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Abstract

We explore some aspects of the analysis of latent component structure in non-stationary
time series based on time-varying autoregressive (TVAR) models that incorporate uncer-
tainty on model order. Our modelling approach assumes that the AR coefficients evolve
in time according to a random walk and that the model order may also change in time
following a discrete random walk. In addition, we use a conjugate prior structure on the
autoregressive coefficients and a discrete uniform prior on model order. Simulation from
the posterior distribution of the model parameters can be obtained via standard Forward
Filtering Backward Simulation algorithms. Aspects of implementation and inference on
decompositions, latent structure and model order are discussed for a synthetic series and
for an electroencephalogram (EEG) trace previously analysed using fixed order TVAR
models.
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1 Introduction

From a Bayesian perspective, model uncertainty is relevant for parameter estimation and
inference and it is summarised through the computation of posterior model probabilities.
Additionally, in Bayesian time series, studying how inference on latent structure and pre-
diction of future values is affected when model order uncertainty is considered becomes a
key issue. In this paper, we study these aspects for a particular class of time series: the
time-varying parameter autoregressive (TVAR) models.

A vast literature of time series models that incorporate model uncertainty via Markov
chain Monte Carlo (MCMC) methods has flourished in recent years. For instance, when the
class of models is restricted to the linear autoregressive (AR) process, Barnett et al. (1996)
present a MCMC method, based on a stochastic variable search approach, to deal with model
order uncertainty. The priors are specified on the partial autocorrelations with a support
that restricts the AR process to be stationary. On the same line, Barbieri and O’Hagan
(1997) used priors on the same parameterisation, and developed a MCMC reversible jump
algorithm (Green, 1995) to obtain posterior inference on model order and model parameters.
Troughton and Godsill (1997) also propose a reversible jump to obtain samples from the
posterior distribution of the model order and parameters, but their priors are defined on the
standard AR coefficients rather than on partial autocorrelations. More recently, Huerta and
West (1999) incorporated model order uncertainty in the linear AR framework with emphasis
on prior specification for latent structure. This leads to a novel class of prior distributions on
the characteristic reciprocal roots of the AR process. For posterior simulation, they propose
a MCMC method that uses a stochastic variable selection approach and reversible jump
algorithms. The works cited above illustrate how model uncertainty may be considered in
linear and/or stationary time series models using MCMC methods.

For non-stationary Dynamic Linear Models (DLMs), West and Harrison (1997, chapter
12), following Harrison and Stevens (1976), present an approach known as multi-process mod-
els where model uncertainty is addressed using mixtures of DLMs. In this scenario, the class
of models are conjugate DLMs and the probability of model k, p(k|D;), where D; denotes
the information up to time ¢, has an explicit analytic form. When some of the DLMs in con-
sideration are not conjugate but conditionally conjugate, the multi-process requires Forward
Filtering Backward Simulation algorithms (Carter and Kohn, 1994; Frithwirth-Schnatter,
1994) to obtain posterior model probabilities. If conditional conjugacy is suppressed, poste-
rior model probabilities may be computed via particle filtering methods (Pitt and Shephard,
1999). The work by Andrieu et al. (1999) is a recent reference in this direction; model order
uncertainty and sequential updating are considered for standard autoregressions. Their al-
gorithm is based on particle filters, selected with Bayesian importance sampling and MCMC
reversible jump steps.

In this paper, we deal with model order uncertainty restricting to the class of time-varying
autoregressive models. This class of models has proven remarkably useful in studying the
underlying structure of non-stationary signals like electroencephalographic (EEG) traces.
References on TVAR modelling include Gersch (1987), Kitagawa and Gersch (1996), Prado
and West (1997), West et al. (1999) and Krystal et al. (2000). These and other authors have
demonstrated the flexibility of TVAR models in describing changes in the stochastic struc-
ture of non-stationary time series in various applied fields. In particular, West et al. (1999)



discusses the specification of TVAR models and decomposition theory of non-stationary time
series based on flexible DLM representations. In Section 2, we briefly review the related
methodology of decomposition and underlying structure analysis for time-varying autore-
gressions. In Section 3, we address model order uncertainty within the TVAR modelling
framework and discuss issues of posterior inference and extensions of the decomposition re-
sults that consider model order uncertainty. Sections 4 and 5 illustrate how the proposed
methodology is used to study latent structure in a simulated series and an EEG signal,
respectively. Concluding remarks are presented in Section 6.

2 The class of TVAR models and decompositions

We begin by summarising the TVAR model specifications and decomposition results following
West et al. (1999).
A univariate time series x;, follows a time-varying autoregression of order p, or TVAR(p),

if
P
T =Y 1T+ €, (1)
=1
where ¢, = (¢1,1,..-,¢1p) is the time-varying vector of coefficients and €; are zero-mean

independent innovations assumed Gaussian with possibly time-varying variances o?. No
explicit stationarity constraints are imposed on the AR parameters at each time t. However,
if such parameters lie in the stationary region, the series can be thought as locally stationary
and the changes in the parameters over time represent global non-stationarities. The model
is completed by specifying the evolution structure for ¢, and 7. The AR parameters ¢,
evolve according to a random walk, ¢, = ¢,_; + &;, with zero mean innovations &, that are
uncorrelated and normal, &, ~ N (0, W;). The degree of variation in time of ¢, is controlled
via standard discount factor methods (West and Harrison, 1997). A single discount factor
B € (0,1] leads to values of each Wy such that low values of 3 imply high variability of the ¢,
sequence, while high values, in the range 0.9-0.999, are typically relevant in practice. The unit
value § = 1 implies no evolution of the parameters over time. Similarly, the changes in time
of o2 are modelled with a multiplicative random walk o7 = o2 | (6/n;), where 1; are mutually
independent and independent of €; and &;, and with 7, ~ Be(a, b;). The parameters a; and
b; are defined at each ¢ by a discount factor § € (0, 1] analogous to . Suitable values of the
discount factors and p may be assessed via marginal likelihoods as discussed deeply in West
et al. (1999) and Prado (1998). Sequential updating and retrospective filtering/smoothing
algorithms (West and Harrison, 1997) can be applied to obtain posterior model inference.
Once posterior inference is achieved, the focus is on exploring the latent time-frequency
structure of the series. The TVAR model in (1) has a DLM form, z; = F'x;, x; = Gyxy_1+

wy, where F = (1,0,...,0), x¢ = (x4, %4—1,- .., Tt—p+1)’, wr = ¢F and
bt1 P2 oo Drp-1 Dip
1 o ... 0 0
G; = G(g¢,) = 0 1 ... 0 0
0 0 1 0



The eigenvalues of G; are the reciprocal roots of the autoregressive characteristic equation at
time t. Suppose that, at each time ¢, G; has p distinct eigenvalues, with ¢ pairs of complex
eigenvalues denoted by 7 ;exp(Fiw;) for j = 1,...,¢, and r = p — 2c real eigenvalues
denoted by r;; for j = 2c+1,...,p. Then, the basic decomposition result for the class of
TVAR models states that (West et al., 1999),

c p
Ty = Z Ztj + Z Yt.js (2)
j=1 Jj=2c+1
where the z; j processes are defined through the complex eigenvalues and the y; ; through the
real eigenvalues. In particular, for the standard AR(p) process G; = G and the eigenvalues
of G are the reciprocals roots of the AR characteristic equation. In this case r;; = r;
for j = 1,...,p and wy; = wj for j = 1,...,c. Furthermore, each y; ; follows a standard
AR(1) process with AR parameter r;, and each 2z ; follows an ARMA(2,1) whose AR(2)
component is quasi-periodic with constant characteristic frequency w; (or wavelength 27 /w;)
and modulus 7;. In the general TVAR case, and under certain conditions discussed in Prado
(1998), each y; ; is dominated by a TVAR(1) with time-varying AR parameter r;; and each
z; is dominated by a TVARMA(2,1) with time-varying characteristic frequency w;; and

modulus 7y ;.

In order to illustrate the above results, we present a TVAR decomposition of an EEG
series recorded on a patient who received a moderate level of electroconvulsive therapy (ECT)
stimulus intensity. Details about the EEG data, the conditions and implications of the
therapy, as well as a complete statistical analysis based on TVAR models appears in West
et al. (1999) and Krystal, Prado and West (1999). Figure 1 displays the data and estimated
latent components in the series, based on a TVAR(12) model with constant observational
variance o7 = ¢, and discount factor 8 = 0.997 controlling the variability of ¢»,. Components
(1), (2), and (3) in the decomposition are the components with highest amplitudes, lying
in the delta (0 to 4 Hz) and theta (4 to 8 Hz) frequency bands. These components are
individual processes dominated by TVARMA(2,1) quasi-periodic structures. For instance,
process (1) is dominated by a TVARMA(2,1) with time-varying characteristic frequency
lying in a delta band that starts around 4 Hz and gradually decays in time. The time-varying
characteristic modulus of process (1) is consistently high, with values higher than 0.95 over the
seizure course. Components (4) to (6) are low amplitude components representing neural and
experimental noise. The end of the seizure occurs around ¢ = 1800. Clearly, the contribution
of components (2) to (6) is practically negligible after ¢ = 1800. The structure of the EEG
signal is more complex while the seizure starts and matures than when it begins to decay
and eventually dies off. Thus, it seems reasonable to consider a TVAR model with a higher
model order during the beginning and middle parts of the seizure than towards the end.

3 Autoregressions with time-variation on the AR coefficients
and model order

A time-varying autoregression with time-varying order p;, or TVAR(p;), is described by

Pt
T = Y Brimij+ e, (3)
=1
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Figure 1: Data and estimated components in the decomposition of an EEG series based on
a TVAR(12). From the bottom up, the graph displays the series followed by the estimated
components in order of decreasing amplitude.

where the autoregressive coefficients change in time according to a random walk, as defined in
Section 2 for a TVAR(p), and €; are zero-mean innovations, assumed Gaussian with constant
variance 2. Additionally, we assume that p;, the order of the autoregression at time ¢, is an
integer that takes values between a fixed lower bound pnin and a fixed upper bound pmax.
The TVAR(p;) model in (3) is a sub-model of the TVAR(pmax) described by

Pmax
Ti= Y GriT—j + €, (4)

j=1
with a pmax-dimensional vector of coefficients ¢, = (d¢1,-..,Ptp;,0,...,0). Model com-
pletion requires specification of an initial prior for (¢;,0?) and details concerned with the
evolution of model parameters. For simplicity, we set ¢ = (¢1,1,- -, 1 pmax) > With ¢1; # 0

for all j, so that p; = pmax. In addition, we take relatively diffuse normal priors on ¢, that
is, N(¢,]0,0%1,,..) and vague inverse-gamma priors on o2. The evolution of p; is defined
through a first order discrete random walk with known transition probabilities denoted by
P[p; = i|pt—1 = j] and with possible values for i and j ranging from pmin t0 Pmax-

For posterior inference of the TVAR(p;), we propose a MCMC method that follows a
two-stage Gibbs sampling format. Conditional on {p1,...,pn}, the standard sequential up-
dating and retrospective filtering/smoothing algorithms for DLMs apply. Based on all the
observed information D,, = {Dy,z1,z2,...,Z,}, where Dy denotes the initial information,
and the model orders, the sequences ¢, and o2 are sampled from normal and inverse gamma
distributions respectively. The second stage consists on sampling from the conditional pos-
terior distribution of p;, given ¢, and o2, via the filtering/smoothing algorithm for discrete



random variables of Carter and Kohn (1994). A short description of the algorithm is made
here with full details presented in the Appendix. To simplify the notation, let D; include all
the information up to time ¢, the conditioning sequences ¢, and o?. We begin computing the
conditional prior probabilities P[p; = i|D;_1] for each ¢ and i = ppin, - - - , Pmax, marginalising
the joint probability distribution Plp; = 4,p;—1 = j|D;—1] over j. We compute the posterior
probabilities P[p; = i|D;] via Bayes theorem and save the prior and posterior probabilities
for py, for all ¢. Then, we sample p} from P[p, = i|D,]. Finally, for each t = n —1,...,1,
we sample p; from the distribution Plp; = i[p},,, D], where p},; is the sampled value for
model order at time ¢ + 1. The vector (p},...,p};_1,p;) constitutes a sample from the joint
conditional posterior distribution of model orders.

3.1 Decompositions for TVAR models with time-varying order

The TVAR(p;) model defined above can be written in DLM form, z; = F'xy, x; = Gyxy—1+wy,
where F is a pmax X 1 vector F = (1,0,...,0), x; = (@, T4—1, - -, Tp—prar+1) » Wt = &F and
Gt a Pmax X Pmax matrix,

¢t,1 ¢t,2 .- ¢t,pt—1 ¢t,pt 0 00
1 0o ... 0 0 0 ... 00
0 1 ... 0 0 0 ... 00
Gi=Gl)=| o 1 0 0 00 (5)
0 0 1 0 00
0 0o --- 0 0o --- 1 0
Assume that G; has p; distinct non-zero eigenvalues denoted by aq,...,qp,+ and a zero

eigenvalue, denoted by a = 0, with multiplicity pmax — p:- The non-zero eigenvalues corre-
spond to the reciprocal roots of the characteristic polynomial at time ¢, ®p, (u) = (1 — @1 4u —
oo = i p,uPt). Then, Gy = E,AE; ! with

A; = block diag[Ap,, J(pra—p)(0)]; Et=le1s,....ep ¢, 01ty hp s

where A,, = diag(at1,...,ap,) and J(pmax_pt)(O) is the (Pmax — Pt) X (Pmax — pt) Jordan
block associated to the eigenvalue oo =0,

0 1 0 0
00 1 0 0
000 ...00
T pmaxp0)O) = | .. . .
0 00 ... 01
000 ...00

E; is & Pmax X Pmax matrix whose first p; columns, e.;, correspond to the eigenvectors as-
sociated to the eigenvalues a1, ..., ap, +. The last pmax — p; columns of E; are the vectors

hyg,....hg o py).t: where each hj is such that its first pmax —j components are zeroes and



its last j components are ones. Some of the non-zero eigenvalues of G; could be complex and
in such case they appear in conjugate pairs. Assume that at each time ¢, there are ¢; pairs
of complex eigenvalues denoted by r; ; exp(Fiwy;), j = 1,...,¢; and 4 = p; — 2¢4 non-zero
real and distinct eigenvalues denoted by r;;, j = 2¢; +1,...,p;. For each time ¢, define
the matrix H; = DtEgl, with D; = diag(EQF)E;l, and v, = Hyx;. Then, we may write
= (1,...,1)5, or equivalently,

sz—k Z Yt,j, (6)

J=2ct+1

with 2 j = Y1251+ 7,25, for j = 1,..., ¢, and yg j = v, for j = 2¢; +1,...,p;. Notice that
the decomposition result is analogous to (2), but now the number of components depends on
¢t and ¢ which are time-varying.

To gain insight on the structure and interpretability of the latent processes z;; and y; ;,
consider the fixed order TVAR(i) models M; for each possible order i = ppin, - - - ; Pmax,

M; : =F X¢, Xt = Gg )Xt 1+ wy
with
bt1 b2 --- Pri-1 Pri O 00
1 0o ... 0 0 0O ... 00
0 1 ... 0 0 0O ... 00
(1) _ :
G'=1 9 o 1 0 0 0
0 0 1 0 00
0 0 - 0 0 - 10

For each M;, reparameterise x; and w; via 7§i) = Hﬁi)xt and 6§i) = Hgi)wt with Hﬁi) =
; N —1
D,@(Etz)) . Then we have,
=10 ad P = APKOD, 4.
; ] )y L (i ;)% : )% i )% )% . .

with ng) = Dgz)(Egz)) Egz_)ngz_)l = Hgl)Hggl. Dgz) and H,EZ_)I are generalised inverse
matrices of D,EZ) and H,(f_)l respectively. Given known values of ng)
obtain a decomposition for x; based on M;,

and x; for each ¢, we can

c('L)

Zztj + Z ygj)’

j= =2¢(0) 41
for each i = Pmin, - - -  Pmax Where i = () + 2¢(). The value s the number of conjugate
pairs of complex non-zero eigenvalues of ng), denoted by ry]) exp(iing)-), j=1,...,¢%, and

() is the number of real eigenvalues. As in the TVAR(p) case, we are assuming that c(*)



and () are fixed in time (see West et al., 1999). If the AR coefficients change slowly in
time, as is often the case in practice, ng) ~ blockdiag[Iixi,O( . Then, each

() is dominated by a TVARMA(2,1) process with time-varying modulus rgfj) and frequency

b :
©) ,EZ]) glj) . The general

Wi
decomposition result (6) is such that at a given time ¢, z;; = zéﬂt), Yrj = yg;-t), rej = rt(gt)

(pt)

and wy; = wy e Thus, assuming that the AR coefficients change smoothly in time, each 2 ;
in (6) coincides at time ¢, with a process dominated by a TVARMA(2,1) with instantaneous

characteristic modulus and frequency rg;t) and wg;-t)

pmax*i) X (pma,x'*i)]
V4

and each y, ; is dominated by a TVAR(1) with time-varying modulus r

. Similarly, each y; ; coincides at time ¢,

(pt)

with a process dominated by a TVAR(1) with time-varying modulus r; ;.

4 Study of synthetic data

In this section we compare estimations of the latent structure of a synthetic series obtained
using a TVAR(p;) and a fixed order TVAR(p). Figure 2 (a) displays the synthetic data at the
bottom. The first 550 data points were generated from a TVAR/(12) with five quasi-periodic
latent components and two real components, while the last 550 observations were generated
from a purely quasi-periodic TVAR(4). The latent processes shown in the figure appear in
order of decreasing wavelength therefore, component (1) corresponds to the highest wave-
length component and component (5) to the lowest wavelength component for ¢ =1,...,550.
Component (6) is the result of adding the latent processes associated to the two real roots for
t =1,...,550. Similarly, component (1) is the highest wavelength component and compo-
nent (4) is the lowest wavelength component for ¢ = 551,...,1100. Note that processes (2),
(3), (5) and (6) have no contribution to the decomposition of the series for ¢ = 551,...,1100
since the series was generated from a quasi-periodic TVAR(4) during this time period. The
trajectories in time of the characteristic wavelengths, moduli and amplitudes associated to
the actual time-varying AR parameters, also ordered by wavelength, are displayed in Figures
2 (b), (c) and (d). Note that the ordering of the latent processes in the decomposition is a
key issue, since there is no inherent mathematical identification of the characteristic roots.

We fitted a TVAR(p;) model to the series. Discount factors in the range of 0.99 — 0.998
were considered to control the evolution of the AR coefficients in time. Such values impose
smoothness restrictions on the changes of the model parameters in time that are typical in
practice (West and Harrison, 1997; West et al., 1999) and guarantee the interpretation of the
latent component structure described in Section 3. The transition probabilities that model
the evolution of p; in time are specified as follows

[ qii Jj=t

qi—1, J=1—1, 1< pmax
qi—2,i J=1—2, 1< Pmax
Gi+15 J=1t+1, 72> Pmin
Gi+2; J=1+2, 12 Pmin
L 0 otherwise,

Plpy =ilpi—1 =j] =

with ¢;; usually in the range 0.9 — 0.9999. Note that this structure allows to increase or
decrease the current model order by only one or two units at each time t. Therefore, we
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Figure 2: (a) Simulated series and latent processes ordered by wavelength. (b) Trajectories of
the estimated wavelengths. (c) Trajectories of the estimated moduli ordered by wavelengths.
The ordering of the components in terms of decreasing moduli is (1), (2), (4), (3), (5) and
(6) fort =1,...,550 and (1), (4) for t = 551,...,1100. (d) Estimated amplitude trajectories
ordered by wavelengths. The ordering of the components in terms of decreasing amplitude is
(1), (2), (4), (3)/(5) (switching) and (6) for ¢ =1,...,550 and (1), (4) for ¢t = 551,...,1000.
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Figure 3: Simulated series: estimated posterior mean for model order at each time ¢ (solid
line) with 95% posterior probability bands (dotted lines).

are also imposing smoothness conditions on the changes of p;, allowing to include or delete
only one characteristic root, complex or real, at each time ¢. A uniform prior P(p; = i) =
1/(Pmax — Pmin + 1), © = Pmin,- - - , Pmax 1S used on the model order, while relatively diffuse
normal/inverse-gamma priors are considered for the AR coefficients and ¢? respectively.

Figure 3 shows the estimated posterior mean (solid line) and 95% posterior bands (dotted
lines) for the model order at each time ¢. Posterior summaries were obtained using a model
with pmin = 2, pmax = 15, 8 = 0.995 and a transition probability matrix defined as follows.
We took ¢;; = 0.99 for all 4; g23 = 0.002; g24 = 0.008; g32 = ¢34 = 0.004; ¢35 = 0.002;
q15,14 = q15,13 = 0.005; q14,15 = q14,13 = 0.001; g14,12 = 0.008; ¢;5-1 = ¢;i+1 = 0.001 and
qii—2 = qii+2 = 0.004 for + = 4,6,8,10,12 and Qii-1 = Qii+l = ¢ii—2 = ¢ii+2 = 0.0025
for ¢« = 5,7,9,11,13. The results presented here are based on a posterior sample of 3000
draws taken from 10000 iterations of the Gibbs sampler after a burn-in of 4000 iterations
for MCMC convergence. The graph shows that the model order oscillates between 10 and
14 for, roughly, the first 400 observations, with a posterior mean of p; = 12 for most of this
initial period. After ¢ = 400 the model order decreases and the uncertainty on the model
order increases. At about ¢ = 750 and up to t = 1100, p; oscillates around 4.

Figures 4 (a) and (b) show the latent processes and the trajectories of the characteristic
wavelengths estimated using a fized order TVAR(12) model. The estimated latent compo-
nents were computed at the estimated posterior means of the AR coefficients and innovations
variance. A discount factor value of 8 = 0.995, chosen by marginal likelihood maximisation,
was used to fit the model. Figure 4 (a) displays, from the bottom up, the data and estimated
latent processes in the decomposition ordered by decreasing wavelengths. Figure 4 (b) graphs
the time trajectories of the estimated characteristic wavelengths. The solid line corresponds
to the highest wavelength component. Note that from about ¢ = 550 and up to ¢ = 1100,
the estimated highest wavelength component takes lower values than the actual wavelength
component (see Figure 2 (b)). The estimated wavelength trajectories associated to the latent
processes (2), (3) and (5) are constant over time after ¢ = 550, while such components do
not arise in the original data. In addition, from approximately ¢ = 700 and up to ¢t = 1100,
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Figure 4: (a) Fixed order TVAR: simulated process and estimated components ordered by
decreasing wavelength from the bottom up. (b) Fixed order TVAR: estimated wavelength tra-
jectories. (c) TVAR(p;): simulated process and estimated components ordered by decreasing
wavelength from the bottom up. (d) TVAR(p;): trajectories of the estimated wavelengths.

the estimated component (6), which is the sum of two components associated to a couple of
real roots, shows a pattern that that should have been captured by component (1). There-
fore, the TVAR model is reproducing spurious features during some time periods and is not
adequately estimating the latent structure of the series.

Figures 4 (c) and (d) show the estimated latent processes in the decomposition and the
trajectories of the characteristic wavelengths for the TVAR(p;) fitted with the discount factor
and transition probabilities values specified above. Again, the estimated latent processes are
ordered by decreasing wavelength from the bottom up. The estimated latent components and
wavelengths were computed at the posterior mode for model order and the estimated posterior
means for the AR coefficients and innovations variance for each time ¢. The trajectory of the
highest estimated wavelength resembles the actual wavelength trajectory for ¢ > 600. The
wavelength trajectories for components (2), (3) and (5) are roughly constant up to ¢t = 600
and zero from this point until the end of the series, in agreement with the behaviour of the
actual components. Then, the TVAR(p;) model is correctly estimating the latent component
structure of the synthetic series. This example illustrates the relevance of considering model
order uncertainty when estimating the latent structure with TVAR models.

11



200 0 200

o] 500 1000 1500 2000 2500 3000

time

order
0 4 8 12

o] 500 1000 1500 2000 2500 3000

time

order
0 4 8 12

o] 500 1000 1500 2000 2500 3000

time

Figure 5: From the top down we have the EEG data, the estimated posterior median for
model order and each time ¢t with 95% posterior bands and the estimated posterior mean for
model order at each time ¢ with 95% posterior bands.

5 An application: analysis of an EEG trace via TVAR models
with uncertainty on the model order

Consider again the EEG series displayed at the bottom of Figure 1. The latent components
shown in the graph were computed using estimated posterior means for the AR coefficients
and the innovations variance of a TVAR(12) model. In this section we model the same
series with a TVAR(p;) whose model order at time ¢, p;, may take values from pmin = 0
up t0 pmax = 14. Different values of pnin and pmax were also considered, leading to similar
inferences in terms of the latent structure. The transition probability structure used in this
example to model the evolution of py, is similar to the structure described in the previous
section. In particular, values of ¢;; in the range of 0.9 - 0.9999 were taken for i = 0,...,14, so
abrupt changes in the model order from ¢ — 1 to ¢ are not permitted. Similarly, we use values
of the discount factor for the AR coefficients in the range of 0.99 - 0.999. These values were
chosen based on exploration of marginal likelihood functions that result from analysing the
series via TVAR models with fixed model order. A discrete uniform prior on model order,
P(p1 = i) = 1/15, and relatively diffuse conjugate normal/inverse-gamma priors were used
for the AR coefficients and the innovations variance.

Figure 5 displays from the top down, the EEG data, the trajectory in time of the estimated
posterior median for model order with 95% posterior probability bands (center panel) and
the trajectory of the estimated posterior mean for model order with 95% posterior probability
bands. The graphs were obtained with a discount factor g = 0.997 for the AR coefficients,
and a transition probability matrix defined by, ¢;; = 0.99 for all 4; ¢; ;41 = ¢;;—1 = 0.004 and
Gijit2 = Qii—2 = 0.001 for 2 <@ < 125 g01 = qo2 = qu4,13 = qua2 = 0.005; q10 = Q12 =
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Figure 6: Estimated posterior probabilities for model order at each time ¢.

q13,14 = q13,12 = 0.004 and ¢1 3 = ¢13,11 = 0.002. The instantaneous posterior means, medians
and 95% posterior probability bands for model order displayed in Figure 5, are based on 5000
samples taken from 15000 iterations of the Gibbs sampler after a burn-in of 3000 iterations for
MCMC convergence. The graphs show that the model order is higher in the middle sections
of the seizure - roughly from ¢ = 350 until ¢ = 1300 - than at the beginning and towards the
end of the seizure. The posterior median for p; increases from p; = 4 up to p; = 12, at the
beginning of the seizure, decreasing from p; = 12 to p; = 4 between t = 1300 and ¢ = 2400.
The patterns observed in the trajectories of the estimated model order posterior mean and
median over time, indicate that the complexity of the latent structure is higher at middle
parts of the seizure than at the beginning and once the seizure is over. Furthermore, the
complexity of the data structure measured as a function of model order starts to decrease
prior to the seizure dissipation, just before ¢ = 1500. Alternative transition probability values,
always imposing smoothness restrictions on the changes of model order in time, were taken
into account, leading to similar results in terms of inference on time-varying model order and
latent structure of the EEG series.

Figure 6 displays estimated posterior probabilities for model order at each time . Model
orders 11 and 12 are favoured for 300 < ¢ < 1300 while lower order models are preferred for
starting and late periods of the series. Figure 7 shows the decomposition of the EEG series
based on estimated posterior means of the AR coefficients, the estimated posterior mean of the
innovations variance and posterior medians for model order at each time ¢. From the bottom
up, the graph displays the data followed by the estimated latent processes. Component (1),
which has the highest amplitude, is related with the highest characteristic wavelength for
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Figure 7: Data and estimated components in the decomposition of an EEG series based on

almost all ¢ from ¢ = 1 to roughly ¢ = 2100. After ¢ = 2100 the latent process (1) is the
sum of two components, a component associated to the highest characteristic wavelength after
t = 2100 and a component associated to a real root with relatively high time-varying modulus.
Component (2) in the decomposition is a quasi-periodic process related to the second highest
wavelength from ¢ = 1 to ¢t = 2100 that dissipates for ¢ > 2100, while component (3)
is related to a real root. Component (4), denoted in the Figure as “fast waves”, is the
sum of all remaining low amplitude processes that correspond to high frequency and noise
components. Figure 8 (a) sketches the trajectories of the wavelength components underlying
the data taking into account uncertainty on the number of such components over time. These
trajectories display jumps and artifacts that are simply the result of using the first p; elements
of the estimated ¢, vector at each time ¢, where p; is the estimated posterior median for
model order. Such artifacts make interpretation of the latent processes extremely difficult in
practice. A graph of the approximate wavelengths trajectories can be obtained by considering
the maximum order model for all time ¢. Figure 8 (b) displays the wavelengths trajectories
of the first four quasi-periodic components computed at the estimated posterior mean of
¢, with py = pmax = 14 for all ¢. The highest wavelength also corresponds to the highest
amplitude component in the decomposition for ¢ = 1 to roughly ¢ = 2100, characterising the
frequency structure of process (1) in the decomposition of the series. This is indicated in
the Figure by the dark segment on the trajectory of the highest wavelength component. In
terms of frequency in the original sampling scale (see discussion in West et al., 1999 about
subsampling of the original data series), we have a dominant frequency of about 4 to 5 Hz at
the beginning of the seizure that gradually decays to approximately 3 Hz at t = 2100. These
findings are consistent with the results obtained for a fixed order model presented in West et
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Figure 8: (a) Traces of wavelengths corresponding to the first four quasi-cyclical components
computed at instantaneous model order medians. (b) Traces of wavelengths corresponding
to the first four quasi-cyclical components ordered by wavelength computed at the maximum
order for all t.

al. (1999). The second highest wavelengths in the Figure corresponds to the second highest
amplitude component for 1 < ¢t < 2100, while the lowest wavelength component in the Figure
corresponds to the highest amplitude component for ¢ > 2100.

Inferences obtained by including model order uncertainty as a modelling component are
consistent with the results obtained in previous analyses of the same series (West et al.,
1999; Krystal et al., 2000). Additional insight in terms of complexity of the latent structure
is gained using a TVAR(p;) model approach. For instance, the decrease in model order
observed just prior to the end of the seizure might be relevant in connection with assessing
the clinical efficacy of the treatment.

6 Remarks, conclusions and future directions

In this paper we present a TVAR model that fully incorporates model order uncertainty
using a first order discrete random walk to describe the evolution of model order in time.
Our modelling approach allows decomposing the data in terms of latent processes, perhaps
of quasi-cyclical nature, generalising the decomposition results for fixed order TVAR models
presented in West et al. (1999). Based on MCMC methods, we explored the performance of
the model for a synthetic series and an EEG series. In both cases, we studied the impact of
discount factor selection and specification of transition probabilities in terms of inference on
model order and latent structure. Since model fitting relies on simulation, the TVAR(p;) re-
quires a higher computational demand than a fixed order TVAR. Additionally, and as seen in
the EEG series analysis of Section 5, the TVAR(p;) may need more thoughtful interpretations
for the estimated latent components and trajectories of wavelengths, moduli and amplitudes
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corresponding to the different characteristic roots of the process. These issues can be resolved
by dealing with model order uncertainty directly on the number of instantaneous character-
istic reciprocal roots, following a structure similar to the one developed in Huerta and West
(1999) and Huerta (1998) for standard autoregressions. Alternatively, TVAR model order
uncertainty can be handled in the partial correlation (PARCOR) domain (see Barnett et al.,
1996; Kitagawa and Gersch, 1996). However, implementation of such models needs to incor-
porate particle filter methods to obtain updating and smoothing posterior distributions of the
model parameters (Pitt and Shephard, 1999; Godsill et al., 2000). Such extensions, surely
leading to very interesting results and challenging methodological issues, will be considered
in the future.

In connection to mixture models, the TVAR(p;) can be seen as a multi-process class II
mixture model (West and Harrison, 1997, pp. 444-445), where the mixing components are
determined by the possible values of p;. The limitation of this approach is that it introduces
a mixture of DLMs where each component has state vectors of different dimension. In
consequence, expressions for the posterior distributions of the state vectors and model order
are not available in closed form and the multi-process requires MCMC methods as presented
in this paper. In contrast, a mixture of TVARs, each with a fixed order and assuming that
one of the models holds for all time ¢, could be considered. This structure introduces a
multi-process class I model with posterior distributions available in closed form. Although,
this multi-process model can be handled more easily, it lacks flexibility compared to the
TVAR(p:), since it does not allow instantaneous transitions on model order.
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Appendix: posterior sampling algorithm

We describe the details to obtain samples from the full posterior distribution of (¢, 2, p;)
given D, for t = 1,...,n with the model specifications described in Section 3. Define ® =
{1y s Dn}, With @y = (G115 Prpmae)’s X = {T1,... 25}, and P = {p1,...,pp}. We
follow a Gibbs sampling format defined in two stages.

Stage 1. Sampling from the full conditional distribution of ® and o?. This can be done by
sampling @ from p(®|X, P,0?) and sampling o2 from p(c?|X,®,P). Conditional on P, w
have the DLM structure

v, = Fip+e

¢ = P+ &
with Fy = (24-1,...,%—p,)". Assuming that the set of system covariance matrices {Uy;t =
1,...,n} is assumed known or specified by a single discount factor (West and Harrison, 1997),

efficient generation can be performed via Forward Filtering-Backward Sampling algorithms
(Carter and Kohn, 1994). Now, sampling from p(c2|X, ®,P) reduces to computing

Pt
(lL’t Z ,]»”Ctg 7

n
t=

1

and sample a distribution proportional to p(c2)(0?)~(**t1) exp{—B/0?} with a = n/2—1 and
8 = e/2. Inverse gamma priors on o2 are conditionally conjugate.

Stage 2. Sampling from p(P|X,®,0?). Let D; be the information up to time ¢, i.e., D; =
{D(),Xt,(I)t,O'Q} with Xt = {.I’l,...,l‘t}, @t = {¢17"'7¢t}' P[pt = i|pt—1 = _]] defines
the transition probabilities for model order between times ¢ — 1 and ¢. The filtering part
of the algorithm requires computation and storage of Plp; = i¢|D;] and P[p; = i|Dy_1], for
1 = Pmin, - - -, Pmax and t = 1,...,n. By Bayes theorem,

Plp; = i|Dy) o f(zt|¢r, 0%, pt) Plps = i| Dy_1],

where f(z¢|$:, 02, py) is the likelihood function for the observation z; that is easily obtained
with the model definition of the TVAR(p;). Additionally,

Pmax
Plp; =i|Dy1] = > Plps =ilpi—1 = j]1P[pr—1 = j|Di1),
J=Pmin
with P[pi—1 = j|D¢—1] the posterior probability evaluated at time ¢ — 1. Now, we apply
the Backward Simulation Sampling algorithm step for discrete random variables presented
in Carter and Kohn (1994). First, we generate a value p} from P[p, = i|D,]. Then, for
t=n—-1,n-2,...,1, we compute Plp; = i|p;41 = p},, D;] using

Plpi1 = piyqlpe = 1] Plpy = i|Dy]
Plpty1 = P;+1‘Dt] ’
where pf,, is a generated value of the distribution Plp;11 = i|pi42 = piio, Di]. We sample

a value p; from P[p; = i|ps41 = pf, 1, Ds] and continue until ¢ = 1. The values p7,p3,...,p;
constitute a sample from the conditional posterior distribution of P.

Plp; = i|pi+1 = piy1, Di) =
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