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Abstract

The size-and-shape cone, shape disk and configuration densities are studied under
elliptically contoured distributions in the central case. We prove that the shape disk and
configuration densities are invariant on the family of elliptical laws.

1. INTRODUCTION

The elliptically contoured distribution of a random matrix has been studied by various
authors, including Fang and Zhang [4] and Gupta and Varga [7]. From the definition of Gupta
and Varga [7, p. 12], X : N × K has a matrix variate elliptically contoured distribution if
its characteristic function takes the form φX (T ) = etr(iTµt)ψ(tr(T tΣTΘ)) with T : N × K,
µ : N ×K, Σ : N ×N , Θ : K ×K, Σ ≥ 0, Θ ≥ 0 and ψ : [0,∞)→ IR. If X has a density, this
is given by:

fX (X) = |Σ|−K/2|Θ|−N/2h(tr((X − µ)tΣ−1(X − µ)Θ−1)),
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where h and ψ determine each other for specified N and K. Such a distribution is termed
X ∼ EN×K(µ,Σ,Θ, ψ) or X ∼ EN×K(µ,Σ,Θ, h), respectively.

Assuming full rank X, we wish to study the distribution of the singular values l1 ≥ l2 ≥
· · · ≥ ln ≥ 0, n = min(N,K) and that of the normalized singular values l∗i = li/r, r =(

n∑
i

l2i

)1/2

of matrix X. In the context of shape theory, the corresponding densities are known

as size-and-shape cone density and shape disk density, respectively, Goodall and Mardia [6]
and Dı́az- Garćıa, Gutiérrez and Mardia [3].

In the case when X has a Gaussian (Normal)distribution, the density of the singular values
has been studied by various authors. Goodall and Mardia [6] have found the respective joint
densities of the li and l∗i for an arbitrary N and K = 2 in the nonsingular central case. Note
that the singular values of X are the positive square root of the latent roots of B = XX ′

(Wishart matrix). Thus, among many others, Srivastava and Khatri [9, p. 68] have found the
joint density of the latent roots of B when Σ = IN and Θ = IK in the central case. A more
general result has been obtained by Muirhead [8, p. 388] for an arbitrary Σ > 0 in the central
case. In the nonsingular noncentral case, Davis [2] has studied the density of the latent roots of
B using a generalization of zonal polynomials called invariant polynomials. For the case of the
noncentral Pseudo-Wishart matrix, Dı́az, Gutirrez and Mardia [3] have found the shape disk
density. When X has an elliptically contoured distribution, Fang and Zhang [4] and Anderson
and Fang [1] have found the joint density of the latent roots of B, when Σ = IN and Θ = IK
for the central case. Similarly, Teng et al. [10], by means of an expansion of Taylor series, have
found the distribution of latent roots of B, when Σ = In and Θ > 0 in the noncentral case.

Let us now assume that X represents a geometric figure comprising N points in IRK and
that Y : (N−1)×K is invariant to translations of the figure X. We then have Y = LX, where
L is a matrix of dimension (N − 1)×N with orthonormal rows, orthogonal to the vector 1 =
(1, 1, . . . , 1)′, Goodall and Mardia[6]. Then, assuming that Y ∼ E(N−1)×K(0, σ2IN−1, IK , h) we
show that the size-and-shape cone density may be found from the singular value decomposition
of matrix Y (see Theorem 2.1). From this density, we are able to determine the shape disk
density and show that this is invariant under the family of elliptically contoured distributions
presenting the above parameters; such is the case of the Gaussian distribution (see Theorem
2.2), we also give the expression for the shape disk density in the Gaussian setting forK = n = 2
(see Corollary 2), this result was given in an incorrect form by Goodal and Mardia [5] and [6];
in these same references the configuration density is stated incorrectly too. Therefore, Section
3 provides a complete proof of the configuration density, with the corresponding corrections
(see Theorem 3.1). Additionally we show that configuration density is invariant under the
family of elliptical distributions (see Theorem 3.2).

2. SIZE-AND-SHAPE CONE DENSITY AND SHAPE DISK DENSITY.

When N −1 ≤ K, the size-and-shape cone density and the shape disk density, in the Gaussian
case, are generally obtained from the the density of the Wishart B matrix or from the density
of T , the triangular matrix in the QR decomposition of Y , see Goodall and Mardia [5], [6].
When N − 1 > K, it is possible to find such densities as a function of that of T , the triangular
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matrix QR decomposition of the Y t matrix, see Goodall and Mardia [5]. Dı́az, Gutirrez and
Mardia [3] used the singular value decomposition of matrix X and found a general expression
for the density of B for any case. From the latter density, they were able to identify the shape
disk density. For the rank of Y = n = min(N − 1,K), it is possible to apply the singular value
decomposition of Y , thus obtaining:

Theorem 2.1. Let Y ∼ EN−1×K(0, σ2IN−1, IK , h). Then the size-and-shape cone density
is

2nπn((N−1)+K)/2
n∏
j=1

lN−1+K−2n
j

n∏
i<j

(l2i − l2j )

σK(N−1)Γn[1
2K]Γn[1

2(N − 1)]
h

 1
σ2

n∑
j=1

l2j

 . (1)

Proof. We know that

fY (Y ) =
1

σK(N−1)
h

(
1
σ2

trY Y t
)

Perform the factorization Y = H1LP
t
1, where L = diag(l1, · · · , ln), H1 ∈ Vn,N−1 the Stiefel

manifold, and P1 ∈ Vn,K . The Jacobian is (see Dı́az, Gutirrez and Mardia [3])

(dY ) = 2−n
n∏
j=1

lN−1+K−2n
j

n∏
i<j

(l2i − l2j )(dL) ∧ (H1dH
t
1) ∧ (P1dP

t
1).

Therefore, the joint density of H1, L and P1 is,

2−n
n∏
j=1

lN−1+K−2n
j

n∏
i<j

(l2i − l2j )

σK(N−1)
h

 1
σ2

n∑
j=1

l2j

 (dL) ∧ (H1dH
t
1) ∧ (PdP t).

Integrating with respect to H1 and P1 (see Muirhead [8]), we have∫
Vn,K

(P1dP
t
1) =

2nπnK/2

Γn[1
2K]

and
∫
Vn,N−1

(H1dH
t
1) =

2nπn(N−1)/2

Γn[1
2(N − 1)]

the result is obtained.
We present below the particular cases of two elliptically distributed families, the matrix

variate symmetric Kotz type and Pearson Type VII distributions, (see Gupta and Varga [pp.
75-76][7]).

Corollary 1. Let Y ∼ EN−1×K(0, σ2IN−1, IK , h). Then

1. if Y has a matrix variate symmetric Kotz type distribution with parameters q, p, s ∈ IR,
with p > 0, s > 0 and 2q +K(N − 1) > 0, the size-and-shape cone density is,

2nsp2q+K(N−1)−2)/2sΓ[1
2(K(N − 1))]π[n((N−1)+K)−K(N−1)]/2

n∏
j=1

lN−1+K−2n
j

n∏
i<j

(l2i − l2j )

σK(N−1)+2(q−1)Γn[1
2K]Γn[1

2(N − 1)]Γ[2q +K(N − 1)− 2)/2s]
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 n∑
j=1

l2j

q−1

exp

− r

σ2s

 n∑
j=1

l2j

s .
If we take q = s = 1 and p =

1
2

, we obtain the density in the Gaussian case.

2. if Y has a matrix variate symmetric Pearson type VII distribution with parameters q, p ∈

IR, p > 0 and q >
K(N − 1)

2
, the size-and-shape cone density is,

2nπ[n((N−1)+K)−K(N−1)]/2Γ[q]
n∏
j=1

lN−1+K−2n
j

n∏
i<j

(l2i − l2j )

pK(N−1)/2σK(N−1)Γn[1
2K]Γn[1

2(N − 1)]Γ[1
2(2q −K(N − 1))]

1 +
1
pσ2

n∑
j=1

l2j

−q .
In particular, when q = (K(N − 1) + p)/2 we obtain the density in the matrix variate
t-distribution case. And if p = 1, in the definition of matrix variate t-distribution, we
have the density in matrix variate Cauchy distribution.

Now for the shape disk density we have:

Theorem 2.2. Let Y ∼ EN−1×K(0, σ2IN−1, IK , h). Then the shape disk density is

2n−1Γ[1
2(n(N +K − 2n+ 2)− 2)]

n∏
j=1

l∗N+K−2n−1
j

n∏
i<j

(l∗2i − l∗2j )

π−[n(2n−3)/2+1]σK(N−1)−n(N+K−2n+2)+2Γn[1
2K]Γn[1

2(N − 1)]

(
n−2∏
m=1

sinn−m−1 ψm

)
(2)

where

l∗j =

 j−1∏
m=1

sinψm

 cosψj ; 1 ≤ j ≤ n− 2 , 0 ≤ ψt ≤ π , 1 ≤ t ≤ n− 2

l∗n−1 =

(
n−2∏
m=1

sinψm

)
cos θ ; 0 ≤ θ ≤ 2π

l∗n =

(
n−2∏
m=1

sinψm

)
sin θ .

Proof. Define l∗j = lj/r with r =

 n∑
j=1

l
1/2
j

2

and observe that
n∑
j=1

(l∗j )
2 = 1. Consider the

following transformation,

lj = r

 j−1∏
m=1

sinψm

 cosψj ; 1 ≤ j ≤ n− 2 , 0 ≤ ψt ≤ π , 1 ≤ t ≤ n− 2

ln−1 = r

(
n−2∏
m=1

sinψm

)
cos θ ; 0 ≤ θ ≤ 2π

ln = r

(
n−2∏
m=1

sinψm

)
sin θ ; 0 ≤ r <∞ .
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Where,

J [(l1, · · · , ln)→ (r, ψ1, · · · , ψn−2, θ)] = rn−1

(
n−2∏
m=1

sinn−m−1 ψm

)
.

Hence, the joint density of l∗j , j = 1, · · ·n is

2nπn((N−1)+K)/2
n∏
j=1

l∗N−1+K−2n
j

n∏
i<j

(l∗2i − l∗2j )

σK(N−1)Γn[1
2K]Γn[1

2(N − 1)]

(
n−2∏
m=1

sinn−m−1 ψm

)
∞∫
0

rn(N+K−2n+2)−3)h

(
r2

σ2

)
dr.

Now observe that
∞∫
0

rn(N+K−2n+2)−3h

(
r2

σ2

)
dr = σn(N+K−2n+2)−2

∞∫
0

sn(N+K−2n+2)−3h(s2)ds

=
σn(N+K−2n+2)−2Γ[1

2(n(N +K − 2n+ 2)− 2)]
2π(n(N+K−2n+2)−2)/2

and the result is as follows.

Corollary 2. Take n = K = 2 in the density (2). Then the shape disk density is given
by

2(N − 2)(sin 2θ)N−3 cos 2θ (3)

where l∗1 = cos θ, l∗2 = sin θ, 0 ≤ θ ≤ π/4.

Proof. The proof is immediate from Theorem 2.2. Simply by observing that when n =
K = 2, we have

1. πn(2n−3)/2+1 = π2.

2. Γn[1
2K] = π.

3. Γn[1
2(N − 1)] = (π(N − 3)!)/2N−3.

4. Γ[1
2(n(N +K − 2n+ 2)− 2)] = (N − 2)(N − 3)!

5. σK(N−1)−n(N+K−2n+2)+2 = 1

6.

(
n−2∏
m=1

sinn−m−1 ψm

)
= 1

7. l∗1 = cos θ and l∗2 = sin θ

8. and cos 2θ = cos2 θ − sin2 θ and sin θ cos θ = 1
2 sin 2θ.

5



Remark 2.1. Note that the distribution of the shape disk is independent of h, that is, the
distribution of normalized singular values of X is invariant on EN−1×K(0, σ2IN−1, IK , h), which
is a very interesting fact. Therefore, this distribution coincides with the Gaussian distribution
case.

3. CONFIGURATION DENSITIES

Consider the following definition, Goodall and Mardia [6]:

Definition 3.1. Two figures X : N ×K and X ′ : N ×K have the same configuration, or
affine shape, if for some (e,E)

X ′ = XE + 1Net

where e : N × 1 is the translation and E : K ×K is nonsingular.

The configuration coordinates are constructed in two steps summarized in the expression

LX = Y = UE

The matrix U : (N − 1)×K contains configuration coordinates of X. Our interest now lies in
finding the distribution of U t = (I|V t)t, where if, Y = (Y t

1 |Y t
2 )t is partitioned into Y1 : K ×K

(we assume that Y1 is nonsingular), and Y2 : q ×K, where q = N −K − 1 ≥ 1, then E = Y1

and V = Y2Y
−1

1 .

Theorem 3.1.With the Gaussian model and the above notation, the configuration density
is

2KΓK [(N − 1)/2]
πKq/2|I + V tV |(N−1)/2ΓK [K/2]

etr

{
Ω

2σ2
− µtµ

2σ2

}
1F1

(
−q

2
;
k

2
;− Ω

2σ2

)
where Ω = µtU(U tU)−1U tµ = µtY (Y tY )−1Y tµ and M = (N − 1)K, for all Y for which rank
Y1 = K. When q is a positive integer, the expression 1F1 is a polynomial with degree Kq/2 in
the latent roots of Ω.

Proof. We have

fY (Y ) =
1

(2π)M/2σM
etr
(
− 1

2σ2
(Y − µ)(Y − µ)t

)
=

1
(2π)M/2σM

etr
(
− 1

2σ2
Y Y t − 1

2σ2
µµt +

1
2σ2

µtY

)
.

Perform the substitution Y = UF
1
2H where H ∈ O(K) and (F

1
2 )2 > 0. The Jacobian is

(dY ) = |F |(q−1)/2(dV )(dF )(HdHt), from which the joint density of F , V and H is,

etr
(
− 1

2σ2
µµt

)
(2π)M/2σM

|F |(q−1)/2 etr
(
− 1

2σ2
UFU t

)
etr
(

1
2σ2

µtUF
1
2H

)
(dF )(dV )(HdHt)
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we now find that (see Muirhead [8, p. 262])∫
O(K)

etr
(

1
2σ2

µtUF
1
2H

)
(HdHt) =

2KπK
2/2

ΓK [K/2]0F1

(
1
2K;

1
4σ4

µtUFU tµ

)
.

Then the joint density of V and F is

σ−M etr
(
− 1

2σ2
µµt

)
2(M−2K)/2π(M−K2)/2ΓK [K/2]

|F |(q−1)/2 etr
(
− 1

2σ2
UFU t

)
0F1

(
1
2K;

1
4σ4

µtUFU tµ

)
(dF )(dV ).

Consider the following integral

I =
∫
F>0
|F |(q−1)/2 etr

(
− 1

2σ2
UFU t

)
0F1

(
1
2K;

1
4σ4

µtUFU tµ

)
(dF ).

Taking Z =
(

1
2σ2

U tU

)
, Y =

(
1

4σ4
U tµµtU

)
, a = (N − 1)/2 and m = K in Theorems 7.2.7

and 7.3.4 (see Muirhead [8, pp. 248 and 260]) we have,

I = ΓK [(N − 1)/2]
∣∣∣∣ 1
2σ2

U tU

∣∣∣∣−(N−1)/2

1F1

(
1
2(N − 1); 1

2K;
(

1
4σ4

U tµµtU

)(
1

2σ2
U tU

)−1
)

and observe that∣∣∣∣ 1
2σ2

U tU

∣∣∣∣−(N−1)/2

= 2K(N−1)/2σK(N−1)|U tU |−(N−1)/2 = 2M/2σM |I + V tV |−(N−1)/2

and

tr
(

1
4σ4

U tµµtU

)(
1

2σ2
U tU

)−1

=
1

2σ2
trµtU(U tU)−1U tµ.

Then

I =
2M/2ΓK [(N − 1)/2]σM

|I + V tV |(N−1)/2 1F1

(
N − 1

2
;
K

2
;

1
2σ2

µtU(U tU)−1U tµ

)
.

Applying the Kummer relation (see Muirhead [8, p. 265]), we obtain

I =
2M/2ΓK [(N − 1)/2]σM

|I + V tV |(N−1)/2
etr
(

1
2σ2

µtU(U tU)−1U tµ

)
1F1

(
−q

2
;
K

2
;− 1

2σ2
µtU(U tU)−1U tµ

)
,

given that
K

2
− N − 1

2
=
K −N + 1

2
= −N −K − 1

2
= −q

2
.

Hence

fU (U) =
2KΓK [(N − 1)/2]

π(M−K2)/2|I + V tV |(N−1)/2ΓK [K/2]
etr

{
µtU(U tU)−1U tµ

2σ2
− µtµ

2σ2

}

1F1

(
−q

2
;
k

2
;− 1

2σ2
µtU(U tU)−1U tµ

)
Finally, with Kq = (M −K2) and Ω = µtU(U tU)−1U tµ, the result follows.
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In the following theorem, the above result is extended to the case of the central elliptical
model. As in the case of the shape disk density, the configuration density is also invariant
under the elliptical model.

Theorem 3.2. Let Y ∼ EN−1×K(0, σ2IN−1, IK , h). Then the configuration density is
invariant under the elliptical family, and is given by

2KΓK [(N − 1)/2]
πKq/2ΓK [K/2]

|I + V tV |−(N−1)/2

Proof. Using the same procedure as in Theorem 3, the joint density of F,U,H is given by:

1
σM
|F |(q−1)/2h

(
1
σ2

trU tUF
)

(dV )(dF )(HdHt)

and the density of V is obtained by integrating over H ∈ O(K) and over F >. Thus:

2KπK
2/2

ΓK [1
2K]σM

∫
F>0

|F |(q−1)/2h

(
1
σ2

trU tUF
)

(dV )(dF ).

The result follows by taking n = N − 1, p = k and Σ = (
1
σ2
U tU)−1 in the following expression

(see Gupta and Varga[p. 169][7]),

∫
A>0

|A|(n−p−1)/2h(tr Σ−1A)(dA) =
Γp[1

2n]|Σ|n/2

πnp/2
.

Remark 3.1. Observe that, according to the notation used in section 3.2.4 in Fang and
Zhang [p.102][4], Y has a Vector-Elliptical distribution, while V has a Spherical distribution.
Furthermore, V has a matrix variate type t-distribution, see Fang and Zhang [p. 112][4].
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