 〈·, ·〉 stands for duality. Since δ(x − y)ϕ(x) /∈
S(R2d), the first question is how to give a rigorous meaning to (1.1). This problem was

studied by Adler, Feldman and Lewin (1991), and Adler and Rosen (1993), in case of the

Brownian and α-stable density processes. They proved that SILT of X exists if and only if

d < 2α, and for α = 2 the SILT process, when it exists, has cadlag paths. The cadlag result

in the Brownian case was obtained by means of the approximating particle system.
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Motivated by their work, Bojdecki and Gorostiza (1995,1999) gave a rigorous definition

of (1.1) for a wide class of S ′(Rd)-valued Gaussian processes and a criterion for existence and

continuity of SILT in terms of the covariance of a given process and applied this criterion

to various examples of generalized processes. In particular, they proved that SILT of the

α-stable density process exists and is continuous if and only if d < 2α. Bojdecki and

Gorostiza (1995) noted that the definition of SILT for S ′(Rd)-processes is not an extension

of the definition in the finite-dimensional case. Indeed, they showed that a finite-dimensional

Wiener process can be embedded in S ′(Rd) in two ways, such that the SILT exists for one

of them but not for the other.

In order to understand better the dependence of SILT on the spacial structure of the

process X and to give a “particle picture” interpretation, Gorostiza and Todorova (1999)

obtained an existence and continuity result for SILT of a more general density process

that corresponds to a system of particles of two types, where the particles of type i, i =

1, 2, move according to a symmetric αi-stable process, and each particle switches back and

forth between the two types with respective exponential waiting times with parameters Vi.

Gorostiza and Todorova (1999) proved that SILT exists and is continuous if and only if

d < 2 min{α1, α2}, thus generalizing the above results. The intuitive interpretation of this

result is that the existence of SILT is determined by the “most mobile” of the stable motions.

With a view toward increasing our understanding of the meaning of SILT for Gaussian

S ′(Rd)-processes which have associated particle picture, we study in this paper the exis-

tence and continuity of SILT for a density process where the particles begin with type 1

(performing symmetric α1-stable motion) and switch to type 2 (corresponding to a sym-

metric α2-stable motion) in random time τ , where τ is a random variable concentrated in

a interval [T1, T2], 0 < T1 < T2 < 1. We show (Theorem 3.2) that the SILT exists and is

continuous if and only if d < 2 min{α1, α2}; that is, again the “ most mobile” motion de-

termines existence of SILT. Note that the result does not depend on τ. In the case α1 = α2,

this result reduces to the previous studied by Adler, Feldman and Lewin(1991), Adler and

Rosen (1993) and Bojdecki and Gorostiza (1995).

The organization of this paper is as follows. In Section 2 we recall the definition of SILT

of generalized Gaussian processes given by Bojdecki and Gorostiza (1995), as well as their

criterion for existence and continuity of SILT. In Section 3 we introduce the particle system

which we consider here, and state our main result on the existence of SILT (Theorem 3.2)
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which is proved in Section 4.

2. A general criterion on existence and continuity of

SILT for S ′(Rd)-valued processes

We will condense the main result from Bojdecki and Gorostiza (1995). We refer the reader

to that paper for additional information and details.

Let F denote the class of non-negative symmetric C∞ functions f on Rd with bounded

support, and such that f(0) > 0 and
∫
f(x) dx = 1. For f ∈ F , ε > 0 and ϕ ∈ S(Rd) we

define

fε(x) = ε−df
(
x

ε

)
, x ∈ Rd,

and

Φf
ε,ϕ(x, y) = fε(x− y)ϕ(x), x, y ∈ Rd.

Note that Φf
ε,ϕ ∈ S(R2d) and Φf

ε,ϕ approximates δ(x − y)ϕ(x) as ε → 0. In order to give a

meaning to (1.1), the idea is to replace δ(x − y)ϕ(x) by Φf
ε,ϕ, so that it makes sense, and

take the limit as ε→ 0. For existence of a limit it is also necessary to replace X(s)⊗X(r)

by the Wick product : X(s)⊗X(r) :, which is an S ′(R2d)-valued random field such that

〈: X(s)⊗X(r) :, ϕ⊗ ψ〉 = 〈X(s), ϕ〉〈X(r), ψ〉 − E(〈X(s), ϕ〉〈X(r), ψ〉).

This leads to defining an approximate SILT Lfε (t) by

〈Lfε (t), ϕ〉 =
∫ t

0

∫ t

0
〈: X(s)⊗X(r) :,Φf

ε,ϕ〉 ds dr, t ∈ [0, 1], ϕ ∈ S(Rd),

which is a continuous S ′(Rd)-process.

We can now give a precise meaning to (1.1).

Definition 2.1. For a given continuous centered Gaussian S ′(Rd)-valued process

X = (X(t))t∈[0,1], if there exists an S ′(Rd)-valued process L = (L(t))t∈[0,1] such that for any

t ∈ [0, 1], ϕ ∈ S(Rd) and f ∈ F ,
〈
Lfε (t), ϕ

〉
→ 〈L(t), ϕ〉
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in L2 as ε→ 0, then L is called the self-intersection local time (SILT) of X.

Let K denote the covariance functional of X :

K(s, ϕ; t, ψ) = E (〈X(s), ϕ〉 〈X(t), ψ〉) , ϕ, ψ ∈ S(Rd), s, t ∈ [0, 1].

For test functions Φ(1),Φ(2) ∈ S(Rd)⊗ S(Rd) of the form

Φ(1) =
n∑
i=1

ϕ
(1)
i ⊗ ψ

(1)
i , Φ(2) =

m∑
j=1

ϕ
(2)
j ⊗ ψ

(2)
j , ϕ

(1)
i , ψ

(1)
i , ϕ

(2)
j , ψ

(2)
j ∈ S(Rd), (2.1)

and s, r, u, v ∈ [0, 1], we consider the functional

Js,r,u,v(Φ
(1),Φ(2)) (2.2)

=
n∑
i=1

m∑
j=1

(
K(s, ϕ

(1)
i ;u, ϕ

(2)
j )K(r, ψ

(1)
i ; v, ψ

(2)
j ) +K(s, ϕ

(1)
i ; v, ψ2

j )K(r, ψ
(1)
i ;u, ϕ

(2)
j )

)
,

which is the covariance functional of the random field : X(s)⊗X(r) : for test functions of

the given form.

We now state the existence and continuity criterion for SILT:

Theorem 2.2. Given a continuous centered Gaussian S ′(Rd)-process X, assume that

Js,r,u,v(Φ
(1),Φ(2)) has a well defined extension on S(R2d)× S(R2d) such that

a) The functional

(Φ(1),Φ(2)) 7→
∫

[0,t]4
Js,r,u,v(Φ

(1),Φ(2)) ds dr du dv

is continuous on S(R2d)× S(R2d) for each t ∈ [0, 1].

b) Js,r,u,v(Φ
f
ε,ϕ,Φ

g
δ,ϕ) converges to a finite limit as ε, δ → 0, for each f, g ∈ F , ϕ ∈ S(Rd),

s, r, u, v ∈ [0, 1], and this limit does not depend on f, g.

c) ∣∣∣Js,r,u,v(Φf
ε,ϕ,Φ

g
δ,ϕ)

∣∣∣ ≤ Gϕ(s, r, u, v)
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for some measurable function Gϕ on [0, 1]4 which depends on ϕ but is independent of ε, δ, f, g,

and such that

∫
[0,1]4

Gϕ(s, r, u, v) ds dr du dv <∞ (2.3)

for each ϕ ∈ S(Rd).

Then the SILT L of the process X exists.

Assume in addition that

d) There exists a non-decreasing continuous function F on [0, 1] and a number γ > 0

such that for all t1, t2 ∈ [0, 1], t1 < t2, ϕ ∈ S(Rd),

∫
[0,1]4

(
1[0,t2]2(s, r)− 1[0,t1]2(s, r)

) (
1[0,t2]2(u, v)− 1[0,t1]2(u, v)

)
Gϕ(s, r, u, v) ds dr du dv

≤ C(ϕ) (F (t2)− F (t1))1+γ , (2.4)

where C(ϕ) is a positive constant depending only on ϕ.

Then the SILT L is a continuous S ′(Rd)-process, and moreover Lfε converges weakly to

L in C([0, 1],S ′(Rd)) as ε→ 0.

Theorem 2.3. a) Suppose that Js,r,u,v satisfies condition (i) but

lim
ε→0

∫
[0,1]4

Js,r,u,v(Φ
f
ε,ϕ,Φ

f
ε,ϕ) ds dr du dv =∞

for some ϕ ∈ S(Rd) and f ∈ F . Then X does not have SILT.

b) Conditions (2.3) and (2.4)are satisfied by the function

Gϕ(s, r, u, v) = C(ϕ)((|s− u|+ |r − v|)−β + (|s− v|+ |r − u|)−β), β ∈ (0, 2), (2.5)

where C(ϕ) is some positive constant depending only on ϕ.

We denote by p
(α)
t the transition density of the symmetric α-stable motion in Rd.

We will use also the following result from Gorostiza and Todorova (1999).
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Theorem 2.4. For α1, α2 ∈ (0, 2] given, there is a positive constant C = C(d, α1, α2)

such that

sup
x,y∈Rd

∫
p(α1)
r (x, z)p(α2)

s (z, y) dz ≤ C(r + s)−d/min{α1,α2}

for all s, r ∈ (0, 1].

3. The particle model and the main result

We consider a particle system of two types in Rd, that correspond to a symmetric αi-stable

motions, αi ∈ (0, 2], i = 1, 2, and t ∈ [0, 1]. The particles are initially distributed according

to a Poisson random field with intensity measure nΛ, where n ∈ N, and Λ denotes the

Lebesgue measure on Rd, and change of type in a random time τ, when it switches to a

type 2 and moves according to a symmetric α2-stable motion for the rest of time. The

random variable τ has a given distribution µτ concentrated in the time interval [T1, T2],

where 0 < T1 < T2 < 1.

Let

N(t) =
∑
i

δξi(t),

where {ξi(t)} are the positions of the particles at time t, and consider the normalized

fluctuation process Xn defined by

Xn(t) = n−1/2(Nn(t)− ENn(t)), t ∈ [0, 1].

The following result is well-known.

Theorem 3.1. When n → ∞, Xn converges weakly in D([0, 1],S ′(Rd)) to a centered,

continuous, Gaussian process X with covariance functional K(s, φ; t, ψ) = E(〈X(s), φ〉〈X(t), ψ〉)
given by

K(s, φ; t, ψ) =
∫
Ex[φ(ξs)ψ(ξt)]dx.

The processX is the high-density fluctuation limit of the given branching particle system.

We obtain the following main result.
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Theorem 3.2. If d < 2 min{α1, α2} then the process X has SILT, and SILT is a

continuous S ′(Rd)-process. if d ≥ 2 min{α1, α2}, then X does not have SILT.

This result reveals that it does not matter when and how the particles change of type-

the most “mobile” type has a determining property for the existence of SILT.

4. Proof of Theorem 3.2

We will prove that the conditions of Theorem 2.2 and Theorem 2.3 are satisfied using the

methods of Gorostiza-Todorova (1999).

First we obtain an expression for the covariance functional of X in terms of the transition

densities p
(i)
t of the symmetric αi-stable motion, i = 1, 2. The covariance functional depends

on the ordering of T1 on [0, 1] with respect to s, t.

We will omit writing Rd in the integrals on Rd.

Lemma 4.1. For s ≤ t the covariance functional K(s, φ; t, ψ) of the process X is given

by the following expressions:

a) If s ≤ t ≤ T1, then K(s, φ; t, ψ) =
∫
ϕ(y)ψ(z)p

(1)
t−s(y − z) dy dz.

b) If s ≤ T1 < t, then K(s, φ; t, ψ) =
∫ ∫ t∧T2

T1
ϕ(y)ψ(w)p

(1)
r−s(y−z)p

(2)
t−r(z−w) dw dz dy µτ (dr).

c) If T1 < s ≤ t, then

K(s, φ; t, ψ) = µτ [T1, s ∧ T2]
∫
ϕ(z)ψ(w)p

(2)
t−s(z − w) dz dw (4.1)

+
∫ ∫ t∧T2

s∧T2

ϕ(y)ψ(w)p
(2)
t−r(z − w)p

(1)
r−s(y − z) dy dz dwµτ (dr). (4.2)

Remark. When T2 ≤ s ≤ t we obtain in case c) the same formula like in a) but with

stability parameter α2.

Proof. Let Tαit , i = 1, 2, denote the semigroup of the αi-stable symmetric motion and

Fs = σ{Xt, t ≤ s}. Using the Markov property and the definition of Tαit , we obtain in case

a)

Ex(φ(ξs)ψ(ξt)) = Ex(φ(ξs)Ex(ψ(ξt)|Fs))
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= Ex(φ(ξs)T
α1
t−sψ(ξs)

= Tα1
s (φTα1

t−sψ)(x). (4.3)

Now using the definition of the semigroup Tαit , i = 1, 2, we have

Tα1
t−sψ(y) =

∫
ψ(z)p

(1)
t−s(y − z) dz

Tα1
s (φTα1

t−sψ)(x) =
∫
φ(y)ψ(z)p

(1)
t−s(y − z)p(1)

s (x− y) dy dz

K(s, φ; t, ψ) =
∫
φ(y)ψ(z)p

(1)
t−s(y − z)p(1)

s (x− y) dx dy dz,

and using that p(1)
s is a density, we obtain the result in this case. In the second case,

conditioning on τ we have

Ex(φ(ξs)ψ(ξt)) =
∫ t∧T2

T1

Ex(Ex(φ(ξs)ψ(ξt)|τ = r)|Fr)µτ (dr)

=
∫ t∧T2

T1

Ex(φ(ξs)T
α2
t−rψ(ξr))µτ (dr)

=
∫ t∧T2

T1

Ex(Ex(φ(ξs)T
α2
t−rψ(ξr)|Fs))µτ (dr)

=
∫ t∧T2

T1

Ex(φ(ξs)T
α1
r−sT

α2
t−rψ(ξs))µτ (dr)

=
∫ t∧T2

T1

Tα1
s (φTα1

r−sT
α2
t−rψ)(x)µτ (dr). (4.4)

Using the definition of Tαit , i = 1, 2, we finish the proof like in the previous case.

In case c) we have

Ex(φ(ξs)ψ(ξt)) =
∫ t∧T2

T1

Ex(Ex(φ(ξs)ψ(ξt)|τ = r))µτ (dr)

=
∫ s∧T2

T1

Ex(Ex(φ(ξs)ψ(ξt)|τ = r))µτ (dr)

+
∫ t∧T2

s∧T2

Ex(Ex(φ(ξs)ψ(ξt)|τ = r))µτ (dr)

= I1 + I2, (4.5)
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where I1 and I2 are the corresponding integrals in (4.5). We have for I1:

I1 =
∫ s∧T2

T1

Ex(Ex(φ(ξs)ψ(ξt)|Fs)|τ = r)µτ (dr)

=
∫ s∧T2

T1

Ex(Ex(φ(ξs)T
α2
t−sψ(ξs)|τ = r)µτ (dr)

=
∫ s∧T2

T1

Ex(T
α2
s−r(φ(ξr)T

α2
t−sψ(ξr))µτ (dr)

=
∫ s∧T2

T1

Tα1
r Tα2

s−r(φT
α2
t−sψ)(x)µτ (dr).

The calculation of I2 is similar: for T2 ≤ s ≤ t we have I2 = 0; for s ≤ T2 we obtain

I2 =
∫ t∧T2

s
Ex(Ex(φ(ξs)ψ(ξt)|Fr)|τ = r)µτ (dr)

=
∫ t∧T2

s
Ex(φ(ξs)T

α2
t−rψ(ξr)|τ = r)µτ (dr)

=
∫ t∧T2

s
Ex(Ex(φ(ξs)T

α2
t−r(ξr)|Fs)|τ = r)µτ (dr)

=
∫ t∧T2

s
Ex(T

α2
s−r(φ(ξr)T

α2
t−s(ξr)|Fs)|τ = r)µτ (dr)

=
∫ t∧T2

s
Ex(φ(ξs)T

α1
r−s(T

α2
t−rψ(ξs))µτ (dr)

=
∫ t∧T2

s
Tα1
s (φTα1

r−s(T
α2
t−rψ))(x)µτ (dr).

Hence

I2 =
∫ t∧T2

s∧T2

Tα1
s (φTα1

r−s(T
α2
t−rψ))(x)µτ (dr).

Now we finish the proof using the definition of the semigroup Tαit , i = 1, 2.

Substituting K(s, ϕ; t, ψ) in (2.2), first for Φ,Ψ of the form Φ = ϕ⊗ ψ,Ψ = ϕ⊗ ψ, and

then for Φ,Ψ of the general form, and using the linearity of the tensor product, we obtain

analogously to Lemma 5.3 in Gorostiza and Todorova (1998) the functional Js,l,u,v(Φ,Φ), s ≤
l ≤ u ≤ v for all cases of positions of T1 on [0, 1] with respect to the points s, l, u, v. For

example, for s ≤ l ≤ u ≤ T1 < v we have the following result.
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Lemma 4.2. For s ≤ l ≤ u ≤ T1 < v we have

Js,l,u,v(Φ,Φ) = J
(1)
s,l,u,v(Φ,Φ) + J

(2)
s,l,u,v(Φ,Φ),

where

J
(1)
s,l,u,v(Φ,Φ)

=
∫ v

T1

∫
Φ(y, y′)Φ(z, w′)p

(1)
u−s(y − z)p

(1)
r−l(y

′ − z′)p(2)
v−r(z

′ − w′) dy dz dy′ dz′ dw′ µτ (dr),

J
(2)
s,l,u,v(Φ,Φ)

=
∫ v

T1

∫
Φ(y, y′)Φ(w′, z)p

(1)
v−l(y − z)p

(1)
r−s(y

′ − z′)p(2)
u−r(z

′ − w′) dy dz dy′ dz′ dw′ µτ (dr).

Having the expression for the function Js,r,u,v, condition a) of Theorem 2.2 is proved anal-

ogously to the Corollary 5.7 of Gorostiza and Todorova (1998).

We can now prove condition b) of Theorem 2.2 for each one of the orderings of T1 with

respect to s, l, u, v analogously to the Proposition 5.10 of Gorostiza and Todorova (1998),

thus obtaining the following result.

Lemma 4.3. The limit limε,δ→0 Js,r,u,v(Φ
f
ε,ϕ,Φ

g
δ,ϕ) exists for all f, g ∈ F , ϕ ∈ S(Rd),

s, r, u, v ∈ [0, 1], and this limit does not depend on f, g. In the case s ≤ l ≤ u ≤ T1 < v we

have

lim
ε,δ→0

J (1)
s,r,u,v(Φ

f
ε,ϕ,Φ

g
δ,ϕ)

=
∫ ∫ v

T1

ϕ(y)ϕ(z)p
(1)
u−s(y − z)p

(1)
r−l(y − z′)p

(2)
v−r(z

′ − z) dy dz dz′µτ (dr)

lim
ε,δ→0

J (2)
s,r,u,v(Φ

f
ε,ϕ,Φ

g
δ,ϕ)

=
∫ ∫ v

T1

ϕ(y)ϕ(z)p
(1)
v−l(y − z)p

(1)
r−s(y − z′)p

(2)
u−r(z

′ − z) dy dz dz′µτ (dr).

With these preliminary results we now proceed to prove Theorem 3.2.

10



Proof of Theorem 3.2.

(a) Case d ≥ 2 min{α1, α2}.

Let assume first α1 ≤ α2. For ϕ > 0, using the Fatou lemma and Lemma 4.3 we obtain

lim inf
ε→0

∫
[0,1]4

Js,l,u,v(Φ
f
ε,ϕ,Φ

f
ε,ϕ) ds dr du dv

≥
∫
s≤l≤u≤v≤T1

∫
p

(1)
u−s(x, y)p

(1)
v−l(x, y)ϕ(x)ϕ(y) dx dy ds dl du dv

+
∫
s≤l≤u≤v≤T1

∫
p

(1)
v−s(x, y)p

(1)
u−l(x, y)ϕ(x)ϕ(y) dx dy ds dl du dv.

But by Theorem 2.3 the last integral is ∞.

If α2 ≤ α1, we proceed analogously using the term that coresponds to T2 ≤ s ≤ l ≤ u ≤ v

and the Remark after Lemma 4.1.

By Theorem 2.3 we conclude that in this case the SILT does not exist.

(b) Case d < 2 min{α1, α2}.

We suppose α1 ≤ α2 (the case α2 ≤ α1 is similar). We will verify conditions c) and d)

of Theorem 2.2.

From Lemma 4.2 we have for i = 1, 2∣∣∣J (i)
s,l,u,v(Φ

f
ε,ϕ,Φ

g
δ,ϕ)

∣∣∣ ≤ J
(i)
s,l,u,v(|Φf

ε,ϕ|, |Φ
g
δ,ϕ|) ≤ J

(i)
s,l,u,v(Φ

f
ε,|ϕ|,Φ

g
δ,|ϕ|).

Therefore it suffices to bound the terms of J
(i)

s,l,u,v, i = 1, 2, for all posible cases of orderings

for T1 on [0, 1] with respect to s, l, u, v. This can be done by changing variables and using

Theorem 2.4.

For example, let consider the term J ≡ J
(1)
s,l,u,v(Φ

f
ε,ϕ,Φ

g
δ,ϕ) corresponding to the case

s ≤ u ≤ l ≤ T1 < v. We have

|J | ≤
∫ v∧T2

T1

∫
|ϕ(y)|fε(y′ − y)|ϕ(z)|gδ(z − w′)p(1)

u−s(y − z)p
(1)
r−l(y

′ − z′)p(2)
v−r(z

′ − w′)

dy dz dw′ dz′ dy′ µτ (dr)

Changing variables y → y − y′, and using Theorem 2.4, we obtain

|J | ≤ sup
y
|ϕ(y)|

∫ v∧T2

T1

∫
|ϕ(z)|fε(y′)gδ(z − w′)p(1)

|u−s|(y − z)p
(1)
r−l(y − y′ − z′)p

(2)
v−r(z

′ − w′)
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dy dz dy′ dz′ µτ (dr)

≤ sup
y
|ϕ(y)|

∫ v∧T2

T1

∫
(u− s+ r − l)−d/α1|ϕ(z)|fε(y′)gδ(z − w′)p(2)

v−r(z
′ − w′)

dz dw′ dz′ dy′µτ (dr)

≤ C(ϕ)(u− s)−d/2α1

∫ v∧T2

T1

(r − l)−d/2α1µτ (dr)

≤ C(ϕ)(u− s)−d/2α1(T1 − l)−d/2α1

≤ C(ϕ)H(s, l, u, v),

where H(s, l, u, v) = (u− s)−d/2α1(T1− l)−d/2α1 . H is integrable over s ≤ u ≤ l ≤ T1 < v for

d < 2α1.

We proceed analogously with the other terms of |J |, obtaining bounds H of the form

(2.5).

Therefore conditions c) and d) of Theorem 2.2 are verified and the proof of Theorem 3.2

is complete.
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