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This insightful paper by van Dyk and Meng (VM) makes the important point that ad-
vances in data augmentation algorithms offer a wide variety of tools for statistical inference.
Time series methods are no exception and mixture modeling within this context may help
to improve forecasting and to detect changes in structure across time.

The time series modeling approach that we adopt is based on the idea of mixing models
through the neural network paradigm known as Hierarchical Mixtures-of-Experts (HME)
- see Jordan and Jacobs (1994). The HME approach easily allows for model comparison
and permits one to represent the mixture weights as a function of time or other covariables.
With the additional hierarchy, it is possible to localize the comparisons to specific regions or
regimes. Furthermore, the defining elements of the mixture do not have to be restricted to a
particular class of models permitting very general comparisons. In this comment parameters
are estimated via maximum likelihood using the EM-algorithm- extensions to a full Bayesian
approach using MCMC may follow one or more of the many lines outlined by VM. We see
this comment as a call to the Chagalls of this world to use their artist abilities to develop
quick mixing stochastic algorithms for this important, yet complex class of HME models.

Let {y:}§ be a time series of endogenous or response variables, and {x;}{ be a time
series of exogenous variables or covariates. Suppose the main interest is to draw inference
on {y:}g conditional on {x;}{. Let the conditional probability density function (pdf) of
yt be fi(ys|Fi—1, X;0), where 0 is a parameter vector; X is the o-field generated by {x:}7,
representing the external information; and for each ¢, F;_1 is the o-field generated by
{ys}ffl representing “the previous history” at time ¢ — 1. Typically, the conditional pdf f;
is assumed to depend on X through x; only. In HME, the pdf f; of the response variable is
assumed to be a conditional mixture of the pdfs from simpler, well established models. In

a time series context, this mixture can be represented by the finite sum
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where the functions g;(-|-, -;7y) are the mixture weights; m;(+|-, -, J;n) are the conditional pdfs

from simpler models each defined by a label J; and « and n are vectors of sub-parameters
from 6.

The simpler models in HME are often referred to as the “experts”. In a time series
context, one “expert” could be an AR(1) model, another “expert” could be a GARCH(1,1)
model or an EGARCH(1,1) model. For example, in a situation where it is not clear whether
to use a stochastic or a deterministic trend, one expert could be a trend-stationary process,
another a difference-stationary process. A somewhat simpler situation occurs when all the
experts propose a model of the same type, e.g. linear autoregressive, but perhaps with
different values for the coefficients or for the model order.

Furthermore, the HME models considered have an additional layer designed with the



purpose of local time series modeling. The HME partitions the covariate space, which could
include time, into O overlapping regions called “overlays”. In each overlay, M models are
to compete with each other, in the hope that the model most suitable to the specific region
is favored by a high weight (see Figure 1). By having multiple overlays, the hierarchical
mixture model allows for modeling multiple switching across regions.

Therefore, the expert index J can be expressed as J = (0, m), where the overlay index o
takes a value from {1,...,0}, and the model-type index m from {1,..., M}. We allow the
same type of model m to assume different versions or more specifically different parameter
values, at each possible overlay.

The mixing weights are often referred to as “gating functions”. They can depend on the
previous history, exogenous information (see McCulloch and Tsay, 1993), or can exclusively

depend on t. The gating functions may have the form
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where the v’s and u’s are parameter components of v; and wy is an “input” at time ¢, which
is measurable with respect to the o-field induced by F; 1 U X. For example, the input w;
could be the covariate x;, the “two-lag” history (ys 1,y 2)7
t.

, or exclusively depend on time

In the context where one is interested in how the weighting for individual models is
assigned across different time periods, w; can be taken as (¢/n). Therefore, one can adopt

the following parametric form for the gating functions:
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Here v includes all the following components: vy, u1, ..., VO-1,40-1, -+, V1|1, U115 -- -
UM—1|17uM—1|1a ceey UM—1|OauM—1|O' For ldentlﬁablhty, we set vp = up = UM‘O = U/M\o =0
for all 0 =1,...,0. The free vector of parameters v in the gating functions automatically

determines the location and the “softness” of the splitting of the regions.

Note that this framework defines the two-layer HME architecture of Jordan and Jacobs
(1994), where the first layer of gating functions hypothesizes O overlays on the entire time
axis, and the second layer of gating functions defines weights for each of the M model
types within each overlay. When the input space for the gating functions is time, the
hierarchical mixture model can identify the region over which a model or a set of models is
(are) dominant in a data-adaptive manner. Thus, the present approach allows for modeling
multiple regime switching. Further details of this approach, as well as related asymptotic
theory are presented in Huerta, Jiang and Tanner (2000).
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Figure 1: A Graphical Representation of a Two-Layer HME.

Inference on the parameter # can be based on the log-likelihood function, conditional

on yo, X and “averaged” in time, which is
n

Ln() =n""Y log fily Fr1, X50). (4)
t=1

We denote the maximum likelihood estimate (MLE) of § as § = arg max £,,(-). To obtain
the MLE, the EM algorithm starts with an initial estimate of the parameters §°. Then a
sequence {6’} is obtained by iterating between the following two steps:

Fori=0,1,2,...,

E-step: Construct

Q' (0) = D" hom(t;0%) log{m(ye| Fi—1, X, 0,m;n)ge(0,m|Fi—1, X57)},  (5)

t=1o0m

where 6 = (v,71), 0" = (Y',1°), hom(t;6°) = hom(t;0)|g—gi, and
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is the “posterior probability” of choosing the expert (o,m) at time t¢.

hom (t;0) =

M-step: Find #°t1 = arg maxy Q*(9).

Inference is greatly facilitated by the introduction of augmented data, resulting in the

fact that the objective function @Q° has the form of a double sum of logarithms, instead of a



“sum log sum” typical for the log likelihood function £,,. For this reason, the maximization
of the objective function can be decomposed into a number of smaller maximization prob-
lems which involve fewer parameters and usually define “known” maximizations of widely

used models. For example, suppose the expert pdf has the form

(Y| Fe—1, Xy 0,m5m) = pe(yel Fr—1, X, m500m) (7)

where 7 is decomposed into a collection of sub-parameter 7,,,, each of which only appears
in the pdf of one expert. The parameter n,,, carries an index o in addition to m to allow
one type of model to take different versions (parameters) in different overlays. In such a
situation, in the M step, the maximization over the 1,,,’s and v can be performed separately.

For example, for each o, m, ,

n
Ty = argmax Y o (t;0°) 10g pi(yel Fi1, X, 5 7o), (8)
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which become the “standard” (albeit weighted by the h’s) maximum likelihood problem for
model type-m.

When the MLE 4 is obtained, we are interested in evaluating the relative weighting of
each of the M model types at time . Two estimates are of interest in this regard. One is
an empirical Bayes estimate of the posterior probability / weight of model type-m at time
t. This is the conditional probability regarding the history up to time ¢ and defined by:

0
Py(mlys, Fi-1,X) = hn(t) = D hom (1:6), (9)

o=1

where 6 is the MLE. Another approach for weighting is to consider an empirical Bayes-type
estimate of the unconditional probability / weight of model m at time ¢ (unconditional on
the history of the endogenous process {y;}):

(0]
Bi(m|Fi1,X) = grn(t) =Y gom(t:6). (10)

As we shall see in an example, (9) can vary point-wise over time due to the conditioning
on the specific history of the observations. The second weighting scheme (10) is smoother
when describing a regional change of preference for model m. The term . (t) is an estimated

4

“posterior” probability of model m, and §,,(¢) is the corresponding estimate of the “prior”
probability in the sense that the prior probability is not conditional y; and the posterior
probability is conditional on y;. These estimates are not formal Bayesian priors and posterior
probabilities for model m, since we have not assigned any prior p(f) to the parameters 6,

but instead are estimating the conditional or “unconditional” mixing weights at the MLE.
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Figure 2: Ezchange Rate Data. Top: 500 observations of spot rates between the German-
mark and US-dollar beginning in October 1986. Bottom: Logarithm of the first difference
of the spot rates between the German-mark and the US-dollar.

We consider a financial time series to illustrate this hierarchical mixture defined with
GARCH and EGARCH models - see Bollerslev (1986) and Nelson (1991). The series consist
of 500 daily observations of exchange rates between the German-mark and the US-dollar
starting from October 9, 1986. In fact, Figure 2 presents a time plot of the 500 daily spot
rates characterized by a non-stationary random walk behavior.

Also in the same figure, we present the logarithm of the first difference of spot rates as
a function of time, a transformation which is widely used to induce covariance-stationarity
and propose parametric models. Assuming that Y; represents the log of the first difference
in spot rates, as discussed in Andersen and Bollerslev (1998), 3 candidate models are used

to obtain inferences on wolatilities or innovation variances at each time t:
e An AR(1) model simply defined by:
Yi=do+ g1V + e,
where ¢, ~ N(0,0?).
e An AR(1)-GARCH(1,1) model represented by

Yi=¢o+ ¢1Yio1 + e,



but now € ~ N(0,0?). That is, the innovation variance can change in time and

according to the evolution equation
0 =0y + 0162 | + b0} 4,
with non-negative parameters 6y, #1 and 65.

e Finally, an AR(1)-EGARCH(1,1) is considered, where again
Yi=¢o+¢1Yi1+e

but now the evolution in variance is defined in terms of the natural logarithm and the

standardized innovations z; = €;/o; through the expression

log(o}) = fo + Brze1 + Ba(lz—1| — /2/7) + B3 log(a} ),
with no restrictions on the parameters 5y, 81, f2 and (3.

Within an HME framework taking M = 3: m,m=1 denotes the pdf of ¥; given the
history based on an AR(1); 7¢|om=2 the same pdf with an AR(1)-GARCH(1,1); and m¢|o,m=3
denotes the pdf with an AR(1)-EGARCH(1,1). As before, the index o is added to model
parameters and our initial exploration is based on a value of O = 2, i.e. allowing for 2
overlays. We ran the EM-algorithm with 20 different starting points. Parameters for the
pdfs m¢|, were initialized at the individual model MLE’s and initial parameters for the
gating functions were generated from uniform distributions. Each EM was run for 500
iterations and solutions were ranked using the log-likelihood function £,(-).

Figure 3 presents the estimates §,,(¢t) for m = 1,2,3. In general, the model assigns a
very low weight to the AR(1), with competing weights for AR(1)-GARCH(1,1) and AR(1)-
EGARCH(1,1), for approximately the first 100 observations of the series. For the remaining
segment of the time series, the preferred model is the AR(1)-EGARCH(1,1).

In Figure 4, we present the estimates of Bm(t) for m = 1,2,3. Although the general
“smoothed” pattern is similar to that exhibited by Figure 3, the model posterior proba-
bilities have jumps of high probability for the three competing alternatives. This example
reflects how h,,(t) can be highly impacted by single observations. The “ups and downs”
in volatility experienced by exchange rate data across time lead to these model switches.
Periods of almost constant variance can be well represented by an AR(1) model but when
the data present periods of non-constant variance, the GARCH or EGARCH structure
dominates producing the large jumps in the functions Ay, (t).

Figure 5 presents a comparison of the estimated volatilities of the HME with those

based on the individual models. The MLE, computed with a numerical optimizer, was
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Figure 3: Ezchange Rate Data Example. Maximum likelihood estimates of g,,(t) for the 3
models considered: AR(1), AR(1)-GARCH(1,1) and AR(1)-EGARCH(1,1).

used to obtain the volatilities for AR(1), GARCH(1,1) and EGARCH(1,1). For the present
hierarchical mixture model, the volatilities were estimated using the EM-solution, recog-
nizing that for this mixture model, the variance of Y; given the history is the expectation
with respect to the mixing weights g, (t) of individual model-variances plus the variance
of the expectation functions for each defining model. We note that the volatility for the
HME smoothes some of the high volatility peaks induced by other models but recognizes
the overall pattern suggested by the AR(1)-GARCH(1,1) and the AR(1)-EGARCH(1,1)

processes.
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Figure 4: Ezchange Rate Data Ezample. Maximum likelihood estimates of hy,(t) for the 3
models considered: AR(1), AR(1)-GARCH(1,1) and AR(1)-EGARCH(1,1).
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Figure 5: Exchange Rate Data Example. Comparison of estimated volatilities for the HME
and the individual models AR(1), AR(1)-GARCH(1,1) and AR(1)-EGARCH(1,1).
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