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Abstract. We discuss some algebraic properties of the so-called discrete KP hi-

erarchy, an integrable system defined on a space of infinite matrices. We give an

algebraic proof of the complete integrability of the hierarchy, which we achieve by

means of a factorization result for infinite matrices, that extends a result of Adler

and Van Moerbeke for the case of (semi-infinite) moment matrices, and that we call

a Borel decomposition.

Introduction. Discrete analogs of the KP hierarchy were recently introduced and
studied by M. Adler and P. Van Moerbeke, [AVM1], [AVM2]. Here, in the standard
Lax operator the role of ∂x is taken by the so-called shift matrix Λ, and the coef-
ficients are taken to be infinite diagonal matrices, and in these works, Adler and
Van Moerbeke obtained many interesting results, for instance in relation with the
representation theory of the τ - functions of the classical KP-hierarchy.

Nevertheless, the explicit use made in those works of some quite specific analytic
techniques—such as the theory of positive measures and orthogonal polynomials
associated to the measure and some moment matrix—, does not appear to be the
best way to develop a general study of the space of solutions of these hierarchies.

On the other hand, the algebraic approach due to M. Mulase ([M]) for the study
of the KP equations—which we follow here—, seems to us ideal for this task, and
as is well known, the key point in Mulase’s theory is a factorization theorem, akin
to the celebrated Birkhoff decomposition of loop groups. Thus, in this paper we
state and prove some results on a type of

factorization of matrices, which by analogy to the result of Adler and Van Mo-
erbeke for moment matrices (loc. cit.), we call a Borel decompostion; we then show
that Mulase’s results remain valid almost verbatim in this context. In particu-
lar, this approach allows us to consider on an almost equal footing the cases of
semi-infinite and bi-infinite matrices, the discussion of the latter case being,

to the best of our knowledge, new to the literature on matrix integrable
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systems. (We should add that we are aware of a recent paper by M. Adler
([A]), where a factorization of the semi-infinite moment matrix is discussed, but
unfortunately have not had access to it.)

Furthermore, we believe that this approach is the right one to relate the dis-
crete KP hierarchy to harmonic maps, as is done for instance in [G] for the finite
dimensional case, and we hope to do this in a forthcoming paper.

A brief description of the paper is as follows: In section I we discuss some of
the algebraic properties of the space of infinite dimensional matrices, and prove
the factorization results. In section II, we consider the discrete KP hierarchy, and
study its integrability in the sense of Frobenius.

1. The structure of the space of infinite matrices.

Let D∞−∞ and D∞ denote the sets of all bi-infinite and semi-infinite matrices,

that is elements of RZ×Z and RN×N respectively. For the remainder of this paper, we
will use the common notation D for both, D∞−∞ and D∞, whenever the arguments
apply to both of these spaces, pointing out the specific instances where one has to
distinguish between the two cases

By Λ we denote the shift matrix , having 1’s in the first upper diagonal and 0’s
elsewhere, and consider its transpose ΛT , and let I be the identity matrix in D.
Now if A, B are any two matrices in D having only one non-vanishing diagonal, it is
clear that the usual formula for the product of matrices makes sense for this kind of
matrices, so AB is well defined. Therefore, we can consider the iterates of the shift
matrix and its transpose, Λn and ΛT

n
, and observe that, for a diagonal matrix A,

the product AΛn (resp., AΛT
n
) is a matrix having 0’s everywhere, except possibly

in the n-th upper (resp., lower) diagonal, where it has the same entries as A (which
explains the name “shift matrix”). Therefore, we see that D can be identified with
the set of formal bi-infinite series

(1) A = A0 +
∞∑

1

AnΛn +
∞∑

1

BnΛT
n
,

and in fact that D has the structure of a left-module over the ring of diagonal ma-
trices, “freely” generated by the powers of Λ and ΛT . Furthermore, from expression
(1) we have an obvious direct sum decomposition of D given by

(2) D = D− ⊕D0 ⊕D+

where D0 are the (principal) diagonal matrices, and D+ (resp. D−) the strictly
upper (resp. lower) triangular matrices.

Remark. We will sometimes refer to the elements of D as operators , since they
obviously can act on infinite row vectors, although we will not actually use this
property in this work.

An important difference between D∞−∞ and D∞ is that for the former ΛT = Λ−1,

while for the latter ΛT is only a left inverse;
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that is ΛTΛ = I, but ΛΛT is the matrix



0 0 0 . . .
0 1 0 . . .
0 0 1
...

...
. . .


 .

On

the other hand, we have the following easily verified commutation properties
AΛ = ΛA(1), where A(1) is given as follows:

For D∞−∞, if

A =




. . .
...

. . . a−1 0 0 . . .

. . . 0 a0 0 . . .

. . . 0 0 a1 . . .
...

. . .




then A(1) =




. . .
...

. . . a−2 0 0 . . .

. . . 0 a−1 0 . . .

. . . 0 0 a0 . . .
...

. . .




;

whereas for D∞, if

A =




a1 0 0 . . .
0 a2 0 . . .
0 0 a3 . . .
...

. . .


 then A(1) =




∗ 0 0 . . .
0 a1 0 . . .
0 0 a2 . . .
...

. . .


 ,

where ∗ here means that we can put an arbitrary number. Similarly we have
AΛT = ΛTA(−1); and more generally, to any diagonal matrix A we can define
associated matrices A(n), for n ∈ Z, where A(0) = A, and for n > 0, AΛn = ΛnA(n),
AΛT

n
= ΛTA(−n).

The product of two infinite matrices is certainly a much more delicate thing to
define, because in general it will involve divergent series. Several options have been
considered in the literature, such as Gl∞ (infinite matrices with “finite support”),

and Ĝl∞ (infinite band matrices), but none of these is general enough for our
purposes, because we want to consider some matrices having an infinite number of
(possibly) non-zero diagonals.

On the other hand, it is certainly possible to multiply such matrices: In fact,
it is easy to see that the submodules D0 ⊕ D− and D0 ⊕ D+ are closed under
multiplication, because the products involved here are all finite. Moreover, we have
the

following easy technical lemma:

Lemma 1. The inverse of an operator M ∈ D0⊕D− (resp., D0⊕D+), if it exists,
is also an

operator in D0 ⊕D− (resp., D0 ⊕D+)

Furthermore, M is invertible if and only if M0 is invertible, and then M−1 =
M−1

0 + M̂ , with M̂ strictly triangular.

Proof: The proof is in fact constructive: if one assumes this form for the inverse,
then one can write a system of algebraic equations that can be solved recursively,
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to explicitly construct an inverse; then use the uniqueness of inverses. Finally, the
second assertion is included in these computations.

Therefore, the matrices in D0 ⊕ D− (resp., D0 ⊕ D+) satisfying the condition
that their principal diagonal

M0 is invertible, can be regarded as infinite dimensional Lie groups. It is also
clear that their Lie algebras can be taken to be the corresponding full submodules,
D0 ⊕D− and D0 ⊕D+.

Still more generally, if P and M are matrices such that their projections on D+

(resp. D−) are finite band matrices, then the product is well defined and of the
same type. Finally, we can single out

another sub-class of D∞, for which the product also exists; namely, products of
the form (M− + M0 + M+)(P− + P0 + P+) are here well defined, as long as M+

and P− are finite band matrices.

The problem, of course, arises when we try to multiply an arbitrary matrix
M− ∈ D− with a matrix M+ ∈ D+ or viceversa. Nevertheless, for us it is essential
to consider such products because, in fact, we shall concentrate our attention on a
special sub-class of D, of matrices satisfying the condition

M = H +H−H
−1
0 H+; for some invertible H ∈ D.

Let us denote this set M, and remark first of all that the key property of these
matrices—as an easy computation shows—is that every such M admits a decom-
position of the form

M = (I +H−H
−1
0 )(H0 +H+)

which we call a Borel decomposition or factorization of M .

Remark: Observe that we have a (highly non-linear) operator of “Borel sym-
metrization”, sending a matrix H to the Borel decomposable

matrix P = H +H−H
−1
0 H+. The problem of deciding what are the “right type

of matrices” can be restated as the problem of characterizing its domain and range.

Actually, to obtain meaningful results about integrable systems, we will

still need to impose several additional conditions on the matrices, and these
shall be described later on; but let us next describe some cases where the Borel
decomposition is valid, starting with the following basic result:

Proposition 1. The Borel decomposition is unique.

Proof. Assume that M = (I + H−H
−1
0 )(H0 + H+) = (I + K−K

−1
0 )(K0 + K+), it

follows that

(I +K−K
−1
0 )−1(I +H−H

−1
0 ) = (K0 +K+)(H0 +H+)−1

Since, by the lemma, the L.H.S is lower triangular and the R.H.S is upper triangular,
both sides are diagonal; but the diagonal in the L.H.S is I. Thus the R.H.S. gives
H0 = K0, H+ = K+, and therefore H = K.

Now, for semi-infinite matrices we have a good description of the matrices ad-
mitting a Borel decomposition:
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Proposition 2. Let P ∈ D∞; let Pi denote the principal i× i submatrix of P , i.e.,
the upper left corner i × i submatrix, and |Pi| its determinant. Then P admits a
Borel decomposition if and only if |Pi| 6= 0 for all i ≥ 0. Furthermore, H0 then has
diagonal elements hii = |Pi|/|Pi−1|, (by convention |P−1| = 1).

Proof: Indeed, if a 2 × 2-matrix P =

(
a00 a01

a10 a11

)
admits the decompositon P =

H +H−H
−1
0 H+, then by straightforward calculation one shows that

H− =

(
0 0
a10 0

)
; H+ =

(
0 a01

0 0

)

and

H0 =

(
a00 0
0 detP/a00

)
=

(
|P0| 0

0 |P1|/|P0|

)

as desired. Now we can use induction to solve the question for finite matrices.
The key point of the proof is the obvious observation that the triangular matrices
H−H

−1
0 , and H+ have only 0’s in their last column and row respectivey. So assume

that the result holds for n × n matrices, and that for an (n + 1) × (n + 1) matrix
P = H +H−H

−1
0 H+ we have the decomposition; note that in particular P = Pn is

invertible. Now, for the reciprocal implication, first observe that the decomposition
of P gives a Borel decomposition of its principal submatrices, so in particular
Pn−1 = G + G−G

−1
0 G+; using the observation above this immediately gives that

Hn1 = Pn1, H1n = P1n and Hjj = Gjj = |Pjj |/|P(j−1)(j−1)|; 0 ≤ j < n, and
therefore

Pnj = HnjH
−1
jj ; Pjn = HjnH

−1
jj ,

and from this we get

Pnn = Hnn +
n∑

j=1

HnjH
−1
jj Hjn.

Note that only the reciprocals of the diagonal elements appear, so the above equa-
tions are well defined and, therefore, all the new entries in the matrix H giving
the decomposition of P are computed in terms of known quantities from P and
of the decomposition of Pn. This proves the first and the last assertions for finite
matrices.

To prove the statement about the diagonal elements of H0, simply observe that
from P = (I +H−H

−1
0 )(H0 +H+), using that both factors are triangular and

the first one has 1’s in the diagonal, we have that

|P | = Πn
j=0Hjj = Πn

j=0|Pj |/|Pj−1| = Hnn/|Pn−1|,

since this is a “telescopic” product.

Finally, it is now clear that, “passing to the limit as n tends to infinity”—and
using again the uniqueness of the Borel decomposition—, this argument gives a
condition for the factorization of semi-infinite matrices H.

For the case of bi-infinite matrices the situation is more complicated; neverthe-
less, we can state the following result:
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Proposition 3. Assume that P is a bi-infinite matrix such that pij = 0 whenever

i < 0 ≤ j, and such that the semi-infinite submatrix P̂ consisting of those pij, with
i, j ≥ 0 satisfy the above condition for Borel decomposition; then P itself admits a
factorization.

Also, if P admits a diagonal block representation P =

(
A 0
0 D

)
, where A and

D admit a Borel decomposition, then P admits a Borel decomposition

Proof: For the first assertion, let

P =

(
A 0
C D

)

where by hypothesis we are assuming that D is a semi-infinite matrix admitting a
Borel decomposition, and A = A− + A0. Then, if H +H−H

−1
0 H+ gives the Borel

decomposition of D, the Borel decomposition of P is given by the matrix H̃, where

H̃− =

(
A− 0
C H−

)
; H̃0 =

(
A0 0
0 H0

)
; H̃+ =

(
0 0
0 H+

)
.

The second assertion is clear.

Remark: It is also immediate that the transpose of a matrix P having a Borel
decomposition, P = H +H−H

−1
0 H+, also has a Borel decomposition, since

P t = Ht +Ht
+H
−1
0 Ht

− = G+G−G
−1
0 G+.

Example 1. (Toda type lattices.) The tridiagonal symmetric matrices of the
form M = ΛTB +A+BΛ, are related to the celebrated Toda lattice, describing a
Hamiltonian system of (an infinite number of)

particles in a line, each having interactions only with its immediate neighbors.
Now, according to the previous results, we see that not every

such matrix admits a Borel decomposition. However, if we start with a pair of
diagonal matrices (Q0, Q1), Q0 invertible, we can easily construct a Toda system
admitting a Borel decomposition, by simply setting H− = ΛTQ1, H+ = Q1Λ,
H0 = Q0, and M = H +H−H

−1
0 H+.

More generally, we say that a Toda datum of order n is an (n+1)-tuple of diagonal
matrices (Q0, Q1, . . . , Qn), with Q0 invertible. A Toda datum of order n allows us
to construct a symmetric band matrix (a so-called Jacobi matrix ), with 2n+1 bands

H, where H− =
∑n
k=1 ΛT

k
Qk, H0 = Q0, and H+ =

∑n
k=1QkΛk, and therefore

another Jacobi matrix M = H + H−H
−1
0 H+. Observe that M has also 2n + 1

bands, since H−H
−1
0 H+ involves only products of the form ΛT

i
Λj , 0 ≤ i, j ≤ n.

We can now describe the space of infinite matrices we are interested in, which
we shall denote M∗: First, let us denote by G the “relevant group” of matrices of
M (ideally this should be

the maximal subset of M closed under multiplication), then we will take our
matrices to belong to G. Moreover, we actually want to think of the coefficients
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as formal functions on an infinite set of time parameters, t = (t1, t2, . . . ); so, more
precisely, we will consider M∗ to be a trivial G-bundle over the space of time
parameters (which, leaving topological considerations aside and to fix ideas, we
will take to be R((t)), the space of formal series in the time parameters), and the
objects of interest will be sections of this bundle. For reasons that will be made
clear later on, we add the final condition that M≥(0) = M0(0) +M+(0) = I.

2. Frobenius integrability of matrix systems.

The point in having the above factorization is that we can link the matrices in
M to integrable systems, as we now show.

So, let us fix a lower triangular matrix (which will play the role of a Lax operator)

(3) L = Λ +
∑

k≥0

AkΛT
k

As mentioned before, we think of the coefficients as formal functions (indeed, if
necessary, formal power series) on an infinite set of time parameters, t = (t1, t2, . . . ),
and consider the family of commuting “flows” ∂/∂tk. Then we define the discrete
KP hierarchy as

(4)
∂L

∂tn
= [Ln≥, L] ; n > 0

where as before, for an infinite matrix T in D, T≥ denotes its projection on the
upper triangular part, i.e., on D0 ⊕D+.

We now attempt to describe this as a “Frobenius integrability” problem.

Our first step will be to introduce the (formal) connection 1-form

(5) Z =
∑

n≥1

Ln≥dtn.

The reason for the terminology is the following: as we mentioned, our spaceM∗ of
infinite matrices is a trivial G-bundle over the space of time parameters, (where G
is the appropriate infinite dimensional group of matrices, as mentioned above);

then, since we can formally think of D+ (or D−) as a Lie subalgebra of the Lie
algebra of G, we see that the D+-valued 1-form Z is in fact a connection in this
bundle; furthermore, what we will now do is show that the discrete KP hierarchy
(4) is equivalent to the flatness of this connection.

To see this, let us first show that we do have a “Zakharov-Shabat formalism” in
this situation too.

Proposition 4. If L satisfies the discrete KP equation (4), then the connection
1-form satisfies the Zakharov-Shabat equation

(6) dZ =
1

2
[Z,Z]

Proof: Observe that (4) implies that for any power of the operator L we have

∂Ln

∂tm
=

n∑

i=1

Li−1 ∂L

∂tm
Ln−k = [Lm≥ , L

n].
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Therefore,

(6’)
∂Ln

∂tm
− ∂Lm

∂tn
= [Lm≥ , L

n] + [Ln, Lm≥ ]

Now,

[Lm≥ , L
n] + [Ln, Lm≥ ] =[Lm, Ln] + [Lm≥ , L

n
≥]− [Ln−, L

m
− ]

=[Lm≥ , L
n
≥]− [Ln−, L

m
− ]

Thus, upon taking the upper triangular parts of both sides of (6’), we get

∂Ln≥
∂tm

−
∂Lm≥
∂tn

= [Lm≥ , L
n
≥],

as desired. Now, recall that the Lie bracket of matrix valued 1-forms is defined using
the commutator of the coefficients, and the exterior product of the forms; namely,
if A⊗ α,B ⊗ β, are two decomposable matrix valued forms, then their Lie bracket
is [A,B]⊗ (α∧ β) (to avoid unnecessary cluttering of the notation we are omitting
the tensor products in our formulas); therefore, using the connection Z, this system
of equations can be nicely summarized into the concise single equation (6), which
precisely says that Z is a flat connection on M∗. These equivalent presentations
are called the Zakharov-Shabat or “zero-curvature” equations of the system.

Thus, solutions of the discrete KP hierarchy imply solutions of the Zakharov-
Shabat system; to get the converse implication, we shall show next the existence
of a Sato-Wilson dressing operator ; that is an invertible matrix S ∈ G such that
S = I + S−, L = SΛS−1, and such that (4) is equivalent to the system

(7)
∂S

∂tn
= Ln−S.

Now, existence of dressing operators follows in the usual way, from recursively
solving a system of equations for the dressing operator. The point is that not every
dressing operator will solve (7). Nevertheless the ambiguity in determining dressing
operators clearly lies in the group of

operators with constant coefficients (i.e., those matrices commuting with Λ), and
this allows us to find Sato-Wilson operators.

Proposition 5. There exist Sato-Wilson operators.

Proof: Let T be any dressing operator for L, where L is a solution of (4), fix some
n ∈ N, and consider the gauge transform of Ln−,

P = −T−1Ln−T − T−1 ∂T

∂tn
.

Then P commutes with Λ, because

[P,Λ] =T−1[TPT−1, TΛT−1]T

=T−1[−Ln− −
∂T

∂tn
T−1, L]T

=T−1

(
∂L

∂tn
− [

∂T

∂tn
T−1, L]

)
T = 0
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Now, P =
∑
k>0 pkΛT

k
can always be written as ∂C/∂tnC

−1 for some C =

I +
∑
k>0 ckΛT

k
, since this is equivalent to solving the system of O.D.E.’s

pk +
∑

i+j=k; i,j>0

pic
(−i)
j =

∂ck
∂tn

,

which is clearly recursively solvable (observe that we can also think of

Pdtn as a flat connection on a 1-dimensional bundle). Moreover, since

[P,Λ] = 0 ⇐⇒ pk = p
(−1)
k , which means that each diagonal pk is a

scalar multiple of the identity I, it follows that we can choose C so that [C,Λ] = 0;
for instance, we have p1 = ∂c1/∂tn, so we

can choose c1 = c
(−1)
1 , and then proceed recursively.

Thus S = TC is a dressing operator, and is in fact Sato-Wilson, because, by the
definition of P , we have

∂S

∂tn
=
∂T

∂tn
C + T

∂C

∂tn
= −TPC − Ln−TC + TPC = −Ln−S

as desired.

Again, the system of equations (7) can be recast into the single equation

(8) dS = ZcS

where Zc = −∑n≥1 L
n
−dtn is the so-called conjugate (or complementary) connec-

tion.

Next, consider the “trivial” connection: Ω =
∑
n≥1 Λndtn; then we have

Proposition 6. Let S be a Sato-Wilson operator and Ω as before; then dΩ =
1
2 [Ω,Ω], and

SΩS−1 + dS S−1 = Z

Proof: The first assertion is clear, since Ω has only constant coefficients, so both
sides are zero. For the second simply use the definition of Ω, and the fact that
SΛnS−1 = Ln.

Observe that the proposition says that Ω is a flat connection, and Z is a gauge
transform of this flat connection. From the theory of connections we know that
this will imply that Z is also flat (which is just the Zakharov-Shabat equation),
and hence

that there will exist a matrix Y such that Z = dY Y −1. However, the proof is
quite simple, so we give it.

Proposition 7. If Z satisfies the Zakharov-Shabat equation, then there exists a
matrix Y such that

(8’) Z = dY Y −1



          

10 R. FELIPE AND F. ONGAY

Proof: First we prove that this holds for Ω; namely Ω = dU U−1. But, if we let
U = I +

∑
i>0 uiΛ

i, this is equivalent to solving for each n the following system of
equations

Λn +
∑

k>0

u(−n)Λn+i =
∑

0<i

∂ui
∂tn

Λi,

which is clearly solvable (for instance, un =
∑

1≤i≤n tiI

is a solution).

Now take a Sato-Wilson operator S and let Y = SU ; then Y −1 = U−1S−1, and
dY = dS U + U dS, so that

dY Y −1 = dS S−1 + SdU U−1S−1 = dS S−1 + SΩS−1 = Z

By the previous proposition.

Indeed, the first part of the proposition may be proved in a different way, by not-
ing that, since Ω is constant, we have the formal solution U(t) = exp (

∑∞
n=1 tnΛn).

The reader can

check that both computations give the same answer.

The main result on the integrability of the discrete KP system may now be stated
as follows:

Proposition 8. Each solution of the discrete KP system (4) yields a solution of
the equation

(9) dU = ΩU

where U is a section of M∗, and conversely. In this sense, the two systems are
equivalent.

Proof: If U = S−1Y is the Borel decomposition of a solution U of (9), define
L = SΛS−1, Z = dY Y −1, and Zc = dS S−1. Then

SΩS−1 = S dU U−1S−1 = S d(S−1Y )Y −1SS−1

= S dS−1 + dY Y −1 = dY Y −1 − dS S−1 = Z − Zc

Since by construction SΩS−1 =
∑
n L

ndtn, and the above formula gives its decom-
position into upper triangular and strictly lower

triangular parts, we conclude that Zc = −∑n L
n
− dtn, so S is a

Sato-Wilson operator, and L is then a solution of the discrete KP system.

For the reciprocal, given that L is a solution of (4), with associated

flat connection Z = dY Y −1, let S be a Sato-Wilson operator and define U =
S−1Y , then

dU = dS−1 Y + S−1 dY = −S−1 dS S−1Y + S−1 dY

= S−1(Z − dS S−1)Y = S−1(SΩS−1)Y

= ΩU
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where the next to last equality comes from proposition 6.

Remark. From what has been said, we have the existence and uniqueness result
of solutions to the initial value problem for (9): this is in a sense just the content
of proposition 7, since every solution of dU = ΩU is of the form

Û(t) = exp

( ∞∑

n=1

tnΛn

)
U(0) = eΣ(t)U0,

where U0 = U(0) is the initial condition. Furthermore, observe that this actually
holds for solutions that are not

necessarily of the form I + U+ since, in the general case, if we let

U =
∑

k>0

ukΛk + u0 +
∑

k>0

u−kΛT
k
,

equation (9) is equivalent to saying that the system of equations

∂un
∂tm

= Λnun−mΛT
n

has a solution for all m,n. This is a problem of solving a system of ordinary
differential equations, and the system is consistent, since this is the same as saying
that Ω is flat.

Now, the point is that this solves in fact the initial value for the discrete KP
system (4) as follows: Clearly, if U(t) is a decomposable solution to (9), then
writing U = S−1Y as in the proposition we see that, since Y (0) = I, so that
U(0) = S−1(0), L = SΛS−1 satisfies (4) and its value at 0 is L0 = S0ΛS−1

0 , where
S0 = S(0). But conversely, if L(0) = L0 = S0ΛS−1

0 , then we can assume that
S0 = S(0) where S is Sato-Wilson, because changing the dressing operator will not
change the initial value L0. Therefore, writing Z = dY Y −1, Zc = dS S−1, then the
proposition tells us that U = S−1Y is a solution of (9), and since eΣ(0) = I = Y (0),
we get that U(0) = S−1

0 as desired. (And it is exactly at this point that

the condition M≥(0) = I for the sections of M∗ is needed.)

Example 2. Let us use our results to explicitly exhibit a matrix integrable system:

As initial data we take the very simple matrix:

S−1
0 =




1 0 0 0 . . .
a 1 0 0 . . .
c b 1 0 . . .
0 0 0 1 . . .
...

...
...

...
. . .




and the solution to (9) is then

U(t) = exp


∑

n≥0

tnΛn


S−1

0 .
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A direct computation shows that

U(t) =




1 + at1 + c
(
t21
2 + t2

)
t1 + b

(
t21
2 + t2

) (
t21
2 + t2

)
. . . . . .

a+ ct1 1 + bt1 t1

(
t21
2 + t2

)
. . .

c b 1 t1 . . .
0 0 0 1 . . .
...

...
...

...
. . .




We now try to write U(t) = S−1Y , where S−1 is a Borel decomposable lower
triangular matrix. It is not hard to see that,

with the special choice of initial conditions made, everything is determined by
the 3× 3 upper left corner matrix, which to avoid unnecessary extra notations we
still denote by U :

U =




1 + at1 + c
(
t21
2 + t2

)
t1 + b

(
t21
2 + t2

) (
t21
2 + t2

)

a+ ct1 1 + bt1 t1
c b 1


 ;

and so, in what follows, we will just work with 3× 3 matrices, corresponding to the
upper left corners of the semi-infinite matrices of

the original system. (Indeed, the remaining non-zero terms of S−1 will be just
1’s along the main diagonal.) We also observe that U is in fact a Wronskian matrix
with respect to the variable t1, and we relabel it as



α β

(
t21
2 + t2

)

γ δ t1
c d 1


 ,

to simplify the writing.

Thus, according to proposition 3, we can now write S−1 = I +H−H
−1
0 , where,

in fact, after a short computation we can

write the explicit expressions

H− =




0 0 0
γ 0 0
c bα−cβ

α 0


 ; H0 =



α 0 0
0 ∆

α 0

0 0 |U |
∆


 ;

as before | · | denotes the determinant, and we have written ∆ = αδ− βγ. Observe
that the diagonal elements of

H−1
0 are rational functions in the variables t1, t2 so we have singularities of the

system at the zeros of the denominators. Moreover, writing

S−1 =




1 0 0
A 1 0
C B 1


 ,
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where we have set

A =
γ

α
; B =

bα− cβ
αδ − βγ ; C =

c

α
,

a direct computation then gives

S =




1 0 0
−A 1 0

AB − C −B 1


 ,

and so we get as a solution

(10) L = SΛS−1 =




A 1 0
−A2 + C −A+B 1

(A2 − C)B −AC (AB − C)−B2 −B


 .

Reverting to semi-infinite matrices, the solution of (4) we get is

(11) L =




A 1 0 0 . . .
−A2 + C −A+B 1 0 . . .

(A2 − C)B −AC (AB − C)−B2 −B 1 . . .
0 0 0 0 . . .
...

...
...

...
. . .



.

Remarks. Although to simplify the explicit computations we have chosen a system
that reduces to a finite dimensional problem, we would like to stress the fact that
the method applies to truly infinite dimensional systems.

On the other hand, it is also an instructive exercise to verify directly

that the matrix obtained in (10) indeed solves (4). This is more easily done by
using the fact that, by construction, S is a Sato-Wilson operator, so it satisfies (7),
namely

∂S

∂tn
= −Ln−S.

In our example this leads to the equations

∂S

∂t1
= −L−S ;

∂S

∂t2
= −L2

−S,

which are equivalent to two systems of three equations. For instance, the former is
equivalent to

∂A

∂t1
= −A2 + C ;

∂AB − C
∂t1

= B(AB − C) ;
∂B

∂t1
= (AB − C)−B2;

then, again for instance, to verify the first or the last of these equations, one observes
that A and B are logarithmic derivatives,

A =
∂α
∂t1

α
; B =

∂∆
∂t1

∆
,
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which makes the assertions easy to deal with; the remaining equations are simi-
larly handled, and the reader can check that in fact L3 = 0, which is not entirely
unexpected since, in this example, there is no non-trivial dependence upon tn for
n > 2.

Let us finally show that L, given by (3), satisfies a string type equation. For
this, we fix a Sato-Wilson operator S of L, and consider the family of flows

Ãn =
∂

∂tn
− Λn = ∂n − Λn

together with their dressed counterparts,

An = SÃnS
−1,

as well as the operator

M̃ = ε+
∑

k≥1

ktkΛk−1

(where ε = diag(1, 2, 3, . . . )ΛT if we are in D∞, or ε = diag(. . . ,−1, 0, 1, 2, . . . )ΛT if

we are in D∞−∞), and also its gauge transform M = SM̃S−1. Observe that [Λ, ε] = I
is immediate from the definition of ε.

We have:

Proposition 9. Denote Bn = Ln≥, then An = ∂n − Bn. As a consequence,

[An, L] = 0 = [An,M ], and [L,M ] = I.

(It is the last equation that is sometimes called a string equation.)

Proof: For the first assertion, observe that

S ◦ ∂n ◦ S−1 = S(∂nS
−1) + ∂n

(for the sake of clarity, we have made here explicit that on the left hand side we
have the composition of operators, whereas on the right hand side the operator ∂n
acts on the coefficients of S−1). Therefore, since S is Sato-Wilson,

An =S(∂nS
−1) + ∂n − Ln = −(∂S)S−1 + ∂n − Ln

=Ln− + ∂n − Ln = ∂n −Bn

It follows immediately that

[An, L] = [SÃnS
−1, SΛS−1] = S[Ãn,Λ]S−1 = 0

thus proving the first of the last equalities stated.

Since [Λ, ε] = I, by induction we then have Λnε = nΛn−1 + εΛn, so that [Λn, ε] =
nΛn−1. Obviously we also have

[∂n, ε] = 0 = [Λn,
∑

k≥1

ktkΛk−1];
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therefore,

[Ãn, M̃ ] =− [Λn, ε] + [∂n,
∑

k≥1

ktkΛk−1]

=− nΛn−1 +
∑

k≥1

ktkΛk−1∂n + nΛn−1 −
∑

k≥1

ktkΛk−1∂n = 0.

To end the proof it now suffices to notice that

[L,M ] = S[Λ, M̃ ]S−1 = S[Λ, ε]S−1 = I.
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