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ABSTRACT. We present a probabilistic approach which proves blow-up of so-
lutions of the Fujita equation dw/dt = —(—A)*/2w + w'*P in the critical
dimension d = /8. By using the Feynman-Kac representation twice, we con-
struct a subsolution which locally grows to infinity as ¢ — oo. In this way, we
cover results proved earlier by analytic methods. Our method also applies to
extend a blow-up result for systems proved for the Laplacian case by Escobedo
and Levine [1] to the case of a-Laplacians with possibly different parameters
a.

1. INTRODUCTION AND OVERVIEW

Consider the semilinear equation

awt

1
(1.1) = = Dawtyw ™,
Wwo = ¥,
in R?, where A, = — (—AO‘/Q), 0 < a < 2, denotes the a-Laplacian, 3 and v are

positive numbers and the initial condition ¢ is a nonnegative function on R

In Fujita’s pioneering work [2] it was shown (originally for the case o = 2) that
d = a/f is the critical dimension for blow-up of (1.1): if d > «/3 then (1.1) admits
a global solution for all sufficiently small initial conditions, whereas if d < «/3, then
for any non-vanishing initial condition the solution is infinite for suitably large .

For the case d = o/ it was proved by Sugitani [10] by subtle analytic arguments
that (1.1) blows up. Using different, partly probabilistic methods, this was also
proved by Portnoy ([7, 8]) for the special case a = 2, § = 1. Related results on
systems where the space variable is restricted to a bounded domain in R¢ can be
found in the recent paper of Wang [11] and the references therein.

In this note we give a short probabilistic proof for blow-up at the critical dimen-
sion, using the Feynman—Kac representation. Here is an outline.

Consider for ¢ = 0,1, 2 the initial value problems

Owy ;
(1.2) a;’z = Aqwi; + th;iwf,ifl
Wi = P

where wy,_1 = 0. Then f; := w;, g+ := w1 and hy := wy 2 are all subsolutions of
(1.1). Since fi(y) = E,[@(W,)], where (W;) is a symmetric a-stable process, f;(y)
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decays like const -t~ (see Section 2). On the other hand, by the Feynman-Kac
formula (see e.g. Stroock [9] §4.3), g; arises as the density of the measure

13 pm) = [ B0 /Otvfswvs)ﬁds} o(e)dr, B e B(RY.

Since “typically” f,(W,) should be bounded from below by const - s~%¢, and also

B, {W; € dy} > const - t=%/* dy as long as |y — z|| < ¢}/, one should expect that

t
1
(1.4) = e exp (const - logt)
> ot ote

as long as ||y|| < t'/®. This intuition can be turned into a proof basically by
applying Jensen’s inequality and scaling arguments.

After dealing in this way in Proposition 2.1 with the case i = 1, we then turn to
the case i = 2 in (1.2). Like g, also h; = w; 2 has a Feynman-Kac representation,
but now with f2 replaced by g2 in the exponent of (1.3). By (1.4), the integrand
gs(Wy)P in this exponent should “typically” remain bounded from below by const -
s~1%8_ Thus we expect that

t
h¢(y) > const - /e exp <—C/ 31+8ﬁd3) :
0

and in fact we will prove this in Proposition 2.3. In particular, h; thus is a subso-
lution of (1.1) which locally grows to infinity. This fact suffices to show blow up,
as we will recall in Section 3.

Section 4 comments shortly on the case of subcritical dimensions, and Section 5
on Portnoy’s method. In Section 6 we give some extensions. Apart from re-proving
Sugitani’s result, we show that blow-up of (1.1) with a certain time-dependent
nonlinearity, which was recently proved by Gedda and Kirane [3], arises as an easy
corollary of our probabilistic approach.

In Section 7 we obtain conditions for blow-up of a class of semilinear systems.
We are able to extend a blow-up result of Escobedo and Levine [1] and show blow-
up at the critical dimensions of a system which we were able to analyze before only
in the case of sub— and supercritical dimensions [5, 6].

2. CONSTRUCTING SUBSOLUTIONS BY THE FEYNMAN-KAC FORMULA

Let us now turn to the case d = a/f3, and assume without loss of generality
that the initial condition ¢ of (1.1) does not vanish a.s. on the unit ball. Let p(x)
denote the transition density of the symmetric a-stable process, and write

(2.1) fiy) = / pely — 2)p(x) dz = By [p(W)].

For all ¢t > 1 there holds

(2.2) fy) = o1, (- 1oy) /B () do
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for some ¢y > 0, where B, denotes the ball in R? with radius r centered at the
origin. Indeed, let y € B,i/o. Then we have by the scaling property of W,

fly) = Eolp(Wi+y)] = Bo o (£/2(W1 + /)]
> /B il =t plt ) dr e /B ) do = et~ /B sl

This argument also shows that for sufficiently large ¢t and 0 < [ ¢(z) dz < co there
holds

(2.3) fily) = ot 1, (71 ).

for some ¢}, > 0.

2.1. The first iteration: a subsolution with a slow decay. We are going to
obtain a lower bound for the solution g; of

094
o Angy +’ygtftﬁ,

go = ¥

where f; is defined in (2.1). Since f; is a subsolution of (1.1), g; is a subsolution of
(1.1) as well.

(2.4)

Proposition 2.1. There exist €, ¢ > 0 such that for all t > 2 and all y € R? obeying
lly|l < t'/* there holds

(2.5) gi(y) = ct=ore,

Proof. By the Feynman—Kac formula, g; arises as the density of the measure p,
defined in (1.3). We therefore have, using (2.2) and Jensen’s inequality,

t
9i(y) = /@(x)pt(yfv)Em[eXP/ 1 fs(We) ds| W y} dx
0
t/2
> /ap(x) pe(y — ) Emlexp/ Czs_ﬁd/alBsua (W) ds| Wy = y] dzx
1
/2
> /cp(x) pe(y — x) exp (cz/ sTPUCP AW, € By Wy =y} ds> dz
1
/2
(2.6) > est™¥exp <c4/ sﬁd/o‘ds>
1

where the last estimate relies on Lemma 2.2 below. (Here and below ¢;, i =1,2,...
denote “locally defined” positive constants). The assertion now follows from our
assumption d = a/f3. O

The intuition behind the following assertion is clear: conditioning on some “typ-
ical” state at time ¢ does not much affect the behavior of (W}) between times 0 and
t/2.

Lemma 2.2. There exists a ¢ > 0 such that for allt > 2, y € Buja, x € By and
s € [1,/2],

(2.7) B, {Ws € Bas| W, =y} > c
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Proof. Obviously it suffices to show
(2.8) / ps(z —X)pi—s(y — 2)dz > cspe(y — ).
Bi/a

To see this, let us state the following facts, which are an easy consequence of the
scaling property of (W}):
(i) For all z € Byija and r:=t —s
prly—2)dz = Ty {rl/o‘Wl +ye dz} > ian B {Wl g ol/op=le g, a}
ac 2l/a
> stz

(ii) For all z € Byija, ps(z —x) > cgs Y.

Combining (i) and (ii) we see that the LHS of (2.8) is bounded from below by
ert~4/® which proves the claim. O

2.2. The second iteration: a subsolution growing to infinity. We are now
aiming at a lower estimate for the solution h; of

oh
(29) =t = Aaht + htgtﬁ,

ot

h() = (p

where g¢; is the subsolution of (1.1) constructed in the previous subsection. Clearly,
also h; is a subsolution of (1.1).
Proposition 2.3. inf {h;(y) | ly]| <1} — oo ast — occ.

Proof. We proceed similarly as in the proof of Proposition 2.1. First we note that
the Feynman—Kac formula renders

210 )= [ el B ]ew [ (W) ds

Using Jensen’s inequality and (2.5), we see that the RHS of (2.10) is bounded from
below by

t/2

W, = y} dx.

> /Bl o(x)pe(y — )

t)2
(2.11) - exp (7/ cs TP erB R LW, € Boja| Wy =y} ds) dz
2

(2.12) > gtV exp(cot?).

Here, we used Lemma 2.2 and the assumption d = /3 in the last inequality. O

3. COMPLETION OF THE PROOF OF BLOW-UP
From Proposition 2.3 we know that

(3.1) K(t) := ieng we(x) — 00 as t — 0o
x 1
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where B; denotes the unit ball. In fact this is enough to guarantee blow-up. Here
is an easy argument which is borrowed from [4] §4, and which we include for con-
venience.

We are going to re-start (1.1) with the initial condition wy,, with a suitable
choice of ty given below. Writing u; := wy,++ we first recall the integral form of

(1.1)
(3.2) ut(a?) = /pt(y - sc)uo(y) dy + /0 vy ds /Ptfs(y _ m)us(y)l'w dy.

Noting that ¢ := mingep, ming<s<; B {W, € B} is strictly positive, we obtain for
all t € [0,1] from (3.1) the estimate

t 1+8
33) wip (o) > ¢KGo)+¢ [ (miput))  ds

Now choose ty so big that the blow-up time of the equation

t
(3.4) o(t) = CK(t0) 47 [ vl ds

0
is smaller than 1. Then, a fortiori, minge g uy(x) = 0o, which shows blow-up of w.

4. SUBCRITICAL DIMENSIONS: ONE ITERATION SUFFICES

In the case d < /3, (2.6) shows that already the first subsolution g; (constructed
in Section 2.1) grows to infinity on the unit ball By in the sense that inf{g:(y)| |ly|| <
1} — oo ast — oo. Thus, in view of the previous section, for subcritical dimensions
a single application of the Feynman—Kac formula suffices to show blow-up.

5. A REMARK ON PORTNOY’S METHOD

Portnoy [7] studies the iteration scheme

(5.1) vnyi(z) = (Mon) (2) + (Hlvn)2 (2)
Vo = @ Z 0

where II; is a transition probability on R¢. He shows that under suitable assump-
tions on IT; (which include the case of a standard Brownian transition probability),
(5.1) admits no bounded solution for d = 1 and d = 2 provided ¢ does not a.s.
vanish.

‘A closer look on his proofs shows that he achieves this by analyzing subsolutions
v of (5.1) which are given by the scheme

Ur(zOJZI =0l =T, 19
(5.2) 01(3_1 - Hlvr(:) + (Hlvﬁf)) (Hﬂ}?(j_l)) )
The analysis of (5.2) is carried through probabilistically in terms of random walks,

which is much in the spirit of a discrete time Feynman—Kac approach.
It can be extracted from Portnoy’s arguments that, for the Brownian case, say,

(5.3) oM grows to infinity for d = 1,
and

(5.4) v?) grows to infinity for d = 2.
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An easy application of Jensen’s inequality plus induction shows that w,, is bounded
from below by v,, (where w; is the solution of (1.1) with 8 = 1). Indeed,

1 1 2
w, = Ijw,—1 —|—/ stfks ds > Iljw,—1 + (/ T w,_ ds)
0 0
1 2
len—l + </ Hsnl—swn—l d8> > Hlvn—l + (1_[1'0n—1)2 = Un.
0

Y

Together with the argument in Section 3 above, (5.3) and (5.4) thus imply blow-up
of w for 8 =1 and o = 2 in one and two dimensions. (In [8], a more complicated
argument is used to show w,, > v, and the blow-up of w.)

6. EXTENSIONS

6.1. Sugitani’s condition. Sugitani [10] considers instead of (1.1) the slightly
more general equation

(6.1) 9wy Aqw; + F(w,)
ot
wy = ¢,

where F': R, — R is increasing and convex, and F(u) ~ yu'*? as u — 0. This
requires only slight modifications in Section 2:

In (2.4) and below, f;(u)? has to be replaced by F(f;(u))/f:(u), which by as-
sumption can be bounded from below by cf;(u)”.

Similarly, in (2.9) and below, g;(u)? has to be replaced by F(g;(u))/g: ().

6.2. A time dependent nonlinearity. Recently, Guedda and Kirane [3] showed
by analytic methods blow-up of the equation

(6.2) % = Aqwy + 7w’
wo = @ (Z 0,7_é0)

for o > Bd/a — 1. This result also follows quickly from our probabilistic approach.
In fact, it suffices to consider the case o = fd/a — 1.

1. Concerning the subsolution g¢;, all what happens is that a factor s° enters
into the exponentials in the Feynman—Kac representation (1.3) and in the RHS of
(2.6). Since s774/< in the RHS of (2.6) cancels against s7, the lower bound (2.6)
remains unchanged, and so does the estimate (2.5).

2. Concerning the subsolution h;, again a factor s? enters into the exponentials
in (2.10) and (2.11). Since again (s~%*)? cancels against s, the lower bound
(2.12) remains unchanged, and so does the assertion in Proposition 2.3.

3. Concerning the argument in Section 3, from the special time-inhomogeneity
in (6.2) a factor (to 4+ t)7 enters in front of the integral in (3.3). Still, since (2.12)
guarantees a super-algebraic growth of K(t), we can choose ty so big that the
blow-up time of the equation

o(t) = CK (to) +7C(to +1)° /0 o(s)*+Pds

is smaller than 1, so that the argument of Section 3 remains valid.
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7. BLOW-UP OF SYSTEMS

In this section we apply our probabilistic approach to extend a blow-up result
of Escobedo and Levine [1] (Theorem 7.1 and Remark 7.2). In Theorem 7.3 we
show that a system which we investigated in [6] in high dimensions blows up at the
critical dimension.

Theorem 7.1. Assume that (u,v) solves

ou
Gr = Bagu+ul
v

(71) aitt Aag (%7 + F(ut, Ut)

Up = ¥1, Vo = P2,

where ay, a9 € (0,2], B1 >0, B2 >0, F >0, p1 >0, 2 > 0 and both v1 and ps
do not a.s. vanish. Then u blows up if

-1
(7.2) ar < aq and d < <61 + 62) .
aq (€5)]

Remark 7.2. For oy = ag =: a, (7.2) turns into the condition d < a/(81 + 52),
which notably is also the condition for blow-up of the partial differential equation

ou

i A u+u1+51+ﬂ2.

ot “
For a = 2, this specializes to one of the main results in Escobedo and Levine’s

paper [1]. They investigate by analytic tools the system

0 0
87:: _ Au+u1+511}ﬁ27 87: = Av + uf1yf2

and prove blow-up under the condition d < 2/(8; + (32).
Proof of Theorem 7.1. Let fi ;(y) = [¢;(@)ps;(y — x)dz, j = 1,2, where p;;

denotes the symmetric o -stable transition density. Obviously, (fi1, fi.2) is a sub-
solution of (7.1), and from (2.2) we have for ¢t > 1

(7.3) fealy) = Ct=o1p (171 ory)
and
(7.4) fraly) > Ct=¥o1p (o),

where we used the assumption ae < oy to obtain (7.4). Thus we can proceed as in
the proof of Proposition 2.1 to get the estimate

(7.5) w(y) > Ct=4/oate

uniformly for ||y|| < t*/*1. Combining (7.4) and (7.5) we get by the same argument
as in the proof of Proposition 2.3 a lower bound for u; which locally grows to
infinity at a super-algebraic speed. By the argument at the end of Section 6.2 this is
sufficient for blow-up of u; even if F = 0 (in which case v; decays algebraically). O
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Theorem 7.3. Assume that (u,v) solves

0
% = Aalut —+ Upv
0

(76) % = Aa2 Ve + ULV

Up = ¥1, Vo = P2,
where a1, as € (0,2], 1 >0, w2 > 0 and both p1 and @o do not a.s. vanish. Then
(u,v) blows up if d < min(aq, az).

Remark 7.4. It was shown in [6] that (7.6) admits global solutions if d > min(aq, a2)
and 7 and @ are sufficiently small.

Before proving Theorem 7.3, we prepare a lemma which is an easy generalization
of Lemma 2.2. Here and below, (Wt(z)) denotes the symmetric stable process with
index «a; and p;;(z) its transition density, i = 1, 2.

Lemma 7.5. Assume that o := ag < «ay. There exists a ¢ > 0 such that for all
t>2,y € Byja, x € By and s € [1,t/2],

P, {W§2> € B,ijer

W§2) :y} > cgl/or—d/az

Proof. It suffices to show (2.8) with cst/or=d/a2 instead of 5 and D2 instead of p;.

Again we have (i) and (ii) from the proof of Lemma 2.2, now with (Wt(z)) instead

of (Wy). Integrating the bound s= 2 oyer B1/a, then gives the factor const -
gd/ar—d/as O

Proof of theorem 7.3. From (2.3) we have

(7.7) w > etm g,
and
(7.8) v > et M1,

for sufficiently large ¢. Let us now assume without loss of generality that as < aj.
By the Feynman—Kac formula we have

wl) = [ erapaty - )2 e [ (W) ds

By Jensen’s inequality and (7.8), this can be bounded from below by

t)2
/901(55)1%,1@ —x)exp (/ cos~ Y2 B, {Ws(l) € B/, Wt(l) = y} dS) dx.

to
Noting that B i/ay 2 B,i/a; and using Lemma 2.2, we thus arrive at the lower
bound

/2
(7.9) st~ exp ((:4/ sd/‘”ds) .
to

If d < a, then this lower bound grows super-algebraically, and we infer blow-up of
u like in Section 3, combined with (7.8) and the argument in Paragraph 6.2.3.
Let us now assume d = ap. Then (7.9) turns into the lower bound

(7.10) uy(y) > est™rte

Wt(l) = y] dz.
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(uniformly in y € Bije, for ¢ sufficiently large). Another application of the
Feynman—Kac formula gives

@) w) = [t -oE] oo [ (W) ds

Using Jensen’s inequality and (7.10), we can bound this from below by

Wt(z) = y] dz.

t/2
[ea@maty=yes [ as s m (W € B | W =y} ds d.

to
In view of Lemma 7.5 we thus obtain as a lower bound for v;(y) (as long as t is
sufficiently large and y € Bji/a, ):

t/2 t/2
et~ 2 exp/ cps~ U eategd/on—d/az gy — py—d/es exp/ crs~ U erte g

to to

= etV exp (est?).
As before, the growth of this lower bound implies blow-up of v. d

Remark 7.6. Consider instead of (7.6) the more general system

ou
871: = Aoy +ue)!
0

(7.12) % = Ag,v 4 uy

Up = P1, Vo = P2,
where aq, asg, @1, @9 are as in Theorem 7.3, and f1, G2 > 0. Assume that as < ;.
Proceeding as in the proof of Theorem 7.3 but using the simple bound (7.7) instead

of (7.10) in the Feynman-Kac representation corresponding to (7.11) one obtains
quickly that (7.12) blows up if

az (fa—1 1\
(7.13) d<max<ﬁ1,< o +042> >

It remains an interesting question whether the RHS of (7.13) is the critical dimen-
sion for blow-up of (7.12) and whether there is blow-up at the critical dimension.
We conjecture that this is the case at least for ay = as =: @, in which case the
RHS of (7.13) turns into o/ min(B1, 32). Indeed, for the special case a = 2, this
was proved by Escobedo and Levine [1].
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