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Preface

Lévy processes, that is, stochastic processes with independent and stationary increments,
and stochastically continuous, have been the objects of extensive research since Paul Lévy’s
work in 1930s. Brownian motion, Poisson process, I'-process, and stable processes, some
of the most important stochastic processes, are examples of Lévy processes. Their study is
intimately connected with that of infinitely divisible distributions, which have nth roots in
convolution sense for each n. The first three chapters of Sato [63] are referred to for basic
facts on Lévy processes and infinitely divisible distributions. The book [63] is cited as [S] in
this work.

The class of infinitely divisible distributions is too large for some analysis. Its subclass
consisting of all selfdecomposable distributions is more tractable and still large enough to
include most of important distributions. It contains the stable distributions and there is
a chain of classes of distributions L,,,m = 1,2,...,00, introduced by Urbanik [85], [86],
between the class of selfdecomposable distributions and the class of stable distributions.
In this work we present the study of these classes in relation to three important concepts
in stochastic processes: Ornstein-Uhlenbeck type processes (OU type processes), selfsimilar
additive processes and subordination.

The first chapter of this work is devoted to studying basic properties of the classes L,,. In
particular, these classes are characterized as limit distributions of sums of certain indepen-
dent random variables. Also, representations of the characteristic functions of distributions
in L,, are given. The representation of those distributions in L, is related to the representa-
tion of stable distributions. In Chapter 2, Ornstein-Uhlenbeck type processes are defined by
means of Lévy processes. Necessary and sufficient conditions, in terms of the Lévy measures
of the generating Lévy processes, for the generated OU type processes to have limit distri-
butions of the class L, are given. In Chapter 3, selfsimilar processes that are additive are
studied. Specifically, it is proved that their distributions at fixed times are selfdecomposable,
and conversely, given a selfdecomposable distribution there is a selfsimilar additive process
whose distribution at time one coincides with that distribution. Furthermore, necessary and
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sufficient conditions for joint distributions of such process to belong to the smaller classes
L., are shown.

Chapters 4 and 5 introduce K-parameter Lévy processes when K is a proper cone in R, and
study subordination of K-parameter Lévy processes by K-increasing Lévy processes. This
concept is an extension of the multivariate subordination of RY-parameter Lévy processes
as studied by Barndorff-Nielsen, Pedersen and Sato [4] (2001). Chapter 4 shows the relation
between the generating triplets of processes involved in this generalized subordination when
K = Rf . Finally, Chapter 5 studies those properties which are inherited by the resulting
process from the subordinator. In particular, it is proved that, when the subordinand process
is strictly stable, the subordinate process inherits from the subordinator the properties of
being in the class L,, and of being strictly stable.

This work is based on Ken-iti Sato’s lectures on January 22-25, 2001, within the “Periodo de
Concentracion en Procesos de Lévy” held at CIMAT Guanajuato, México, from January to
May. He gave 29 pages of notes to the audience at that time. They were collection of results
with bibliographic references. Alfonso Rocha-Arteaga extended the material, supplying most
of proofs and explanations. Sato polished them, giving proofs of Proposition 35, Theorems
55, 83, 124, and Remark 57 and adding Proposition 31, Theorem 49, Remark 58, Example
87 and some others.

Both authors are grateful to Victor Pérez-Abreu, who constantly helped the preparation of
this work. Sato thanks CIMAT people for their great hospitality during his visit.

Alfonso Rocha-Arteaga

Universidad Auténoma de Sinaloa
and CIMAT, Apdo. Postal 402
Guanajuato, Gto., 36000 México

Ken-iti Sato

Hachiman-yama 1101-5-103
Tenpaku-ku, Nagoya, 468-0074 Japan



Chapter 1

Classes L,, and their characterization

Selfdecomposable distributions are extensions of stable distributions. In this chapter we will
prove that between the class Ly of selfdecomposable distributions and the class & of stable
distributions there is a chain of subclasses called L,,, m =1, ..., 0o, with

LoD Li DLyD..D Ly DG,

In Section 1.1 basic properties are proved and these classes are characterized as limits of
partial sums of independent random variables whose distributions are in certain classes
closed under convolution and convergence.

A representation of characteristic functions of the classes above is presented in Section 1.2,
showing, in particular, that L., is the smallest class containing the class &, closed under
convolution and convergence. The representation of distributions in L., indicates a clear
connection to the representation of stable distributions. (The notation described at the end
of the notes will be freely used.)

1.1 Basic properties and characterization by limit the-
orems

Definition 1 A distribution on R? (i € B) is selfdecomposable if, for every b > 1 there is
Py € B such that

A2) =7 (0727 (). (1.1)

Sometimes it is called of class L.
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Definition 2 Ly = L (Rd) is the class of selfdecomposable distributions on R%.

For example, Gaussian distributions on R? and I-distributions on R are selfdecomposable.
It is known that all selfdecomposable distributions are infinitely divisible. Formally we have
the following lemma (see [S] Proposition 15.5).

Lemma 3 Let i € Ly. Then p, is uniquely determined by 1 and b, and both p and p, are
in ID, that is, infinitely divisible.

Definition 4 Form =1,2,3..., L, = L, (]Rd) 15 recurswely defined as follows: p € Ly, if
and only if for every b > 1 there is p, € Ly,_1 such that [i(2) = 1 (b~'2) p, (2) .

It is immediate, by Lemma 3 and Definition 4, that ID D Lg D L,, for all m > 1. Next, we
prove that these classes form a nested sequence. Thus, intersection over all L,, will give the
limiting class.

Proposition 5 ID D LoD L1 D Ly D ...

Proof. By induction. It is clear that Ly D L, by former remark. Suppose that L,, D L1,
that is, if 4 € Ly then p € L,,. Now, if u € L, o then for every b > 1 1i(z) =
1 (b712)p, (2) where p, € L,,11. Induction hypothesis implies that p, € L,,, therefore
i € Ly, 1. We have proved that L,,+1 D Ly,12. This concludes the proof. m

Definition 6 Lo, = Lo (R?) =(o>_, L, (RY).

Remark 7 The class of trivial distributions is contained in Lo,. Briefly, let 6,, with zy € R?
be a probability measure concentrated at xg. Then 6y, (2) = 840 (b7'2) by(1—p-1) (2) for all
b> 1. Hence 6., € Ly, for all m.

Classes L,, are closed under convolution, convergence and type equivalence. These state-
ments are proved in (i), (ii) and (iii) of the following lemma, respectively. These properties
are important in characterizing the class L,, as limit distributions of independent random
variables as it will be seen.

Lemma 8 Let m € {0,1,2,3,...,00}.

(i) If 1y and ps are in L, then py % o € Ly,.

(i) If w,, € Ly, and p,, — p, then p € Ly,.

(iii) If py = L (X) € Ly, and ps = L (aX +b) with a € R and b € RY, then iy € Lyy,.
() If py € L, po € P and fiy (2) = 11y (2)* with some a > 0, then py € Lyy,.
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Proof. (i) Induction. Let p, p, be in Lo with p, 4, py; given by (1.1), respectively. Then

Ml/*\ﬂz (2) = WQ (bilz) le,b (2),

which proves i, * py is in Ly.
Assume that the assertion is true for m — 1. Let py, py be in Ly, with py,, poy in Ly, .
Then

W2 (2) = I (b_lz) ﬁl,b (z) Hho (b_lz) //0\2,b (Z)
= iy * fiy (b7'2) prg * pay (2) -
Since py , * pgy, € Lin—1, we conclude gy * piy is in Ly,.

(i) Induction. Let u,, € Lo and p,, — p. Recall that characteristic functions fi,, and 1 have
no zero, since they are infinitely divisible. Thus, for every b > 1

- B, (2)
pn,b (’Z) - //In (b—lz) :
It follows that p,;,(2) — ¢, (2) = %, which is continuous at zero and therefore a

characteristic function. This proves that p € Ly.

Now assume that the assertion is true for m — 1. Let u, € L,, and pu, — p. The proof
follows exactly as in the step above with p,,;, € L,,,_1 converging to a characteristic function
¢y (2) in Ly,—1, which shows that p is in Ly,.

(iii) Let uy; = £ (X) € Ly, and py = L (aX +b) with a € R and b € R?. For every ¢ > 1

Hy (2) = 1y (C_lz) /ﬁl,c (2),
with P1c € L,,—1. Now

fiz (2) = iy (az) exp (i (b, 2)),
= Jiy (c7'az) Py . (az) exp (i (b, 2))
= Jiy (c"laz) exp (i (b,c™'2) ) exp (i (b (L — '), 2)) Py . (a2)
= Jiy (b™ 1Z)(Sb(l —e1) (2) Prc (a2) .
Thus py € Ly,.

(iv) Induction. Let p; € Lo and b > 1. By Lemma 3 i, and p,; are in 1D, and hence p,*
and p; ,* are well defined and in 1D (see [S] Lemma 7.9). Then

e (2) = 1y (2)" =10y (b Z) /ﬁl,b('z)a
/,5

(719 P
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Hence i, € L.
If the assertion is true for m — 1, then, similarly for i, in Ly, p;, (2)* belongs to Ly, in
the former expression of i,, therefore p, € L,,. ®

Next we only prove that stable distributions are contained in the class L.,. It will be shown
that L. is the smallest class containing the stable distributions closed under convolution and
convergence once the representation of characteristic functions of the class L is established.
See Theorem 24.

Definition 9 For 0 < a < 2 we define the class G, = S,(R?) as the class of p € P(RY)
such that, for every n € N, there is ¢ € R? satisfying

f(2)" = fi(n'/oz)ee?). (1.2)
Then G = Ua€(0,2] S, and, for any distinct o, o in (0,2], &, N S, is exactly the class of
trivial distributions. Sometimes we call p € &, a-stable, but this terminology is different

from that of [S], p. 76, when u is trivial. For 0 < a < 2, let & = &%(RY) be the class of
w € PB(R?Y) such that, for every n € N,

A(z)" = (n'/*z). (1.3)
Then &° = G°(R?) = Uaco2) &% (RY) is the class of strictly stable distributions on R. For

any distinct o, o/ in (0,2], &2 N &Y, consists of a single element &y. Distributions . with
¢ # 0 belong only to &°. Sometimes we call p € &% strictly a-stable.

Proposition 10 A distribution p is in S,(R?) if and only if up € ID(RY) and, for every
a > 0, there is ¢ € RY satisfying

A=) = At/ )ei ). (1)

A distribution p is in S°(RY) if and only if p € ID(R?) and, for every a > 0,
() = fi(aY*z)e’e?). (1.5)
See E18.4 of [S] for a proof.

Proposition 11 L, D G.
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Proof. Let p € &. Then u € &, for some a € (0, 2], that is, for every a > 0 there is ¢ such
that (1.4) holds. Given b > 1 let us define a = b=* < 1. Then i (2)* = 11 (b™2) exp (i {c, 2)),
and hence

A() =7 (672 =) exp (i e, 2)
= //]J (bilz) ﬁb (Z) )

where 7, (z) = 7i(2)" “exp (i (¢, z)) is a characteristic function. Hence pu € Ly. Now, by
Lemma 8 (iv) and Remark 7, p, € Lo. The last arguments are recursively applied to yield

pb€L0:>,u€L1:>pb€L1:>MEL2:>pb€L2:>u€L3:>...
Thus p € L, for every m > 0. m

Lemma 8 shows that the class of distributions L,, is a completely closed class, that is, closed
under convolution, weak convergence and type equivalence. This property is essential in
characterizing this class in terms of limits for sums of independent random variables.

Definition 12 Let Q be a subclass of B. Define K (Q) C ‘B as follows. p € K (Q) if and
only if there are independent R%-valued random variables Z1, Zs, Zs, ..., by > 0 and c, € R?
satisfying the following conditions.

a) L(by> r_y Zi, — ¢p) — p1 asn — 00.

b){b,Zk : k=1,2,....,n; n=1,2,...} is a null array, that is, lim,,_,o, maxj<g<p P [|b,Zx| > €]
=0 for all e > 0.

c) L(Zy) € Q for each k.

Using this operation K, the class of selfdecomposable distributions is comprehended as a
class of limit distributions, as well as the class of distributions L,,.

Theorem 13 (i) Ly = K () = K (ID).
(ii) Ly = K (Lyp—1) form=1,2,....
(111) Loo = K (Ls) and Ly is the greatest class Q that satisfies Q = K (Q).

Proof. (i) The first equality can be found in [S] Theorem 15.3. Thus Ly D K(ID). On the
other hand, the same argument as in the proof of (ii) below combined with Lemma 3 yields
Ly C K(ID).

(ii) Let u € Ly,. Since 1i has no zero, we have, for every b > 1,

~ 1(z) d
= _P¥* R
Po (Z) ﬁ(b_lz>7 z € )
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with p, in L,,_;. Let Zi, Z,, ... independent random variables on R? with

Bz, (2) = Pgernyn (B +1) 2),

and define S, = n~'>",_, Zx. The notation pu, = £(Z) for any random variable Z is used
here. Then

k=1 i H((k/n)2) 1 ((1/n)z)
Hence L (S,) — p.
By continuity of i, maxj<x<p |ﬁZk/n (2) — 1| = maxi<kp<y —ﬁ(g(k(z/%:))z) —1| —-0asn—oo.

This proves that {Zy/n: k=1,2...,n;n =1,2,...} is a null array by Exercise 12.12 in [S].
Then a), b) and ¢) in the definition above hold for p with b, = n™! and ¢, = 0. We conclude
that pn € K (Ly—1).

Now suppose p € K (Ly,—1). Then for every b > 1 conditions a) and b) and Lemma 15.4
of [S] imply that there are sequences of positive integers {m;} and {n;} with m; < n; such
that by, /b,, — b. Let us define

Wn = bnizk_’_cna
k=1

Uj = by, Z 7 + bnjb;li_cmj and

k=1

mj
Vi = by, Z Z + Cny — bnjbm Crn; -
k:mj+1

Then Wy, = U; +V; and
B, (2) = T, () B, (2) (1.6
by independence. Since U; = by, b;é Wi,

iy = (0529 = s, () =3 (i)

< sup
|w|<|2|

fiw,,, () =i (w)| =0
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as j — oo by condition a) and therefore fiy;, () — i (b~ 'z). Since fi has no zeros, we can
take fiy. (2) — fi(2) /i (b~"2) from (1.6) as j — oo and obtain a continuous limit which
is the characteristic function of some probability measure p, in L,,_; by condition ¢) and
Lemma 8. Thus p € L,,.

(iii) We have L,, = K (L;,—1) D K (L) for all m, in consequence Lo, D K (L) -

Now, if 4 € Lo, then p, € Loo. Let us take Zj, as in the proof of (ii) and again £ (>} _, Zy/n)
tends to p, where the distribution of Zj is in Lo, and {Zj/n} is a null array. This means
that p € K (Loo).

Finally, let Q = K (Q). Then Q = K (Q) C K () = Lo. Now from Q C Ly we obtain
Q=K (Q)C K(Ly) = L. A cyclic application of the same arguments yields Q C L, for
every m therefore Q C L. m

1.2 Characteristic functions of distributions in L,,

Recall that p € ID(RY) is represented by its generating triplet (A, v, ), that is,

i(z) = exp | —1(z, Az) +i(7, 2) +/ (ei<z’x> — 1 —i(z, @) lgp <y (@) v(dz) |, (1.7)

R4

where A is a symmetric nonnegative-definite d x d matrix called the Gaussian covariance
matrix, v is a measure on R? satisfying v({0}) = 0 and [.(|z|* A 1)v(dz) < oo called the
Lévy measure, and v is a vector in R%. If {X;} is a Lévy process, then the generating
triplet of £(X;) is called the generating triplet of {X;}. A Lévy process {X;} is called
selfdecomposable if £(X;) € Lo; it is called of class Ly, if £L(X;) € L.

Let S = {{ € R?: ¢ =1}, the unit sphere on R?. The following result is proved in [S]
Theorem 15.10. Notice that selfdecomposability imposes no restriction on A and ~.

Theorem 14 Let u € ID(RY). Then, i € Ly if and only if

v(B) :/S)\(dg) /OOO 1B(r§)k57(r)dr, B € B(R%), (1.8)

where X is a finite measure on S and ke(r) is decreasing in r € (0,00) and measurable in

£esS.



14 Chapter 1. Classes L,, and their characterization

Remark 15 The \ and ke(r) in Theorem 14 are not uniquely determined by p € Lo. If
v # 0, then we can choose X to be a probability measure on S and ke(r) to be right continuous
n r and to satisfy

/00(72 A l)kg(r) dr =c¢ >0, (1.9)

0 /,1
where ¢ is a constant independent of &. If \, ke(r) and M, kg(r) both satisfy (1.8) and these

conditions, then X = A and ke(+) = k,‘g() for A-a.e. £&. Henceforth we assume that A\ and
ke(r) satisfy these conditions and call \ the spherical component of v and ke(r) the k-function

of v (or ). Define
he(u) = ke(e™).
We call he(u) the h-function of v (or p). We have

w(z) = exp [—%(z, Azy +i(7, z) (1.10)

+ [S A(d€) /O * (5 1 iz ) Lo (1) k:i(’r)dr].

In one dimension (d =1), we have a unique expression

~ . ; , k
i(z) = exp [—%Az2 +ivz + / (e — 1 —izali_yy(x)) |(—x‘)dm} : (1.11)
R T
with k(x) being decreasing and right continuous on (0, 00) and increasing and left-continuous
on (—00,0), k(z) >0, and [7_(z* A 1)%6&1) < 0.

Remark 16 The representation (1.8) satisfying (1.9) of the Lévy measure is a special case
of general polar decomposition. In general, if v is the Lévy measure of p € ID(RY) with
Jpa(Jz|> AL)v(dz) = ¢ > 0, then

v(B) = /5 A(dE) / " 1) (dr),

where X is a probability measure on S and p(-) is a o-finite measure on (0,00) with

/Ooo(r2 A1)pe(dr) =c

such that p¢(B) is measurable in & for each B € B((0,00) ). Moreover, if A, p¢(-) and N
pg() both give this representation, then A = A and pe(-) = pg() for M-a.e. £&. Proof is given
as an application of the existence theorem of conditional distributions.
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Definition 17 For e > 0, A, is the difference operator, A.f(u) = f(u+¢) — f(u). A" is
the nth iteration of A.. Hence

n In .
anf =301 (7) ke
=0 J
Define AL’f = f. We say that f(u), u € R, is monotone of order n if'Asjf >0 fore >0,
j=0,1,...,n. We say that f(u), u € R, is absolutely monotone if A f >0 fore >0 and
jET,.

Lemma 18 (i) If f(u) is monotone of order n, then, for alle >0 and j =0,1,...,n—1,
AJf is increasing.

(i) Let n > 2. A function f(u) is monotone of order n if and only if f € C"2, fW) >0 for
j=0,1,...,n—2, and f" ?is increasing and convez.

(iii) A function f(u) is absolutely monotone if and only if f € C= and fU) > 0 for j =
0,1,....

See Widder [93] pp. 144-151 for a proof. A consequence of (ii) is that, if f € C™ and ) >0
for y =0,1,...,n, then f is monotone of order n.

Remark 19 f(—u) is absolutely monotone if and only if f(u) is completely monotone, that
is, (—1)7f9) >0 for j=0,1,....

Now we will give characterization of the class L,, (]Rd) in terms of its h-function.

Theorem 20 (i) Let m € {0,1,...}. Then p € Ly, if and only if p € Ly and the h-function
he(w) is monotone of order m + 1 for A-a. e. €.

(i) 4 € Loo if and only if u € Lo and he(u) is absolutely monotone for A-a.e. §.

Proof. (i) The assertion is trivial for m = 0. Let m > 1.We will show the validity of the
assertion for m, assuming that it is valid for m — 1. That is, we assume that pu € L, if
and only if € Ly and he(u) is monotone of order m for M-a.e. &.

Let u € Ly with v # 0. By definition of selfdecomposability 7i (z) = 7i (b™'2) p, (2) for every
b > 1. Notice that p, is in 1D with Lévy measure

vy(B) = /S A(d€) /0 ey L) ;kﬁ(b”}dr, B € B(RY),
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where A and ke¢(r) are the spherical component and the k-function of p, respectively.

Let ap (&) = [, (r2 A1 wdr We have that 0 < a;, (§) < ¢ where ¢ is as in Remark
15.
We will find the spherical component and the k-function for p,. Let

Mo(d€) = ¢ tap(E)N(dE)

ko (r) = cyay ' () {ke(r) — ke(br)}

where ¢, is a constant such that )\, is a probability measure. Then

P g (w) = kg (e’“) = cpay *(€) {hg(u) — he(u + log b’l)} )

Suppose that @ € L,,. Then p, € L, and its h-function h;¢ is monotone of order m for
A-a.e. & by induction hypothesis. Hence

Alhe(u) — Alhe(u+logb™) = ¢, tap(€)Alhy e (u) > 0, j=0,1,2,...,m

It follows that Alhg(u) > 0 for j = 1,2,...,m + 1, and therefore h¢ is monotone of order
m + 1 for M-a.e. &.

Conversely, if he is monotone of order m + 1 for A a.e. &, then, by Lemma 18 (i), Alhe(u)
is increasing in u for j = 1,2,...,m, and hence hy¢ (u) is monotone of order m. Then, by
induction hypothesis p, € L,,—1. Thus p € Ly,.

(ii) This assertion is an immediate consequence of (i) and the definition of L... m

Lemma 21 Let 0 < ¢ < oo. A function he(u) is absolutely monotone in u € R and
measurable in & and satisfies

/Oo (e A 1)he(u)du = ¢ (1.12)
for all & if and only if
he(w) = | e Ty(d |
() /() T (da), (1.13)

where I'¢ is a measure on (0,2) for each £ satisfying

/(0,2) (é *3 i a> Le(da) = c (1.14)

and T¢ is measurable in & (that is, T'¢(B) is measurable in & for every B € B((0,2)) ).
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Proof. Suppose that he(u) is absolutely monotone, measurable in ¢ and (1.12) is valid.
Then by Bernstein’s theorem there is, for each ¢ and u,, a unique finite measure F?" on
[0, 00) such that

he(uo +u) = / e ¢ (da), for u < 0.
[0,00)

Letting I'¢(da) = e**T'¢°(dar) we eliminate independence of u, and

he(u) = /[0 )eo‘uf‘g(da), for u € R.

Now, I'¢({0}) = 0 since he(u) — 0 as u — —oo. Moreover, from condition (1.12) we obtain

/ I‘g(da)/ e“(a_g)du:/ e " he(u)du < oo,
(0,00) 0 0

which implies that I" is concentrated in (0, 2). Hence (1.13) follows.
We will prove (1.14). From (1.12)

0 o)
c = / hg(u)du—l—/ e "he(u)du
0

—0o0

0 o)

= / Fg(da)/ eo‘“du—{—/ Fg(da)/ ey

(0,2) —00 (0,2) 0

0 00

= / Fg(da)[ / e™du +/ e“(Qa)du]

(0,2) —o0 0

1 1
= -+ Fe(da).
/(0’2) (a 2_a) ¢(dev)

We claim that I'; is measurable in £. If I'; is a continuous measure for every ¢, then it is
proved by the inversion formula for Laplace transforms (see Widder [78] pp. 295),

5 Bl
Te(da) = li —plm for 8 > 0.
/0 ¢(da) ugmoon; —h{" (), for §>

If not, it is proved by approximating I'c with the convolutions with continuous measures.
Conversely, from (1.14) we get (1.12) due to the one-to-one property in the expression above.

Now from he(—u) = [, e **T¢(da), we obtain

(=1)" (i> (he(—u)) = / e a"T'¢(da) > 0, for every n.
du 02)
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Notice that the differentiation under the integral is permissible since, for each n, the new
integrand is bounded and continuous as function of u € R. Thus h¢(—u) is completely
monotone and by Remark 19 h¢(u) is absolutely monotone. Measurability of he in £ is
obtained from (1.13) as limit of £&-measurable functions. m

Theorem 22 (i) If u € Ly, then

[i(z) = exp l‘%(% Az)y + (v, 2) (1.15)
" /(0,2) F(da)/s)\a(dg) /Ooo (6“27@ —1- i<z>7”f>1(o,ﬂ (7“)) % )

where A is a nonnegative-definite symmetric d x d matriz, v € R, T' is a measure on (0,2)
satisfying

/(072) (é T3 i 04) Plde) < co, (1.16)

and A, 18 a probability measure on S for each o and is measurable in a. These A, v, and I’
are uniquely determined by p and A, 1s determined by i up to o of I'-measure 0.

(ii) Given A, ~, T', and A, satisfying the conditions above, we can find p € Lo, satisfying
(1.15).

Proof. Suppose that @ € Ly. Define I'c by Lemma 21 from the h-function he given by
(1.13). We can find I' and A, such that (1.16) holds, )\, is measurable in «, and

/(0,2)F(d04)/s>\a(d§>f (04,5) :/S/\(d5> /(0,2) F& (da)f(a,é') (117)

for every nonnegative measurable function f(a,&). In fact, if v # 0, then it suffices to
apply the existence theorem of conditional distribution to the probability measure given by
¢ (2 + 75) MdETe (da) on (0,2) x S. Then we have

g f(z)v (dx) = /(0 2)F(da)/s)\a(d§)f(r§) reeldr (1.18)

for every nonnegative measurable function f (x), since, by (1.8), (1.13) and (1.17) this is
true when f (ré) = 1p(r€), the indicator function of the set B in (1.8). It follows that
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(1.18) is valid for every complex-valued v-integrable function f. Letting f (ré) = ¢ —
1 —i(z,7rE) Lo (1), we get (1.15).

Conversely, given v, I', A, and A, by (1.15) we can find A and I'¢ such that (1.17) holds.
Now define the increasing function he by he (u) = f(0,2) e®T¢(da) for every u € R and
ke (u) = he (—logu). We claim that p € L. By Theorem 20 (ii), it suffices to prove that
he is absolutely monotone and p € Ly. For the first part, condition (1.16) implies (1.14)
and therefore we can apply Lemma 21. The second one follows from Theorem 14, since, by
(1.15) and (1.17) the Lévy measure v of u has the form

v(B) = JsAldg) f(0,2) e (da) [y g (r§) r=otdr
= [¢Md€) [77 1p (r€) dr Jioz Te (dor) r=o=
= [ Md€) [;° Lp (ré) B,

and the required properties for A and k¢, in this expression, are satisfied. Therefore p € L.
The correspondence between (I, A\,) and (A, I'¢) is one-to-one up to « in a set of I'-measure
0 and ¢ in a set of A-measure 0. Hence the reconstruction procedure of y shows at the same
time uniqueness of the representation. m

Remark 23 We will clarify the relation of the representation of Lo, with the class G,. For
0 < a<2,itis known (see [S] Theorem 14.8 and Remark 14.4), that p € S, if and only if
w € ID with triplet (A,v,~) satisfying A =0 and

v(B) = C/s A(dE) /000 1p (ré)r—*"'dr  for every B € B(RY), (1.19)

with a probability measure A and a nonnegative constant c. That is, p € &, with 0 < a < 2
if and only if u € Lo and, in its representation (1.15), A =0 and T" is concentrated at the
point . It is well known that p € G4 if and only if it is Gaussian, that is, v = 0.

Theorem 24 The class Lo, is the smallest class containing & and closed under convolution
and convergence.

Proof. It has already been shown that the class L., contains G and is closed under con-
volution and convergence. Let Q be a class containing & and closed under convolution and
convergence. Let pu € Lo, and take the representation (1.15) for . We will prove that p € Q.
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Suppose v = 0 and A = 0. First, assume that I is supported by [e,2 — ] for some positive
e. Let M (da d§) =T (da) Ao (dE). Tt is a finite measure on [e,2 — €] x S. Choose M,, such
that they converge to M and that each M, is supported by E,, x S where FE, is a finite set
in [e,2 — €|. We have that M, (da d§) =T, (da) A, o(d), where I',, is supported by E,,. Let

P = [0 -1 it 1000)

and let u, be the probability measure with characteristic function given by the expression

exp < Jio.2) Pn(de) [ Ana(dE) f (a, € )) As p,, is convolution of stable distributions, it belongs

to Q. Since f (o, &) is continuous in (o, &), f, (2) converges to fi(z) . Hence u € 9. Next

consider a general p. Restrict I' to [%, 2 — ﬂ and let u,, be the corresponding distribution.

Since [ 4 I'(da) [g Aa(d€) [f (., §)| is finite, 7, (z) tends to fi(z). Hence p € Q. This
concludes the proof. m

Example 25 If {X;} is a I'-process with parameter q > 0, then L(X,) is I-distribution;
that 1is,

t

q t—1 _—qx
P X, e Bl = — @ 1.2
X< Bl I'(t) /Bﬂ(O,oo)x © (1:20)

fort > 0. We will prove that L (X;) is in Lo (R) but not in Ly (R) fort > 0.

Let 4 = L (X7). The Laplace transform of u* is

Ly (u) = th5 [t tem(utaegy
t (ut )t —1_—(utq)x
- e S
—t
- (1 n g) , w>0

On the other hand

log (1 + g) = log (u + ¢) — log (q)

= fqu+q % =Jo dayy =Jy (o e_(qﬂ/)xdx) dy

= fooo (fou e’y‘”dy) e dyr = fooo (1 —e ) %dm.
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Then

Lyt (u) = exp [t /0 TS d:p} .

Extending this equality to the left half plane {w € C: Re (w) < 0} by analyticity and conti-
nuity to the boundary, we get, for w = 1z with z € R,

~

7 (2) = exp [t /O T o1y 8 dx} .

T

Hence the Lévy measure of {X;} is

v(dz) = 27 e (g 00 (7)dr, (1.21)
with k-function k (z) = 7919 ) (2).This proves the first part.
We can assume that ¢ = 1. Its h-function is h (u) = k (e™) = e=¢ " for u € R. Then

B (u) =e e ® ",

' (u) = (e —e%)e ¢ ",

Note that A" (u) < 0 for u > 0. The h-function is not a monotone function of order 2 by
Lemma 18 (ii) because it is not convex in (0, 00). Finally, by Theorem 20 (i), u & L1 (R).

Example 26 The distribution pn on R in Linnik—Ostrovskii book ([S] E 18.19), that is,
p(dx) = ¢y exp(bx — ce®®)dx  (a,b,c,co > 0), (1.22)
15 infinitely divisible with Lévy measure
v(dr) = |z| e (1 — ™) (Lo ) (2)da. (1.23)
Hence it is in Ly. Akita and Maejima [1] (2001) show that, if {X;} is a T'-process as in
Ezample 25, then L(log X;) is in Lo(R) for t > 1. Since L(log X;) has density equal to

const exp(tz — ge®) fort > 0, this is a special case of (1.22). Therefore the u in (1.22) is in
Ly(R) if b/a > 1.
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Example 27 Lévy’s distribution p of stochastic area and its Lévy measure v ([S] Example
15.15) are

p(dr) = (mecoshx) 'dr, v(dz) = (2xsinhx) 'dr. (1.24)

This distribution 1 is selfdecomposable with k-function k(z) = (2 |sinhz|)™" in (1.11). Let
us show that p € L (R).

Since p is symmetric, it is enough to consider the h-function h(u) = 27 (sinh(e™*))~".
Differentiating twice, we have

W(u) =2 'e “cosh(e ™) (sinh(e *))"> >0,
W'(u) =2 'e " (sinh(e ™)) *[e™* 4 2 sinh(2e~*) {e~* coth(e™*) — 1}].

Let f(z) = xzcothz — 1. If we can show that f(z) > 0 for > 0, then A”(u) > 0 and
i € Ly by Theorem 20 and Lemma 18. We have f(z) = e (e” — e ™) " g(z) with g(z) =
x(e2* + 1) — e* + 1. Checking ¢’ and ¢”, we see that g(z) is convex, increasing and positive
for x > 0. Thus f(x) is positive for z > 0.

It does not seem to be known whether y is in L,,(R) for m > 2.

Notes

This chapter is based on Sato [57] (1980). The classes L,,, m = 1,2,..., and Ly were
introduced by Urbanik [85] (1972b), [86] (1973). Then Kumar and Schreiber [31] (1978),
[32] (1979) and Thu [82] (1979) followed. The classes were reformulated by Sato [57] in the
form of Theorem 13.

Many properties of selfdecomposable distributions are known. Unimodality on R (Yamazato
[98] (1978)), singularity of densities and degree of smoothness on R (Sato and Yamazato [72]
(1978)), and absolute continuity on R? (Sato [58] (1982)) are among them. See [S] for more
accounts.

Historically, selfdecomposable distributions were, without the name, introduced by Lévy [35]
(1937) with characterizations similar to Theorem 13 (i) and Theorem 14. Stable distributions
were discussed by Lévy [34] (1925) under the name “lois exceptionelles".



Chapter 2

Classes L,, and Ornstein—Uhlenbeck
type processes

It is well known that the Ornstein—Uhlenbeck process on R? induced by Brownian motion has
a limit distribution as ¢ — oo, which is Gaussian, while nonzero Lévy processes on R? do not
have limit distributions. Processes of Ornstein—Uhlenbeck type are analogues of Ornstein-
Uhlenbeck process where the Brownian motion part is replaced by a general Lévy process.
In this chapter we shall give conditions under which processes of Ornstein—Uhlenbeck type
on R? have limit distributions.

In Section 2.1, stochastic integrals of deterministic integrands by a Lévy process {Z;} are
defined in order to construct the Ornstein-Uhlenbeck type process {X;}. They are defined
on a bounded time interval as limits in probability of stochastic integrals of step functions.
The process {X;} is expressed as a stochastic integral by the Lévy process {Z,;}.

In Section 2.2 it is proved that the Ornstein-Uhlenbeck type process {X;} is a temporally
homogeneous Markov process and that it has a limit distribution under an integrability
condition on the Lévy measure v of {Z;}. Specifically, if v, satisfies

/ log |x| vg (dz) < o0, (2.1)
|z|>2

then, as t — 0o, L (X;) converges to a probability measure p in the class L. Conversely, ev-
ery selfdecomposable distribution p appears as limit distribution of some Ornstein-Uhlenbeck
type process in this way. If condition (2.1) does not hold, £ (X;) does not tend to any dis-
tribution as ¢ tends to oc.

23
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Furthermore, in Section 2.3 it is shown that there is a one-to-one and onto correspondence
between the distributions of the class L,,_; whose Lévy measures satisfy (2.1) and the dis-
tributions of the class L,, which appear as limit distributions of Ornstein-Uhlenbeck type
processes. This correspondence preserves a-stability.

Section 2.4 considers stationary OU type processes and reformulates the main results in
Section 2.2.

2.1 Stochastic integrals based on Lévy processes
In this section we define the stochastic integral of a bounded measurable function defined

on a bounded closed interval on R with respect to a given Lévy process and we obtain its
characteristic function in terms of the characteristic function of this process.

Let {Z;: t > 0} be a Lévy process on R? with £(Z;) = u, and
Eet®2) = i ()t = o), (2.2)
where 1),(z) is the distinguished logarithm of fiy(z). By a Lévy process we mean a stochas-

tically continuous process with stationary independent increments, starting at 0 a.s., with
sample functions a.s. being right continuous with left limits.

Definition 28 Let 0 <ty < t; < 0o. A function f(s) on [to,t1] is called a step function if
there are a finite number of points to = sg < §1 < - -+ < 8, = t1 such that

f(s) = Za/jl[sj—lvsj)(s) (2.3)
j=1
with some ay, . ..,a, € R. When f(s) is a step function of this form, define

/t " H(s)dZ, = S 05(Zy — 2y, (2.4)

Note that the right-hand side of (2.4) is determined by f(s), independently of the choice of
the expression (2.3). Furthermore, note that, for any step function in (2.3), the distribution
of (2.4) is infinitely divisible with characteristic function of the form
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7 z, t1 s)d. s n 1
Ee < fto f( ) Z > — Hj:l EeXp (7/ <CLjZ, ZSj - ZSj71>)
= H?Zl e(8i=8i-1)%0(a;)

. (2.5)
— exp [0y (55— 85-1) o (0,2)]
= exp [, o (£ (5) 2) ds.
Let (Ao, vo,7,) be the generating triplet of . Then
Vo(2) = —3(z, Aoz) +i(yg, 2) + /]Rd (ei<z’m> —1—i(z,2) 1<y (@) vo(dz). (2.6)

Proposition 29 Let f(s) be a real-valued bounded measurable function on [ty,t1] such that
there are uniformly bounded step functions f,(s), n =1,2,..., on [to, t1] satisfying f,, — f
almost everywhere. Then til fn(8)dZs converges to an R%-valued random variable X in
probability. The limit X does not depend on the choice of f,, up to probability zero. The law
of X 1is infinitely divisible and represented as

Ee'®X) = exp /ttl Yo(f(s)z)ds. (2.7)

Proof. Due to the continuity of the function 1, in (2.6), ¥, ((fu(s) — fin(s)) z) — 0 for
almost every s, as n, m — oo. Then

[WM%@—M@M@~O

as n,m — oo. By (2.5)

/to (o) - / Y (), — 0

in probability, therefore converges to 0 in the metric of convergence in probability. Thus there
exists a random variable X which is limit in probability of the random variables j:)l fu(s)dZs.

The law of X is infinitely divisible, since those of fttol fn(s)dZs are. Moreover,

06 20ds = 3 02) 5y = 5500 = [ w (£ (9)2)ds
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by Lebesgue’s bounded convergence theorem. Then, by (2.5)

t1 t
B 1a(d2.) _aepr/‘ o (f (5) 2) ds. (2.8)
to

From this follows (2.7), applying the continuity theorem.
To see that the limit X does not depend on approximating sequences, let f,(s) — f(s) and
gn(s) — f(s) a.e. both boundedly. Then

E < jto (fn—9n dZS> — f Yo ((fr(s)—gn(s))2)ds

— 1

as n — oo, showing that ftil fndZ, — j:)l gndZs — 0 in probability. =

Definition 30 The R?-valued random variable X in the proposition above is the stochastic
integral of f by {Z;}, denoted by

X:[U@My (2.9)

Proposition 31 If f(s) is a real-valued bounded measurable function on [to,t1], then X =
tzl f(s)dZs is definable and (2.7) holds.

Proof. By Proposition 29, it is enough to show the existence of uniformly bounded step
functions f,(s) such that f,(s) — f(s) a.e. Let |f(s)| < C. By Lusin’s theorem (Halmos
[19] p. 243), for each n, there is a closed set F,, C [to, 1] such that [tg,#1] \ F}, has Lebesgue
measure < 27" and the restriction of f to F), is continuous. Then, by Urysohn’s theorem
in general topology, there is a continuous function g, on [to, 1] with |g,(s)| < C such that
gn = f on F,,. We can choose step functions f,, on [t,¢;] such that |f,(s) — gn(s)| < 27" and
|fn(s)] < C. Let G = ey Ui (Lo, t1] \ Fr). Then G has Lebesgue measure 0. If s ¢ G,
then s € Upe, (o), Fn and f,(s) — f(s), since

[fn(s) = F($)] = [fn(s) — gn(s)] < 27"

for large n. m

Definition 32 A stochastic process {X;: t > 0} on R? is called an additive process if it
has independent increments, is stochastically continuous, and starts at 0 a. s. and if, almost
surely, X,(w) is right continuous with left limits in t. If the last condition is not assumed,
we say that {X;: t > 0} is an additive process in law.
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Proposition 33 Let f(s) be a locally bounded, measurable function on [0,00). Then there
is an additive process {X;: t > 0} on R? such that, for everyt > 0,

P [Xt - /0 t f(s)dZsl =1 (2.10)

Proof. Let Yy = 0 and Y; = fot f(s)dZs for t > 0, whose existence is guaranteed by
Proposition 31. We claim that {Y;: ¢t > 0} is an additive process in law on R?. Indeed, if
0 <ty <t <ty then

/f1 f(s)dZ, + /ttQ f(s)dzZ, = /ttz f(s)dZ,  as.,

as is proved from the case of step functions. This and the independent increment property
of {Z,} prove that {Y;} has independent increments. If ¢,, | ¢, then

Eet@Yin=Ye) _ poitalim f(8)dZs) _ J/™ o(f(s)2)ds _, |

and, similarly, if ¢ > 0 and ¢, T t, then Ee!*Yt=Y) — 1. Hence {Y;} is stochastically
continuous. This shows that {Y;} is an additive process in law. Now, {Y;} has a modification
{X:} which is an additive process, by Theorem 11.5 of [S]. m

Remark 34 Henceforth, fot f(s)dZs is understood to be the modification X; in Proposition
33. Likewise, fti f(s)dZs is understood to be X; — Xy, .

We need a Fubini type theorem involving the stochastic integrals to prove the existence
of the so-called Ornstein-Uhlenbeck type process. We establish this fact in the following
proposition.

Proposition 35 Let f(s) and g(s) be bounded measurable functions on [to,t1]. Then

/tt1 g(s)ds /ts fw)ydz, = /ttl f(uw)dZ, /tl g(s)ds a.s. (2.11)
Proof. Let

X = /t " o(s)ds /t CfwdZ,, Y = /t " fwadz, / " g(s)ds. (2.12)

Existence of these integrals follows from Propositions 31 and 33.
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Step 1. We show that
EeisX) — peiaY) — efttol Yo (f(w) [3* g(s)dsz)du (2.13)

for any bounded measurable functions f and g on [tg, t;]. Since Y is the stochastic integral
of f(u) [, " g(s)ds, the second equality in (2.13) is a consequence of (2.7). Let us calculate
Ee'sX) Tet t,p =to+ k27" (t; —tp) for n=1,2,... and k =0,1,...,2". For s € [ty,t1),
define \,,(s) =t if th 41 < s < tni. Let

t1 )\n(s)
X, :/ g(s)ds/ f(u)dZ,.
to to

Since ft u)dZ, is right continuous and locally bounded in s a.s., X,, tends to X a.s. as

n — 00. Hence EeitaXn) — Fei{=X)  We have

X, ch/ flu dZ_/ chl[totk f(w)dz, a.s.

to p=1

with ¢, = j;" * g(s)ds. Thus, by (2.7),

Eeit®Xn)  — exp f Yo Zk 1 EkL 0,60, (W) £ z) N
:expf kl tOtnk u)fik 1ng >)

which tends to the rightmost member of (2.13) as n — oc.

Step 2. Let us show that X =Y a.s., assuming that f and g are step functions. Without
loss of generality, we can assume that

N N

f(s) = Zajl[sgeusj')(s)? g(s) = ijl[sjflvsj)<s)

J=1 J=1

with g = sg < 51 < --- < sy = t;. First we prepare the identity

t1 t1
/ sdZ, = t1 2y, — toZ, — / Zds as. (2.14)

to to
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Define t,, , and A, (s) as in step 1. Since A\, (s), n = 1,2, ..., are step functions and A, (s) — s,
we have

t1 t1
/ Mn(8)dZs — / sdZ, in probability.
to

to

Notice that

t1 2"
/ M($)dZ, = toi (Zon, — Zin, )

to k=1
2" —1
= Ztnkzt s (tan 27 (0 — 1)) Zu,,
k=0
2" —1

=12, —toZy — »_ 27" (b —to) Zu,,

t1
= tthl - tOZtO — / Z)\n(s)ds - 2in (tl - t()) Zto + 2771 (tl - tO) Ztl

to

t1
— tthl — tOZto — / stS a. S.

to

as n — 00, since Zy,(s) — Z, boundedly on [to,t1) a.s. This proves (2.14). Now

S [ s

/ ZCL] sAs; T s/\s 1)d52117 say.

TTMZ ||M2

Sk—1 j=1
Since
o 0 for k<j—1
/ (Zuns, = Zonsy ) ds = 4 [ (2, Z,, ) ds for k —
o (Zs, — Zs; ) (s — sp1)  fork>j+1,
we have

N 5
L :Zaj (bj/ Zs, ,)ds + Z bw (Zs; — Zs,_,) (sk—sk_1)> = I, say.
j=1 5i-1

k=j+1
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Use of (2.14) gives

N 5; N
I, = Zaj <_bj/ sdZs + (ZSJ. - Zsj,l) (bjsj + Z br (s, — sk_1)>) a.s.

]:1 j—1 k:]+1

On the other hand,

‘ (bj <8j — U) + Z bk (Sk — Sk1)> dZu

J=1 - k=j+1
N 55 N

= Zaj <bj/ (Sj — U) dZu + (Zsj - Zs]',l) Z bk (Sk — Skl)) .
j=1 i1 k=j+1

Therefore X =Y a.s. when f and g are step functions.

Step 3. We show X =Y a.s. when f is bounded measurable and g is a step function. By
Proposition 31 there are uniformly bounded step functions f,, such that f, — f a.e. on
[tg, tl] Let

x- " g(s)ds [ iz v [ Chutwaz, [ gts)is

We have X,, =Y, a.s. by step 2. Since

XX, - / a(oyis [ (70 = f(u) a2,
and
vevi- [ = faw)az, [ ol5)ds

step 1 gives

Eei(z,Xan) _ Eei(z,Yme _ e.fttol zl}o((f(u)ffn(u))le g(s)dsz)du

Y

which tends to 1 as n — oo. It follows that X,, — X and t Y;, — Y in probability. Therefore
X =Y a.s.
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Step 4. Now let us show X = Y a.s. when f and g are bounded measurable functions.
Choose uniformly bounded step functions g,, such that g, — g a.e. on [tg, t;]. Let

. t1 s - t1 t1
X, = / gn(s)ds/ fw)dz,, Y, = / f(u)dZu/ gn(s)ds.
to to to U
We have now )A(:n = 17” by step 3 and, by the same method, we can show that )Z'n — X and

Y, — Y in probability. Hence (2.11) is proved. =

Example 36 Let f(s) be of class C on [ty,t1]. As an example of the use of Proposition 35,
let us show the integration-by-parts formula

[ﬁﬂw&zzﬂnwn—ﬂmwm—/haf@wsaﬂ. (2.15)

to

Indeed, notice that

/to ’ flu)dZ, = - /t:l dZ, / ' f'(8)ds + f(t1) /t iz,=1 say.

By Proposition 35,

- " f’(s)ds/stquf(tl)/tl iz,

to to to

— [ P2, - 2)ds + £(11) (2o, — Ziy)

to

[ () Zuds + (F() = F(00)) 2+ F(0) (Zo — Za).

to

which is the right-hand side of (2.15).

2.2 Ornstein—Uhlenbeck type processes and limit dis-
tributions

Let {Z;: t > 0} be a Lévy process on R? with (2.2) and with generating triplet (A, Vo, o)
satisfying (2.6). Let M be a random variable on R? such that M and {Z;: t > 0} are
independent. Given ¢ € R, consider the equation

t
Xt:M+Zt—C/ XSdS, tZO (216)
0
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A stochastic process {X;: t > 0} is said to be a solution of (2.16) if X, is right continuous
with left limits in ¢ and satisfies (2.16) a.s.

Proposition 37 The equation (2.16) has an almost surely unique solution {X;: t > 0} and,
almost surely,

X, =e "M +e @ /O t e*dZ,, t>0. (2.17)
Proof. Define X; by (2.17). Then
cfot X,ds = Mc f; e ds + cfot e~ds [ e*dZ,
=M1 —e ) +cferdZ, [l eds
=M(1—e*)+ fot (c fi e_c(s_u)ds> dz,
=M(1—e*)+ fg’ (1 — e‘c(t_")) dz,
=M—Me ™ +27Z,—e [ eudZ,

:M—Xt‘i‘Zt’

where we have applied the Proposition 35. Therefore (2.16) holds.

We will prove the uniqueness of the solution of (2.16). Suppose that X} (w) and X? (w) satisfy
(2.16). For a fixed w define a bounded function f (t) on [ty,t1] by f(t) = X} (w) — X? (w).
Recursive application gives

Py = = [ (K@) = X2 @) ds

_ —c/otf(s)ds,

ft) =—cfy(=cf; f(u)du)ds
(=) fy (Jo f (w) du) ds
(=) Jy flw) (fLds) du
(=) fy (t = 5) f (5) ds.

and
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By induction we get

(=2)"

¢
/ (t—s)"""f(s)ds, forn=1,23..
0

‘ n

Since Y 07, (L:_Cl)! (t — s)" " is finite for every 0 < s < t, the term ((7:_6)17;! (t —s)" " tends to

0 as n — oo, uniformly for 0 < s < ¢. Hence f (t) = 0. This concludes the proof. m

Proposition 38 The process {X;} of Proposition 37 is a temporally homogeneous Markov
process starting from Xo = M with transition probability P,(z,dy) infinitely divisible and
satisfying

[ e Ry = exp fie 0.2+ [ e aas). (2.18)
Rd 0

Proof. For every s € [0,t] we have
t
X, =e X, f e / etdZ, (2.19)

from (2.17) and from X, = e~*M + e~ [ edZ,. Because e~ fst e“dZ, and {X,: u < s}
are independent, the identity (2.19) shows that {X;: ¢ > 0} is a Markov process with tran-
sition probability

t
P[X,eB|X,=z]=P {eC“S)x + eCt/ etdZ, € B} , z€R’ BeB(RY

for 0 < s <t (use Proposition 1.16 of [S] for a proof). Denote the right-hand side of the last
equality by p(B). Then p is infinitely divisible and, by (2.7),

Pz) = Beilee e Imre [femaz)

o €i<z,efc(t73)x>+f; 1/10(6C“e’“z)du

o €i<z,efc(t73)x>+fot_s Yo (e*m’z)dv

Hence p depends only on ¢ — s and x. Therefore {X;: ¢t > 0} is a temporally homogeneous
Markov process with transition probability P;(x,dy) satisfying (2.18). m
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Definition 39 Ifc > 0, then the process { X;} of Proposition 37 is called Ornstein—Uhlenbeck
type process (or OU type process) generated by {Z;} and c, or generated by u, and c, or
generated by (Ao, vo, Yo, ¢), starting from Xo = M. Sometimes the process {Z;} is called the
background driving Lévy process.

Remark 40 Proposition 38 shows that the definition of Ornstein—Uhlenbeck type processes
coincides with that of Chapter 3 of [S].

Lévy processes do not have limit distributions as ¢ — oo except in the case of the zero
process. But, in the case of OU type processes, drift force toward the origin of the magnitude
proportional to the distance from the origin works, so that they are likely to have limit
distributions. This is true only if they do not have too many big jumps.

Theorem 41 Let ¢ > 0 be fized.

(i) Let {Z:} be a Lévy process on R with L(Z,) = u, and generating triplet (Ag, vo, 7). Let
{X:} be the OU type process generated by (Ao, vo, Yo, C), starting from Xo = M. Assume
that

/ log |z| vo(dx) < oc. (2.20)
|z|>2

Then
L(X:) = p ast— o0 (2.21)

for some p € B, and this pu does not depend on M. Moreover,

/ |[1hg(e™2)| ds < o0, (2.22)
0
i) = exp [ e eo2)ds, (223)
0
and p1 belongs to Lo(R?). The generating triplet (A,v,~y) of p is as follows:
1
A=—A 2.24
2" ( )
1 oo
W(B) = 1 / vo(dz) / I(ez)ds, B e B(RY), (2.25)
C JRd 0
1 1 x
v =—y —I——/ —vo(dz). 2.26
N o T (220
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(ii) For any i € Lo(RY), there exists a unique triplet (Ag, vo, 7o) satisfying (2.20) such that p
satisfies (2.21) for the OU type process generated by (Ao, Vo,7y, ¢) starting from an arbitrary

M. Using A and ke(r) in Theorem 14 for the Lévy measure v of p, we have
v(B) = —c /S A(d) /0 (€ dke(r).
(#i) In the set-up of (i), assume
/ log |z| vo(dx) = oo
lz|>2

instead of (2.20). Then L(X;) does not tend to any distribution as t — oo
for any a > 0,

sup Fi(z, Da(y)) = 0 ast — oo,
T,y

where D,(y) = {z: |z —y| < a}.

Proof. (i) From (2.18), the characteristic function of X; is

t
EetsXe) — (Ee"efwz’m) eXp/ o(e™2z)ds.
0

Now use 1,(z) in terms of its triplet (Ao, vo,7,), given in (2.6), to obtain

/0 VYo(e”®2)ds = —%(z,&z) +i{,, 2) —|—/ g (z,7) vy(dz)

Rd
where g(z,x) = /% — 1 —i(z, 2)1{4<13(2) and
A; = fot e2%ds A,

Uy (B) = [gavol(dz) fot 1 (e7%*z)ds for every B € B (R?),

(2.27)

(2.28)

and, moreover,

(2.29)

(2.30)

(2.31)

(2.32)

Y = fot e dsy, + fRd vo(dr) fot e x[1p (e %x) — 1p (z)] ds
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with D = {z: |z| < 1}. Observe that, as t — oo,

~ 1
At - %AO,

S 2* Dy(dz) = [pavo(d) [ le=x|* 1p (e=z) ds
— fRd |l‘|2 Vo(dl‘) fooo 672081{|x‘§ecs} (l‘) ds
- ﬁ Jpa (|515|2 A 1) vo(dz),

f\a:|>1 v(dx) = [pavo(de) fot Ipe (e7x)ds
- fRd vo(dx) fooo T{ja|>eesy (x)ds
- % f|z|>1 1Og |I| V0<d$)a

Y = 2yo+ Jpavoldz) [77 e w11 cja<eesy (2) ds
— g+ L Epalde).

These limits are finite by condition (2.20). We have

9 (2,2)| < 5 el o iy (2) + 2 Loy (2).
It follows from (2.6) that

Yole™%2) = 5%z, Ag2) +ie (. 2)

+ /Rd g(z, e “z)vo(dx) —I—Z'/Rd(z,e_csx)1{1<|x|<ecs}(:c)yo(dx).

Hence

1
pale =o2)| < 5e (e Aos) +¢ izl + 3128 [ |e ol Lote (o)

1
< =
-2

+ 2/1Dc(ecsx)1/0(dx) + |z] / |le™ | 1< jaj<eey (@) o (da).

Therefore, the convergences above show (2.22). In fact, it is shown that, as t — oo, Zt and
v, tends to some A., and 7., respectively, and v, increases to some measure v, satisfying
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J(|z|> A1)V (dx) < 0o. Hence, using the density dv;/dV., and the dominated convergence
theorem, we see that the right-hand side of (2.31) tends to

—3(2, Ase2) + (Yoo, 2) + /Rdg (z,2) Voo (dx).

Thus the distribution with characteristic function exp fot o(e~*z)ds tends to a p € 1D with

triplet (Ao, Voo, Voo)- This p satisfies (2.23) by (2.31). Now convergence (2.21) of L£(X;)
to p follows from (2.23) and (2.30). Observe that p does not depend on M. The triplet
(Aso, Voo, Vo) Of pu is identical with the triplet (A4, v,~) described by (2.24), (2.25) and (2.26).
Now from (2.23)

a(b~tz) =exp [;° (e b7 2)ds
= exp f(ijgb)/c Po(e2)ds.

We can write
fi(z) / L e
———— =exp | Yyle “z)ds
a(b—1z) 0 of )

for t = Llogb, which is the characteristic function of P, (0,-). Here, P, (z,dy) denotes
the transition probability of the OU type process X; given by Proposition 38. Thus u is
selfdecomposable.

(ii) By Theorem 14, the Lévy measure of the selfdecomposable distribution p on R? has the
form

W(B) = /S A(de) /0 h 13(7«5)@@, B € B(RY), (2.33)

where )\ is a probability measure on S and k¢(r) is nonnegative, decreasing in r € (0, 00),

measurable in £ € S and
/)\(dg)/ 2 1)) g o
S 0

r

Define a measure vo(B) by the right hand of (2.27). To prove that v is a Lévy measure
satisfying (2.20), we will show that

/m|§2 |z|* vo(dx) +/ log |z| vo(dx) < . (2.34)

|| >2
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Let

(" dr % 21,2 u’ 0<u<l,
Z(U)_/O( Al)r /0( A1)dt = {%—i—logu u > 1.

Below we use the following fact (see [S] Lemma 17.6). For every [ (r) and k¢(r) nonnegative
and right continuous functions on (0, 00) such that k¢(r) is decreasing and k¢(oco) = 0 and
[ (r) is increasing and [ (0+) = 0, we have

/000 L(r)dke(r) = — /000 ke(r)dL(r). (2.35)

+ +

Then, by definition of [ and v,

Jra L(2]) vo(dz) = —c [GA(dE) [;°1 dk’g T)
= c [ A(d€) [; ’fs ()
=c [{A(dE) [55(r kﬁ(T dr < oo.

But,

fRd ’l‘l VO dl’) = fmgl |$|2 VO(dx) + f\x|>1 (% + log |5E’) VO(dx)
> f\r|S2 s|2[? vo(da) + f|m‘>2 log || vo(dz).

Therefore (2.34) follows.
Now, if B € B(RY) satisfies B C {z: |z| > ¢} for some € > 0 then, applying again (2.35)
now to (2.33)

= — [¢ Md€) [~ dke(r) [5 15(ué)%!

:—fS df fO dl{ig fO 1p 6787"6)

- %fRd Vo dy fo ]-B e y)dS

That is, (2.25) holds.
Next, define Ag and 7y, by (2.24) and (2.26) respectively, then, the OU type process generated
by (Ao, 0,7, ¢) has p as limit distribution. This proves (2.21).
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Uniqueness. Suppose that two processes of OU type with common ¢ have the limit distri-
bution p. Let {Z#} and {Z}} the associated Lévy processes with respective distinguished

logarithms 1), (z) = log Ee’*%1) and 1), (z) = log Ee!*%1). By (2.23)

exp/ W, (e7%2)ds :exp/ P (€7 2)ds.
0 0

Now we use the same argument at the end of the proof (i) to get

t t
Y KO
0 0

for every t > 0 and z € R?. Differentiating at t = 0 we get 1, (2) = ¥, (2).

(iii) We assume (2.28). Suppose that, for some zy € R, P, (z¢,-) tends to a probability
measure g as t — oo. Since P, (zo,-) is infinitely divisible, p is infinitely divisible ([S]
Lemma 7.8). Let v be the Lévy measure of . Then, by Theorem 8.7 of [5],

[r@wn) — [f@uan,  t-

for any bounded continuous function vanishing on a neighborhood of 0. Here v, is the Lévy
measure of P, (z,-). It follows from (2.32) that

/|z|>1;t(d$) = /y>1 (t/\ (%log|y|>) vo(dy),

which tends to co by assumption (2.28). This is absurd. Hence, for any z € R?, P (z,)
does not tend to a probability measure as t — oo.
We use Lemma 42 below and condition (2.28) to obtain

—1/2
Z(du)) —0 as t— oo,

Pz, Da(y)) < Kq ( /|

u|>a/m

for any a, x, and y, with K, a constant depending only on d. Thus we get (2.29). For any
M, the OU type process {X;} generated by (Ao, vo, 7y, ¢) starting from M satisfies

P[X; € Da(y)] = E[P(M, Da(y))] — 0

for any a and y. Thus £(X;) does not tend to any distribution as ¢t — co. =
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Lemma 42 Let C(x,a) = [x1 —a,z1 +a] X -+ X [vq — a,z4 + a], a cube in R? with center
r = (z;)1<j<q. Let p € ID(R?) with Lévy measure v. Then

w(Cle,a)) < Ky ( /| ,,<dy>)”2, (2.36)

y|>a/m

where Ky is a constant which depends only on d.

Proof. First we show that, for any pu € B(R?), 2 € R%, a > 0, and b > 0 with b < 7/a,

p(Ca) < (5) 0 /C B (2.37)

Let f(u) = (M)Q and h(v) = (1 — [v])1{<1;(v). Then

u/2

Flu) = /OO eh(w)dy,  h(v) = — /OO e f(u)du.

oo 27 —00

For z,z € R, let f(z) = H?Zl f(z;) and h(z) = szl h(z;). Then, for every z € R? and
b>0,

d

[ Fotu—oputdy) = [ utdy) [0 T[niz)dz =57 [ =a)hts2)d-

=1

Since f(u) > (2/m)” for [u| < m, it follows that
= 7 2d
o [Nz [ ot = (5) n(Clea)

if ab < m, that is, (2.37).
Now let € ID with Lévy measure v. We claim that, for any b > 0,

~1/2
e / ()] d= < K, ( / u(dm) | (2.38)
C(0,b) ly|>1/b

where K, is a constant which depends only on d. We have

i) < exp [Re [ gteaptan)| <o |- [ (- costeavtan)]

y|>1/b
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Let V = f|y|>1/b v(dy). If V.= 0, then (2.38) is trivial. Suppose that V' > 0, and let

v(dy) = V118 (v)v(dy). Use Jensen’s inequality to get

AG) < / ¢V U-eoszu)5 ).
Hence

[ menass [ ppta vimpg = [ e,
C(0,b) ly|>1/b |2|<v/db

We fix y # 0 and consider an orthogonal transformation that carries y/|y| to e; = (615), <j<d-
Then o

|2|<V/db

Let By = {z € R%: |z| < V/db and 27k/|y| < 2 < 2w(k+1)/|y|} and n = [\/Eb|y|/27r} with
brackets denoting integer part. Then

n

Fly) =23 / o V(1cos(aly) g,
k=0 "/ Ek

2r/|yl
<2(n+1) / . / dzo - - - dzd/ e~V (=cos(z1lyl) g,
E 0

< 4Kgbd—1(n+1)|y’—l/ e_V(l_Cosu)du,
0

where E = {2/ € R¥ ' |2/| < V/db} and K/ is the volume of the ball with radius v/d in
R4, Using 1 — cosu > 27~ 2u? for 0 < u < 7, we have

/ e—V(l—cosu)du < / €_2V7r72U2du _ KV_1/2
0 0

with an absolute constant K. Noting that

sup (n-+ 1)yl = sup ([Vablyl/2x] +1) Jyl " = bK

ly[>1/b ly[>1/b

with a constant K/ depending only on d, we obtain (2.38).
Taking b = 7/a and combining (2.37) and (2.38), we get (2.36). m
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Remark 43 In Theorem 41 (i), L(X;) converges as t — oo. But, if {Z;} is non-trivial,
then X, does not converge in probability; see Remark 57.

Remark 44 If p, € 1D with Lévy measure vq, then the condition (2.20) for vy is equivalent
to

/ log || po(dz) < 0. (2.39)
|z|>2

See [S] Theorem 25.3 and Proposition 25.4.

2.3 Relations to classes L,, and G,

Theorem 41 shows the importance of the following class.

Definition 45 D), = ID)g(R?) is the class of jy € ID(RY) such that its Lévy measure
vy satisfies (2.20).

We fix ¢ > 0. For a Lévy process {Z;: t > 0} on R? with £(Z,) = py € IDyg, the OU
type process {X;: t > 0} generated by {Z;} and ¢, starting from an arbitrary M, has a limit
distribution p € Lo. This is contained in Theorem 41. Define the mapping ®: I Dy,s — Lo

by @(p9) = p-
Now we clarify the relation of this mapping ® with the classes L,, and &,.

Theorem 46 (i) Let m € {0,1,...,00}. Then pig € Lyy—1 NI Dy if and only if (uy) € L,
where L_y = ID. The correspondence of Ly,_1 N 1D, and L, by ® is one-to-one and onto.

(ii) Let 0 < a < 2. Then, uy € S, if and only if gy € 1Dy and P(uy) € Sy py € S (that
is, strictly a-stable) if and only if p1g € IDiog and ®(puy) € &Y. There are a > 0 and v € R?
satisfying

®(pg)(2) = fig(2)"e' ™ (2.40)

D(p10)(2) = 1o(2)" (2.41)

if and only if g € &°.
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Proof. (i) Let u € L,,. Then, the probability measure p, corresponding to x in (1.1) is in
L,,—1 and its characteristic function has the form (see end of the proof of Theorem 41 (i))

Llogb
oy (2) = exp/ o(e™2)ds. (2.42)
0
Then

Cc

%logb
@/0 ¢0(€Csz)d5] — e =T (2)

P (Z)m = €Xp [

as b | 1. Thus py € L,,—1 since the class L,,_; is closed under convergence.

Let ptg € Ly—1 N IDy,. Then, the OU type process given by Theorem 41 (i) has limit
distribution p € Lo (RY) where 1 () = i (b7*2) p, (2) with D, (z) as in (2.42). Recall that

1

(2.42) is the characteristic function of the random variable X = [¢ " e “dZ, given by
(2.7), where {Z;: t > 0} is the Lévy process with £ (Z;) = py € L.,—1. Hence, the stochastic
integrals of step functions by {Z;} belong to the class L,, 1, see (2.4). Then, by Propositions
29 and 31 and the closedness of the class L,,_; described in Lemma 8 it follows that the
distribution of X is in L,, ;. Therefore u € L,,.

logb

The fact that ® is a one-to-one and onto mapping between L,,_; N D), and L,, follows

immediately from the above argument and from the uniqueness of (Ao, v, 7,) corresponding
to pu € Lo (R?) in Theorem 41 (ii).

(ii) By (1.4), a distribution y, in ID is a-stable if and only if, for any a > 0, there is v, , € R?
such that

ay(2) = o(a'*2) + (70,4, 2)- (2.43)

We note that any stable distribution is in Dy, (see Example 25.10 of [9]). If 11, € &, and
©(po) = p, then, by (2.23)

fi(2)" = exp {a /0 h %(ecsz)ds}

—oxp [ (valat e ) + i ) ds
0
— ﬁ(al/az)eiwm@

with v, = %70,(17 which shows that u € G,,.
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Conversely, assume that 4 € &, and p = ®(uy). Then 7i(2)* = fi(a'/*2)e%a?) with some
74, and hence, by (2.23),

a/ Vo(e”*2)ds :/ VYol a*2)ds + i(v,, 2)
0 0
for all z € R Replacing z by e 'z and making change of variables, we get

o0 oo
a/ o(e™2)ds = / Yole™al/*2)ds +i{e %y, 2).
¢ ¢
Differentiation in ¢ gives
ay(e”"z) = Pyl at’2) +ice ", 2).

Letting ¢ | 0, we have a,(z) = 1y(a'/%2) +i(cy,, 2), that is, 1, € G,.
The argument above simultaneously shows that u, € &2 if and only if u € &Y.

Next, let 1y € &,. We will show (2.40) for some a > 0 and v € R?. Since (2.43) holds for
all a > 0, we have

/0 Bole2)ds = / (€724 (2) — (Yo exp( s 2)) 4.
It follows that
> —cs 1 :
| wnleeris = vl +itr.2)

with v = —lim;_, fot Yo,exp(—acs)dS; Where the existence of the limit comes from the finiteness
of [ 1g(e *2)ds and [ e *9)y(z)ds. By (2.23) this gives (2.40) with a = —.

Conversely, suppose that 1, € 1D, satisfies (2.40) with some a > 0 and ~. This means that

/0 T do(e2)ds = avo(2) +ily, 2).

Replace z by ez to obtain

| vt i eyl it 2
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Fix z for a while and denote f(t) = i{ce v, z) and g(t) = ¥y(e"z). Then we see that g is
differentiable and ¢(t) = —ag'(t) + f(t). Hence

i t/a _ tla t 1 t/a _1 t/a
9 (g(1) = g (1) + Leiogte) = Leve )

that is,

et/“g(t):/0 %es/“f(s)ds+g(0).

Now we have

t
1
Yole ™ z) = €t/a/0 —e*/%ic(e™"y, z)ds + e~ "y (2)

a
= i{iy, 2) + ey (2)

with some 7, € R%. Thus, for every b € (0, 1), there is y,, such that
bibo(2) = 1o(b%2) + i(ygp, 2) for z € RY.

Changing z, we also get

!
b

These show that ac > 1/2 and p, is =-stable by Theorem 13.15 of [S].

1
E@Do(z) = o(b7%2) —i{7b "y, 2)  for z € RY.

The argument above also shows the last assertion in (ii) hat (2.41) holds if and only if
po € 6% m

Remark 47 If i, is stable, then there are b > 0 and v € R? satisfying

—

©(p10) (2) = Tl (bz)e' .
But the converse is not true. See Wolfe [94].

Remark 48 By introducing a stronger convergence concept in ID,s and using the usual
weak convergence in Lo, the mapping ® and its inverse are continuous. See Sato and Ya-
mazato [74].
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Let us give another formulation of the relation of ® with the classes L,, . For m € N, let
®™ be the mth iteration of ®. That is, ®' = ® and, for m > 2, ®™(u) is defined with
O™ () = ©(®™*(p)) if and only if @™ !(u) is defined and in I D).

Theorem 49 Let m > 0.
(i) Let u,, € ID(RY) with triplet (Am, Vi, V,,) and logi,, = 1,,. Assume that

]/2Uog|xD"”lum(dx)<:oo. (2.44)
o[>
Then ®™+1(p,,) is definable. Let y = ®™(u,,). Then p € L,(RY) and
/000 s™ 1, (e72) | ds < o0, (2.45)
i(z) = exp /000 %¢m(6_652)d8. (2.46)
The triplet (A,v,~y) of u is expressed as
A::EE%EIAm, (2.47)
MByzgiﬂTéﬁ%@ﬂAwfqﬂf%M& B e BRY, (2.48)
v = Cm—lﬂ’ym + # /000 s™e *ds /1<|$<es TV (d) (2.49)

(ii) For any pn € Ly, (RY) there exists a unique p,, € 1D with triplet (A, Vi, Y,,) Satisfying
(2.44) such that @™ () = pu.

(i) If p,, € ID with triplet (Am,Vm,"V.,) does not satisfy (2.44), then ®™ Y (u,,) is not
definable.

Proof. Induction. When m = 0, the statements reduce to Theorem 41. Let m > 1. Assume
that the assertions are true for m — 1 in place of m. Let us show the assertions for m.

(i) We assume (2.44). Noting that x,, € 1D, write ®(u,,) = f,,_1, its triplet (A1, Vm-1,
Ym—1)s and log ii,, 1 =1, ;. Then, using (2.25), we get

1 0 Cm
/ a%mwwwﬂmg:—/l%u@/‘a%k;m Lte—sanayds
|| >2 C JRrd 0
. log([z1/2)
= —/ l/m(dl')/ (log |z| — s)™ ds
|z|>2 0

— m/|>2 [(log )™ — (log 2)m+1} v(dz) < 6.
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It follows that ®™(u,, ;) is definable and in L,, ;. Thus g = ®™"!(y,,) is definable. Re-
peated application of Theorem 46 (i) shows that p € L,,.
Let us show (2.45). Define p by

o(B) = /R (i) /0 " g (en)ds.

/ |z|?p(dx) :/I/m(dx)/ sm|efsx}2 Lfje-sq<1}ds

|z|<1 0

:/ |x|2ym(dm)/ sme_2sds—|—/ ]:C|21/m(daj)/ sme 25,
lz|<1 0 |z|>1 log ||

which is finite since leZ\xl sme ?%ds ~ const|z|2(log |z|)™ as |r| — oco. Moreover

o 1
p(dx :/ U (d / $™ 1 le—sa ds:/ log |z|)™ v, (dz),
[ et = [ o) [yt = [ o el )

which is finite by (2.44). Hence, writing

Then

1
Ynle072) = =567 (2, An2) + i€~ (3, 2)

+/ g(z,ecs:c)um(dx)—l—i/ (2, e7“2) L1 clo|<ees} Vm(d), (2.50)
Rd Rd

and estimating in the same way as in the proof of Theorem 41 (i), we obtain (2.45). Here
we have also used the estimate

o0 o0
/ smesds/ ||V, (d) :/ |x]um(dx)/ s™e " *ds < o0.
0 1< |z|<es |z|>1 log |z|

since ¢, _1(2) = [ ¢,,(e7*2)ds, we have

00 m—1
i) = e | WS—_I)!wm_xe-CSz)ds:exp | o= / Yle 2

= [ / mds

which gives (2.46). The use of Fubini theorem in the above is permitted by (2.45). Now,
calculating [~ £54p,, (7% 2)ds from (2.50), we see that p has triplet (A, v,v) described by
(2.47), (2.48), (2.49).
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We prove (iii) before (ii).
(iii) Suppose that y,,, € I.D satisfies [, _,(log |z])" v (dz) = co. Choose n € {0, 1,..., m}
such that fx‘>2 log |z|)"vm(dz) < oo and fx|>2 (log |z|)"™ v (dz) = co. Then ®"(u,,) is

definable (if n = 0, then we let ®°(u,,) = u,,)- Let 1 = ®"(p,,) and let 7 be the Lévy
measure of zi. We claim that

/ log |z|v(dx) = oc.
|z|>2

By (i) we have

(n—1)len
Hence
/ log |z|v(dx) = const/um(dx)/ s"" (log le*z|) 1je-sq|>2yds
lz|>2 0
log(|z|/2)
= const/ z/m(dx)/ s"(log |z| — s)ds = o0,
|z]>2 0
because fl all7l/2) gn=1(10g |z| — 5)ds ~ o n+1 —L—(log |z|)"** as || — oo. This shows that (1)

is not definable. Thus (1) is not deﬁnable

(ii) Let p € L,,. Apply Theorem 46 (i). There is yy € Ly,—1 N I D)o such that ®(y,) = p.
Then, there is p; € Ly,—2 N I D)o such that ®(u;) = . Continuing this, we get finally
P € L_1NIDyog = I Dy such that ®(p,,) = p,,_,. Hence p,, is in the domain of definition
of @™ and ®™(y, ) = p. It follows from (iii) that p,, satisfies (2.44). m

Remark 50 In order that u,, € ID has Lévy measure v, satisfying (2.44), it is necessary
and sufficient that

/>2(log|x\)m+1um(d:ﬁ) < 0. (2.51)

See [S] Theorem 25.3 and Proposition 25.4 for a proof.

Remark 51 The expression (2.48) of the Lévy measure of i € L,(RY) is rewritten in the
following way. Let X\, and ky,¢(r) be the spherical component and the k-function of vy,
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respectively. Then fs A (d€) f;o(log ,r)erlk,mé(,r)% < oo and
(B) = s [ ) [ e [Tt

Y omlemtl [0 ) me\") = 03 ple °rf)ds

_ ~ dr " T\ du

~omlemtt /S)‘m(d@/o km7£(7‘)7/0 <log E) 1B(U§)7

1 * du [~ r\N™ dr

T mlemt /S)‘m(df)/o 1B(U5)7/u Fem,e (1) <10g 5) —

2.4 Stationary Ornstein—Uhlenbeck type processes

Let us define stochastic integrals over infinite time parameter set. For this purpose, let
{Z;: —oco<t< oo}

be a stochastically continuous process on R¢ with stationary independent increments such
that, almost surely, Z;(w) is right continuous with left limits. Let p, = £(Z; — Zy) and

¥o(z) =logiy(2). Then
E[e’“'zyzt*ZS)] — e(t*S)d’o(z) for S S t‘ (2.52)

The distribution £(Z;) is not determined by p,. Indeed, if Y and {Z;} are independent,
then {Y + Z;} also satisfies these requirements. For ¢ty € R, {Z;,+: — 00 < t < oo} fulfills
the requirements, too.

Construction of {Z,} with Zy = 0 is as follows. Let {Z": ¢ > 0} and {Z¥: ¢t > 0} be
. d (2,200 t(2) i( zZ(2)> _ tg(—2)
independent Levy processes on R® such that Ele"*# /] = e'o*) and Ele | = et%ol=2),
Define Z;, = Z fort > 0 and Z; = Z((i)t)_ for t < 0. Let us check the condition (2.52),
while the other conditions are evidently satisfied. If s <t < 0, then
Eeile2i=2s) _ it Z((Z)t) _Z((Z) - = lim Eei® 2%) 28 )
el0
= lim Eei 258725 = ot=9)vo(2),
el0

If s <0<t, then

. 1 2
Eez(z,Zt*Zs) _ Eez(z Z( ) Z(( )S) ) (Eez zZ( ) > lim Ee —z Z(S) )
el0

— etwo 11{‘616 —S— 5)1:[}0('2) — (t S)d}O(Z)'
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Let f(s), —o0o < s < 00, be a real-valued, locally bounded, measurable function. Define, for
—00 < tg < t; < 00, the integral j:)l f(s)dZs in the same way as before. We have

Eexp <z<z /: f(s)dZS>) ~ exp /t " o (5)2)ds. (2.53)

Definition 52 If the limit in probability of ftz f(s)dZs as t — oo exists, then the limit is
denoted by ftzo f(s)dZ,. Likewise, if the limit in probability of f:l f(s)dZ, ast — —oo emists,
then the limit is denoted by ["_ f(s)dZ,.

Fix ¢ > 0. Consider the equation
t
Xt:Xt0+Zt_Zto_C/ XSdS for —OO<t0§t<OO (254)
to

Definition 53 A stochastic process {X;: —oo <t < oo} is said to be a stationary solution
of (2.54) if it is right continuous with left limits a.s. and satisfies (2.54) and, for every
to € R,

Xy, and {Z; — Zy,: t > to} are independent (2.55)

and if it is stationary in the sense that, for every s € R,
{Xiss: —oo<t<oo}i{Xt: — 00 <t < oo} (2.56)

Definition 54 A stationary solution {X;: —oo <t < oo} of (2.54) is called the stationary
Ornstein—Uhlenbeck type process (or stationary OU type process) generated by {Z;} and c,
or generated by u, and c, or generated by (Ag, vo, Yo, C)-

Theorem 55 (i) Suppose that (2.20) holds. Then, the stochastic integral ffoo e“dZs 1s
definable for each t € R. Further we can define a process {X;: — oo < t < oo} right
continuous with left limits in t a.s. such that

t
P [Xt = eCt/ eCSdZsl =1 forteR. (2.57)
This process {X;: — oo <t < oo} is a stationary solution of the equation (2.54). For each
teR, L(X;) = D(ugy), where @ is the mapping defined in the preceding section. A stationary
solution of (2.54) is unique in the sense of law.

(i1) Suppose that (2.28) holds. Then, for anyt € R, the stochastic integral ffoo e*dZ does
not exist. The equation (2.54) does not have a stationary solution.
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Proof. Let Z\) = Z,., — Z,. Then, for any s € R, {Z\”: u > 0} is a Lévy process with
E(Zf)) = 1. For any bounded measurable function f on [to, to + s], we have

to+s S
/ f(w)dz, = / f(to +u)dZ®)  a.s.
to 0

from the definition of stochastic integrals. For tq € R, let

¢
x{) = e_Ct/ e“dZ; fort > to. (2.58)

to

Then {Xt(gﬂr)sz s > 0} is the OU type process generated by p, and ¢, starting from 0, and
c <Xt(t°)> -y (Xﬂo) , (2.59)

because
to+s

Xt(;g—)s = ec(tﬁs)/

to

e“dz, :ec‘*’/ etdZ) a.s.
0

(i) We assume (2.20). The distribution p = ®(p,) satisfies (2.23). Let to < t; < t. Then

t t t1
Fexp (Z <z,/ e“dz, — / ecsts>) = Fexp <z <z,/ ecsts>>
to t to

t1 —to
= exp/ Yo(e“2)ds = exp/ Pole z)ds,
to —t1

which tends to 1 as ty,t; — —oo by (2.23). Thus, for any ¢, — —oco and fixed ¢, {f; eCSdZS}

is a Cauchy sequence in the metric of convergence in probability. Hence it is convergent in
probability. The limit does not depend on the choice of {t,}. It follows that the stochastic
integral fjoo e®dZ, exists. Denote

t
Y, = e_Ct/ e“dZ,.

Then £(Y;) = limy oo £(X) = p by (2.59). There is a modification {X,} of {¥;} with
sample functions right continuous with left limits, which follows from [S] Theorem 11.5, as
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{ ffgu esdZ — ffooo edZs: u > 0} is an additive process in law for any ¢, € R. Notice

that, for any ¢y € R, (2.55) is satisfied. We have, for ¢, € R and s > 0,

to+s
Xt0+s — ec(tQJrs)/ ecudZu — ec(t0+s)/ ecudZu +ec(t0+s)/ ecudZu

—o0 —0o0 to

=e “Xy +ecs/ etdzZ)  a.s.
0

to+s to

It follows from Proposition 37 that

Xiyrs = Xyy + 280 — ¢ / Xyypudu  for s >0, (2.60)
0

that is, (2.54) is satisfied. Let us check the stationarity (2.56). We have, for 7 =7,

s+t t .
Xt+8 _ e—c(t+s)/ ecudZu _ e—ct/ ecudZI(Ls)

—00 —00

t
4 e_Ct/ edz, = X;.
Similarly,

(Xiyaor s Xooas) % (Xoyy o, Xe ),

that is, (2.56).

Let us show the uniqueness in law of a stationary solution {X;: — oo <t < oo} of (2.54).
From stationarity, £(X;) = p does not depend on t. It follows from (2.54) that (2.60) is
satisfied. Hence, using (2.55), we see

t
Xyt =e Xy, +e / e*dZ®  t>0. (2.61)
0

by Proposition 37. Thus

t
EetXtttg) — <Eei(z,e—ctXt0)> eXp/ wo(efcz%csz)ds

0
t

= (Ee“zve*ctxt&) exp/ o(e™“2z)ds.
0
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Since Ee¥®Xtrto) = 5(2), we get

—

A() = exp / " ole2)ds = D) (2),

letting t — oo. Hence p = ®(1,). (2.55) and (2.61) show that the distribution of (X;,, X;,+¢)
is determined by p. Similarly, for any —oo < t; < -+ < ¢, < 00, the distribution of
(X4, ..., Xt,) is determined by p.

(ii)) We assume (2.28). Then, by Theorem 41 (iii) and by (2.59), £ (Xt(t(’)> is not convergent

as tgp — —oo. That is, £ < ft'; eCSdZS> is not convergent as t; — —oo. Hence ffoo e*dZ, does
not exist.

Suppose that a stationary solution {X;: — oo <t < oo} of (2.54) exists. Let £(X}) = p,
which is independent of ¢. As before, we have

¢
w(z) = <Eei<z’efctxt0>> exp/ Pole “z)ds.
0

Hence elo Yo(e™2)ds _, 7i(2) as t — oo. This contradicts the assertion (iii) of Theorem 41 on
non-existence of limit distribution. m
Theorem 55, combined with Theorem 41, gives the following result.

Corollary 56 Any stationary OU type process {X;: —oo <t < oo} has distribution L£(X})
i Lg. Conwversely, any distribution in Lg s the distribution of a stationary OU type process.

Remark 57 The same proof as that of Theorem 55 (i) gives the result that, under the
condition (2.20), [° e *dZ, exists and

L ( /0 N e_cstS> = B(u). (2.62)

e[ t ceiz)=c (e [ t ez, ) = LX), (2.63)

where {X;} is the OU type process generated by p, and c, starting from 0. Thus (2.62) is
equivalent to (2.21). But, if {Z;} is nontrivial, then X; does not converge in probability as
t — oo. The process { fot e dZs: t > 0} is an additive process; it is not identical in law with
{X:} except in the trivial case.

Note that
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Proof. Note that X; = e ¢ fot e“dZs. The first equality in (2.63) is because both have
characteristic function exp fot Po(e **z)ds. Let us prove that, if {Z;} is nontrivial, then limit
in probability of X; as t — oo does not exist. Suppose, on the contrary, that X; — Y in
probability as ¢t — oo. Then X; — X; 1 — 0 in probability, since

PlX,— X,n| > €] < P[IX: = Y| >¢/2 + P[|Xoo1 — Y| >¢/2] — 0

for any ¢ > 0. Hence Ee*Xt=Xt-1) _ 1 ast — oo. From the nontriviality there is zy € R¢
such that |fig(z0)] < 1 (see [S] Lemma 13.9). It follows that Rey(z0) < 0 since |fiy(20)| =
efevo(20) - As Ret), < 0 and 1, is continuous, it follows that fol Re (e 2p)ds < 0. We

have
t t—1
Xt . thl — ect/ ecstS + (efct . ec(tl))/ ecsts
t—1 0

and the two terms on the right are independent. Hence

eftt71 Yo (eict+cs z)ds

|Ee’i<z,Xt—Xt—1>| < ‘Eeuz,e*ct b ecsdzy)

This is a contradiction. =

Remark 58 Characterization of L,, in Theorem 49 is given a form of stochastic integrals
over [0,00). Let

Pl(t) = ((m + 1)1 )Y/ D),

Suppose that i, € Ly, (RY). Then the representation of fi(z) in (2.46) is rewritten to

A(z) = oxp / (e )t
0

p="L ( / eC”m(t)dZt) :
0

where the existence of the stochastic integral in the right-hand side is proved from (2.45).
Here {Z;: t > 0} is a Lévy process with L(Zy) = p,, satisfying (2.44) or, equivalently, (2.51).
If p,, does not satisfy (2.44), then the stochastic integral fooo e~ PmMdZ, does not exist.

This gives
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Notes

Most of this chapter follows Wolfe [94] (1982a) and Sato and Yamazato [73] (1983), [74]
(1984), but some of detailed treatment of stochastic integrals are new. A study of stochastic
integrals based on additive processes is found in Rajput and Rosinski [54] (1989). In the case
of bounded p-variation, a treatment of the integral equation (2.16) by pathwise integrals is
done by Mikosch and Norvaisa [48] (2000). Early discussion of OU type processes is a paper
of Doob [14] (1942). Construction of OU type processes without using stochastic integrals
is given in Section 17 of [S].

The representation (2.25) of the Lévy measures of selfdecomposable distributions was dis-
covered by Urbanik [83] (1969), although he did not recognize the connection to limit dis-
tributions of OU type processes. When d = 1, the expression of the Lévy measures of
distributions of L,, in Remark 51 is essentially the same as those given by Urbanik [85]
(1972b), [86] (1973) and Sato [57] (1980).

The relation of the class of selfdecomposable distributions to OU type processes and stochas-
tic integrals over an infinite time interval was recognized by Wolfe, Jurek—Vervaat, Sato—
Yamazato, and Gravereaux almost at the same time. Sato and Yamazato started from the
integro-differential equation for densities of selfdecomposable distributions on R proved in
[72] (1978), found its meaning related to OU type processes, and made extension to higher
dimensions. Sato reported those results in a symposium at Research Institute for Math-
ematical Sciences, Kyoto University, in July 1981 on the occasion of H.Kesten’s visit to
Kyoto, and also in his invited talk at the Tenth Conference on Stochastic Processes and
Their Applications, held at Montreal in August 1981. There Sato met Wolfe and Vervaat.
Wolfe [94] (1982a) seems to have been the earliest in finding the connection of Ly to limit
distributions of OU type processes; it was submitted in October 1979. The representation of
a selfdecomposable distribution as the distribution of a stochastic integral on [0, c0) in (2.62)
of Remark 57 is by Wolfe [95] (1982b) and Jurek and Vervaat [27] (1983). For more accounts
see [74] (1984). Gravereaux [15] (1982) also got similar results. Most of these results were
obtained in the form of operator generalization, which will be touched upon in Section 5.2.

In the case where {Z,} is an increasing Lévy process on R, the limit theorem in Theorem 41
was discovered by Cinlar and Pinsky [13] (1971) in storage theory.

Theorem 46 was given by [27] (1983) and [73] (1983) for (i) on L,, and by [94] (1982a)
and [27] (1983) for (ii) on & and &°. Theorem 49 on L,, was due to Jurek [25] (1983b)
in a different formulation. The integral representation of L,, in Remark 58 is given in [25]
(1983b). Theorem 55 on stationary OU type processes was given by [73] (1983).



56 Chapter 2. Classes L,, and Ornstein—Uhlenbeck type processes

Recurrence and transience of OU type processes

OU type processes on R satisfying (2.20) are recurrent. But there are recurrent OU type
processes which do not satisfy (2.20). Also there are transient OU type processes. These
have been shown in Sato and Yamazato [74] (1984) and a criterion of recurrence/transience
is given by Shiga [78] (1990) for d = 1 and by Sato, Watanabe, and Yamazato [69] (1994)
for d > 2.



Chapter 3

Classes L,, and selfsimilar additive
processes

Selfsimilar processes on R? are those stochastic processes whose finite dimensional distribu-
tions are invariant under change of time scale, in the sense that any change of time scale has
the same effect as some change of spatial scale. This property is called selfsimilarity and it
depends on a positive number H called exponent. These processes are called H-selfsimilar
processes. Lévy processes which are selfsimilar constitute an important class, called strictly
stable processes. In this case the exponent H is restricted to H = 1/a where 0 < o < 2.

In this chapter selfsimilar processes which are additive are studied. Section 3.1 gives their
characterization in relation to the class Lg. Section 3.2 discusses connections to the classes
L,,.

3.1 Characterization by class L

It will be shown that, for any selfsimilar additive process {X;} on R? the distribution of
X, is selfdecomposable for every ¢, that is, L(X;) € Lo (Rd). Conversely, if p belongs to the
class Ly (]Rd) , then for every H > 0, there is a unique, in law, H-selfsimilar additive process
{X;} on R? with £ (X;) = u. As a consequence, there are many additive processes which
are selfsimilar. In this set-up, {X;} is a Lévy process if and only if u is strictly a-stable.

Definition 59 A stochastic process {X;: t > 0} on R? is selfsimilar if, for any a > 0, there
is b > 0 such that {Xq: t > 0} < {bX:: t > 0}.

57
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Theorem 60 Let {X;:t > 0} be a selfsimilar, stochastically continuous, nonzero process
on R with Xo = 0 a.s. Then b in the definition above is uniquely determined by a and there
is H > 0 such that, for any a >0, b = a®l.

See Theorem 13.11 and Remark 13.13 of [S].

Definition 61 The number H in Theorem 60 is called the exponent of the selfsimilar process
{Xi}. A nonzero selfsimilar process with exponent H is called H-selfsimilar.

We study selfsimilar additive processes on RY. Recall that, if {X;: ¢ > 0} is an additive
process, then £(X;) € ID for any ¢t > 0. This was proved by Lévy and Khintchine. See
Theorem 9.1 of [S].

First, let us consider time change by powers of ¢.

Proposition 62 If {X;} is an H-selfsimilar additive process on R%, then, for any n > 0,
{ X} is an nH-selfsimilar additive process.

Proof. For any a > 0, {X @y} = {Xanm} L {a™ X}, Thus { X} is an nH-selfsimilar
process. The additivity of {X;»} follows from that of {X;}. =

This shows that exponents are not important for selfsimilar additive processes, because we
can freely change the exponent H.

Definition 63 A process {X;: t > 0} is a strictly stable process on R if it is a selfsimilar
Lévy process. A process {X;:t > 0} is a stable process on R® if it is a Lévy process and, for

any a > 0, there are b > 0 and ¢ € R? such that {Xy: t > 0} 2 {bX; +te: t > 0}.

Proposition 64 If {X,} is a nontrivial stable process, then b and ¢ are uniquely determined
by a, and there is 0 < o < 2 such that b = a** for all a > 0. If {X,;} is a nonzero strictly
stable process, then b is uniquely determined by a, and there is 0 < a < 2 such that b = a/®
for all a > 0 (hence it is (1/a)-selfsimilar).

See Theorem 13.15 and Definition 13.16 of [S].

Definition 65 The « in Proposition 64 is called the index of the (strictly) stable process.
The process is called (strictly) a-stable.
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Remark 66 If {X;} is an a-stable process, then, for any t > 0, L(X;) is in &,, that is,
an a-stable distribution in Definition 9. Conwversely, if u € &, and if p is nontrivial, then
for any to > 0 there exists an a-stable process {X;} such that L(Xy,) = p, since the Lévy
process { X} with £(X1) = M satisfies Xo < a/* X, + ¢, where c is the vector in (1.4).
If {X;} is a strictly a-stable process, then, for any t > 0, L£(X;) is in &2, that is, a strictly
a-stable distribution in Definition 9. If u € &% and if u # 8o, then for any ty > 0 there is a
strictly a-stable process { X} such that L(Xy,) = .

In the case of strictly a-stable processes, the index « or the exponent of selfsimilarity H =
1/« is very important, as a Lévy process turns into a non-Lévy process by nonlinear time
change from t to t".

The following theorem establishes the relation between selfsimilar additive processes and
selfdecomposable distributions.

Theorem 67 Fix H > 0.

(i) If {X;: t > 0} is an H-selfsimilar additive process on RY, then L(X;) € Lo(R?) for all
t>0.

(ii) For any p € Lo(R?) satisfying p # o, there is a unique (in law) H-selfsimilar additive
process {X;} on R? such that L(X;) = p.

Proof. (i) Let j, and p,, be the distributions of X; and X; — X, respectively. We have

~

:ut (Z) = ﬁs (Z) :as,t (Z)
=71 (/)" 2) s (2). (3.1)
by the independent increments and by X, = X5/ < (s/t)2X;. Given b > 1 choose

0 < s < t such that b = (s/t)"". Then the identity above shows that pu, € Ly for t > 0.
Note that Xy = 0 a.s. since X 4 a® X, for all @ > 0. Thus p, € Ly is evident.

(ii) By definition of selfdecomposability,
) =7 (5712) 7y (2

for every b > 1. Recall that 1i(z) # 0 and that the probability measure p, is uniquely
determined. See Lemma 3. Next define y, and p,, by py = do,

u,(z) =n (tHz) for every t > 0,
Py (2) = /p\(t/s)y (tHz) for every 0 < s < t,
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and pig, = p, for £ > 0. We have p, = pg * p,, for every 0 < s <, since

a(t2) =1 (s"2) Doy (¢72)
for every 0 < s < t. Therefore i ,(2) = 1i,(2) /115(2). It follows that, for 0 <r < s <,

—~ ~ _ﬁs(z>ﬁt(z) _ﬁt(z> — 7 (2
:ur,s (’Z) :U’s,t (Z) - 'ar (Z) ﬁs (Z) - //Ir (Z) - :U’r,t ( ) :

Thus p,., = p, ¢ * pig, for every 0 < r < s < t. Now Kolmogorov’s extension theorem applies
and we can construct a process {X;: ¢t > 0} such that, for 0 < tg < ¢; < --- < ¢, and
By,..., B, € B(RY),

P[Xy, € By,..., X, € By :/Mto(diﬂo)lBo(ﬂCo)/Mto,tl(dzl)lBl(ﬂfo"’1’1)/"'
[ b )L 0 4 o+ 0y )

It starts at 0 a.s., it has independent increments, and it is stochastically continuous because
psy — 60 as s T tort | s. Therefore it is an additive process in law. By choosing a
modification, it is an additive process ([S] Theorem 11.5).

The distribution of X7 is u. We have from the definition of yu, that

Xt 4 a X, for every t > 0.

This implies that {X,;} and {a” X;} have a common system of finite-dimensional distribu-
tions, since both are additive processes. That is, { X;} is selfsimilar with exponent H. Since

X L x 1, the distribution of X; is determined by p and H. Hence the process { X;} with
the properties required is unique up to equivalence in law. m

Remark 68 The process {X;} in Theorem 67 (ii) is a Lévy process if and only if p is strictly
a-stable and H = 1/a. This follows from Definition 63 and Remark 66.

Remark 69 Fiz H > 0. Given p € Lo(RY), p # 6o, let {X;} be the H-selfsimilar additive
process with L(X1) = p in_Theorem 67 (ii). Let {Y;} be the Lévy process with L(Y1) = p.
Let Xy = Xpm. Then {X;} and {Y;} have the following relation.

(i) If  is strictly o-stable, then {X,} < {Y;}. In particular, {X;} < {Y;} ifa=1/H.



3.1. Characterization by class L 61

(ii) Let p be a-stable, and not strictly a-stable. Then {X;} and {Y;} are not identical in
law. If a # 1, then

(X} £ Vit (¢ = 1) 7}, (32)
where T # 0, and T is the drift if 0 < a < 1 and the center if 1 < a < 2. If a =1, then
{X,} = {Yt + (tlogt) c/ EX (d{)} ) (3.3)
s

where ¢ and X are those in the expression (1.19) of the Lévy measure v of u, and fs EN(dE) #
0.

Proof. By Proposition 62, {X,} is (1/a)-selfsimilar. Let y, = £(X;). Then y, = p and
fiy(z) = it/ *z).
(i) This is Remark 68.

(ii) Let aw # 1. Then, by [S] Theorems 14.1, 14.2, and 14.7, and Remark 14.6, fi(z) =
p(2)e"™2) 7 £ 0, and p is strictly a-stable. Hence

ﬁt(’z) — ’ﬁ(tl/az)eitl/a<r,z> — ﬁ(Z)teitl/a<T’z> _ ﬁ(z)tei(tl/ait)@_’d,
that is, X, £ Y, + (t* — )T,
Let a = 1. Then,
i(z) = exp {c/ )\(dg)/ (ezr<§7z> —1—ir{&, 2)10.(r)) 7‘_2 + (v, z}]
S 0

with [ EAN(dE) # 0 ([S] Theorem 14.7). Hence

7,(2) = i(t2) = exp [c [S A(de) /0 h (65 — 1~ ulg, 210, (%)) f—;‘ +it<7,z>] |

t

Since

1 (E) _ Lo,y (u) — 1(t71](u) fort <1
A Loy (u) + 1agw) fort>1,

we obtain
i(2) = i(2)' exp [z'(t log ) < / 5A<d§>,z>} |

that is, X; = Y; + (tlogt)c [¢EN(dE). Now, we get (3.2) for a # 1 and (3.3) for a = 1, since
both sides are additive processes. m
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3.2 Joint distributions and classes L,,

When {X;} is a selfsimilar additive process, the distribution of X; is selfdecomposable. But
its joint distributions (finite-dimensional distributions) are not always selfdecomposable. Let
us give conditions for joint distributions of {X;} to be selfdecomposable and, furthermore,
conditions for them to belong to classes L,,.

Theorem 70 Given p € Lo(R?), p # 8y, and H > 0, let {X;} be the H-selfsimilar additive
process with L(X1) = p. Let m € {1,2,...,00}. Then the following siz conditions are
equivalent.

(a) p € L (R7).

(b) L(X;) € Ly,(R?) for all t > 0.

(C) L ((th)k:LQ) € Lm_l(R2d) fOT’ all t1,to > 0.

(d) L(c1 Xy, + caXy,) € Ly 1(R?) for all t1,ts > 0 and ¢y, ¢y € R.

(e) L ((Xt,)i1<k<n) € Lin_1(R™) for alln € N and ty,...,t, > 0.

(f) L(c1 Xy, +- -+ +cnXy,) € Lin1(RY) for allm €N, ty,...,t, >0, and cy,...,c, € R.

We understand m — 1 = oo if m = 0.

Proof. (a) and (b) are equivalent, because £ (X;) = £ (t#X;) for t > 0 and £ (Xg) = &o.

Let 0 < s <t and let y, = L(X;) and py, = L(X; — X,). Then (3.1) shows that p, € Ly, if

and only if pug, € Ly, for 0 < s < t.

Now let us prove that (b)=-(e)=-(f)=(d)=-(b) and that (e)=(c)=(d).

(b)=(e): Xy — Xy € Ly g forall 0 < s < t. Given 0 =ty < t; < -+ < ¢, we

see that X;, — Xi,_,, k = 1,...,n, are independent and hence, by Lemma 71 (ii) below,

L ((th Xt 1)1<k<n) € Ly—1. Since (Xy, )i1<k<n is a linear image of (X, — Xy, )1<k<n,
L ((Xt,)1<k<n) is in Ly,,—; by Lemma 71 (i )

(e)=(f): Use Lemma 71 (i), since ¢; Xy, + -+ + ¢, Xy, is a linear image of (X, )1<k<n-

(f)=(d): A special case with n = 2.

(d)=(b): For 0 < s <t, p,, is in Ly,_1, since X; — X is a special case of ¢; Xy, + c2.Xy,.

(e)=(c): A special case.

(c)=>(d): Use Lemma 71 (i) as in the proof that (e)=(f). m

Lemma 71 Let m € {0,1,...,00}.

(i) Let X be a random variable on R and T a linear transformation from R% into R%. [f
L(X) € Lyp(RY), then L(TX) € Lm(Rd2).

(it) Let dy,...,d, e Nandd=d; +---+d,. Let X; be a random variable on R% for each
g If Xq,..., X are independent and if L(X;) € Ly,(R%) for each j, then L((X;)1<j<n) €
L, (RY).
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Proof. (i) Let Y =TX, u = L(X), and py = L(Y). Suppose that u € Ly. For any b > 1,
1(z) = u(b™12)p,(2) with some p,. Let T" be the transpose of T. Since fiy(z) = fu(1"z), we
have fiy (2) = Ty (b7 2)p,(T"2). Hence py € Lo. This proves (i) for m = 0. By induction we
can prove it for m = 1,2.... The validity for m = oo follows from this.

(i) Let X = (Xj)1<j<n, pj = L£(X;), and p = L(X). Assume that X;,..., X, are indepen-
dent and p; € Lo for each j. Then fi;(z) = 11;(b"'2)p;,(2), z € R%, with some p;,. For
z = (2j)1<j<a With z; € RY,

Hﬁ %) =H (07 2)P;4(25) = AT 2)By(2),

where p,(2) = [[j_, pj7b(zj). Hence (11) is true for m = 0. It is true for m = 1,2... by
induction. Thus (ii) is true also for m = oco. =

Remark 72 The situation is quite different for Lévy processes. Let m € {0,1,...,00}. If
{Z;} is a Lévy process on R with L(Z,) € L,(R?), then, for everyn € N and t,...,t, >0,

L((Zy)12h<n) € Lin(R™).

Proof. Assume £(Z;) € L,. It follows from Lemma 8 (iv) that £(Z;) € L,, for all t > 0.
Let 0 =ty <t; <--- <t, Then L(Z, — Z;,_,) = L(Zt,—+,_,) € Lm. By Lemma 71 (i),
L ((Zy, — Zt,_,)1<k<n) € L. Hence, by Lemma 71 (i), £ ((Zy,)1<k<n) € L. ®

Notes

This section is based on on Sato [61] (1991) and Maejima, Sato, and Watanabe [43] (2000Db).
See also Section 16 of [S].

Theorem 67 was proved by Sato [61] (1991). Theorem 70 was given by Maejima, Sato, and
Watanabe [43] (2000).

Properties of selfsimilar additive processes

Study of selfsimilar additive processes is an unexploited area. So far there are few papers in
two directions. One is on path properties in one-dimensional increasing case by Watanabe
[89] (1996). The other is on recurrence and transience by Sato and Yamamuro [70] (1998),
[71] (2000) and Yamamuro [96] (2000a), [97] (2000b). Interesting sufficient conditions for
recurrence or for transience have been discovered, but no necessary and sufficient condition
has been found yet.

Properties of L,, related to degenerate linear transformations
The following results are interesting when compared with Lemma 71 (i).
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Proposition 73 Let d > 2. There is a distribution u on R% having the following two
properties.

(a) i € ID(R?) but pu & Lo(R?).

(b) If X is a random variable with distribution p, then, for any linear transformation T from
R? to RY with 1 < d' < d, L(TX) is in Lo(R?).

This is by Sato [62] (1998); explicit construction of y using “signed Lévy measure" is done.
Generalization to L, by Maejima, Suzuki, and Tamura [44] (1999) is as follows.

Proposition 74 Let d > 2. Let m € {1,2,...} (m # o0). Then there is a distribution u
on R? having the following properties.

(a) € Lin-1(R?) but p & Lin(R7).

(b) If X is a random variable with £L(X) = u, then, for any linear transformation T from
R? to RY with 1 < d' < d, L(TX) is in L, (RY).



Chapter 4

Multivariate subordination

Subordination consists of transforming a stochastic process {X;} to another one through
random time change by an increasing Lévy process {Z;}, called a subordinator, where { X}
and {Z;} are assumed to be independent. The process {Y;} obtained is said to be subordinate
to {X;}. Subordination has been an extensively studied area recently.

Subordination of a Lévy process on R? is studied in Chapter 6 of [S]. It is well known that
in this case subordination provides a Lévy process; it means introducing a new Lévy process
{Y;} defined by the composition as Y (t) = X (Z (t)). In Section 4.1 we recall the Lévy—
Khintchine representation of characteristic functions of subordinators and the expression of
the generating triplet of {Y;} in terms of those of {X;}and{Z;}. Further, characterization
of Lévy processes on a proper cone K is given. They are called K-valued subordinators.

In Section 4.2, the concept of Lévy processes is generalized by replacing the time parameter
set [0, 00) by a proper cone K in RY. Thus a K-parameter Lévy process {X,: s € K} on R?
is defined to be a stochastic process such that it has independent increments X, — X, -1, 7 =
1,...,n,when s’ —s’~1 € K, j =1,...,n, and that it has stationary increment X ;> — X 4
X2_g when s? — st € K, with initial condition Xy, = 0 a.s. Certain continuity conditions
are added in the definition. The concept of subordination is extended to substitution of s
by a K-valued subordinator {Z;}. It is proved that Y (t) = X (Z (t)) is a Lévy process.

The positive orthant Rﬂ\: is a proper cone. A deeper study in the case K = ]Rf is made
in Section 4.3. Joint distributions of {X,: s € K} are examined and the relations of the
generating triplets involved in subordination are clarified.

The concepts discussed in this chapter were introduced by the recent work of Barndorff-
Nielsen, Pedersen and Sato [4] (2001) in the case K = RY.

65
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4.1 Subordinators and subordination

Basic results on subordination are presented here but their proofs are omitted (they can
be found in the book [S]). From now on an increasing Lévy process {Z;: t > 0} on R is
called a subordinator. Further, in this section, we consider K-valued subordinators, that is,
K-valued (or K-increasing) Lévy processes.

Theorem 75 A Lévy process {Z;: t > 0} on R with generating triplet (Az,vz,7v,) is a
subordinator if and only if

Az =0, va((—o0.0) =0, |

xvz(dr) < oo, and vy, —/ xvz(dx) > 0, (4.1)
(0,1]

(0,1]

where v, — f(0,1] rvz(dx) = 7Y, the drift of {Z;}. For any w € C with Rew <0,

Elev?t) = W) (4.2)

U(w) =~y%w + /(0 )(ews — Dvz(ds). (4.3)

For a proof see [S] Theorem 21.5. Notice that (4.2)—(4.3) represent characteristic function if
w =1z, z € R, and Laplace transform if w = —u, u > 0.

Theorem 76 Let {Z;: t > 0} be a subordinator with Lévy measure vy and drift 4%. Let
{X;: t > 0} be a Lévy process on R? with generating triplet (Ax,vx,vx) and p = L(X;).
Assume that {Z;} and {X;} are independent. Define Y; = Xz,. Then {Y;: t > 0} is a Lévy
process on R* and

FeitaY) — pt¥(logh(z)) (4.4)

The generating triplet (Ay,vy,vy) of {Yi} is as follows:

Ay = ’Y%AX; (4~5>

vy (B) = /( W Bads) +ofx(B) for B BRI (o)), (4.6)
y = vz (ds xu’(dx oVx- 4.7

y /(Om) ( >/|mu< ) £ 4% (4.7)

If % = 0 and f(o 1 s'2v,(ds) < oo, then Ay = 0, f\w|§1 |z|vy (dx) < oo, and the drift of
{Y:} is zero.
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This is Theorem 30.1 of [S]. The procedure in Theorem 76 of getting {Y;} from {Z;} and
{X.} is called (Bochner’s) subordination. We say that {Y;} is subordinate to {X;} by {Z;}.
Sometimes we call {X;} subordinand and {Y;} subordinated.

In the proof of Theorem 76 the following fact is essential.

Lemma 77 Let {X;} be a Lévy process on R:. Then there are constants C(g), Cy, Cy, Cs
such that

Pl|Xi| > e] < C(e)t  fore >0,
B[ X% ]X,] < 1] < Cut,

|E[X; | X | < 1] < Cot,

E[IX]; [ X:] < 1] < Cat?/2.

This is Lemma 30.3 of [S].

Example 78 Let {X;} be Brownian motion on R* and {Z;} a strictly a-stable subordinator,
0 < a < 1. Then {Y;} is a rotation invariant 2a-stable process.

Indeed, by Theorem 75 and Remark 23, a nontrivial a-stable subordinator {Z,;} has charac-
teristic function

Ee'®%) — exp [cl / (e — a1z + ifyoz]
(0,00)
with 0 < a <1, v, > 0 and ¢; > 0. Or, equivalently, we can write
Ee'®20) = exp [—c Kl (1 — i tan (W—; sgn (z))) + i’yoz}

with ¢ = ¢;a™'T' (1 — @) cos (ma/2) > 0. Thus an a-stable process on R with parameter
(cv, B,7,¢) of Definition 14.16 of [S] is a subordinator if and only if 0 < a < 1, # = 1,
T =7 > 0. The function ¥(w) in (4.3) for w = —u < 0 is given by

U(—u) = —cu® — you

with ¢ = c;a™'T' (1 — ) ([S] Example 24.12). {Z;} is a nontrivial strictly a-stable subordi-
nator if and only if, in addition, v, = 0.
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/0

Now let {Z;} be a nontrivial strictly a-stable subordinator. Then ¥ (—u) = —cu®.
logi(z) = —(1/2)|2[*, we get

From

: t
Ee'*Y0) — exp l—z—ac' |z|2a}

by (4.4). Hence, {Y;} is a rotation invariant 2a-stable process. See [S], Theorem 14.14, for
a characterization of a rotation invariant stable distribution.

Example 79 Let {X;} be a Lévy process on Re. Let {Z;} be T'-process with parameter q > 0,
that is, L(Zy) is exponential distribution with parameter q. Then L(Y1) = (1/q)V?, where
V4 is the g-potential measure of {X;}. For anyt,

Eei(z,Yt) _ et[f log(lfq_llogﬁ(z))] _ (1 . q—l 10g'a (Z))it, = Rd.

In particular, if d = 1 and {X;} is a Poisson process with parameter ¢ > 0, then, for each
t > 0, Y; has negative binomial distribution with parameters t and q/ (¢ + q).
Ifd=1 and {X,} is a symmetric a-stable process with Ee'**t = ¢~'2" 0 < o < 2, then

Be™ = (1+¢7'2|") ", z€R
L(Y1) is called Linnik distribution or geometric stable distribution.

Indeed, we have that

—qx

d:cz—log(l—l—g), u > 0,
x

q

see Example 25. The definition of subordination, Y; = X ,, gives

P(Y, € B) = Fq(t) /0 P(X, € B) s e %ds.

Hence L (Y1) = ¢!V,
If {X;} is a Poisson process on R with parameter ¢, then Ee=%Xt = (e ™"=1) and
Fe = ¢ tls(l= e ) — gt (1 (1-p)e) ™, w0,

with p = q/(c + q).
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Definition 80 A subset K of RY is a cone if it is nonempty, closed, convex, and K # {0}
and if s € K and a > 0 imply as € K. K 1is a proper cone if it is a cone and if no straight
line through 0 is contained in K.

Assume, in the following, that K is a proper cone in RY. Then it determines a partial order.

Definition 81 Write s' <y s* if s> —s' € K. A sequence {s"},-12... C RY is K-increasing
if s" <y s"tt for each n; K-decreasing if s"*! <y s" for each n. A mapping f from [0, o)
into RY is K-increasing if f(t1) <i f(t2) for t; < ty; K-decreasing if f(t2) <x f(t1) for
t1 < 1s.

Lemma 82 A proper cone K has the following properties.

(i) If s' € K and s* € K, then s' + s* € K.

(ii) K does not contain any straight line.

(iii) There is an (N — 1)-dimensional linear subspace H of RY such that, for any s € K,
(s + H)N K is a bounded set.

(iv) If {s"}n=12,.. is a K-decreasing sequence in K, then it is convergent.

Proof (incomplete). (i) Notice that s' + s* = 2(3s + 35?).

(ii) Suppose that a straight line {s® + as': a € R}, s* # 0, is contained in K. Then
K 5 (" + ns') — s'. Hence s' € K. Similarly —s' € K, since K 3 (s — ns') — —s'.
Hence K contains the straight line {as': a € R}, contradicting that K is a proper cone.
(iii) Let us admit the fact that there is an (N — 1)-dimensional linear subspace H of RY
such that K N H = {0} (this fact is evident if N =1 or 2 or if K = RY; in general case,
books in convex analysis (e.g. Rockafellar [55]) will be helpful in giving a proof). We can
choose v # 0 such that H = {u: (u,y) =0} and K \ {0} C {u: (u,y) > 0}. We claim that
(s + H) N K is bounded for any s € K. Suppose that there are s € (s + H) N K with
|s"| — oco. Then, (s",7) > 0 and (s" — s,7) = 0. A subsequence of |s"|7's" tends to some
point u € K with |u| = 1. >From (|s"|7's" — |s"|7's,7) = 0 we have (u,v) = 0, which
contradicts that K N H = {0}.

(iv) We use H and +y in the proof of (iii). Let {s"},=12.. be a K-decreasing sequence in K.
Let K1 = {u: u € K and (u—s',v) <0}. Then K] is bounded. Indeed, if there are u™ € K;
with |u"| — oo, then a limit point v of |u"|~!u" satisfies |[v| = 1, v € K, and (v,v) < 0,
which is absurd. Now let us show that {s"} is bounded. If |s"| — oo, then |s' + s"| — oo,
|st — 8" — oo, and s' + s",s' — s" € K, and hence, for all large n, s' + s” ¢ K, and
s' — s" € Ky, which means that (s”,7) > 0 and (—s",7) > 0, a contradiction. Similarly,
if a subsequence {s"®} of {s"} satisfies |s"(®)| — oo, we have a contradiction. Hence {s"}
is bounded. If two subsequences {s"®} and {s™®} tend to u and v, respectively, then
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v—u € K since s™) — s"*) ¢ K for n(k) > m(l), and similarly u — v € K, which shows
u = v by the properness of the cone K. Therefore {s"} is convergent.

Now let us extend Theorem 75 to higher dimensions.

Theorem 83 Let {Z;: t > 0} be a Lévy process on RN with generating triplet (A,v,7).
Then the following three conditions are equivalent.

(a) For any firedt >0, Z, € K a.s.

(b) Almost surely, Z;(w) is K-increasing in t.

(¢) The generating triplet satisfies

A=0, V(RN\K)zo,/

|lz|<1

|z| v(dz) < o0, and v — / zv(dr) € K, (4.8)

|z|<1

where v — f|w|§1 zv(dx) =1°, the drift of {Z;}.

Proof. First, let us check the equivalence of (a) and (b). If (b) holds, then 7, = Z,— Z € K
a.s. and (a) holds. If (a) holds, then, for 0 < s <t, P[Z;, — Z; € K| = P[Z;_s € K] =1,
hence

P|Z,— Zs; € K for all s,tin QN [0,00) with s <t] =1,

and thus (b) holds by right continuity of sample functions and by closedness of K.

Let us show that (c) implies (a). Assume (c). By the Lévy—Ito decomposition of sample
functions in Theorem 19.3 of [9],

Zi(w) = lim zJ(d(s,x),w) +t7° a.s.,
"0 (0,4 x{|2[>1/n}

where, for B € B ((0,00) x (R¥\ {0})), J(B,w) is defined to be the number of s such that
(s, Zs(w) — Zs—(w)) € B, and J(B) is a Poisson random measure with intensity measure
being the product of Lebesgue measure on (0,00) with v. Here we have used A = 0 and
Jiaj<1 [2lV(dz) < oo 1t follows from v(RNV\ K) = 0 that

E/ J(d(s,2)) = to({|z] > 1/n} \ K) = 0
0,¢]x ({|z|>1/n}\K)

and hence f(o x{le|>1/n} zJ(d(s,x),w) is the sum of a finite number of points in K. This,

combined with 4° € K and with (i) of Lemma 82 and closedness of K, shows that 7, € K
a.s.
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Conversely, assume (b) and let us show (c). We use a part of the general Lévy-It6 decom-
position. Since all jumps Z; — Z,_ are in K, we have

V(RY\ K) = E [J ((0,1] x (B \ K))] =0,

We deal with w such that Z;(w) is K-increasing in ¢ and Zy(w) = 0, and we omit w. If
0<s<t then Z,_ — Z; =lim, g Z;_. — Zs € K. Hence, if 0 < s; < --- < s, <t, then

n

Zt - Z(Zsk - Zsk*) = Zt - an + Z(Zsk* - Zskfl) + ZSl € K.
k=2

k=1

(n) _
Let Zt = f(07t]><{|:c|>1/n}

follows that Z, — Z™ € K and that

xJ(d(s,z)). It is the sum of jumps with size > 1/n up to time t. It

(Z — 2) = (Zy — 2™y = 20D — 70 e K,

that is, Z, — Z™ is a K-increasing sequence in K. Hence, by (iv) of Lemma 82, Z, — Z™ is
convergent. Define Z} = lim, ..o Z\"” and Z2 = Z, — Z}. We see that Z} and Z? take values
in K. We claim that

"t = / zv(dx) is convergent as n — oo. (4.9)
1/n<|z|<1

Using Proposition 19.5 of [S], we have

Eel=Z") = exp [t/ (ei=®) — 1)I/(d.%')}
|z|>1/n

= exp [t (/l/n<x|§1(ei<z"”> —1—i(z,z))v(dx)
—l—/lgwl(e“""””> — v (dx) +z'/1/n<|x|<1(z,x>1/(dx))] )

(=2") _, Beit»2) and

Asn — oo, Fe

exp [t /1 /n<xl<1<ei<z’w> 4 —i(z,x))y(dx)] s exp [t / |<1(ei<z’w> 9 —i(z,:c>)1/(dx)1 |
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both uniformly in z in any compact set. Hence exp [it I, In<la] Sl(z,x}u(dm)] is conver-
gent uniformly in z in any compact set. That is, d,» is convergent and, equivalently,
(4.9). The meaning of (4.9) is that, componentwise, [ Jn<le|<1 z;v(dr) is convergent for
j=1,...,N. Starting from Z™" = f(o,t]x{|z\>1/n,szo} xJ(d(s,x)), we can see, in the same
way, f{l/n<|w‘§1’mj20} z;v(dx) is convergent as n — oo. Hence f{l/n<|w|§1’xj<0} z;v(dr) is also
convergent. It follows that fl/n<|z|§1 |z;|v(dx) is convergent. Hence f\x\gl |z|v(dr) < oo.

We can now apply Theorem 19.3 of [S] and obtain that Z? is a Lévy process with triplet
(A,0,~4%). We know that Z? € K a.s. If A has rank m > 0, then, for ¢ > 0, the support
of £L(Z}) is an m-dimensional affine subspace of R, which contradicts (ii) of Lemma 82.
Hence A = 0. Tt follows that Z? = t7° and hence 7° € K. Thus all assertions in (c) are
proved. m

Definition 84 We call {Z;: t > 0} a K-increasing Lévy process, or K-valued Lévy process,
or K-valued subordinator, if it satisfies the conditions in Theorem 83.

Example 85 RY = [0,00)" is a proper cone in RY. An RY-increasing Lévy process is
sometimes called an N -variate subordinator.

For any w = (w;)1<j<y and v = (v;)1<j<ny in CV, we define (w,v) = Z;VZI wjv;. This is not

the Hermitian inner product.
Remark 86 Let {Z;: t > 0} be a K-valued subordinator. Then we have
Elefw2] = W) (4.10)

with

U(w) = (°, w) + / (el) — 1)u(ds) (4.11)
K

for any w € CV satisfying Re (w,s) < 0 for all s € K. If Re{w,s) <0 for s € K, then

}e<w’s>} = efews) < 1 and both sides of (4.10) are definable. The equality is a special case of

Theorem 25.17 of [S].

Example 87 Let {B, : t > 0} be a negative binomial subordinator with parameter 0 < p <
1, that is, fort >0,

pier a1~

n+t—1
n

)(l—p)”, n=0,1,....
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For each j = 1,...,N let {X;(t): t > 0} be a Lévy process on R with L£L(X;(t)) being I'-
distribution with parameters Xt and o (A >0 and o > 0 do not depend on j):

Xt

PIX;(t) € B] = /Bm(o )%

Assume that {B; }, {X;(t)},...,{Xn(t)} are independent. Define

M lem o dy, B € B(R).

Y = (Y(t)1<jen = (X;(t + A By,))1<j<n-

Then {Y;} is an N-variate subordinator whose components are not independent. Each com-
ponent {Y;(t)} is a Lévy process with L(Y;(t)) being I'-distribution with parameters X\t and
pa. Indeed,

PY;(t) <u]l=P[X;(t+ ) 'By) < ul
CY/\(H)ﬁln)

> [ 1 \—1
— At+A""n)—1 —av g afT + 1 —p)"
Z/O T+ A 1)) cap < n >< P)

n=0
u

VIPVIRUNIRVR - a” n L+ At —1
/0 <a v e Y ;F(At—i—n)v( P) ( . v

(n+>\t—1) _ In+Xt)
n T onlT(\t)

and, since we get

P[Y;(t) <u]= /Ou %v”‘leﬂpvdv.

If N = 2, then, for each t > 0, we can find the distribution of Y; has density
Cilyryn) NVl (204 (1- p)y1y2)

on R%, where C; is a positive constant depending on t.

4.2 Subordination of cone-parameter Lévy processes

Proper cones are multidimensional analogues of [0,00). We extend, in a natural way, the
concept of a Lévy process to a process with parameter set being a proper cone.
Let K be a proper cone in RV,



74 Chapter 4. Multivariate subordination

Definition 88 Let f be a mapping from K into R,

(1) Let s° € K. We say that f is K-right continuous at s°, if, for every K-decreasing
sequence {s" =12 in K with |s" — s — 0, we have |f(s") — f(s°)] — 0. We say that f
is K -right continuous if f is K-right continuous at every s° € K.

(ii) Let s € K\ {0}. We say that f has K-left limit at s°, if, for every K-increasing
sequence {s"}n—19.. in K\ {s°} satisfying |s™ — s°| — 0, lim,, o, f(s") exists in RY. We say
f has K-left limits if it has K-left limit at every s° € K \ {0}.

Remark 89 We should keep in mind that, if f has K-left limit at s°, lim, .., f(s") may
depend on the choice of the sequence {s"}. For example, if K = R?%, s* = (s9) ;21 € R3\{0},
and f(s) = fi(s1) + fa(sa) for s = (sj)j=12 and if, for each j, f;(s;) is a step function with
a jump at s9, then, for an R -increasing sequence s™ = (s7);—12 in R \ {s°} satisfying
|s" — 5% — 0,

fi(sY=) + fa(s9—) if s} < 83 for j = 1,2 for alln,

lim f(s") =< fi(s¥=) + fo(sS)  if sT < 89, sB =Y for allm,
0
1

- [ + fo(s9—)  if st =Y, sh < s for all n.

Definition 90 A K-parameter Lévy process {X,: s € K} on R? is a collection of random
variables on R? satisfying the following conditions.

(a) If n > 3, s*,...,s" € K, and s* <g s**' for k = 1,...,n — 1, then Xg+1 — X,
k=1,...,n—1, are independent.

(b) Ifst,...,s* € K and s*> — s' = s* — s3 € K, then X — Xa L X — X

(c) For each s € K, Xy — X in probability as |s' — s| — 0 with s' € K.

(d) Xo =0 a.s.

(e) Almost surely, Xs(w) is K-right continuous with K-left limits in s.

Lemma 91 Let {X,: s € K} be a K-parameter Lévy process on R? and let py, = L(X,).
Then the following are true.

(i) fg1 42 = pa*pge for all s',s* € K.

(ii) {Xis0: t > 0} is a Lévy process on R? for any s° € K.

(#1) pg is infinitely divisible for all s € K.

Proof. (1) ,C(Xsl —i—XSz) = ,C((XS1+52 - st) —f-XSz) = £(X31+52 — st) * ,C(st) = ,C(X81) *
L(X2), since X1y — X, and X2 are independent and X1, 2 — X2 and X1 have the same
distribution.

(i) Fix s € K. If 0 < t; < ... < t, withn > 3, then X0 —Xp,0, 7 =1,...,n—1, are inde-
pendent. If 0 < s < t, then X0 — X0 4 X(t—s)s0. Note that limy_; P [| X0 — X0 > €] =0
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and Xy = Xy = 0 a.s. Finally, almost surely X;, is right continuous with left limits in ¢
from the property (e).

(iii) Fix s® € K. Then p is the distribution at time 1 of the Lévy process {X;0: ¢t > 0} in
(ii). Hence pyo € ID. =

Now let us give an analogue of the first half of Theorem 76 on subordination.

Theorem 92 Let {Z;: t > 0} be a K-valued subordinator and {Xs: s € K} a K-parameter
Lévy process on R, Suppose that they are independent. Define Y; = Xz,. Then {Y;: t > 0}
is a Lévy process on R?.

Proof. Let n > 2 and f!,..., f*! be measurable and bounded from R? to R, and let
0<t; <..<t,.Lets* e K, k=1,...,n, with s! <x 5% <k ... < s" and let

G (51, ...,s”) =F

n—1
I X = X)
k=1

Since X v11 — X, kK =1,...,n — 1, are independent, we have

n—1

G(s'...s") = [[ B [f* (Xgrr = X)] .

k=1
Next, let ¢* (s) = E [fk (Xs)} for s € K. Since X1 — X 4 Xgkt1_gk, we have
E[f* (Xgr1 — Xg)] = g"(s"1 = s¥).

It follows that

n—1

G (51, ...,s") = Hgk (sk+1 — sk) )

k=1

We use the standard argument for independence (based on Proposition 1.16 of [S]). As { X}
and {Z;} are independent, we obtain

E|[]# Vo =) | = EIG(Z0,, . Z0)) =[] E l¢" (%0, — Z0)] (4.12)
k=1 k=1

noting that Z;,, ..., Z;, make a K-increasing sequence. Choosing f7 = 1 for all j # k and
using that {Z;} has stationary increments, we see that

B [fk (Ytk+1 - Y;fk)] =E [gk (Ztk+1 - Ztk)] =E [gk (Ztkﬂ*tk)] =FE [fk (KkJrl*tk)] - (413)
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Equations (4.12) and (4.13) say that {Y;} has independent increments and stationary incre-
ments, respectively. Evidently Yy = 0 a.s. Since Z; is right continuous with left limits in ¢
and since {X;} has property (e) in Definition 90, Y; is right continuous with left limits in ¢
a.s. Here notice that, when ¢, <t and ¢,, T ¢, we have Z;, <k Z; ., and Z,, — Z,_, but
Zy, can be equal to Z;_; even if Z, = Z,_ for large n, Y;, = X(Z;,) is convergent. Now
LY, =Y;)=L(Y,—s) = dpast | sorsTt, which shows stochastic continuity of {Y;}. Thus
{Y;} is a Lévy process on R?. m

Definition 93 We call this procedure to get {Y:} from {Xs} and {Z;} multivariate subor-
dination if N > 2.

Multivariate subordination in Theorem 92 shows that our definition of K-parameter Lévy
processes is harmonious with the notion of K-valued subordinators.

The following lemma is useful in considering examples.

Lemma 94 Let {X!:s € K}, ..., {X": s € K} be independent K-parameter Lévy pro-
cesses on RY. Let

Xo=X 4+ 4+ XM

Then {X,: s € K} is a K-parameter Lévy process on R%.

Proof. It is straightforward to check the defining properties for a K-parameter Lévy process.
|

4.3 The case K = ]Rf

In this section we assume K = RY. Denote the unit vectors e = (6j;)1<j<n for k =

1,..., N, where d;; = 1 or 0 according as k = j or not. This cone is nicer than the general
cone, as the vectors e* play a special role and the partial order s' <y s? is equivalent to
componentwise order sj < 53,7 =1,..., N, for s* = (s¥)1c;cn = sfe' +-- -+ she™, k= 1,2.
First we give various examples of K-parameter Lévy processes. Then joint distributions
of K-parameter Lévy processes are considered. Further, generating triplets appearing in

multivariate subordination are described.
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Example 95 Let {V;: t > 0} be a Lévy process on R%. Fix ¢ = (¢j)1<j<n € K. Define
Xs = View) = Versittensy  Jor s = (sj)icj<n € K. (4.14)

Then, {X,: s € K} is a K-parameter Lévy process.

Indeed, let s' <g 5% <g ... <g s" with s',...,s" € K. Then X1 — X = V<c,5k+1) — V<c,sk>’
k =1,...,n, are independent, since (¢, u*™)—{c,s*) > 0. If s* <g s* and s* <x s* such that

$2—s' = s1—% then X2 —Xo = Vigooy—Vieat) = Viewr—at) = Viewt_s3) = Xt —Xgo. If &' € K
and s" — s, then Xy = Vo) — Vs = X, in probability. If {s"’ } p>p IS A K-decreasing

c,sk—s
{sk}k21 is K-increasing, s* # s, and s* — s, then (c,s*) < (¢, s*™), (c,s*) < (c,s) and
(c,s*) — {c, s), and hence X = Vie,sky is convergent to Vi q_ or Vis. Thus X, is K-right
continuous with K-left limits a.s. Finally Xy = Vi g = 0 a.s.

sequence converging to s € K, then | X — X| = ‘V< ‘ — 0, since <c, sk — s> — 0. If

Example 96 Let {V/:t >0}, j=1,...,N, be independent Lévy processes on R?. Define
V‘-g:‘/;‘i“/‘;‘i“{"/;x fO’I"S:(Sj)lngNGK. (415)
Then {Vy: s € K} is a K-parameter Lévy process on RY.

Indeed, for each j, {VSJJ : s € K} is a K-parameter Lévy process, as it is a special case of
Example 95 with ¢ = (6;1)1<k<n. Hence {V,;: s € K} is a K-parameter Lévy process by
Lemma 94.

Example 97 Foreachj=1,...,N, let {Utj: t > 0} be a Lévy process on R%. Assume that
they are independent. Let d = dy + --- + dn. Define

Us = (Ul Jicjen  fors = (sjhgjen € K, (4.16)
that is, U, is the direct product of Ugj, j=1,...,N. Then {Us: s € K} is a K-parameter
Lévy process on RY.

Indeed, for each k, let {X*: s € K} be the process defined as X* = (ijrj)lzij for s =
(s))12j>n with X7 = 0 in R% for j # k and X&F = Ul. Then {X}:s € K} is a K-
parameter Lévy process on R? just by the same proof as each term of (4.15) in Example 96.
Then {X*}, k=1,..., N, are independent, U, = X! +--- + XN and Lemma 94 applies.
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Theorem 98 Let {X,: s € K} be a K-parameter Lévy process on R%. Define th = Xy
and let {V7:t >0}, j=1,..., N, be independent Lévy processes such that {V;} 2 {X7} for
each j. Define {V,: s € K} by (4.15). Then, for everyn € N and s',...,s" € K satisfying

st <p s® <y <g 8", (4.17)
we have
(Xg)1zkzn = (Vi )1<hen- (4.18)
Proof. We claim that
X, 2V, forseK. (4.19)

Indeed for s = (Sj)ISjSN = 8161 + -+ SNBN c K,
Xs = Xslel + (X51€1+8262 - X8161> + .t (Xs - Xslel—&—...—i-sN,leN*l) .

The right-hand side is the sum of N independent terms by condition (a) in Definition 90 of
a K-parameter Lévy process. Further, by condition (b)

1 4151
Xspel :Xs1 =V

S1)
d

2 d 1,2
Xslel+s262 — Xslel = stez = st =V

EbR

and so on. Hence we obtain (4.19) by (4.15). Now we claim that (4.18) holds for all
s',...,s" € K which satisfy (4.17). In order to prove this, it is enough to prove

d
(Xge — Xsk—l)lgkén = (Vg — ‘/;k—l)lékgn, (4.20)
where s° = 0, since

(Xt )1cpen =T ((Xsk — Xskfl)lgkgn) v (Ve)icpen =T ((‘/;k — ‘/Skfl)lgkgn)

with an n X n matrix 7. Since the components of each side of (4.20) are independent and
since

d d d
X — X1 = Xgp_gh1 = Vo1 = Vo — Vi

by virtue of (4.19), we have (4.20). Hence (4.18) holds. m
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Corollary 99 Let {X,: s € K} be a K-parameter Lévy process on R? and define th = Xiei -
Then

N .
j=1

Proof. This is an expression of (4.18) whenn =1. m

Remark 100 The theorem above tells us that joint distributions L ((Xs)1<k<n) of a K-
parameter Lévy process are determined by the distributions of X, for j=1,...,N, as long
as (4.17) is satisfied. In particular, £ (X) is determined for each s. However, general joint
distributions are not determined by the distributions of X.;, 7 = 1,...,N. For example,
suppose that X, = Wy, 4.qsy for s = (sj)i<j<ny € K with a Lévy process {W,: t > 0}
as in Erxample 95 with ¢; = 1. Then Xa = X2 = -+ = X~ while Ve, Vez, ..., Ven are
independent. Thus the distribution of (Xei),<;<n and that of (Vei) <<y are different except
in the trivial case.

Let us give description of generating triplets in multivariate subordination.

Theorem 101 Let {Y;: t > 0} be a Lévy process on R obtained by multivariate subordi-
nation from a K-parameter Lévy process {Xs: s € K} on R? and K-valued subordinator
{Z,: t >0} as in Theorem 92. Let X] = X,.;.

(i) The characteristic function of Yy is as follows:

Bl = P2vx(2) 5 e RY (4.22)
where Wy is the function U of (4.11) in Remark 86 and
Ux(z) = Whk(igjen,  ¥(z) =log B>, (4.23)

(11) Let vy and~% = (’Y%’j>1§j§]y be the Lévy measure and the drift of { Z,} and let (A%, V%, v )
be the generating triplet of {X]}. Let p, = L(Xs). Then the generating triplet (Ay, vy, vy )
of {Yi} is as follows:

Ay = ZN:V%J. Al (4.24)
vy(B) = /RN ps(B)vz(ds) + Zv“z,j%}(B), B € B(R\ {0}), (4.25)

N
Ty = valds) [ ap(de)+ Y A%k (4.26)
RY |z|<1

Jj=1
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(iit) If [ < |s[Y2v(ds) < oo and v = 0, then Ay =0, [

|z|<1 |z|vy (dz) < oo, and the drift
vy of {Yi} is zero.

Proof. (i) Let {V;j: t>0},j =1,2,..,N, and {V,: s € K} be the processes defined in
Theorem 98. Then, by (4.21) of Corollary 99,

gi#Xs) l_IEeZ (2., Hesﬂd’] = els¥x(2) (4.27)

for z € R? and s € K. Use the standard argument for independence (based on Proposition
1.16 of [S]). We get

EsY) — g [( E [e=X9]) Z} — BeilZetx(2) — ot P2(x(2)
§=4t

for 2 € R? by (4.10), since Re (1 x(2), s) = Z;V:l(Re P (2))s; < 0. This is (4.22).
(ii) Let z € R%. We have

FeitaYe) — gt¥z(¥x(2) — exp lt <<’Y%;¢X<z)> + / (eWX(z),S) — 1)1/2(618))1
K

by (4.11) since Re (¢ x(2), s) < 0. Notice that

WZa@/}X Z’Yz,ﬂ/’] Z’Yz,g < (z, A?XZ> +@<7Xa z) + /Rd g(z,x)uj)‘((dx))

with g(z,z) = €% — 1 —i(z,x)1{<1y(z). Hence
N N

(V% ¥x(2) <Z,Z'YZJAJXZ>+Z<Z’}/ ﬂX7 > / Z,x (Zyzjyx> (dz).
j=1 j=1

Next it follows from (4.27) that

€509 < Dugts) = [ (B < 1uatas) = [ valds) [ (5 =~ Dy ()

:/Kyz(ds) /Rdg(z,x)us(d:c)%—i/l(l/z(ds) <Z7/|1|S1$Ns(dx)>-
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Here we used (4.30) of Lemma 102 below and f|s\§1 |s|lvz(ds) < oco. Define v by v(B) =
[ic 1s(B\ {0})vz(ds), B € B(R?). Then, by (4.28) and (4.29) of Lemma 102,

/|x|<1 |z|?D(dx) < Cl/K|S|VZ(ds) < 50,
/Wla(dx) §O<1)/K|S|yz<d8) .

Hence

/K (eWx(2) 1) (ds) = /R d g(z,x)ﬁ(dx)+i< /K v(ds) /| <1xus(dx),z>.

Thus we get (4.24), (4.25), and (4.26).

(iif) Assume [, |s|/2v4(ds) < oo and 4% = 0. Then Ay = 0 by (4.24),

/|m|<1 lelvy(de) = /K”Z(ds) Aq || s (dx) < 00

by (4.25) of Lemma 102, and

20 =y — /| i) = [ vatas /| ) - /| el =0

by (4.26) and (4.25). =

Lemma 102 Let {X,: s € K} be a K-parameter Lévy process on Re. Then, there are
constants C(e), Cy, Cy, Cs such that

P[|Xs| > €] < C(e)|s| fore >0, (4.28)
E[|X5’2;|Xs, <1] < Gilsl, ( )
[E[Xs; | X <1]] < Galsl, (4.30)
B[IX,[; X, < 1] < Csls| /2. (4.31)
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Proof. We use Theorem 98. Since X, 4 Vs, it is enough to show the estimates for V.
Notice that Zjvzl |s;| < const |s|. Proof of (4.28) and (4.29) is as follows:

PVl > ¢ =P || V2

> 5] <P [|ng| > ¢/N for some j]

<SP (Vi > /N < const Y

12 . .
BV < 1) < B[SV v < tora |+ P[] > 1o some ]
< N E (VIR IV < 1) + DL P (IVE] > 1] < const s,
= j=1 sil 0 1Vsil = j=1 8j = j=177"

Here we have used Lemma 77 for VSJJ . To prove (4.30), we denote the kth component by
putting the superscript (k). We have

BPIAARS RS

E [z'Vs(k); V| < 1] ‘ = SN I + L + s,

where
=B =1], he= B[ -1 > 1],
Iy = —FE [eWS(k) —1- i%(k); V| < 1] .
We have
Iy =FE [eizé‘vﬂwa‘(k) - 1]
=LK [eizﬁil ZAA) Shiey Vsjj(k)] L4+ E |:ei‘/311(k) B 1]
and hence

(k) g Sj
[Ty | < Zjvzl ‘E [eWSJj — 1” = Zjvzl ‘(E [e’vf(k)D - 1‘ < const Z;V:lsj.
As we have

[Liz| < 2P [|V,| > 1] <2C(1)]s],
Is| < 3E[(VIP)% Vi < 1] < SE[|Vi[%|Vi| < 1] < 3Cy]s]

by (4.28) and (4.29), we now obtain (4.30). Finally
EVil: Vil <1] < (B [[Vif%5 Vi <1])"% < Cy12)5]2

by Schwarz’s inequality. m
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Remark 103 Theorem 101 shows that the distribution of {Y;} subordinate to {Xs} by {Z;}
is determined by the distributions of { X!}, ..., {XN}, and {Z;}, although the joint distribu-
tions of {X,} are not determined by {X}'},...,{X}N} as Remark 100 says. This is because
relevant joint distributions of { X} are only those with K-increasing sequences of parameters

and they are determined by {X}},...,{X}N} as in Theorem 98.

Notes

When K = RY, K-parameter Lévy processes and their subordination were introduced in
Barndorfl-Nielsen, Pedersen, and Sato [4] (2001). In this case of K = RY, all results in this
chapter are found in [4] (2001). But the proof of Theorem 101 has been simplified. Theorem
83 in Section 4.1 on Lévy processes taking values in a proper cone is by Skorohod [80] (1991).
In Section 4.2 the notion of subordination has been extended to the case of parameters in
a general proper cone K. We mention that Bochner [7] (1955) already considered processes
with parameter in a cone, under the name of multidimensional time variable. Example 87
is from [4] (2001); this paper contains several other examples of construction of N-variate
subordinators.

In the Gaussian case the multiparameter Brownian motion {B,: s € RV} and the Brownian
sheet {W,: s € RY} have been discussed for a long time. We mention Lévy [36] (1948),
Chentsov [10] (1957), and McKean [45] (1963) for the former and Orey and Pruitt [49] (1973)
and Khoshnevisan and Shi [29] (1999) for the latter. When the parameter s is restricted
to a proper cone K not isomorphic to [0,00), neither {Bs: s € K} nor {W,: s € K} is
a K-parameter Lévy process. Likewise, two-parameter Lévy processes in Vares [87] (1983)
and Lagaize [33] (2001) are not K-parameter Lévy processes in our sense. But probabilistic
potential theory for the RY-parameter Lévy process in Example 96 with {Vi},j=1,...,N,
being a symmetric Lévy processes was studied by Hirsch [20] (1995) and, in the case where
{V//} was a Brownian motion on R¢ for each j, Khoshnevisan and Shi [29] called it the (N, d)
additive Brownian motion and studied its capacity.



84

Chapter 4. Multivariate subordination



Chapter 5

Inheritance of selfdecomposability in
subordination

Once the general results about subordination of K-parameter Lévy processes by K-valued
subordinators are established, it is now important to know what properties are inherited
by the subordinate processes. Some inheritance results in relation to selfdecomposability
and stability are presented in this chapter. In particular, it is proved in Section 5.1 that
selfdecomposability, as well as strict stability, of the K-valued subordinators is inherited
by the subordinated, under the condition that the original K-parameter Lévy process is
strictly stable. Furthermore, if the subordinator is of class L,,, then the subordinated is of
class L,,. In Section 5.2, generalization of these results to operator stability and operator
selfdecomposability is discussed.

5.1 Inheritance of L,, property and strict stability
Halgreen [18] (1979) and Ismail and Kelker [21] (1979) proved part of the following results.

Theorem 104 Let {Y;: t > 0} be a Lévy process on R? subordinate to a strictly a-stable
process {X;: t > 0} on R? by a subordinator {Z;: t > 0}.

(1) If {Z;} is selfdecomposable, then {Y;} is selfdecomposable.

(i) More generally, let m € {0,1,...,00}. If {Z;} is of class L, (R), then {Y;} is of class
Lo (RY).

(ii3) If {Z,} is strictly B-stable, then {Y;} is strictly o3-stable.

Proof will be given as a special case of Theorem 110. We are interested in generalization of
this theorem.

85
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Example 105 If {X;} is a strictly a-stable increasing process with Ee "Xt = ¢ () <
a <1, and {Z;} is a I'-process with EZy; = 1, then

PlY) <z]=1— E,(—z%),
(=D)"T(t+n)  ssn
P <al=3 nD(OT(1 + alt +n) " .

n=0

(e o]

Here E,(x) is the Mittag—Leffler function,

Ealz) = Z I'(na+1)

n=0

By Theorem 104 (i) L(Y;) is selfdecomposable. See Pillai [52] (1990) or [S] E 3/.4.

Example 106 If {X,} is a symmetric a-stable process on R with Ee™*Xt = e 12" 0 < o <
2, and {Z;} is a I'-process with EZy = 1/q, q > 0, then

Ee™ = (1+q '), z2€R,

and L(Y1) is Linnik distribution. Theorem 104 (i) shows that L(Y}) is selfdecomposable. See
Example 79.

Example 107 Let ., 5 be inverse Gaussian distribution on R with parameters v > 0, 6 > 0,
that s,

5676 2,,—1,.2
B) = T CR At T ) B € B(R).
taa(B) V2m /Bm(o,oo) "

This has Laplace transform

/ e 1, o(dz) = exp | -6 (\/m - 7)}
(0.%) -

= exp L/ <e’(2“+”’2)”” — 1) 32 dx + 76]
0

o
3

F s -
= exp —/ (6_2“”” — 1) x_3/2e_72xdm}
12V Jo
F s -
= exp —/ (e‘“‘”‘ — 1) x_?’/ge“’%ﬂdx} , u>0.
21 Jo
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The last formula shows that ., s is infinitely divisible with Lévy measure density
(27‘(’)_1/25(E_3/26_72£/2

on (0,00). Hence i, 5 is selfdecomposable.

Now let { X} be Brownian motion on R and let {Z;} be the subordinator with L(Z) = ji. 5.
Then L(Z;) = .45 Let {Yi} be the Lévy process subordinate to {X;} by {Z;}. Then

P[Y; € Bj :/ ,u%té(ds)/(27rs)_1/26_””2/(25)dx
0 B
= (27r)1t66t75/ dx /00 s 2 (@ +126%)/(25)~(v%5/2) g g
B 0

= (47r)‘1t7266t7‘5/ dx/OOu—26—(’72(:c2+t262)/(4u))—udu
B 0

,yet*yé

T e/t (@) (0))

where K is the modified Bessel function of order 1. L(Y;) is a special case of the so-called
normal inverse Gaussian distribution. By Theorem 104, it is selfdecomposable. By Theorem
76 its characteristic function is:

Eei?t = ¢¥(=7*/2) = exp [—té <\/22 +72 — ’Y)]
with ¥ (w) = —6 (x/—2w +72 — fy).

The distribution p on (0,00) with density

K (t’yé 1+ (:E/(t’y))2> dx

cp 1o~ (@ ) /2

15 called generalized inverse Gaussian distribution with parameters X, x,1. Here ¢ is a nor-
malizing constant. The domain of the parameters is given by {A < 0, x > 0,¢ > 0},
{A=0,x>0,9 >0}, and {\ >0, x>0, ¢ >0}. Its Laplace transform L,(u), u >0, is:

A2 K ( X(’L/1+2u)) ,
1/1 A
(w+2u) TN ifx>0andy >0

21+(>‘/2)K>\ (\/2X_u)
D(=X) (xu)*/2

Ly(u) =

if A <0, x>0, and ¢» = 0.

It is known that p is infinitely divisible and, moreover, selfdecomposable. It belongs to a
smaller class called generalized T'-convolutions, which means that it is the limit of a sequence
of convolutions of I'-distributions.

This example continues to FExample 114.
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In order to extend Theorem 104 to multivariate subordination, we prepare two lemmas.
Assume that K is a proper cone in R¥.

Lemma 108 Let {X,: s € K} be a K-parameter Lévy process on RY. Let 0 < aw < 2. Then
L(X,) € &° if and only if X, L /e X, for everyt > 0.

Proof. Let i, = £(X,). The meaning of p, € & is that p, € ID and i, (2)! = 7, (t'/*2)
for t > 0. See Definition 9 and Proposition 10. Since, by Lemma 91, {X;,: t > 0} is a Lévy
process, fi;s(2) = [i5(z)". Hence the condition is written as X, Lylex, m

Lemma 109 Let {Z;} be a K -valued subordinator such that L(Z;) € Lo(RY) fort > 0. Let
U(w) be the function in (4.11). For b > 1 define ¥y(w) as

T(w) = U w) + Ty(w). (5.1)

Then e™(2) | 2 € RN is the characteristic function of a K-valued subordinator {Zt(b)}. Let
m > 1. Then L(Z;) € Ly, fort > 0 if and only if ,C(Zt(b)) € L1 fort>0.

Proof. Let p = £ (Z;) with generating triplet (A, v,~). Its characteristic function is zi (z) =
e¥() If b > 1, then by selfdecomposability there is a probability measure p, such that

f(z)=1(b""2)p,(2) for every z € RN,

Let (Ab,?/'b,:y'b> and (Ap, vp,7,) be the generating triplets of p, and p,, respectively, where
= p

A=A+ A, v="0+wv, and vy =3, + v, By Theorem 83, A = 0, v (RV\K) =
0, fy<i Islv(ds) < oo, and 1° € K. Hence v, < v. Therefore v, (RM\K) = 0, and
f\s\gl |s| vp(ds) < co. Also A, = 0, as 0 < (2, Apz) < (2, Az) = 0. Further, v° = 39 + 9,

where 7y = b~'4%. Thus7) = (1 — b~')4° € K. Then, by Theorem 83, a Lévy process {z"}
t\I/b(iZ)

p * py, and 1i, (2) = 71 (b7'2). Recall, by Lemma 3, that y, and p, are in ID. Then

with L’(Z]fb)) = p, is a K-valued subordinator. Since e = 7,(2)", it is the characteristic
function of {Zt(b)}. Finally, £(Z;) is of class L,, if and only if p, € L,,_1, that is, E(Zt(b)) is
of class L,,_;. ®

Theorem 110 Let K be a proper cone in RY and let 0 < o < 2. Let {Z;:t > 0} be a
K -valued subordinator and let {X,: s € K} be a K-parameter Lévy process on RY such that
L(X,) € B forallse K. Let {Y;: t >0} be a Lévy process on R obtained by multivariate
subordination from { X} and {Z;}.

(i) If {Z;} is selfdecomposable, then {Y;} is selfdecomposable.

(ii) Let m € {0,1,...,00}. If {Z;} is of class Ly,(RY), then {Y;} is of class L, (R%).

(ii) Let 0 < 3 < 2. If L(Z;) € &Y for all t > 0, then L(Y;) € &5 for allt > 0.
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Proof. Let u, = £ (X;).
(i) Let {Z;} be selfdecomposable, that is, £(Z;) € Lo for ¢ > 0. Let b > 1. Using Lemma
109 and its notation

Z, Lo 7, + 7,
where b~'Z, and Z are independent. Then,
EeleY) = peilt/ =¥ g [ﬁzta,) (z)} . (5.2)
Indeed we have, using Lemma 91 (i) and Lemma 108,

B = B [<E6i<z’xs>)s:zt] =FE[fig, (2)] = E [ﬁbflzﬁzt(b) (Z)]
= B |fiya (g (2)] = B [fa, ()] B [figpo (2)]
=F [ﬁZt (bil/az)} E [ﬁzt(b) (2)] ,

which is the right-hand side of (5.2). Since b'/* can be an arbitrary real > 1 and since
E |:ﬁZ(b) (z)] is the characteristic function of a subordinated process by Lemma 109, this
t

shows that {Y;} is selfdecomposable.

(ii) Induction. If m = 0, then the assertion is true by (i). Suppose that the assertion is true
for m — 1 in place of m. Let {Z;} be of class L,,, that is, £(Z;) € L,, for t > 0. Then

{Zt(b)} is a K-valued subordinator of class L,,_; by Lemma 109. Hence E [ﬁz(b) (z)} is a
characteristic function of class L,,_1. Thus £ (Y;) € Lyy,.

(iii) Let £(Z;) € &% for t > 0. Then Z £ 41/8Z,. Therefore, using Lemma 108,
Eei{z,Yat> = F [(Eei(z,Xs>) i| — B |:(Eei<z,Xs>)s:al/ﬁZt:|

= E [lgsz (2)] = E [lig, (a’/®P2)] = E [e¢<z,a1/<aﬁm)} '

s=Zat

Thus Y, < a/©@AY; for any a > 0. =

When d = 1, Theorem 104 can be generalized to the case where {X;: ¢ > 0} is Brownian
motion with nonzero drift on R. This is 2-stable, but not strictly 2-stable. So the assump-
tion in Theorem 104 is not satisfied. Nevertheless, selfdecomposability is preserved in its
subordination.
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Theorem 111 Let {X;: t > 0} be Brownian motion with drift on R. That is,

Eei#Xt = t(=2*/2+in2) z e R.

Let {Y;} be a Lévy process subordinate to {X;} by {Z;}. If {Z;} is selfdecomposable, then
{Y;} is selfdecomposable.

Proof is omitted.

Remark 112 We do not know whether Theorem 111 can be extended to the case where {X;}
1s an a-stable, not strictly a-stable process with 0 < a < 2 on R.

Remark 113 If d > 2, then the situation is quite different and Theorem 111 cannot be
generalized. It is known that, for d > 2, a Léevy process {Y;} on R? subordinate to Brow-
nian motion with drift, {X;}, by a selfdecomposable subordinator {Z;} is not necessarily
selfdecomposable. Even if L(Z) is a generalized T'-convolution, {Y;} is not necessarily self-
decomposable.

Example 114 A distribution on R with density
const exp (—av 1+22+ bx)

with parameters a, b satisfying a > 0 and |b| < a or a scale change of this distribution is
called hyperbolic distribution.

Let {X;} be Brownian motion with drift v being zero or nonzero and let {Z;} be the subor-
dinator with L(Z;) being generalized inverse Gaussian of Example 107 with A = 1, x > 0,
¥ > 0. Let us calculate the distribution at t = 1 for the Lévy process {Y;} subordinate to

{Xi} by {Z,}:
o0 1 1
P[Y, € B] = c/ e (xs +¢S>/2ds/
[ ! ] 0 BV 21s

— ¢ /e\/(¢+v)(x+w2)+wdx
Vi +v s
by the calculation in Example 2.13 of [S]. Hence L(Y7) is a hyperbolic distribution with

a=+/x(W+7) and b= /x7.

More generally if we assume that L(Z) is generalized inverse Gaussian, then L(Y}) is gener-
alized hyperbolic distribution. For a proof, use the formula (30.28) of [S] for modified Bessel
functions. The generalized hyperbolic distribution is defined by the density

A—(1/2)
const <\/ 1+ x2> Kx_(1/2) <a\/1 + m2) P

o (E=5m)2/(29) g g
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or its scale change, where the domain of parameters is given by {\ >0, a > 0, |b| < a} and
{A<0,a>0, |b] <a}. It reduces to the hyperbolic distribution if A = 1.

It follows from Theorem 104 (if v = 0) and Theorem 111 (if v # 0) that generalized hyperbolic
distributions are selfdecomposable.

5.2 Operator generalization

For distributions on R?, d > 2, the concepts of stability, selfdecomposability, and L., are
generalized to the situation where multiplication by positive real numbers is replaced by
multiplication by matrices of the form e®?.

For a set J C R let M;(d) be the set of real d x d matrices all of whose eigenvalues have real
parts in J. Let Q € Mg 0)(d).

Definition 115 A distribution 1 on R? is called Q-selfdecomposable if, for every b > 1,
there is p, € P(R?) such that

Az) =0 Y)p(2), 2 €RY (5-3)

where @) is the transpose of Q and b9 is a d x d matriz defined by

e}

pQ — o (logh)@ _ Z(n!)fl(— log b)"(Q')".

n=0

The class of all Q-selfdecomposable distributions on R? is denoted by Lo(Q). Form =1,2,...
the class L,,(Q) is defined to be the class of distributions u on R? such that, for every b > 1,

there exists p, € Lm—1(Q) satisfying (5.3). Define Loo(Q) = (\ncoo Lm(Q)-
Proposition 116 The classes just introduced form nested classes
ID D Ly(Q) D Li(Q) D -+ D Loo(Q).- (54)

Proof can be given analogously to the proofs of Lemma 3 and Proposition 5. See Jurek [24]
(1983) and Sato and Yamazato [75] (1985).

Definition 117 A distribution j on R? is called Q-stable if, for everyn € N, there is c € R?
such that

i(2)" = fi(n? 2)ete?), z € R (5.5)
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It 1s called strictly Q-stable if, for all n,
A(2)" = (n9 2), z € R (5.6)

Let &(Q) be the class of distributions on RY which are aQ-stable for some a > 0. Let &°(Q)
be the class of distributions which are strictly aQ)-stable for some a > 0.

Here we are obeying the usual terminology, but it is not harmonious with the usage of the
word a-stable; u is a-stable if and only if it is é] -stable, where [ is the identity matrix.
Similarly to Proposition 10, we have the following.

Proposition 118 A distribution p is Q-stable if and only if p € 1D and, for every a > 0,
there is ¢ € RY such that

fi(2)" = f(a? 2)e’. (5.7)
A distribution p is strictly Q-stable if and only if u € ID and, for every a > 0,
fi(z)* = fi(a? ). (5.8)

Proof is like E 18.4 of [S].

Remark 119 If y € &(Q) for some Q € M )(d), then u is called operator stable and
sometimes @ is called exponent of operator stability of u. But Q is not uniquely determined
by p. If p € Lo(Q) for some Q € Mooo)(d), then p is called operator selfdecomposable.

Remark 120 Operator stable and operator selfdecomposable distributions appear in a nat-
ural way when we study limit theorems for sums of independent random vectors, allowing
normalization by linear transformations (matrices). Basic papers are Sharpe [77] (1969) and
Urbanik [84] (1972a,).

Sharpe [77] (1969) found the following.

Proposition 121 Suppose that i is Q-stable and nondegenerate on RY. Then Q must be
in Mp /2,00 (d) and, moreover, any eigenvalue of Q with real part 1/2 is a simple root of
the minimal polynomial of Q; p is Gaussian if and only if Q € Mg 2y(d); p is purely non-
Gaussian if and only if Q € M /2,00)(d).

S(Q) is a subclass of L, (Q). Moreover, Sato and Yamazato [75] (1985) proved the following.
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Proposition 122 L. (Q) is the smallest class containing &(Q) and closed under convolu-
tion and weak convergence.

Definition 123 A Lévy process {X;: t > 0} is called Q-selfdecomposable, Q-stable, or of
class L, (Q), respectively, if L(X7) (or, equivalently, (X;) for everyt > 0) is Q-selfdecompos-
able, Q-stable, or of class L, (Q).

Here are results on the inheritance of operator selfdecomposability, L,,(Q) property, and
strict operator stability in some cases. These partially extend Theorem 110. Propositions
121 and 122 are not used in the proof.

Let N and d be positive integers satisfying d > N > 1. Let d;, 1 < 5 < N, be positive
integers such that d; + -+ + dy = d. Every z € R? is expressed as z = (z;)1<j<ny with
z; € R%. We call z; the jth component-block of x. The jth component-block of X; is
denoted by (X;);. As in Section 4.3, we use the unit vectors e* = (8;)1<j<n, k= 1,..., N,
in RY.

Theorem 124 Suppose that {Xs: s € Rﬂ\rf } is a given Rﬂ\rf -parameter Lévy process on R?
with the following structure: for each j =1,..., N,

(Xtei )k =0 forallk # j. (5.9)

Suppose that {Z;: t > 0} is a given N-variate subordinator and let {Y;: t > 0} be a Lévy
process on R? obtained by multivariate subordination from {X,} and {Z;}. That is, {X,} and
{Z,} are independent and Y, = Xz,. Let Q; € M 200)(d;) and ¢; >0 for 1 < j < N, and
let C = diag(cy,...,cn). Assume that, for each j, L((Xiei);) is strictly Q;-stable. Define
D = diag(c1Q1, . ..cnQn) € My 0)(d).

(i) If {Z;: t > 0} is C-selfdecomposable, then {Y;: t > 0} is D-selfdecomposable.

(ii) More generally, let m € {0,1,...,00}. If {Z;: t > 0} is of class L, (C) on RY, then
{Y;: t > 0} is of class Ly, (D) on RY.

(iii) If {Z;: t > 0} is strictly C-stable, then {Y;: t > 0} is strictly D-stable.

Here diag(cy, ..., cy) denotes the diagonal matrix with diagonal entries ¢y, . .., cy;
diag(c1Q1, - . . cn@Qn) denotes the blockwise diagonal matrix with diagonal blocks ¢;Qy, - . .,
cNQN- . ‘ 4

Proof. We use Theorem 101. Let X{ = X,;. Let ¢4 (2) = log Eei=X1) 2 ¢ R? and
Vx(2) = (Wi (2))1<jen- Let p; = L((XT);) € B(R%). Then it follows from (5.9) that

Vi (2) = BoitaX]) — peite (X)) — ﬁj(zjy

Y
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where z = (zj)1<j<ny € R? with z; € R%. Thus

Yx(2) = (log 1i;(25))1<j<n-
We have

/

pi(2)" = hy(az),  a>0

by the strict ();-stability of ;. Hence

a“Px(2) = (a9 log i;(2;))1<j<n = (log fi;(a% 2) )1<j<n. (5.10)

(i) Assume {Z;: t > 0} is C-selfdecomposable. Let W be the function ¥ in (4.11) for {Z,}.
For b > 1 and w = (w;)1<j<y € CV with Rew; < 0, Define ¥z ,(w) by

llfz(w) = llfz(b_cw) + \I/Z7b(w).

Similarly to the proof of Lemma 3, we can show that e¥z+(%) ¢ € RN is an infinitely divisible
characteristic function. Further, as in Lemma 109, there is an ]Rﬂf -valued subordinator

{Z"} such that EeiwZ"”) = ¢t¥z4() 1n the proof note that 9 = (I — b 94" = diag(1 —
b=,...,1—=b")y" € RY. Now we have

E oY) — gz(x () _ gz (b-Cx (2)) 107, (x (2))

and
b %Py (2) = (log (b9 2))1<jen = Py (b77'2)
by (5.10), since
bz = diag(b= 9, ..., b VW) 2 = (b79%2;)1<j<n.
Hence

EeieYe) — goiltP 2Ye) t¥2,(0x(2)

As the second factor in the right-hand side is the characteristic function of a subordinated
process, we see that £(Y;) is D-selfdecomposable.

(ii) Induction similar to (ii) of Theorem 110.
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(iii) Assume that {Z;} is strictly C-stable, that is, a¥z(w) = ¥z(a“w). Then, for a > 0,

Eei<Z,Yat> — eatqu(wx(z)) — etq’Z(aC¢X(z))

and, as above,

GC¢X(Z) = ng(aD,z).
Hence

EeilaYat) — Eei(aD/z,Yt>

9

which shows D-stability of {Y;}. m

Remark 125 If an ]R_]X -valued subordinator {Z;} is Q-selfdecomposable, then Q) has a strong
restriction. For example, let N = 2. Among the real Jordan forms, () cannot be

<Q1 1) nor ((h —Q2>
0 ¢ g2 1

with ¢ > 0, g2 > 0. The only possibility of () among the real Jordan forms is

g1 O
0 ¢

with g1 > 0, go > 0. See Sato [59] (1985).

Notes

Halgreen [18] (1979) and Ismail and Kelker [21] (1979) proved assertion (i) of Theorem 104 in
the case where {X;} is Brownian motion on R. Assertion (iii) of Theorem 104 was essentially
known to Bochner [7] (1955). Theorem 124 was given in Barndorff-Nielsen, Pedersen, and
Sato [4] (2001), but the proof presented here is greatly simplified. Assertion (ii) of Theorem
104 is a special case of Theorem 124 (ii) with N =1 and @ = @1 = (1/a)I. Theorem 110
in this chapter and Theorem 92 in Chapter 4 are part of the work that Sato are preparing
jointly with Jan Pedersen.

Examples 107 and 114 are from Barndorff-Nielsen and Halgreen [3] (1977) and Halgreen [18]
(1979); see also Bondesson [8] (1992).

Theorem 111 was proved in Sato [65] (2001). Earlier Halgreen [18] (1979) and Shanbhag and
Sreehari [76] (1979) proved it under the condition that £(Z;) is a generalized I'-convolution.
Remark 113 is by Takano [81] (1989/90).
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Various extensions of L., and &,

Extensions of the concepts of L,,, &,, and selfsimilarity are being made in various directions.
Here we give an incomplete list of related papers. You can find many others, consulting
references cited in these papers.

1. Operator extensions on R?, 2 < d < 0.

Operator stable: Sharpe [77] (1969), Hahn and Klass [17] (1985), Sato [60] (1987), Jurek
and Mason [26] (1993).

Operator selfdecomposable: Urbanik [84] (1972a), Jurek [23] (1982), Sato and Yamazato [74]
(1984), Jurek and Mason [26] (1993).

Operator L,,: Jurek [24], [25] (1983a, 83b), Sato and Yamazato [73] (1983), [75] (1985).

OU type processes associated with matrices () : Gravereaux [15] (1982), Sato and Yamazato
[73] (1983), [74] (1984), Sato, Watanabe, Yamamuro, and Yamazato [68] (1996), Watanabe
[90] (1998).

Operator stable processes: Sato [59] (1985). Processes with stable components are special
cases; see [S] Remark 49.16.

Operator selfsimilar processes: Sato [61] (1991), Meerschaert and Scheffler [47] (1999).

2. “Semi" extensions on R?, d > 1.

Semi-stable: Lévy [34] (1925), [35] (1937), Shimizu [79] (1970), Pillai [51] (1971), Kruglov
[30] (1972), Kagan, Linnik, and Rao [28] (1973), Meerschaert and Scheffler [46] (1996), Sato
[S] (1999a). The class of semi-stable distributions is neither larger nor smaller than Ly.

Semi-selfdecomposable: Loeve [37] (1945), Bunge [9] (1997), Maejima and Naito [39] (1998),
Sato [S] (1999a), Watanabe [92] (2000b).

Semi-stable processes: Rajput and Rama-Murthy [53] (1987), Watanabe [88] (1993), Choi
[11] (1994), Sato [64] (1999b).

97
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Semi-selfsimilar processes: Maejima and Sato [40] (1999).

Classes L, (b, R%) and L,,(b, R%): Bunge [9] (1997), Maejima and Naito [39] (1998), Watanabe
[91] (2000a).

3. Operator “semi" extensions on R%, 2 < d < ooc.

Operator semi-stable: Jajte [22] (1977), Luczak [38] (1981/87).

Operator semi-selfdecomposable, operator L,,(b,R%), and operator Zm(b, R%): Maejima,
Sato, and Watanabe [41] (1999), [42] (2000a).

Operator semi-stable processes: Choi and Sato [12] (1995).

4. Zinger’s extension of stable distributions.

Given a positive integer k, Zinger [99] (1965) determined the class of limit distributions
of normalized sums of independent random variables on R which have at most k different
distributions. These are selfdecomposable distributions which are convolutions of a finite
number of semi-stable distributions of some kind.

5. Extensions on Banach spaces.

Some results are extended to distributions on Banach spaces. See the books Parthasarathy
[50] (1967), Araujo and Giné [2] (1980) for basic material. There are many papers; e. g. Hahn
and Klass [16] (1981).
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Notation

R, Z, N, and C are the sets of real numbers, integers, positive integers, and complex numbers,
respectively. R, = [0,00) and Z; = {0,1,2,...}.

R? is the d-dimensional Euclidean space and elements of R? are column vectors z = (z;)1<;j<a-
The inner product is (z,y) = 2?21 z;y; for x = (z;)1<j<q4 and y = (y;)1<j<q¢- The norm is
2| = (z,7)V/2. S = {¢ € R?: |¢] = 1} is the unit sphere in R?,

P = P(R?) is the class of probability measures (distributions) on R%. ID = ID(R?) is the

class of infinitely divisible distributions on R¢. & = &(R?) is the class of stable distributions
on Re. G, =6, (Rd) is the class of a-stable distributions on R.

= Jpa€' , 2 € R the characteristic function of p € P(R?).
For IS ‘,]3 and n e N u" is the n-fold convolution of u. For p € ID and t € R, pu! is
defined as put(z) = € g ), where log 7i is the distinguished logarithm of 7 in [S], p. 33.

L(X) is the distribution (law) of a random variable X. X 2 Y means that two random

variables X and Y have a common distribution, that is, £(X) = L(Y). {X:} < {Y;} means
that two stochastic processes {X,;} and {Y;} are identical in law, that is, have a common

system of finite-dimensional distributions. Note that X, 4 Y, simply means that, for each ¢,
X, and Y, have a common distribution.

For ,un (n=1,2,. ) and p in ‘B, p, — p means weak convergence of p,, to p, that is,
[ f(x)p,(dx) f f p(dz) for all bounded continuous functions f.

The words increasing and decreasing are used in the wide sense allowing flatness.

For any Borel set T’ in R?, B(T') is the class of Borel sets in 7. Unless specifically mentioned,
measurable means Borel measurable.

0. is a distribution concentrated at ¢ ; it is called a trivial distribution. A random variable
X is trivial if £(X) is trivial. A stochastic process {X;} is trivial if X} is trivial for each t¢.

[S] refers to Sato’s book [63] (1999a).
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