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Abstract

In this paper we prove the Laplace principle for a class of random walks with

state-dependent noise. The Laplace principle implies a large deviations principle

with the same rate function. This type of model has important applications in

queueing and communication theory, and in the area of stochastic approximation.

1 Introduction

This paper is concerned with proving a large deviations principle for a certain class of

random walks, where the evolution of the noise process depends on the state of the random

walk. This type of model has important applications in queueing and communication

theory, and in the area of stochastic approximation. In fact, our main motivation for the

study of these models is their application to the state-dependent stochastic approximation

algorithms presented in [9].

Let S be a compact Polish space and let p(dζ|x, ξ) be a stochastic kernel on S given

IRd × S. For each n ∈ IN , we consider a sequence of random variables {(Xn
j , Z

n
j ), j =

1



0, . . . , n} defined on a probability space (Ω,F , P ) and taking values in IRd × S. For

x ∈ IRd, ξ ∈ S and b a function mapping IRd × S into IRd, this sequence is defined

through

Xn
0

.
= x

Zn
0

.
= ξ

Xn
j+1

.
= Xn

j +
1

n
b(Xn

j , Z
n
j+1),

where for j ∈ {0, 1, . . . , n− 1} the conditional distribution of Zn
j+1 given the past is given

by

Px,ξ
{
Zn
j+1 ∈ dζ|(Xn

i , Z
n
i ), i = 0, . . . , j

}
= p(dζ|Xn

j , Z
n
j ). (1.1)

Here Px,ξ denotes probability conditioned on Xn
0 = x, Zn

0 = ξ. We assume that the

stochastic kernel p and the function b satisfy the following hypothesis.

Hypothesis H.1.

a) b(x, ξ) is bounded, continuous in ξ and Lipschitz continuous with constant K in x,

uniformly in ξ.

b) p(dζ|x, ξ) is weakly continuous in (x, ξ).

c) Given any compact set ∆ ⊂ IRd, there exist a probability measure ϑ on S, a function

p̃x(ξ, ζ) on S × S, and constants 0 < a ≤ A <∞ such that

p(dζ|x, ξ) = p̃x(ξ, ζ)ϑ(dζ) and a ≤ p̃x(ξ, ζ) ≤ A

for all x ∈ ∆. Moreover, p̃x(ξ, ζ) is continuous in x uniformly in ξ and ζ, for x ∈ ∆.

Under this hypothesis, the following statements are proved in [10]. Consider the

eigenvalue problem:

eΛ(α)+Ψ(ξ) =
∫
S
e〈α,b(x,ζ)〉+Ψ(ζ)p(dζ|x, ξ). (1.2)

Under Hypothesis H.1 the solution to this problem exists. Moreover, the solution is

bounded with Λ smooth. In fact, we can identify Λ(α) in a very explicit manner. Given
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x ∈ IRd and ξ ∈ S, set ξx0 = ξ and let {ξxj , j ≥ 0} be a Markov process with transition

kernel p(·|x, ξxj ). Then the function Λ(x, α) satisfies

Λ(x, α) = lim
N→∞

1

N
logEξ

exp〈α,
N∑
j=1

b(x, ξxj )〉

 , (1.3)

where Eξ denotes expectation conditioned on ξx0 = ξ. We refer to the process {ξxj , j ≥ 0}

as the ”fixed x” process. As can be seen, it is the Markov chain that results if the

parameter Xn
j in (1.1) is held constant at value x. This process is intimately connected

with the process {Xn
j }: if n is large, then Xn

j varies slowly and thus the ”local” evolution

of b(Xn
j , Z

n
j+1) is very similar to the evolution of the same quantity but taking Xn

j as

constant (see [9]).

Let Xn = {Xn(t), 0 ≤ t ≤ 1} be the piecewise linear interpolation on [0, 1] of {Xn
j , j =

0, . . . , n}. More precisely, for t ∈ [j/n, (j + 1)/n] and j = 0, . . . , n− 1

Xn(t)
.
= Xn

j +
(
t− j

n

)
b(Xn

j , Z
n
j+1). (1.4)

The main result of the paper, Theorem 2.2, states the Laplace principle for the process

{Xn, n ∈ IN}. The term Laplace principle refers to the asymptotic analysis of normalized

logarithms of expectations involving continuous functions (a precise definition is given in

the next section). Because a Laplace principle is equivalent to a large deviations principle

with the same rate function, the large deviation principle that we are interested in is an

immediate consequence of Theorem 2.2.

We note that the large deviations principle implied by Theorem 2.2 is covered by the

results in [3]. The proof there relies on technical assumptions for the function Λ, which

is assumed to exist. Under Hypothesis H.1, the function Λ exists indeed, and satisfies

the technical assumptions required there, thereby implying the large deviations principle.

Instead, an advantage of the proof presented here is that it depends on assumptions made

on the evolution of the process itself (the transition kernels and the function b). The

advantage is in several senses. First, for the purposes of using the results in applications,

assumptions must be made on the processes, since these are the type of assumptions
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that can be used there. Moreover, knowledge about the process provides a lot of intuition

concerning the averaging procedure required for the proof. This intuition has been heavily

exploited by some of the proofs of convergence of state-dependent stochastic algorithms

(see [9, 8]), and we have incorporated some of their underlying ideas into the proof.

Finally, seeing where each one of the properties of the process is needed in the proof has

enabled us to understand the ergodicity properties required to extend our results to more

general state-dependent processes. Extensions will be dealt with elsewhere.

2 The main theorem

Before stating our main theorem, we need to introduce the concept of a Laplace principle.

By definition, a rate function on a Polish space maps the Polish space into [0,∞] and has

compact level sets.

Definition 2.1 Let {Xn, n ∈ IN} be a sequence of random variables taking values in a

Polish space X and let I be a rate funcion on X . We say that {Xn, n ∈ IN} satisfies

a Laplace principle with rate function I if for every bounded continuous function h

mapping X into IR

lim
n→∞

1

n
logE {exp[−nh(Xn)]} = − inf

x∈X
{h(x) + I(x)} .

A Laplace principle is equivalent to a large deviations principle with the same rate

function (see Theorems 2.2.1 and 2.2.3 in [4] for a proof). For our model of interest,

we will prove the former in the theorem that follows, obtaining the latter as a direct

consequence of it.

Theorem 2.2 For n ∈ IN , let Xn be the piecewise linear interpolation of {Xn
j , j =

0, 1, . . . , n} as defined in (1.4). Under Hypothesis H.1 the sequence {Xn, n ∈ IN} satisfies
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the Laplace principle with rate function Ix,ξ(·), where

Ix,ξ(φ)
.
=


∫ 1
0 L(φ, φ̇)dt if φ is absolutely continuous and φ(0) = x,

∞ otherwise,

and L(x, ·) is the Legendre-Fenchel transform of the function Λ(x, ·) given in (1.3) with

respect to the second variable. That is, for x and β in IRd

L(x, β)
.
= sup

α∈IRd

{〈α, β〉 − Λ(x, α)}. (2.5)

Let W n(x, ξ)
.
= −1/n logEx,ξ {exp[−nh(Xn)]}. The proof of Theorem 2.2 is done in

two parts. We start by proving the Laplace principle upper bound, equivalent to

lim inf
n→∞

W n(x, ξ) ≥ inf
φ∈C([0,1]:IRd)

{Ix,ξ(φ) + h(φ)} . (2.6)

This is the content of Section 3. The lower bound

lim sup
n→∞

W n(x, ξ) ≤ inf
φ∈C([0,1]:IRd)

{Ix,ξ(φ) + h(φ)} . (2.7)

is then proved in Section 4. In both cases, a key step in the proof involves the study (via

weak convergence methods) of the limit properties of a sequence of associated stochas-

tic control problems. For ease of presentation, the representation formulas required to

associate W n(x, ξ) with an appropriate stochastic control problem are presented in the

Appendix (Theorem .1 is used for the upper bound and Theorem .2 for the lower bound).

3 Proof of the Laplace principle upper bound

This section is devoted to the proof of (2.6). As was mentioned earlier, we shall use the

representation formula found in Theorem .1 in the Appendix, so that for every n ∈ IN

W n(x, ξ) = inf
{νn

j }
Ēx,ξ

 1

n

n−1∑
j=0

R(νnj (·)‖p(·|X̄n
j , Z̄

n
j )) + h(X̄n)

 .
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The infimum is taken over all admissible control sequences {νnj , j = 0, . . . , n − 1}, with

νnj (·) = νnj (·|X̄n
0 , . . . , X̄

n
j , Z̄

n
j ). The reader is referred to the Appendix for the definition of

all the quantities involved in the representation.

Given ε > 0, for each n ∈ IN let {νnj , j = 0, . . . , n− 1} be a sequence of early optimal

admissible controls, so that

W n(x, ξ) ≥ Ēx,ξ

 1

n

n−1∑
j=0

R(νnj (·)‖p(·|X̄n
j , Z̄

n
j )) + h(X̄n)

− ε. (3.8)

Here {X̄n
j , j = 0, . . . , n} is the controlled process associated with this sequence of controls,

and {X̄n, n ∈ IN} is the sequence of piecewise linear interpolations of {X̄n
j , j = 0, . . . , n}.

The proof of (2.6) requires that we analyze the asymptotic behavior of {X̄n, n ∈ IN}

and of a sequence of control measures {νn, n ∈ IN} which we now construct using the

sequences {νnj , j = 0, . . . , n, n ∈ IN}.

Let {mn, n ∈ IN} be a sequence of real numbers satisfying mn → ∞ as n → ∞, and

such that if kn
.
= mn/n then limn→∞ kn = 0. Also, suppose that 1 is an integral multiple

of kn. The basic idea will be to collect terms of the sum appearing in (3.8) in groups of

size mn for the purposes of averaging. The control measures that we now define will be

the result of this grouping.

For ξ ∈ S, let δξ denote the unit point measure at ξ. For l = 0, . . . , 1/kn − 1, and

Borel subsets B1 and B2 of S, let

νnl (B1 ×B2)
.
=

1

mn

(l+1)mn−1∑
j=lmn

δZ̄n
j
(B1)× νnj (B2|X̄n

j , Z̄
n
j ).

The quantity νnl is a stochastic kernel1 on S × S with marginals

(νnl )1(B1) =
1

mn

(l+1)mn−1∑
j=lmn

δZ̄n
j
(B1) and (νnl )2(B2) =

1

mn

(l+1)mn−1∑
j=lmn

νnj (B2|X̄n
j , Z̄

n
j ).

1For ease of presentation, the dependence on the underlying probability space of all stochastic kernels

appearing in this paper is not made explicit in the notation
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For each n ∈ IN and t ∈ [0, 1] define

νn(B1 ×B2|t) .
=


νnl (B1 ×B2) if t ∈ [lkn, (l + 1)kn) for l = 0, . . . , 1/kn − 2,

νn
(1− 1

kn
)
(B1 ×B2) if t ∈ [1− 1/kn, 1].

Finally we define the admissible control measure νn to be the random probability measure

defined for Borel subsets B1, B2 of S and C of [0, 1] through

νn(B1 ×B2 × C)
.
=

∫
C
νn(B1 ×B2|t)dt.

Theorem A.5.6 in [4] provides us with a convenient decomposition for the measures

νn(dζ × dy × dt) in terms of the first marginal of νn(dζ × dy|t). More precisely, if for

B1 ∈ B(S) we define the first marginal ν̂n1 (dζ|t) of νn(dζ × dy|t) through

ν̂n1 (B1|t) .
= νn(B1 × S|t),

then for Borel subsets B1, B2 of S and C of [0, 1] we can write

νn(B1 ×B2 × C) =
∫
C
νn(B1 ×B2|t)dt

=
∫
C

∫
B1×B2

ν̂1(dζ|t)ν̂n2 (dy|ζ, t)dt

=
∫
C

∫
B1

ν̂n2 (B2|ζ, t)ν̂n1 (dζ|t)dt, (3.9)

where ν̂n2 (dy|ζ, t) is a stochastic kernel on S given S × [0, 1]. Following the notation in

[4], we summarize this decomposition as νn(dζ × dy × dt) = ν̂n1 (dζ|t) ⊗ ν̂n2 (dy|ζ, t) ⊗ dt.

The marginals of νn(dζ×dy×dt) can also be represented in terms of the kernels ν̂n1 (dζ|t)

and ν̂n2 (dy|ζ, t) and of Lebesgue measure λ on IR. Namely, for Borel sets B1 and B2 of S

and C of [0, 1] the marginal over (ζ, t) can be written as

νn(B1 × S × C) =
∫
C
ν̂n1 (B1|t)dt

.
= (ν̂n1 ⊗ λ)(B1 × C)

and the marginal over (y, t) as

νn(S ×B2 × C) =
∫
C

∫
S
ν̂n2 (B2|ζ, t)ν̂n1 (dζ|t)dt

.
= (ν̂n2 ⊗ λ)(B2 × C).
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We note that the marginal over t is simply Lebesgue measure λ.

The next step is to manipulate the sum appearing in (3.8) in order to rewrite the

right hand side of this inequality in terms of the measures νn. We first use the fact that

R(β‖γ) = R(α × β‖α × γ) for any probability measures α, β and γ on S. This formula

applied term by term enables us to write

Ēx,ξ

 1

n

n−1∑
j=0

R(νnj (·)‖p(·|X̄n
j , Z̄

n
j ))


= Ēx,ξ


1

kn
−1∑

l=0

kn
1

mn

(l+1)mn−1∑
j=lmn

R
(
νnj (·) ‖ p(·|X̄n

j , Z̄
n
j )

)
= Ēx,ξ


1

kn
−1∑

l=0

kn
1

mn

(l+1)mn−1∑
j=lmn

R
(
δZ̄n

j
(·)× νnj (·) ‖ δZ̄n

j
(dζ)⊗ p(·|X̄n

j , ζ)
) ,

where we have used the notation δZ̄n
j
(·) × p(·|X̄n

j , Z̄
n
j ) = δZ̄n

j
(dζ) ⊗ p(·|X̄n

j , ζ). Applying

Jensen’s inequality to the convex function R(·‖·), the above is no less than

Ēx,ξ


1

kn
−1∑

l=0

knR
( 1

mn

(l+1)mn−1∑
j=lmn

δZ̄n
j
(dζ)× νnj (·|X̄n

j , ζ)
∥∥∥ 1

mn

(l+1)mn−1∑
j=lmn

δZ̄n
j
(dζ)⊗ p(·|X̄n

j , ζ)
) ,

which is clearly equivalent to

Ēx,ξ

{∫ 1

0
R(νn(·|t)‖γn(·|t))dt

}
, (3.10)

where, for each n ∈ IN and t ∈ [0, 1], we define

γn(B1 ×B2|t) .
=

1

mn

(l+1)mn−1∑
j=lmn

δZ̄n
j
(B1)⊗ p(B2|X̄n

j , ζ) if t ∈ [lkn, (l + 1)kn),

for l = 0, . . . , 1/kn − 1. Define analogously the measure γn on S × S × [0, 1] as:

γn(B1 ×B2 × C)
.
=

∫
C
γn(B1 ×B2|t)dt.

Finally we apply the equality∫
X
R(α(·|x)‖β(·|x))γ(dx) = R(α⊗ γ‖β ⊗ γ), (3.11)
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valid for all stochastic kernels α and β on S given X and probability measures γ on X

(see [4, Lemma 1.4.3 (f)]). In the present context, this equality implies that (3.10) can be

rewritten as

Ēx,ξ {R(νn‖γn)} .

Combining this series of inequalities with (3.8) we get

W n(x, ξ) + ε ≥ Ēx,ξ
{
R(νn‖γn) + h(X̄n)

}
.

We now wish take the limit inferior as n → ∞ of both terms in the last inequality.

The asymptotic properties of the sequence {(νn, γn, X̄n), n ∈ IN} required to do this are

proved in Theorem .7 in the Appendix. Accordingly, there exists a probability space

where a subsequence of {(νn, γn, X̄n), n ∈ IN} converges in distribution to some limit

(ν, γ, X̄). The stochastic kernels ν and γ and the random variable X̄ (taking values in

the continuous functions on [0,1]) satisfy all the conclusions stated in Lemma .7. Thanks

to the Skorohod Representation Theorem [4, Theorem A.3.9], we can assume without loss

of generality that convergence takes place with probability one. Along the convergent

subsequence, lower semicontinuity of R(·‖·) and Fatou’s Lemma, plus continuity of h

yield

lim inf
n→∞

W n(x, ξ) + ε ≥ Ēx,ξ
{
R(ν‖γ) + h(X̄)

}
.

The limit characterizations of ν, γ and X̄ enable us to continue

lim inf
n→∞

W n(x, ξ) + ε

≥ Ēx,ξ
{
R(ν‖γ) + h(X̄)

}
= Ēx,ξ

{
R(ν̂1(dζ|t)⊗ ν̂2(dy|ζ, t)⊗ dt‖ν̂1(dζ|t)⊗ p(dy|X̄(t), ζ)⊗ dt) + h(X̄)

}
= Ēx,ξ

{∫ 1

0
R(ν̂1(dζ|t)⊗ ν̂2(dy|ζ, t)‖ν̂1(dζ|t)⊗ p(dy|X̄(t), ζ)dt+ h(X̄)

}
= Ēx,ξ

{∫ 1

0

∫
S
R(ν̂2(dy|ζ, t)‖p(dy|X̄(t), ζ))ν̂1(dζ|t)dt+ h(X̄)

}
≥ Ēx,ξ

{∫ 1

0
L(X̄(t),

∫
S
b(X̄(t), ζ)ν̂1(dζ|t))dt+ h(X̄)

}
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= Ēx,ξ

{∫ 1

0
L(X̄(t), ˙̄X(t))dt+ h(X̄)

}
= Ēx,ξ

{
Ix,ξ(X̄) + h(X̄)

}
≥ inf

φ∈C([0,1]:IRd)
{Ix,ξ(φ) + h(φ)} .

The third line uses part b) of Lemma .7; the fourth and fifth lines both use (3.11); the

sixth line uses part h) of Theorem .4 and line seven follows from part e) of Lemma .7.

Since the above inequality is valid for all ε > 0, (2.6) follows, concluding the proof of the

upper bound.

4 Proof of the Laplace principle lower bound

This section is devoted to showing that (2.7) holds for all h : C([0, 1] : IRd) 7→ IRd. ¿From

part (b) of Corollary 1.2.5 in [4], it suffices to show that (2.7) holds for functions h in

C([0, 1]; IRd) that are Lipschitz continuous. Therefore, throughout this section we work

under the assumption that h is Lipschitz continuous.

Following the proof of Proposition 6.6.1 in [4], the proof of (2.7) is done by intro-

ducing a perturbation to the original random walk by means of a random walk with

Gaussian noise. This allows one to obtain necessary smoothness properties for the func-

tion Lσ, which is the analogue of the function L defined in (2.5) but for the perturbed

process. Weak convergence arguments make use of these continuity properties, entailing

the Laplace principle lower bound when taking the perturbation to be sufficiently small.

Given σ > 0, let {Gj,σ, j ∈ IN0} be a sequence of i.i.d. random variables on IRd with

common Gaussian distribution ρσ, with mean zero and variance σI. We assume them to

be independent of {ξxj , x ∈ IRd, j ∈ IN0}, where ξxj is the ”fixed x” Markov process with

transition kernel p(·|x, ξxj ). Given n ∈ IN and j ∈ {0, 1, . . . , n− 1}, let Xn
j and Zn

j be as

before, and define

Un
0,σ

.
= 0

10



Un
j+1,σ

.
= Un

j,σ +
1

n
Gj,σ.

Denote by Xn(t) and Un
σ (t) the piecewise linear interpolations of {Xn

j , j = 1, . . . , n} and

{Un
j,σ, j = 0, . . . , n} on [0, 1], respectively (see 1.4). Also, define

Y n
σ (t)

.
= Xn(t) + Un

σ (t), (4.12)

which is the piecewise linear interpolation of {Xn
j + Un

j,σ}.

As was mentioned earlier, the point of introducing a perturbation is to replace the

function L by a continuous function Lσ. This latter function is defined as the Legendre-

Fenchel transform of some convex function Λσ. Once again, the function Λσ is identified

via an eigenvalue problem, which we now describe.

For fixed x ∈ S, we can identify an additive component of the process (see [10, p.

376]), namely, b(x, ξxj ) +Gj,σ. Here ξxj is the ”fixed x” Markov process described earlier.

Let Qx
σ be the stochastic kernel on S × IRd given ξ ∈ S defined by

Qx
σ(B1 ×B2|ξ) =

∫
B1

∫
IRd

1B2(b(x, ζ) + y)ρσ(dy)p(dζ|x, ξ),

where B1 ∈ B(S) and B2 ∈ B(IRd). Then, letting υσ(B1 × B2|x) .
=

∫
B1

∫
IRd 1B2(b(x, ζ) +

y)ρσ(dy)ϑ(dζ), with ϑ as in Hypothesis H.1, B1 ∈ B(S) and B2 ∈ B(IRd), we have

aυσ(B1 ×B2|x) ≤ Qx
σ(B1 ×B2|ξ) ≤ Aυσ(B1 ×B2|x).

These bounds on Qx
σ(·, ·|ξ) and the fact that the convex hull of the support of υσ(S×·|x) =

IRd guarantee [10, Lemma 3.1] the existence of a solution to the eigenvalue problem for

each x, α ∈ IRd. That is, for ach x, α ∈ IRd there exist a unique Λσ(x, α) ∈ IR and a

bounded function Ψσ(x;α, ·) : S 7→ IR such that

eΛσ(x,α)+Ψσ(x;α,ξ) =
∫
S

∫
IRd
e〈α,b(x,ζ)+y〉+Ψσ(x;α,ζ)ρσ(dy)p(dζ|x, ξ).

Furthermore, Λσ(x, α) = Λ(x, α) + σ2

2
||α||2, and Ψσ(x;α, ξ) = Ψ(x;α, ξ), where Ψ(x;α, ξ)

is the eigenfunction associated with Λ (see (1.2)). Finally, we define

Lσ(x, β) = Λ∗
σ(x, α)

.
= sup

α∈IRd

{〈α, β〉 − Λσ(x, α)}. (4.13)
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Having introduced the necessary definitions, we proceed with the proof of (2.7). The

properties of Lσ that will be used are proved in Lemma .5 in the Appendix.

Let K1 be the Lipschitz constant of h and define B
.
= 2||h||∞. Then

h(Y n
σ ) = h(Xn + Un

σ ) ≥ h(Xn)− (K1||Un
σ ||∞ ∧B)

and, because of independence,

1

n
logEx,ξ{exp[−nh(Y n

σ )]} ≤ 1

n
logEx,ξ{exp[−nh(Xn)] · exp[n(K1||Un

σ ||∞ ∧B)]}

= −W n(x, ξ) +
1

n
logEx,ξ{exp[n(K1||Un

σ ||∞ ∧B)]}.

Hence

lim sup
n→∞

W n(x, ξ) ≤ lim sup
n→∞

(
− 1

n
logEx,ξ{exp[−nh(Y n

σ )]}
)

+

lim sup
n→∞

(
1

n
logEx,ξ{exp[n(K1||Un

σ |∞ ∧B)]}
)

≤ lim sup
n→∞

(
− 1

n
logEx,ξ{exp[−nh(Y n

σ )]}
)

+
K2

1σ
2

2
, (4.14)

where the second inequality follows from [4, p.189]. This implies that (2.7) holds as long

as we can show that

lim supW n
σ (x, ξ) ≤ inf

ϕ∈C([0,1]:IRd)
{Ix,ξ(ϕ) + h(ϕ)}+ θ(σ), (4.15)

with W n
σ
.
= − 1

n
logEx,ξ exp[−nh(Y n

σ )], and θ(σ) → 0 when σ → 0.

Now, given ε > 0, there exists ψ ∈ C([0, 1] : IRd) such that

Ix,ξ(ψ) + h(ψ) ≤ inf
ϕ∈C([0,1]:IRd)

{Ix,ξ(ϕ) + h(ϕ)}+ ε <∞. (4.16)

Then (4.15) will follow once we prove that

lim sup
n→∞

W n
σ (x, ξ) ≤ Ix,ξ(ψ) + h(ψ) + θ(σ). (4.17)

The rest of this section is devoted to proving (4.17).
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As was the case in the proof of the upper bound, a key step in the proof of the lower

bound is the use of a variational representation. In this case we use a representation for

the quantity W n
σ (x, ξ) for every n ∈ IN , so that

W n
σ (x, ξ) = inf

{νn
j }
Ex,ξ

 1

n

n−1∑
j=0

R(νnj (·)||(p× ρσ)(·|X
n
j , Z

n
j )) + h(Y

n
)

 .

The admissible controls {νnj }, and the controlled processes X̄n
j , Z̄n

j and Ūn
j involved in

the representation are described in detail in Theorem .2 in the Appendix. In particular,

control sequences of the form

νnj,prod(dζ × dy)|Xn
0 , . . . , X

n
j , U

n
0 , . . . , U

n
j , Z

n
j )

= ν1,n
j (dζ|Xn

0 , . . . , X
n

j , U
n

0 , . . . , U
n

j , Z
n

j )× ν2,n
j (dy|Xn

0 , . . . , X
n

j , U
n

0 , . . . , U
n

j , Z
n

j )

are admissible. Since for any probability measures γ and θ on S, and λ and µ on IRd we

have [4, Corollary C.3.3]

R(γ × λ‖θ × µ) = R(γ‖θ) +R(λ‖µ), (4.18)

we can write

Ex,ξ

 1

n

n−1∑
j=0

R(νnj,prod(·)||(p× ρσ)(·|X
n
j , Z

n
j ))


= Ex,ξ

 1

n

n−1∑
j=0

[R(ν1,n
j (·)||p(·|Xn

j , Z
n
j )) +R(ν2,n

j (·)||ρσ(·))]

 .

Then the representation formula implies that

W n
σ (x, ξ) ≤ inf

{νn
j,prod

}
Ex,ξ

 1

n

n−1∑
j=0

[
R(ν1,n

j (·)||p(·|Xn
j , Z

n
j )) +R(ν2,n

j (·)||ρσ (·))
]

+ h(Y
n
)

 .

(4.19)

We will show that this inequality implies that

lim sup
n→∞

W n
σ (x, ξ) ≤

∫ 1

0
Lσ(ψ(t), ψ̇(t))dt+ h(ψ) + θ(σ), (4.20)
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for ψ as in (4.16). We observe that, since Lσ(x, β) ≤ L(x, β) for all x and β ∈ IRd (Lemma

.5 part a) in the Appendix), (4.17) will follow after that.

The proof of (4.20) proceeds as follows. Let ψ∗ be as in part e) of Lemma .5 in the

Appendix. We will design an admissible control sequence based on ψ∗ with the following

properties: the running costs are nearly optimal and, with probability converging to 1,

the process Y
n .

= X
n

+ U
n

enters a small neighborhood of ψ∗ as n→∞. The estimates

that we obtain for the running costs will lead directly to (4.20).

Define the compact set

∆ ≡ ∪t∈[0,1]{y ∈ IRd : ||y − ψ∗(t)|| ≤ 1}.

Let η = η(∆, σ) ∈ (0, 1) satisfy the conclusions of part (d) of Lemma .5 when taking

ε = σ. Also, let {xj, j = 1 . . . , n} be a sequence in ∆ satisfying ‖ψ∗(j/n)− xj‖ < η. For

every n ∈ IN , j = 1, . . . , n and with x = ψ∗(j/n), y = xj and β = ψ̇∗(j/n), part (d) of

that lemma implies that there exists β
n

j ∈ IRd such that

Lσ(xj, β
n

j )− Lσ(ψ
∗(j/n), ψ̇∗(j/n)) ≤ σ (4.21)

and

||βnj − ψ̇∗(j/n)|| ≤ K‖ψ∗(j/n)− xj‖.

Further, β
n

j = β
1,n

j + β
2,n

j , with

β
1,n

j =
∫
S
b(xj, ξ)µ

∗
j,n(dξ), and β

2,n

j =
∫
IRd
yν∗j,n(dy).

Here µ∗j,n is the invariant measure corresponding to the kernel γ∗j,n defined for B1 ∈ B(S)

as

γ∗j,n(B1|ψ∗(j/n), ξ) =
∫
B1

exp{〈α, b(ψ∗(j/n), ζ)〉 − Λ(ψ∗(j/n), α)

+Ψσ(ψ
∗(j/n);α, ζ)−Ψσ(ψ

∗(j/n);α, ξ)}p(dζ|ψ∗(j/n), ξ),

and for B2 ∈ B(IRd)

ν∗j,n(B2) =
∫
B2

exp

{
〈α, y〉 − σ2||α||2

2

}
ρσ(dy).

14



Here α = α(ψ∗(j/n), ψ̇∗(j/n)) and ψ̇∗(j/n) =
∫
S b(ψ

∗(j/n), ξ)µ∗j,n(dξ) +
∫
IRd yν∗j,n(dy).

We observe that, from part (h) of Lemma .4 in the Appendix,

L(xj, β
1,n

j ) ≤
∫
S
R(γ∗j,n(·|ψ∗(j/n), ξ)‖p(·|xj, ξ))µ∗j,n(dξ)

= 〈α(ψ∗(j/n), ψ̇∗(j/n)), β
n

j − β
2,n

j 〉 − Λ(ψ∗(j/n), α(ψ∗(j/n), ψ̇∗(j/n)))

≤ L(ψ∗(j/n), β
n

j − β
2,n

j ).

Now, from part (c) of Lemma .5 and for β
n

j as in (4.21), there exist a stochastic kernel

γ1,n
j (·|xj, ξ) on S given S × IRd, with invariant measure µnj , and a measure γ2,n

j on IRd

which achieve the infimum in the representation for Lσ. That is,

Lσ(xj, β
n

j ) =
∫
S
R(γ1,n

j (·|xj, ξ)||p(·|xj, ξ))µnj (dξ) +R(γ2,n
j ||ρσ), (4.22)

and

β
n

j =
∫
S
b(xj, ξ)µ

n
j (dξ) +

∫
IRd
yγ2,n

j (dy) = β
1,n

j + β
2,n

j ,

where we have used formula (4.18). The kernel γ1,n
j and the measure γ2,n

j are defined,

respectively, as

γ1,n
j (B1|xj, ξ) =

∫
B1

e〈α,b(xj ,ζ)〉+Ψσ(xj ;α,ζ)−Ψσ(xj ;α,ξ)+Λ(xj ,α)p(dζ|xj, ξ) (4.23)

and

γ2,n
j (B2) =

∫
B2

e〈α,y〉−
σ2

2
‖α‖2ρσ(dy),

with α = α(xj, β
n

j ) = α(xj, ψ
∗(j/n), ψ̇∗(j/n)) in both γ1,n

j and γ2,n
j . Note that γ2,n

j

depends implicitly of xj (through α), but we do not write this dependence explicitly for

ease of notation.

We now use the kernels γ1,n
j and γ2,n

j to build a sequence of admissible controls that

will enable us to prove (4.17). The construction is similar to the one used in Section 3.

Let {mn, n ∈ IN} be a sequence as the one used there, so that mn →∞ as n→∞. Let

kn = mn/n and l ∈ {0, . . . , 1
kn
− 1}. Then for lmn ≤ j < (l + 1)mn − 1 we define

ν1,n
j (dζ|x0, . . . , xj, u0, . . . , uj, ξj)

.
=

 γ1,n
lmn

(dζ|xlmn , ξj) if max0≤i≤j ‖xi − ψ∗(i/n)‖ ≤ η

p(dζ|xj, ξj) if max0≤i≤j ‖xi − ψ∗(i/n)‖ > η
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and

ν2,n
j (dy|x0, . . . , xj, u0, . . . , uj, ξj)

.
=

 γ2,n
lmn

(dy) if max0≤i≤j ‖xi − ψ∗(i/n)‖ ≤ η

ρσ(dy) if max0≤i≤j |xi − ψ∗(i/n)| > η.

To simplify notation we have not made explicit the dependence on σ of ν1,n
j and ν2,n

j .

Let X
n

0 = x ∈ IRd, U
n

0 = 0, Z
n

0 = ξ ∈ S, and define

X
n
j+1 = X

n
j +

1

n
b(X

n
j , Z

n
j+1), j = 0, . . . , n− 1

and

U
n
j+1 = U

n
j +

1

n
G
n
j , j = 0, . . . , n− 1,

where G
n
j , Z

n
j , lmn ≤ j < (l + 1)mn − 1 are random variables with joint distribution

P x,ξ{(Z
n
j+1, G

n
j ) ∈ (dξ × dy)|Xn

0 , . . . , X
n
j , U0, . . . U

n
j , Z

n
j } = ν1,n

j (dζ)× ν2,n
j (dy).

Now, for B1, B2 ∈ B(S), B ∈ B(IRd), define

ν1,n
l (B1 ×B2)

.
=

1

mn

(l+1)mn−1∑
j=ln

δZn
j
(B1)× ν1,n

j (B2|X
n
0 , . . . X

n
j , Z

n
j ),

ν2,n
l (B)

.
=

1

mn

(l+1)mn−1∑
j=lmn

ν2,n
j B|Xn

0 , . . . , X
n
j ),

ν1,n(·|t) .
=


ν1,n
l (·) if t ∈ [lkn, (l + 1)kn) for l = 0, . . . , 1/kn − 2

ν1,n

( 1
kn
−1)

(·) if t ∈ [1− kn, 1]

and

ν2,n(·|t) .
=


ν2,n
l (·) if t ∈ [lkn, (l + 1)kn) for l = 0, . . . , 1/kn − 2

ν2,n

( 1
kn
−1)

(·) if t ∈ [1− kn, 1].

Define the random measures ν1,n and ν2,n on S × S × [0, 1] and IRd × [0, 1], respectively,

by:

ν1,n(B1 ×B2 × C)
.
=

∫
C
ν1,n(B1 ×B2|t)dt

and

ν2,n(B × C)
.
=

∫
C
ν2,n(B|t)dt.
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Further, let νnprod be the random measure on S × S × IRd × [0, 1] defined as

νnprod(B1 ×B2 ×B × C) =
∫
C
ν1,n(B1 ×B2|t)ν2,n(B|t)dt.

Finally, let τn = 1
n
(min{i ∈ {0, 1, . . . , n} : ‖Xn

i − ψ∗(i/n)‖ > η} ∧ n).

With these definitions we have that for j ≤ nτn − 1, and lmn ≤ j ≤ (l+ 1)mn − 1 for

some l ∈ {0, . . . , 1
kn
− 1},

R(ν1,n
j (·)‖p(·|Xn

j , Z
n
j )) = R(γ1,n

lmn
(·|Xn

lmn
, Z

n
j )‖p(·|X

n
j , Z

n
j ))

and

R(ν2,n
j (·)‖ρσ(·)) = R(γ2,n

lmn
(·)||ρσ(·)).

Moreover, the running cost has the form

Ex,ξ

{
1

n

n−1∑
j=0

R
(
ν1,n
j (·)× ν2,n

j (·)‖p(·|Xn
j , Z

n
j )× ρσ(·)

)}

= Ex,ξ

{
1

n

nτn−1∑
j=0

[R(ν1,n
j (·)‖p(·|Xn

j , Z
n
j )) +R(ν2,n

j (·)‖ρσ(·))]
}

= Ex,ξ

{qn−1∑
l=0

kn

 1

mn

(l+1)mn−1∑
j=lmn

R(γ1,n
lmn

(·|Xn
lmn

, Z
n
j )‖p(·|X

n
j , Z

n
j )) +R(γ2,n

lmn
(·)‖ρσ(·))


+

1

n

nτn−1∑
j=qnmn

[R(γ1,n
qnmn

(·|Xn
qnmn

, Z
n
j )‖p(·|X

n
j , Z

n
j ) +R(γ2,n

qnmn
(·)||ρσ(·))]

}
, (4.24)

where qn is such that nτn = qnmn + rn, with 0 ≤ rn < mn, and qn, rn ∈ IN0.

We now prove the following claim: for each j ≤ nτn − 1, lmn ≤ j ≤ (l+ 1)mn − 1 for

some l ∈ {0, . . . , qn}, and n large enough,

R(γ1,n
lmn

(·|Xn

lmn
, Z

n

j )‖p(·|X
n

j , Z
n

j )) ≤ R(γ1,n
lmn

(·|Xn

lmn
, Z

n

j )‖p(·|X
n

lmn
, Z

n

j )) + σ. (4.25)

We first note that part c) of Hypothesis H.1 implies that for any x, y ∈ ∆, there exists

δ > 0 such that for ‖x− y‖ < δ

p̃y(ξ, ζ)

p̃x(ξ, ζ)
= 1 +

p̃y(ξ, ζ)− p̃x(ξ, ζ)

p̃x(ξ, ζ)
≤ 1 +

p̃y(ξ, ζ)− p̃x(ξ, ζ)

a
≤ eσ. (4.26)
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Then taking n large enough so that mn‖b‖/n < δ, we have ‖Xn
lmn+i−X

n
lmn
‖ ≤ i

n
‖b‖∞ < δ

for 0 ≤ i < mn and hence

γ1,n
lmn

(B1|X
n
lmn

, Z
n
j )

=
∫
B1

e〈α,b(X
n
lmn ,ζ)〉+Ψσ(X

n
lmn ;α,ζ)−Ψσ(X

n
lmn ;α,ξ)−Λ(X

n
lmn ,α)p(dζ|Xn

lmn
, Z

n

j )

=
∫
B1

e〈α,b(X
n
lmn ,ζ)〉+Ψσ(X

n
lmn ;α,ζ)−Ψσ(X

n
lmn ;α,ξ)−Λ(X

n
lmn ,α)p̃X

n
lmn (Z

n

j , ζ)
p̃X

n
j (Z

n

j , ζ)

p̃X
n
j (Z

n
j , ζ)

ϑ(dζ)

≤ eσ
∫
B1

e〈α,b(X
n
lmn ,ζ)〉+Ψσ(X

n
lmn ;α,ζ)−Ψσ(X

n
lmn ;α,ξ)−Λ(X

n
lmn ,α)p̃X

n
j (Z

n
j , ζ)ϑ(dζ) (4.27)

for any B1 ∈ B(S). ¿From the above we get that γ1,n
lmn

(·|Xn
lmn

, Z
n
j ) << p(·|Xn

j , Z
n
j ) and

that

dγ1,n
lmn

(·|Xn
lmn

, Z
n
j )

dp(·|Xn
j , Z

n
j )

=
dγ1,n

lmn
(·|Xn

lmn
, Z

n
j )

dp̃(·|Xn
lmn

, Z
n
j )

·
dp̃(·|Xn

lmn
, Z

n
j )

dp̃(·|Xn
j , Z

n
j )

≤ eσ ·
dγ1,n

lmn
(·|Xn

lmn
, Z

n
j )

dp̃(·|Xn
lmn

, Z
n
j )

,

which implies (4.25).

Fix ξ ∈ S and normalize Ψσ in such a way that Ψσ(x;α, ξ) = 0. Then, observing that

a

A
eΨσ(x;α,ξ1) ≤ eΨσ(x;α,ξ2) ≤ A

a
eΨσ(x;α,ξ1)

for all ξ1, ξ2 ∈ S, and taking ξ1 = ξ, we get that

a

A
≤ eΨσ(x;,α,ξ) ≤ A

a
, ∀ξ ∈ S, x, α ∈ IRd. (4.28)

Then, from (4.23),

γ1,n
lmn

(dζ|x, ξ) = e〈α,b(x,ζ)〉+Ψσ(x;α,ζ)−Ψσ(x;α,ξ)−Λ(x,α)p̃x(ξ, ζ)ϑ(dζ),

with α = α(x, β
n

lmn
), x ∈ ∆, and β

n

lmn
to satisfy (4.21), and hence

γ1,n
lmn

(dζ|x, ξ) ≥ a3

A2
e〈α,b(x,ζ)〉−Λ(x,α)ϑ(dζ)

≥ a3

A2
e−2||b||∞ maxx ||α||ϑ(dζ).
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Using the fact that (x, β) 7→ α(x, β) is continuous, we get that for x ∈ ∆, β
n

`mn
belongs

to the set Θ
.
=

⋃
t∈[0,1]

{
β ∈ IRd : ||β− ψ̇∗(t)|| ≤ K

}
and, moreover, that max{x∈∆

β∈Θ} ||α|| is

bounded.

We complete the estimate on the running cost for our admissible control sequence in

the inequalities that follow. Here γ1,n,j
lmn

shall denote the jth iteration of the kernel γ1,n
lmn

.

We observe that, from 16.0.2 in [11]:

‖γ1,n,j
lmn

(·|x, ζ)− νlmn(·)‖ ≤ ρn, with ρ = 1− a3

A2
e−2maxx,ζ |〈α,b(x,ζ)〉|

We have that (4.24) is less than or equal to

Ex,ξ

{qn−1∑
l=0

kn[
1

mn

(l+1)mn−1∑
j=lmn

R(γ1,n
lmn

(·Xn
lmn

, Z
n
j |)||p(·|X

n
lmn

, Z
n
j )) +R(γ2,n

lmn
(·)||ρσ(·))]

+
1

n

nτn−1∑
j=qnmn

[R(γ1,n
qnmn

(·|Xqnmn , Z
n

qnmn
)||p(·|Xn

qnmn
, Z

n

j )) +R(γ2,n
qnmn

(·)||ρσ(·))]
}

+ σ

≤
1/kn∑
r=1

knEx,ξ

{r−1∑
l=0

[
1

mn

(l+1)mn−1∑
j=lmn

R(γ1,n
lmn

(·|Xn
lmn

, Z
n
j )||p(·|X

n
lmn

, Z
n
j ))

+R(γ2,n
lmn

(·)||ρσ(·))]1[(r−1)mn<nτn≤rmn]

}
+ σ

=
1/kn∑
r=1

kn
r−1∑
l=0

Ex,ξ

{
Ex,ξ{[

1

mn

(l+1)mn−1∑
j=lmn

R(γ1,n
lmn

(·|Xn
lmn

, Z
n
j )||p(·|X

n
lmn

, Z
n
j ))

+R(γ2,n
lmn

(·)||ρσ(·))]1[(r−1)mn<nτn≤rmn]|Z
n

0 , . . . , Z
n

lmn
, X

n

0 , . . . , X
n

rmn
}
}

+ σ

=
1/kn∑
r=1

kn
r−1∑
l=0

Ex,ξ

{
1[(r−1)mn<nτn≤rmn]Ex,ξ{

1

mn

(l+1)mn−1∑
j=lmn

R(γ1,n
lmn

(·|Xn
lmn

, Z
n
j )||p(·|X

n
lmn

, Z
n
j ))

+R(γ2,n
lmn

(·)||ρσ(·))|Z
n
0 , . . . , Z

n
lmn

, X
n
0 , . . . , X

n
rmn

}
}

+ σ

=
1/kn∑
r=1

kn
r−1∑
l=0

Ex,ξ

{
1[(r−1)mn<nτn≤rmn]Ex,ξ{

1

mn

(l+1)mn−1∑
j=lmn

R(γ1,n
lmn

(·|Xn

lmn
, Z

n

j )||p(·|X
n

lmn
, Z

n

j ))

+R(γ2,n
lmn

(·)||ρσ(·))|Z
n
0 , . . . , Z

n
lmn

, X
n
0 , . . . , X

n
lmn
}
}

+ σ

=
1/kn∑
r=1

kn
r−1∑
l=0

Ex,ξ

{
1[(r−1)mn<nτn≤rmn]Ex,ξ{

1

mn

(l+1)mn−1∑
j=lmn

[〈αlmn ,
∫
S
b(X

n
lmn

, ζ)γ1,n
lmn

(dζ|Xn
lmn

, Z
n
j )〉

+
∫
S

Ψσ(X
n
lmn

;αlmn , ζ)γ
1,n
lmn

(dζ|Xn
lmn

, Z
n
j )−Ψσ(X

n
lmn

;αlmn , Z
n
j )
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−Λ(X
n
lmn

, αlmn)] +R(γ2,n
lmn

(·)||ρσ(·))|Z
n
0 , . . . , Z

n
lmn

, X
n
0 , . . . , X

n
lmn
}
}

+ σ

=
1/kn∑
r=1

kn
r−1∑
l=0

Ex,ξ

{
1[(r−1)mn<nτn≤rmn]

[
1

mn

(l+1)mn−1∑
j=lmn

(〈αlmn ,
∫
S
b(X

n
lmn

, ζ)γ1,n,j
lmn

(dζ|Xn
lmn

, Z
n
lmn

)〉

+
∫
S

Ψσ(X
n
lmn

;αlmn , ζ)γ
1,n,j+1
lmn

(dζ|Xn
lmn

, Z
n
lmn

)−
∫
S

Ψσ(X
n
lmn

;αlmn , ζ)γ
1,n,j
lmn

(dζ|Xn
lmn

, Z
n
lmn

)

−Λ(X
n

lmn
, αlmn))±

∫
S
R(γ1,n

lmn
(·|Xn

lmn
, ξ)||p(·|Xn

lmn
, ξ))µlmn(dξ) +R(γ2,n

lmn
(·)||ρσ(·))

]}
+ σ

≤
1/kn∑
r=1

kn
r−1∑
l=0

Ex,ξ

{
1[(r−1)mn<nτn≤rmn]

[
1

mn

(l+1)mn−1∑
j=lmn

〈αlmn ,
∫
S
b(X

n
lmn

, ζ)γ1,n,j+1
lmn

(dζ|Xn
lmn

, Z
n
lmn

)

−
∫
S
b(X

n

lmn
, ζ)µlmn(dζ)〉+

∫
S
R(γ1,n

lmn
(·|Xn

lmn
, ξ)||p(·|Xn

lmn
, ξ))µlmn(dξ)

+R(γ2,n
lmn

(·)||ρσ(·))
]}

+
4

n
ln
A

a
+ σ

≤
1/kn∑
r=1

kn
r−1∑
l=0

Ex,ξ

{
1[(r−1)mn<nτn≤rmn]

[ ||b||∞A2

mna3
max

x∈∆,β∈Θ
{‖α(x, β)‖}e

2||b||∞ max
x∈∆,β∈Θ

{‖α(x,β)‖}

+
∫
S
R(γ1,n

lmn
(·|Xn

lmn
, ξ)||p(·|Xn

lmn
, ξ))µlmn(dξ) +R(γ2,n

lmn
(·)||ρσ(·))

]}
+

4

n
ln
A

a
+ σ

≤ ||b||∞A2

na3
max

x∈∆,β∈Θ
{′|α(x, β)‖}e

2||b||∞ max
x∈∆,β∈Θ

{‖α(x,β)‖}

+
1/kn∑
r=1

kn
r−1∑
l=0

Ex,ξ

{
1[(r−1)mn<nτn≤rmn]

[
Lσ(X

n
lmn

, β
n

lmn
)
]}

+
4

n
ln
A

a
+ σ

≤
1/kn∑
r=1

kn
r−1∑
l=0

Ex,ξ

{
1[(r−1)mn<nτn≤rmn]Lσ(ψ

∗(
lmn

n
), ψ̇∗(

lmn

n
))

}

+
4

n
ln
A

a
+ 2σ +

||b||∞A2

na3
max

x∈∆,β∈Θ
{‖α(x, β)‖}e

2||b||∞ max
x∈∆,β∈Θ

{‖α(x,β)‖}

≤ Ex,ξ

{[ τn

kn
]∑

l=0

knLσ(ψ
∗(
lmn

n
), ψ̇∗(

lmn

n
))

}
+ 3σ, for n large enough,

≤ kn

[1/kn]∑
l=0

Lσ(ψ
∗(
lmn

n
), ψ̇∗(

lmn

n
)) + 3σ. (4.29)

We conclude that the admissible control sequence that we constructed has running cost

which is nearly optimal, as we had claimed.

We can now return to the proof of (4.20). All of the claims that follow refer to the

nearly optimal admissible control sequence constructed above. Since Lσ is continuous, ψ∗
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is continuous and ψ̇∗ has only a finite number of discontinuities,

sup
n
Ex,ξ

 1

n

n−1∑
j=0

R(ν1,n
j (·)× ν2,n

j (·)||p(·|Xn
j , Z

n
j )× ρσ(·))

 <∞. (4.30)

Then, Theorem 5.3.5 in [4] and the fact that S is compact imply that, given any sub-

sequence of {(ν1,n, ν2,n, X
n
, U

n
, τn), n ∈ IN}, there exists a subsubsequence such that

(ν1,n, ν2,n, X
n
, U

n
, τn) converges in distribution to (ν1, ν2, X, U, τ), when n→∞. ¿From

part e) of Theorem .7 in the Appendix we know that

X(t) = x+
∫ t

0

∫
S
b(X(s), ζ)ν̂1(dζ|s)ds,

where ν1(dζ × dy× ds) = ν̂1(dζ|s)⊗ ν̂2(dy|ζ, x)⊗ ds and ν̂1(dζ|s) is an invariant measure

of ν̂2(dy|ζ, s). Furthermore,

U(t) =
∫
IRd×[0,1]

yν2(dy × ds),

and

Y (t)
.
= lim

n→∞
Y
n
(t) = lim

n→∞
X(t) + lim

n→∞
U(t) = X(t) + U(t).

Let {(ν1,n, ν2,n, X
n
, U

n
, τn)} be a convergent subsubsequence. Then, (4.29) and Le-

mma .5(e) (with ε = σ) imply that

lim sup
n→∞

Ex,ξ

{
1

n

n−1∑
j=1

[R(ν1,n
j (·)||p(·|Xn

j , Z
n
j )) +R(ν2,n

j (·)||ρ(·))] + h(Y
n
)
}

≤
∫ 1

0
Lσ(ψ

∗(t), ψ̇∗(t))dt+ 3σ + lim sup
n→∞

Ēx,ξ{h(Ȳ n)}

≤
∫ 1

0
Lσ(ψ(t), ψ̇(t))dt+ 4σ + lim sup

n→∞
Ēx,ξ{h(Ȳ n)}.

Thus, the proof of (4.20) will be complete once we prove that

lim supEx,ξh(Y
n
) ≤ h(ψ) + θ̃(σ),

with θ̃(σ) → 0 when σ → 0. This in turn will be implied by

lim
σ→0

lim sup
n→∞

P x,ξ{ sup
t∈[0,1]

||Y n
(t)− ψ∗(t)|| ≥ σ} = 0, (4.31)
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because of the Lipschitz property of h and Lemma .5(e).

¿From the definition of β
1,n

j , and Lemma .5 (d), for each l ∈ {0, . . . , [ τn

kn
]},

||βnlmn
− ψ̇∗(

lmn

n
)|| = ||β1,n

lmn
+ β

2,n

lmn
− ψ̇∗(

lmn

n
)||

= ||
∫
S
b(X

n

lmn
, ξ)µnlmn

(dξ) +
∫
IRd
yν2,n

lmn
(dy)− ψ̇∗(

lmn

n
)||

≤ K||Xn
lmn

− ψ∗(
lmn

n
)||. (4.32)

Also, from the proof Lemma .7(e), when n→∞

S1,n(t)
.
= x+

∫ t

0

∫
S×
b(S1,n(s), ξ2)ν

1,n(dξ1 × dξ2|s)ds→ X(t)

and

S2,n(t)
.
=

∫
IRd×[0,t]

yν2,n(dy × ds) → U(t)

in distribution for almost all t ∈ [0, 1]. Let t ∈ [0, τ ]. Then,

||Y ( t )− ψ∗(t)|| = lim
n→∞

||
∫ t

0

∫
S×S

b(Sn(s), ξ2)ν
1,n(dξ1 × dξ2|s)ds

−
∫
S×S×[0,t]

b(X̃n(s), ξ2)ν
1,n(dξ1 × dξ2|s)ds+

∫
S×S×[0,t]

b(X̃n(s), ξ2)ν
1,n(dξ1 × dξ2|s)ds

+

[ t
kn

]∑
l=0

kn

∫
IRd
yν2,n

lmn
(dy)−

[ t
kn

]∑
l=0

kn

∫
S
b(X̃n

lmn
, ξ)µnlmn

(dξ)

+

[ t
kn

]∑
l=0

kn

∫
S
b(X̃n

lmn
, ξ)µnlmn

(dξ)−
∫ t

0
ψ̇∗(s)ds||

≤ lim sup
n→∞

∫ 1

0
(K||S1,n(s)− X̃n(s)|| ∧ 2‖b‖∞)ds

+ lim sup
n→∞

[ t
kn

]∑
l=0

kn||
1

mn

(l+1)mn∑
j=l

∫
S
b(X lmn , ζ)γ

1,n,j
lmn

(dζ|Xn

lmn
, Z lmn)

−
∫
S
b(X

n
lmn

, ξ)µnlmn
(dξ)||+ lim sup

n→∞
K

∫ t

0
||Xn

(s)− ψ∗(s)||ds

≤ lim sup
n→∞

[ t
kn

]∑
l=0

kn||b||∞
A2

a3
n

e2||b||∞ maxx∈Γ,β∈Θ{‖α(x,β)‖}

+K
∫ t

0
||X(s)− ψ∗(s)||ds
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= K
∫ t

0
||X(s)− ψ∗(s)||ds

≤
∫ t

0
||X(s)− Y (s)||ds+K

∫ t

0
||Y (s)− ψ∗(s)||ds

≤ K sup
s∈[0,τ ]

||X(s)− Y (s)||+K
∫ t

0
||Y (s)− ψ∗(s)||ds.

Let K
.
= KeK . By Gronwall’s inequality,

sup
s∈[0,τ ]

||Y (s)− ψ∗(s)|| ≤ K sup
s∈[0,τ ]

||X(s)− Y (s)|| = K sup
s∈[0,τ ]

||U(s)||,

which together with Lemma .6 implies that, for any σ > 0,

lim
σ→0

P x,ξ{ sup
t∈[0,τ ]

||Y (s)− ψ∗(s)|| ≥ σ} ≤ lim
σ→0

P x,ξ{ sup
t∈[0,τ ]

||U(s)|| ≥ σ

K
} = 0.

Since X = Y − U , for 0 ≤ σ ≤ η/2,

lim
σ→0

P x,ξ{ sup
t∈[0,τ ]

||X(t)− ψ∗(t)|| ≥ σ} ≤ lim
σ→0

P x,ξ{ sup
t∈[0,τ ]

||U(t)|| ≥ σ/2}

+ lim
σ→0

P x,ξ{ sup
t∈[0,τ ]

||Y (t)− ψ∗(t)|| ≥ σ/2}

= 0.

Finally, writing τ = τσ, it can be proved, following the same arguments given in [4, p.

205-206], that

lim
σ→0

P x,ξ{τσ < 1} = 0,

which implies (4.31). This completes the proof of the lower bound.

Appendix

Representation Formulas

In this appendix we discuss the representation formulas used in the proof of Theorem

2.2. In particular, we shall establish variational representations for the quantity

W n(x, ξ)
.
= − 1

n
logEx,ξ {exp[−nh(Xn)]} , (.33)

and for the quantity

W n
σ (x, ξ)

.
= − 1

n
logEx,ξ {exp[−nh(Y n

σ )]} , (.34)
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where Xn and Y n
σ are defined by (1.4) and (4.12), respectively, Ex,ξ denotes expectation

conditioned on Xn
0 = x and Zn

0 = ξ and h is bounded and continuous. We will only

discuss the representation for the first quantity in detail, since the representation for the

second quantity is derived in a completely analogous way.

Theorem .1 states the representation for the quantity W n(x, ξ) in terms of the minimal

cost function of a certain stochastic control problem. Before stating the theorem, we

introduce the appropriate control problem.

We define a discrete-time controlled process taking values in IRd × S denoted by

{(X̄n
j , Z̄

n
j ), j = 0, . . . , n}. The control at time j is given by the distribution of the con-

trolled random variable Z̄n
j , namely, a stochastic kernel ν(dζ|X̄n

0 , . . . , X̄
n
j , Z̄

n
j ) on S given

(IRd)j+1 × S. A sequence of controls {νnj , j = 0, . . . , n − 1} is what we refer to as an

admissible control sequence.

Now, setting Z̄n
0 = ξ and X̄n

0 = x, the evolution of the controlled process is through

the relation

X̄n
j+1 = X̄n

j +
1

n
b(X̄n

j , Z̄
n
j+1),

where the the conditional distribution of Z̄n
j+1 is given by

P̄
{
Z̄n
j+1 ∈ dζ|X̄n

0 , . . . , X̄
n
j , Z̄

n
0 , . . . , Z̄

n
j

}
= νnj (dζ|X̄n

0 , . . . , X̄
n
j , Z̄

n
j ).

Finally, we define X̄n = {X̄n(t), t ∈ [0, 1]} to be the piecewise linear interpolation of

{X̄n
j , j = 0, . . . , n} (see (1.4)). We consider the minimal cost function

V n(x, ξ)
.
= inf

{νn
j }
Ēx,ξ

 1

n

n−1∑
j=0

R(νnj (·)‖p(·|X̄n
j , Z̄

n
j )) + h(X̄n)

 . (.35)

Here R is the relative entropy function; νnj (·) = νnj (·|X̄n
0 , . . . , X̄

n
j , Z̄

n
j ); the infimum is

taken over all admissible control sequences {νnj , j = 0, . . . , n−1}; Ēx,ξ denotes expectation

conditioned on X̄n
0 = x and Z̄n

0 = ξ; {(X̄n
j , Z̄

n
j )} is the controlled process associated with

a particular control sequence {νnj }; and h is the same function appearing in the definition

(.33) of W n(x, ξ). We can now state the representation formula.
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Theorem .1 Let h be a bounded measurable function mapping C([0, 1] : IRd) 7→ IR. Then

for all n ∈ IN, x ∈ IRd and ξ ∈ S the quantity W n(x, ξ) defined in (.33) equals the minimal

cost function V n(x, ξ) defined in (.35), so that

W n(x, ξ) = inf
{νn

j }
Ēx,ξ

 1

n

n−1∑
j=0

R(νnj (·)‖p(·|X̄n
j , Z̄

n
j )) + h(X̄n)

 .

Proof. For any starting time i ∈ {0, . . . , n} and any points x0, x1, . . . , xi ∈ IRd and

ξi ∈ S, we start by defining

W n(i, {x0, . . . , xi}, ξi) .
= − 1

n
logEξ {exp [−nh(Xn)|Xn

0 = x0, . . . , X
n
i = xi, Z

n
i = ξi]} .

We identify x0 with x. Then W n(0, {x}, ξ) equals W n(x, ξ), while W n(n, {x, . . . , xn}, ξn)

equals h(Xn). Taking i ∈ {0, . . . , n− 1}, we use the Markov property to write:

exp [−nW n(i, {x, . . . , xi}, ξi)]

= Eξ {exp [−nh(Xn)] |Xn
0 = x, . . . , Xn

i = xi, Z
n
0 = ξ0, . . . , Z

n
i = ξi}

= Eξ
{
E

{
exp [−nh(Xn)] |Xn

0 = x, . . . , Xn
i+1, Z

n
i+1, Z

n
i

}
|Xn

0 = x, . . . , Zn
i = ξi

}
= Eξ

{
exp

[
−nW n(i+ 1, {x, . . . , xi +

1

n
b(xi, ξi+1)}, ξi+1)

]
|Xn

0 = x, . . . , Zn
i = ξi

}
=

∫
S

exp
[
−nW n(i+ 1, {x, . . . , xi +

1

n
b(xi, ζ)}, ζ)

]
p(dζ|xi, ξi).

Therefore

W n(i, {x, . . . , xi}, ξi) = − 1

n
log

∫
S

exp
[
−nW n(i+ 1, {x, . . . , xi +

1

n
b(xi, ζ)}, ζ)

]
p(dζ|xi, ξi).

Applying the variational formula in Proposition 1.4.2(a) of [4] we obtain a dynamic pro-

gramming equation (DPE) of the form
W n(i, {x, . . . , xi}, ξi)

= inf
ν∈P(S)

{
1

n
R(ν(·)‖p(·|xi, ξi)) +

∫
S
W n(i, {x, . . . , xi +

1

n
b(xi, ζ)}, ζ)ν(dζ)

}
W n(n, {x, . . . , xn}, ξn) = h(Xn).
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What we will show is that the quantities W n(i, {x, . . . , xi}, ξ) are not the only solution

to the DPE, but that it is also satisfied by the minimal cost functions

V n(i, {x, . . . , xi}, ξi) .
= inf

{νn
j }
Ēi,{x,...,xi}


n−1∑
j=i

1

n
R(νnj (·)‖p(·|X̄n

j , Z̄
n
j ) + h(Xn)

 .

Since the DPE and the terminal condition have a unique solution, then the conclusion of

the theorem will follow.

We know that if a certain attainment condition is satisfied, then Theorem 1.5.2 in [4]

guarantees that indeed V n(i, {x, . . . , xi}, ξ) are bounded, measurable and are the unique

solution to the DPE. This attainment condition requires that there exist an admissible

control sequence {ν̃nj , j = 0, . . . , n} such that the infimum in the DPE is attained. Since

such a sequence exists - it can be checked that the sequence of kernels {νnj , j = 0, . . . n}

on S given (IRd)i × S defined for every Borel set B of S through

ν̃nj (B|x, . . . , xj, ξ) .
=

∫
B exp

[
−nW n(j + 1, {x, . . . , xj, xj + 1

n
b(xj, ζ)}, ζ)

]
p(dζ|xj, ξ)∫

S exp
[
−nW n(j + 1, {x, . . . , xj, xj + 1

n
b(xj, ζ)}, ζ)

]
p(dζ|xj, ξ)

is indeed infimizing - the proof of the theorem is complete.

Using the same approach, one can prove the representation in Theorem .2 for the

quantity W n
σ (x, ξ). We first state the appropriate stochastic control problem.

Let p × ρσ be the stochastic kernel on S × IRd, given ξ ∈ S, x ∈ IRd, defined by

(p × ρσ)(dζ × dy|x, ξ) .
= p(dζ|x, ξ) × ρσ(dy). We consider admissible control sequences

consisting of stochastic kernels

νnj (dζ × dy|x0, . . . , xj, u0, . . . , uj, zj) on S × IRd given (x0, . . . , xj), (u0, . . . , uj) ∈ (IRd)j+1

and zj ∈ S. Once again we identify x0 with x. For each admissible control sequence {νnj },

the controlled system is defined through

X
n
0

.
= x U

n
0

.
= 0

X
n

j+1
.
= X

n

j + 1
n
b(X

n

j , Z
n

j+1), U
n

j+1
.
= U

n

j + 1
n
G
n

j

Y
n

j = X
n

j + U
n

j ,
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where the conditional distribution of (Z
n
j+1, G

n
j ) is given by

P x,ξ

(
(Z

n
j+1, G

n
j )∈ dζ × dy|Xn

0 , . . . , X
n
j , U

n
0 , . . . , U

n
j , Z

n
j

)
=

νnj (dζ × dy|Xn
0 , . . . , X

n
j , U

n
0 , . . . , U

n
j , Z

n
j ).

Define now the processes X
n .

= {Xn
(t), t ∈ [0, 1]}, U

n
= {Un

(t), t ∈ [0, 1]} and Y
n .

=

{Y n
(t), t ∈ [0, 1]} as the linear interpolations of {Xn

j }, {U
n
j } and {Y n

j }, respectively (see

(1.4)). In this case the minimal cost function takes the form

V n
σ (x, ξ)

.
= inf

{νn
j }
Ex,ξ{

1

n

n−1∑
j=0

R(νnj (·)||(p× ρσ)(·|X
n
j , Z

n
j )) + h(Y

n
)}.

Theorem .2 Let h be a bounded measurable function mapping C([0, 1] : IRd) 7→ IR. Then

for all n ∈ IN, x ∈ IRd, ξ ∈ S and σ > 0, the quantity W n
σ (x, ξ) defined in (.34) equals the

minimal cost function V n
σ (x, ξ), so that

W n
σ (x, ξ) = inf

{νn
j }
Ex,ξ{

1

n

n−1∑
j=0

R(νnj (·)||(p× ρσ)(·|X
n
j , Z

n
j )) + h(Y

n
)}.

Properties of the functions L and Lσ.

In this appendix we establish properties of the functions Λ(x, α) and L(x, β) defined

in (1.3) and (2.5) respectively, and of the function Lσ defined in (4.13).

Lemma .3 Under Hypothesis H.1, the function Λ(x, α) defined in (1.3) satisfies the fol-

lowing properties. For each x ∈ IRd, Λ(x, α) is a finite strictly convex function of

α ∈ IRd which is differentiable for all α. In addition, Λ(x, α) is a continuous function

of (x, α) ∈ IRd × IRd.

These properties follow from Lemmas 3.1 and 3.4 in [10] given the relation between

the function Λ and the solution to the eigenvalue problem given in (1.2).

The next lemma establishes important properties of the function L which is the

Frechel-Legendre transform of the function Λ.

Lemma .4 Under Hypothesis H.1, the function L(x, β) defined in (2.5) satisfies the fol-

lowing properties.
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a) For each x ∈ IRd, L(x, β) is a convex and lowersemicontinuous function of β ∈ IRd.

b) L(x, β) ≥ −Λ(x, 0).

c) L(x, β) achieves its minimum of −Λ(x, 0) (equal to 0) at β̄ if and only if β̄ ∈ ∂Λ(0)

and, furthermore, such a β̄ exists.

d) If L(x, β) is finite in a neighborhood of β′, then ∂L(x, β′) is nonempty and L(x, β′) =

〈α, β′〉 − Λ(x, α) if and only if α ∈ ∂L(β′).

e) There is uniqueness in the sense that there is only one convex and lower semicon-

tinuous function Λ such that L = Λ∗.

f) If L achieves its minimum at β = 0 then Λ(x, α) ≥ Λ(x, 0).

g) L(x, β) →∞ as ‖β‖ → ∞.

h) For each x and β in IRd

L(x, β) = inf
{∫

S
R(γ(ξ|·)‖p(ξ|·))µ(dξ) : γµ = µ,

∫
S
b(x, ξ)dµ = β

}
.

If L is finite, then the infimum is attained uniquely.

Proof. Since Λ is finite and convex, properties a) - g) above are proved in [3, Lemma

2.1]. We now show h).

We first note that for any β ∈ IRd such that L(x, β) = +∞ then the infimum is

attained at any kernel γ whose invariant measure has mean β. Hence we can restrict our

attention to β ∈ ri(domL(x, ·)).

For α ∈ IRd let γα be the stochastic kernel defined by

dγα(ξ|·)
dp(ξ|·)

(ζ) =
e〈α,b(x,ζ)〉+ψ(ζ)∫

S e
〈α,b(x,ζ)〉+ψ(ζ)p(ξ|dζ)

In terms of the function Λ defined in (1.2) we can write

dγα(ξ|·)
dp(ξ|·)

(ζ) = e−Λ(α)−ψ(ξ)+〈α,b(x,ξ)〉+ψ(ζ).
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Let µα be the unique invariant measure of γα. (Proposition 4.1 in [10] guarantees that

such a measure exists). Part d) of the present lemma implies that there exists a unique

α = α(x, β) such that

L(x, β) = 〈α(x, β), β〉 − Λ(x, α(x, β)) (.36)

with α(x, β) ∈ ∂L(β) if and only if β ∈ ∂H(α(x, β)), so that β =
∫
S b(x, ξ)µ

α(dξ). Since

β = ∇Λ(α(x, β)), Proposition 4.1 in [10] gives

Eγα
µαb(x, ξ) =

∫
S
b(x, ξ)µα(dξ) = β.

Now let γ be any kernel (with corresponding invariant measure µγ) satisfying

∫
S
b(x, ξ)µγ(dξ) = β

and ∫
S
R(γ(ξ|·)‖p(ξ|·))µγ(ξ) <∞.

Then γ(ξ|·) << p(ξ|·) for µγ- almost all ξ. Since dγα

dp
is strictly positive, γ(ξ|·) << γα(ξ|·)

for almost all ξ (with respect to µγ) and

∫
R(γ(ξ|·)‖p(ξ|·))µγ(dξ)

=
∫ ∫

log
dγ(ξ|ζ)
dp(ξ|ζ)

(ζ)γ(ξ|dζ)µγ(dξ)

=
∫ ∫

log

[
dγ(ξ)

dγα(ξ)
(ζ)

dγα(ξ)

dp(ξ)
(ζ)

]
γ(ξ|dζ)µγ(dξ)

=
∫ [∫

log
dγ(ξ)

dγα(ξ)
(ζ)γ(ξ|dζ) +

∫
log

dγα(ξ)

dp(ξ)
(ζ)γ(ξ|dζ)

]
µγ(dξ)

=
∫
R(γ(ξ|·)‖γα(ξ|·))µγ(dξ) +

∫ ∫
log [exp [〈α, b(x, ζ)〉+ ψ(ζ)− ψ(ξ)− Λ(α)]] γ(ξ|dζ)µγ(dξ)

=
∫
R(γ(ξ|·)‖γα(ξ|·))µγ(dξ)− Λ(α)−

∫
ψ(ξ)µγ(dξ) +

∫ ∫
[〈α, b(x, ζ)〉+ ψ(ζ)] γ(ξ|dζ)µγ(dξ)

=
∫
R(γ(ξ|·)‖γα(ξ|·)µγ(dξ)− Λ(α) +

∫
〈α, b(x, ξ)〉µγ(dξ)

=
∫
R(γ(ξ|·)‖γα(ξ|·)µγ(dξ)− Λ(α) + 〈α, β〉
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=
∫
R(γ(ξ|·)‖γα(ξ|·)µγ(dξ)− Λ(α) + 〈α, β〉

=
∫
R(γ(ξ|·)‖γα(ξ|·)µγ(dξ) + L(x, β)

≥ L(x, β).

Equality is obtained if and only if γ ≡ γα.

Remark.

a) Since Λ(x, ·) is strictly convex on IRd, L(x, ·) is differentiable on int(domL(x, ·)).

See Theorem D.2.8 in [4].

b) For each β ∈ int(domL(x, ·)) there exists α = α(x, β) ∈ IRd with α(x, β) = ∇L(x, β)

and L(x, β) = 〈α(x, β), β〉 − Λ(x, α(x, β)). This follows from part (d) of Lemma .4

The next result establishes properties of the function Lσ defined in (4.13) that are

needed in the proof of the lower bound.

Lemma .5 Given σ > 0, the function Lσ(x, β) satisfies the following properties.

(a) Lσ(x, β) = inf
z∈IRd

{L(x, β − z) + ||z||2
2σ2 } and Lσ(x, β) ≤ L(x, β).

(b) Lσ(x, β) is a finite, nonnegative, continuous function of (x, β) ∈ IRd×IRd. Moreover,

Lσ(x, ·) is differentiable on IRd

(c)

Lσ(x, β) = inf
{∫

S
R(γ(·|x, ξ)× υ(·)||p(·|x, ξ)× ρσ(·))µ(dξ) :

µγ = µ,
∫
S
b(x, ξ)µ(dξ) +

∫
IRd
yυ(dy) = β

}
.

Further, for each x, β ∈ IRd, there exist a stochastic kernel γ∗ and a measure υ∗

such that the infimum on the right hand side is achieved. For Borel sets B1 of S

and B2 of IRd, these are given by:

γ∗(B1|x, ξ) .
=

∫
B1

e〈α,b(x,ζ)〉−Λ(x,α)−ψσ(x,α,ξ)+ψσ(x,α,ζ)p(dζ|x, ξ)
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and

υ∗(B2)
.
=

∫
B2

e〈α,y〉−
σ2||α||2

2 ρσ(dy),

with α = α(x, β) ∈ argmax{〈α, β〉 − Λσ(x, α) : α ∈ IRd}.

(d) Given any compact set ∆ ⊂ IRd, and ε ∈ (0, 1), there exists η ∈ (0, 1) such that,

whenever x, y ∈ ∆, β ∈ IRd, and ||x− y|| ≤ η there exists β ∈ IRd such that:

a) Lσ(y, β)− Lσ(x, β) ≤ ε

b) ||β − β|| ≤ K||x− y||,

where K is the Lipschitz constant of b.

(e) Given ψ ∈ C([0, 1], IRd) satisfying Ix,ξ(ψ) <∞ and ε > 0, there exists ψ∗ ∈ N such

that ||ψ − ψ∗||∞ < ε and∫ 1

0
Lσ(ψ

∗(t), ψ̇∗(t))dt ≤
∫ 1

0
Lσ(ψ(t), ψ̇(t))dt+ ε

≤ Ix,ξ(ψ) + ε.

(f) The function (x, β) → α(x, β) ∈ argmaxα∈IRd{〈α, β〉 − Λσ(x, α)} is continuous.

Proof.

(a) Follows from Corollay D.4.2 in [D–E], while for the second part we take z = 0.

(b) From [12, Corollary 2.6.4] and Lemma 3.4 (iv) in [10], int(Dom Lσ(x, ·)) =

Range(∇Λσ(x, ·)) = IRd. So Lσ(x, β) <∞ for all (x, β) ∈ IRd× IRd. The nonnegativity of

Lσ(x, β) follows from the nonnegativity of L(x, β). The continuity follows from Lemma

C.8.1 in [4] and the continuity of Λ(x, α) in both variables. Finally, the differentiability

follows from the strict convexity of Λ and Theorem D.2.8 in [4].

(c) Let x, β ∈ IRd. From Part (b) there exists α ∈ IRd, with α = α(x, β), such that

β = ∇αΛσ(x, α) and Lσ(x, β) = 〈α, β〉 − Λσ(x, α).

Let

γ(x, α; ξ|dζ × dy) = exp{〈α, b(x, ζ) + y〉+ Ψ(x;α, ζ)−Ψ(x;α, ξ)− Λ(x, α)

−σ
2

2
||α||2}p(dζ|x, ξ)ρσ(dy).
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¿From Proposition 4.1 in [10],

β =
∫
b(x, ξ)µ(dξ) +

∫
ye−

σ2

2
||α||2+〈α,y〉ρσ(dy),

where µ is the unique invariant measure of the kernel

γ1(x, α, ξ|dζ) = exp{〈α, b(x, ζ) + y〉+ Ψ(x;α, ζ)−Ψ(x;α, ξ)− Λ(x, α)}p(dζ|x, ξ)

The rest of the proof follows the same arguments given in Lemma .4 (h).

(d) Let ∆ ⊂ IRd compact, x, y ∈ ∆, β ∈ IRd, and ε > 0. We know, from Part (c), that

there exist γ∗ and υ∗ such that the infimum in part (c) is attained for (x, β). Define

β
.
=

∫
S b(y, ξ)µ

γ∗(dξ) +
∫
IRd yν∗(dy). Then, from the representation formula given in Part

(c),

||β − β|| ≤ ‖
∫

(b(x, ξ)− b(y, ξ))µγ
∗
(dξ)‖

≤ K‖x− y‖.

Now, for any Borel set B of S, we can use part c) of Hypothesis H.1 to write

γ∗(B|x, ξ) =
∫
B

exp
{
〈α, b(x, ζ)〉+ Ψσ(x;α, ζ)−Ψσ(x;α, ξ)− Λ(x, α)

}
p̃x(ξ, ζ)ϑ(dζ).

From the bound that we have on p̃x(·, ·), it follows that γ∗(·|x, ξ) is absolutely continuous

with respect to p(·|y, ξ); and from the uniform continuity of p̃x(ξ, ζ), there exists η > 0

such that ‖x− y‖ < η implies that

p̃x(ξ, ζ) ≤ p̃y(ξ, ζ)eε. (.37)

(this is as in lines (4.26)). Then, from the variational equivalence given in Part (c),

Lσ(y, β) <∞, and

Lσ(y, β) ≤
∫
R(γ∗(·|x, ξ)× ν∗(·)||p(·|y, ξ)× ρσ(·))µγ

∗
(dξ)

≤ 〈α,
∫
b(x, ξ)µγ

∗
(dξ)〉 − Λ(x, α) + 〈α,

∫
IRd
yν∗(dy)〉 − σ2

2
||α||+ ε

= 〈α, β〉 − Λσ(x, α) + ε

= Lσ(x, β) + ε
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(e) The proof of this part is based in Lemmas 6.5.3 and 6.5.5 of [4], which in our case also

hold due to the structural properties given in Parts (a) and (b).

(f) Given x, β ∈ IRd, Part (b) and the differenciability of α → Λσ(x, α) imply that

there exists a unique α(x, β) such that Lσ(x, β) = 〈α(x, β), β〉 − Λσ(x, α(x, β)), β =

∇αΛσ(x, α(x, β)) and α(x, β) = ∇βLσ(x, β). We observe that β → Lσ(x, β) is con-

tinuously differentiable thanks to [12, Corollary 25.5.1]. Moreover, x → ∇βLσ(x, β) is

continuous [12, Theorem 25.7] and in fact (x, β) → ∇βLσ(x, β) is continuous by the same

theorem. Therefore, (x, β) → α(x, β) is continuous in both variables.

The last lemma in this appendix establishes an estimate needed in the proof of the

lower bound.

Lemma .6 For any δ > 0,

lim
σ→0

P x,ξ{ sup
t∈[0,1]

||U(t)|| ≥ δ} = 0.

Proof. Let (ν1,n, ν2,n, X
n
, U

n
, τn) → (ν1, ν2, X, U, τ) and define

Sn(t)
.
=

∫
IRd×[0,1]

yν2,n(dy × ds).

¿From (4.30), supnEx,ξ{ 1
n

∑n−1
j=0 R(ν2,n

j ||ρ)} <∞, and Proposition 5.3.8 in [4] implies that

Sn → U in distribution in C([0, 1]; IRd). The next inequality follows from the Skorohod

Representation Theorem and Fatou’s Lemma:

Ex,ξ{( sup
t∈[0,1]

||U(t)||)2} ≤ lim inf
n→∞

Ex,ξ{( sup
t∈[0,1]

||Sn(t)||)2}. (.38)

Then we have that for any δ > 0,

P x,ξ[ sup
t∈[0,1]

||U(t)|| ≥ δ] ≤ 1

δ2
Ex,ξ{( sup

t∈[0,1]
||U(t)||)2}

≤ 1

δ2
lim inf
n→∞

Ex,ξ{( sup
t∈[0,1]

||
∫
IRd×[0,1]

yν2,n(dy × ds)||)2}

≤ 1

δ2
lim inf
n→∞

Ex,ξ{
1

n

n−1∑
j=0

||
∫
IRd
yν2,n

j (dy)||2}
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=
1

δ2
lim inf
n→∞

Ex,ξ{
1

n

nτn−1∑
j=0

||β2,n
j ||2}

≤ 2σ2

δ2
lim inf
n→∞

Ex,ξ{
1

n

nτn−1∑
j=0

R(γ2,n
j ||ρσ)}

≤ 2σ2

δ2
lim inf
n→∞

{kn
[1/kn]∑
l=0

Lσ(ψ
∗(
lmn

n
), ψ̇∗(

lmn

n
)) + 3σ}

=
2σ2

δ2
[
∫ 1

0
Lσ(ψ

∗(t), ψ̇∗(t))dt+ 3σ]

≤ 2σ2

δ2
[Ix,ξ(ψ) + 4σ].

The fifth inequality follows noting that 1
2σ2 ||β2,n

j ||2 = Lσ(β
2,n
j ) ≤ R(γ2,n

j ||ρ), where Lσ is

the Frechel-Legendre of the moment generating function of ρσ. The sixth line follows from

(4.24) and (4.29), while in line eight we used Part (e) of Lemma .5 with ε = σ. Finally

we et

P x,ξ( sup
t∈[0,1]

||U(t)|| ≥ δ) ≤ lim
σ→0

2σ2

δ2
[Ix,ξ(ψ) + 4σ] = 0,

which proves the lemma.

Proofs of some limit results

This appendix is dedicated to the proofs of some limit results needed in the proof of

Theorem 2.2.

Theorem .7 For any x ∈ IRd, ξ ∈ S and each n ∈ IN , consider any admissible control

sequence such that

sup
n∈IN

Ēx,ξ

 1

n

n−1∑
j=0

R(νnj (·)‖p(·|X̄n
j , Z̄

n
j ))

 <∞,

where νnj (·) = νnj (·|X̄n
0 , . . . , X̄

n
j , Z̄

n
j ). In terms of these sequences we define the piecewise

linear interpolation {X̄n}, the piecewise constant interpolation {X̃n}, the sequence of

admissible control measures {νn} and its marginals {ν̃n2 ⊗ λ, ν̃n1 ⊗ λ}, and the measures

{γn} as in Section 3. The following conclusions hold.
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a) Given any subsequence of {(νn, ν̃n2 ⊗ λ, ν̃n1 ⊗ λ, γn, n ∈ IN}, there exist a subsubse-

quence, a probability space (Ω̄, F̄ , P̄x,ξ), a a measure ν on S×S×[0, 1] with marginals

µ1, µ2, and a measure γ on S × S × [0, 1] such that the subsubsequence converges

in distribution to (ν, µ1, µ2, γ).

b) The stochastic kernel ν has the decomposition

ν(B1 ×B2 × C) =
∫
C
ν(B1 ×B2|t)dt =

∫
C

∫
B1

ν̂1(dζ|t)ν̂2(B2|ζ, t)dt

for some stochastic kernels ν(·|t) on S×S given [0, 1]×Ω̄, ν̂1(·|t) on S given [0, 1]×Ω̄

and ν̂2(·|ζ, t) on S given S × [0, 1]× Ω̄.

c) We have the equality ν̂1 ⊗ λ = ν̂2 ⊗ λ.

d) Let q̄(dy|ζ, t) .
= ν̂2(dy|ζ, t). Then ν̂1(dζ|t) is an invariant measure of q̄ for each

t ∈ [0, 1].

e) Let {n} be the subsubsequence obtained in Part (a). Then {X̄n, X̃n} converges to

X̄ almost surely, where for every t ∈ 0, 1]

X̄(t)
.
= x+

∫
S×S×[0,t]

b(X̄(s), y)ν(dζ × dy × ds)

= x+
∫ t

0

∫
S
b(X̄(s), ξ)ν̂1(dζ|s)ds,

with ν̂1 an invariant measure for q̄.

f) The kernel γ is has the decomposition

γ(B1 ×B2 × C) =
∫
C

∫
S×S

ν̃1(B1|t)⊗ p(ζ, B2|X̄(t))dt.

Proof.

a) Given the compactness of S, we immediately get tightness of νn, of γn and of all the

marginals. Since the function mapping νn into (νn, ν̃n1 ⊗ λ, ν̃n2 ⊗ λ) is continuous,
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there exist measures ν and γ over S×S×[0, 1] and measures µ1 and µ2 over S×[0, 1]

such that (νn, ν̃n1 ⊗λ, ν̃n2 ⊗λ, γn)
D−→ (ν, µ1, µ2) [4, Theorem A.3.6]. Moreover, w.p.1

µ1 and µ2 equal the marginals of ν over (z, t) and over (y, t) respectively.

b) We let µ3 denote the marginal of ν over t. By the Skorohod Representation Theorem

we can assume that νn =⇒ ν and for i = 1, 2 ν̃ni ⊗ λ =⇒ µi w.p.1 on (Ω̄, F̄ , P̄ ).

Using the fact that the marginal of νn is Lebesgue measure λ, we have that w.p.1

for any bounded continuous function g mapping [0, 1] into IR∫ 1

0
g(t)µ3(dt) =

∫
S×S×[0,1]

g(t)ν(dζ × dy × dt)

= lim
n→∞

∫
S×S×[0,1]

g(t)νn(dζ × dy × dt)

= lim
n→∞

∫ 1

0
g(t)dt

=
∫ 1

0
g(t)dt.

Since the class of bounded and continuous functions is a measure determining class

[1, Theorem 1.3], this implies that w.p.1 µ3(·) equals λ(·). By Theorem A.5.6 in [4],

there exists a stochastic kernel ν(dζ × dy|t) on S × S given [0, 1] such that w.p.1

ν(B1 ×B2 × C) =
∫
C
ν(B1 ×B2|t) dt.

Once more Theorem A.5.6 in [4] gives the existence of stochastic kernels on S given

S × [0, 1] ν̃2(dy|ζ, t), ν̃1(dζ|t) the second and first marginals of ν(dζ × dy|t) such

that

ν(B1 ×B2 × C) =
∫
C

∫
B1

ν̃1(dζ|t)ν̃2(B2|ζ, t)dt.

This gives the decomposition of ν(dζ × dy× dt) given in part (b). In terms of these

kernels we can write µ1(dζ × dt) = ν̃1(dζ|t)⊗ λ(dt) and µ2(dy × dt) = ν̃2(dy|ζ, t)×

ν̃1(S|t)× λ(dt).

c) It is enough to check that∫
f(y, t)(ν̃1 ⊗ λ)(dy × dt) =

∫
f(y, t)(ν̃2 ⊗ λ)(dy × dt)
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with f(y, t) = g(y)h(t), g ∈ C(S : IRd) and h ∈ C([0, 1] : IRd) (see Theorem A.3.14

in [4]). Since

Ēx,ξ

{
g(Z̄n

j+1)−
∫
S
g(y)νnj (dy|X̄0, . . . X̄

n
j , Z̄

n
j )

}
= 0,

we have that {
g(Z̄n

j+1)−
∫
S
g(y)νnj (dy|X̄n

0 , . . . , X̄
n
j , Z̄

n
j )

}
is a martingale difference sequence. Therefore∫

[0,1]×S
f(ζ, t)(ν̃n1 ⊗ λ)(dζ × dt) =

∫ 1

0
h(t)

∫
S
g(ζ)ν̃n1 (dζ|t)dt

=

1
kn
−1∑

l=0

∫ (l+1)kn

lkn

h(t)
∫
S
g(ζ)ν̃n1 (dζ|t)dt

=

1
kn
−1∑

l=0

∫ (l+1)kn

lkn

h(t)dt ·
∫
S
g(ζ)(νnl )1(dζ)

=

1
kn
−1∑

l=0

∫ (l+1)kn

lkn

h(t)dt · 1

mn

(l+1)mn−1∑
j=lmn

g(Z̄n
j ).

Similarly, ∫
[0,1]×S

f(y, t)(ν̃n2 ⊗ λ)(dy × dt)

=

1
kn
−1∑

l=0

 1

mn

(l+1)mn−1∑
j=lmn

∫
g(y)νnj (dy)

 · ∫ (l+1)kn

lkn

h(t)dt.

Therefore∫ 1

0

∫
S
f(y, t)(ν̃n1 ⊗ λ)(dy × dt)−

∫ 1

0

∫
S
f(y, t)(ν̃n2 ⊗ λ)(dy × dt)

=

1
kn
−1∑

l=0

1

mn

[∫ (l+1)kn

lkn

h(t)dt

] [(l+1)mn−1∑
j=lmn

(
g(Z̄n

j+1)−
∫
g(y)νnj (dy|X̄n

0 , . . . , X̄
n
j , Z̄

n
j )

)

+[g(Z̄n
lmn

)− g(Z̄n
(l+1)mn

)]

]
.

Note that∥∥∥∥∥∥∥
1

kn
−1∑

l=0

1

mn

[∫ (l+1)kn

lkn

h(t)dt

] [
g(Z̄n

lmn
)− g(Z̄n

(l+1)mn)

]∥∥∥∥∥∥∥ ≤
2‖g‖‖h‖
mn

,
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so that if mn ≥ 4‖g‖‖h‖
ε

then

P̄x,ξ

{∣∣∣∣∫
S
fd(ν̃n1 ⊗ λ)−

∫
S
fd(ν̃n2 ⊗ λ)

∣∣∣∣ ≥ ε
}

≤ P̄x,ξ


∣∣∣∣∣∣∣

1
kn
−1∑

l=0

1

mn

[∫ (l+1)kn

lkn

h(t)dt

] (l+1)mn−1∑
j=lmn

(
g(Z̄n

j+1)−
∫
g(y)νnj (dy)

)
∣∣∣∣∣∣∣ ≥

ε

2


≤ P̄x,ξ


∣∣∣∣∣∣ 1n

n−1∑
j=0

[
g(Z̄n

j+1)−
∫
g(y)νnj (dy)

]∣∣∣∣∣∣ ≥ ε

2‖h‖


≤ 4‖h‖2

ε2
Ēx,ξ

 1

n2

n−1∑
j=0

[
g(Z̄n

j+1)−
∫
g(y)νnj (dy)

]2


≤ 4‖h‖2

ε2
Ēx,ξ

 1

n2

n−1∑
j=0

(
g(Z̄n

j+1)−
∫
g(y)νnj (dy)

)2


≤ 4‖h‖2

ε2
· 1

n2
· 4‖g‖2 · n =

16‖h‖2‖g‖2

nε2
.

This implies that
∫
S fd(ν̃

n
1 ⊗ λ)−

∫
S fd(ν̃

n
2 ⊗ λ) converges to zero in probability, so

that ([4, Theorem A.3.7])∫
S
fd(ν̃n1 ⊗ λ)−

∫
S
fd(ν̃n2 ⊗ λ)

D−→ 0.

Given the convergence in distribution of ν̃n1 ⊗ λ and ν̃n2 ⊗ λ to ν1 ⊗ λ and ν2 ⊗ λ

respectively, we can appply the Skorohod Representation Theorem to get w.p.1

lim
n→∞

∫
S
fd(ν̃n1 ⊗ λ) =

∫
S
fd(ν̃1 ⊗ λ)

and

lim
n→∞

∫
S
fd(ν̃n2 ⊗ λ) =

∫
S
fd(ν̃2 ⊗ λ).

Therefore w.p.1 ∫
S
fd(ν̃1 ⊗ λ) =

∫
S
fd(ν̃2 ⊗ λ). (.39)

Theorem A.3.14 in [4] implies that we can extend the equality in (.39) from f of the

form f(x, t) = g(x)h(t) to all f : S × [0, 1] 7→ IR that is bounded and continuous.

Since the class of bounded continous functions is measure-determing, we have that

ν̃1 ⊗ λ = ν̃2 ⊗ λ, as we wanted to show.
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d) Now we show that for each t ∈ [0, 1], and Borel subset B1 of S we have

ν̃1(B1|t) =
∫
S
ν̃2(B1|ζ, t)ν̃1(dζ|t). (.40)

Let Ub(S) denote the space of bounded, uniformly continuous functions mapping S

into IR. Since S is Polish, there exists an equivalent metric m under which Ub(S,m)

is separable with respect to the uniform metric. Let E be a countable dense subset

of Ub(S,m), and let g be any function in E . For each s ∈ [0, 1] let Ei ⊂ [0, 1] be a

sequence of sets which shrinks nicely to s, and define

f(t, x)
.
= g(x) · 1

λ(Ei)
IEi

(t).

Since ν̃1 ⊗ λ = ν̃2 ⊗ λ,

1

λ(Ei)

∫
Ei

∫
S
g(y)ν̃1(dy|t)λ(dt) =

1

λ(Ei)

∫
Ei

∫
S

∫
S
g(y)ν̃2(dy|ζ, t)ν̃1(dζ|t)λ(dt).

Define h1(t)
.
=

∫
S g(y)ν̃1(dy|t) and h2(t)

.
=

∫
S

∫
S g(y)ν̃2(dy|ζ, t)ν̃1(dζ|t). Then we

have

|h1(s)− h2(s)|

≤
∣∣∣∣∣ 1

λ(Ei)

∫
Ei

h1(t)dt− h1(s)

∣∣∣∣∣ +

∣∣∣∣∣ 1

λ(Ei)

∫
Ei

h2(t)dt− h2(s)

∣∣∣∣∣
≤ 1

λ(Ei)

∫
Ei

|h1(t)− h1(s)| dt+
1

λ(Ei)

∫
Ei

|h2(t)− h2(s)| dt,

which tends to 0 as n→∞ for almost all s ∈ [0, 1] (see Theorem C.13 in [2]). This

implies that h1(s) = h2(s) a.s., that is,

∫
S
g(y)ν̃1(dy|t) =

∫
S

∫
S
g(y)ν̃2(dy|ζ, t)ν̃1(dζ|t) a.s.

This in turn implies that there exists a set Bg ∈ B([0, 1]) with λ(Bg) = 0 and such

that
∫
S g(y)ν̃1(dy|t) =

∫
S

∫
S g(y)ν̃2(dy|ζ, t)ν̃1(dζ|t) for all t /∈ Bg. Now define the set

B as

B
.
= ∪g∈EBg.
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Then λ(B) = 0 and for all t /∈ B and g ∈ E we have∫
g(y)ν̃1(dy|t) =

∫
S

∫
S
g(y)ν̃2(dy|ζ, t)ν̃1(dζ|t).

This equality, valid for g ∈ E , is extended to g ∈ Ub(S,m), which implies that

ν̃1(dy|t) = ν̃2(dy|t) for all t /∈ B. Finally, redefining in an obvious way ν̃1 and ν̃2 for

t ∈ B, we get .40.
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