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ABsTRACT. We discuss some geometric properties of complex supercurves and line
bundles over them. In particular, we obtain the existence of a cohomological ob-
struction to express N = 2 line bundles as tensor products of N = 1 bundles. The
motivation behind this paper is an attempt at understanding the N = 2 super KP
equation via Baker functions, which are special sections of line bundles on super-
curves.

Introduction.

Complex supercurves are certainly a fascinating subject, both for mathematical
and physical reasons. On the one hand, they appear as basic building blocks of
superstring theory, currently the best candidate for a unified theory of all physical
interactions, and certainly one of the most active fields in all of science. On the other
hand, although many of the classical results in the geometry of complex curves can
be rephrased in this context, the presence of nilpotent elements makes for several
fundamental differences between the theories, and many of the results are not as
sharp as for classical curves (to name one of the most dramatic, there is no analog
for arbitrary supercurves of the Riemann-Roch theorem), so there are still many
questions, not altogether of the same nature as in the classical case, that remain to
be answered (cf. [FR]).
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The motivation for this paper is our interest in understanding the geometry
of N = 2 super KP equations (cf. [DG]) via Baker functions (this is however
work still in progress and will be reported elsewhere). Roughly speaking, Baker
functions are special unique sections with parameters of certain families of line
bundles, satisfying the condition that any section of the corresponding line bundle
is given by a differential operator applied to the Baker function. From the geometric
point of view, the relevance of such a construction is that it allows us to reinterpret
equations such as the KP (or its super analogs), as describing deformations of line
bundles over curves (or supercurves).

Now, for supercurves one of the subtleties of the problem is that, since one is
interested in families and not in single curves, one is forced to deal with curves that
are not necessarily split and therefore might have complicated cohomological prop-
erties. In spite of this, the situation for the case N = 1 is quite well understood: the
cohomological conditions on the supercurve ensuring the existence and uniqueness
of such a section are known and simple, and there are several options, leading to
various hierarchies (Jacobian, Manin-Radul, Kac-van de Leur; cf. [R1]), depending
on how large the family of deformations is allowed to be, etc. But for the case
N = 2 the results are much less complete—especially from the geometric point of
view—and some further conditions, both on the equations and on the curves, might
become necessary. (There is indeed a precedent for this in the case N = 1, where it
is known that only the Manin-Radul hierarchy admits a formulation as a Lax pair.)

For the N = 2 case, one of the possible and natural approaches to the problem
is to consider only equations determining deformations on bundles over the N = 2
super Riemann surfaces canonically attached to N = 1 supercurves; thus, in this
paper we study some geometric properties of supercurves related to the possibilty
of constructing Baker functions for such cases. We do this along two lines: the first
one is to impose some additional conditions on the N = 1 curve, that in some cases
give rise to relatively simple cohomological properties; the second one is to analyse
the relation between line bundles on the N = 2 curve and bundles lifted from the
N =1 curve and its dual.

To conclude this introduction, we mention that we use [R2] and [BR] as our basic
references, including most of our notation and conventions; in particular the latter
contains a much more detailed study of supercurves than that made here.

1. Projected and injected curves.

A (complex) supercurve M is a family of ringed spaces (Myeq, Onr), over the
base (e, A), where A is a Grassmann algebra (in some generators, say 71,...,7,),
M,eq is an ordinary complex curve, and O = Q) is a sheaf of Zj-graded algebras,
locally isomorphic (as sheaves of Zo-graded algebras) to Oreq ® A[A, ..., 0], Oreq
being the structure sheaf of M,eq, and 0% odd generators nilpotent of order two.
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The point to be made here is simply that the geometry of classical curves and
line bundles is bound to play an important role in the study of supercurves, but
also the fundamental difference between the two cases, namely the presence of the
nilpotent (or odd) elements (the 6 being variables, and the 7, global constants),
poses different problems than those encountered in the classical case.

Concretely, supermanifolds can be described by giving coordinate changes of the
form

2 = Fji(2i,08), 07 = 00(2:,08); a,f=1,...,N;

where the F’s are even, and the ¥’s are odd (super)functions satisfying some appro-
priate compatibility conditions, analogous to the usual changes of coordinates for
manifolds. Here, and henceforth, when using coordinates there is implicit an open
cover {U;} of M,eq, which will be assumed to have contractible multiple (finite)
intersections.

Actually, the only relevant cases for us are N = 1 and N = 2, so we will
concentrate our attention on them in what follows (there are some physical reasons
to do so, but also, from the mathematical point of view, for N > 2 one must face the
complexities of the theory of vector bundles of higher rank over algebraic curves,
which remains a challenging problem even today).

In particular, for the case N = 1 which we will now discuss, the change of
coordinates takes on the form

z; = fji(2) + 0iv5i(2i)
0; = pji(zi) + O0ingi(zi),

where fj;, nj; are even holomorphic functions, while ~y;;, u;; are odd (and this
notation will be kept throughout this paper).

Before proceeding any further, let us make the following simple observation:
Since a part of the necessary conditions for the coordinate changes is that the even
functions f;i = 0,f;; and nj; be nowhere vanishing, we immediately see from the
equations above the following three special cases:

Projected curves, defined by the condition that coordinate changes can be chosen
so that v;; =0 Vi,j.

Injected curves, defined by u;; =0 Vi, .

Quasi-split curves: Projected and Injected.

Also, a curve is said to be split if, moreover, the f;; and n;; do not involve the odd
constants 7,. (Projected, but especially split, curves have already been discussed in
the literature, cf [BR]; the notion of “injectedness” for supercurves seems however
to be new.)
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Now, to write down the remaining conditions on the transition functions, we
recall that a change of coordinates on a superfunction a(z) is given by

(1) a(zj) = a(fji(2:)) + Oivji(zi)a' (f5i(zi)).

Since in what follows only composition with f;; will appear, to abbreviate the
notation we will write a for the composition a o f};, and, unless otherwise explicitly
stated, all functions will depend on the variable z;. With this notation, the full
compatibility conditions for N = 1 curves are as follows:

Jri = Frg — Vkjbgi 5 ki = YNy + (flkj - 'Yij'uji) Vji ;
Pki = fej + Tejllji 3 Mki = NkjNji — <,ulkj - ”,kj,uji) Vji-
The apparent complexity of these expressions already suggests that even the

problem of studying N = 1 curves in full generality is not trivial. However, for
projected and injected curves the formulas above reduce considerably to give:

Tri = frj ——
M projected
Piki = kg + bl Nki = NkjNji
(2) 3 N
fri = frj VYei = VigNji + I kY4

M injected
—— Nki = NkjNji

One remarks at once that for both projected and injected supercurves, the f;;
define a new (1, 0) supercurve, that we denote My = (Myed, Op), and then the nj;
are the transition functions for a line bundle N over My (i.e., a rank 1, locally
free sheaf of Op-modules), “sitting” inside O. In fact, there are exact sequences (of
sheaves of Op-modules):

For projected curves
0—=0p—0—=N—=0.

For injected curves
0N —=>0—0)—0.

In particular, we have the corresponding morphisms of supercurves: a projection
M — M, for projected curves and an injection My — M for injected ones, thereby
justifying the terminology. The proof of these facts is quite standard: Over a
coordinate neighborhood the inclusions and projections are the more or less obvious
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ones; thus, for instance for projected curves, to get the injective map of sheaves
Op — O, we map a local section f; in Oy(U;) to f; viewed as section in O(U;), while
to get the projection O — N, a section f; +6;; in O(U;) is mapped to ~y; in N (U;).
Moreover, by construction, this also makes exactness rather clear at this level (i.e.,
at the presheaf level). But then, by (2) both definitions are consistent on overlaps,
so the assertion that the corresponding maps are well defined as sheaf morphisms
is essentially the same thing as the definition of projectedness (or injectedness),
together with the consequent existence of the sheaf A.

Remark. The reduced parts of the transition functions define the split curve,
My, associated to M, whose structure sheaf is Ogp, = (Ored|Nrea) ® A, where Meq
is an ordinary line bundle, defined by the reduced part of n;;. (Recall that a vertical
bar means “direct sum of even and odd parts.”) Thus, if the f;; and n;; do not
involve the odd constants 7,, one has

Op=0rea®A; N =MNea®A.
In particular, for split curves the sequences above become
0= O0wd®A -0 = NRA—=0; 0=NIA =0 — Oreg®A — 0,

and these sequences split.

2. Relation to duality.

There is clearly some kind of duality between the two exact sequences above,
which can be neatly related to the N = 2 super Riemann surface M, and the dual
curve M, associated to M.

In order to see this, first recall that M5 is constructed by adjoining an odd
variable, say p, that essentially transforms according to the Berezinian sheaf of M.
More precisely, the new variable transforms according to

p;j =

I

dii 0;pi (hy + pi init _2 ol
Nji Nji Ns

the coefficient of p being the Berezinian of the change of coordinates in M. However,
since we can add to the coefficient of p; in this expression anything multiplied by
0;p;, using a formula similar to eq. (1) (namely f(z — 8p) = f(z) — 0pf’'(2)) this
may be rewritten as

(21)7

/ /
Pj:%(zi)‘i‘/)i I 2 I
ji i
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where 2, = 2z; — 0;p;. The new variable Z; then becomes the even coordinate for

the dual curve M (with p the odd coordinate), and one way to see that this makes
global sense is to directly compute

A

Zj = zj = 0;p;

;o M§iYgi HjiYji ’ ]Iznﬂ - N}ﬂji
= fji —Oipifsi — = =+ 0ipi | = = | + piltyi 3 ;

ji Nji ji

which, for the same reason as before, can be rewritten as

R R .. T I,_n.. _/‘l,l“ry.‘ .
& = Fu(z) = P (5) + s (sz‘ T (5),

showing that there is no 6 dependence in the transformation rules for Z and p, and
therefore that the supercurve M is well defined.

Of course, one would still have to check that these are indeed coordinate changes,
but we will omit the (mostly long and tedious) verification of this (well known, cf.
[DRS]) fact because, anyway, the point in explicitly writing these formulas is most
easily seen if we now go back to the special cases of projected and injected curves,
to make the following table:

Coordinates of M Coordinates of M
—r . 5 fii .
zj = fji s zj = fii + pittjints s
M projected
fii
0; = pji + Oing Pi = Pig,
zj = fji + 0ivji 5 zj = Jji;
M injected
£
0; = binj; pi =+ Pzt

(where for M the functions depend on ;). One sees immediately from this table
that

Proposition 1. The dual curve to a projected one is injected and vice versa.

O

Remark. It is also worthwhile to remark that the bundle corresponding to Neq

for the dual curve M is its Serre dual, i.e., KN ;}1, where I is the canonical bundle
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of Mieq. Thus, duality for supercurves is in a sense an extension of ordinary Serre
duality; in fact, for the special case of split supercurves, it is well known (and easy
to see from what has been said) that the corresponding structure sheaves are just

O = (OreaNied) @A 5 O = (Orea KN L) @ A,

For the sake of completeness, let us finally recall that the N = 2 supercurve
described here is in fact a super Riemann surface, or SRS, which essentially means
that it has a global rank 0|2 nonintegrable distribution, locally generated by D+ =
9, and D~ = 0y + pd,; the sections annihilated by DT are called chiral sections,
those annihilated by D~ antichiral.

Moreover, the structure sheaf of M5 fits into the exact sequence
(3) 0— 0 — Oy — Ber — 0,

where Ber denotes the Berezinian sheaf of M, and there is a similar sequence for
M, namely
0— 0O — Oy — Ber — 0.

The corresponding projections are just the operators D™ and D™, respectively.

(Actually, to be precise one should write the coordinates of M as (z, 0), those of
M as (2, p), and those of M, as (x, £, n); then the projections

m: My — M ; wo: My — M,
coming from the first arrows in the sequences above, become
* . * — . * 2 — . * —
71'1223':,7'('19—5,71'22—3’}—§7],7r2p—7’].

To avoid cluttering the notation one usally does not write the n’s and does not
distinguish between the coordinates of M and those in the embedded image in Mo,
etc., but in some instances this might become necessary.)

3. N =1 line bundles.

Let us now consider line bundles over M (i.e., N = 1 bundles). Recall that line
bundles are defined as rank 1 locally free sheaves of O-modules, and are determined
by transition functions I'j; = aj; + 0;0;, with aj; invertible, satisfying a cocycle
condition. For an arbitrary bundle, the cocycle condition reads:

aki = (Akj — Qrjtis)aj;

ks = (ks — Grgpagi)ogi + ((@'kg — ki) vie + Grgni) aji
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Again, we see that in general these conditions mix in a rather complicated way the
functions defining the bundle and the curve and, for instance, it is known that the
cohomology groups are A-modules, but in general not free. Thus, in order to get
more detailed results we will have to impose some extra conditions on M. But first
let us make the following observation: since aj; # 0, the transition functions of a
bundle can be factorized in the form
Fji = aji(l + 91%)
Qjq

This suggests a (naive) subdivision of line bundles into even ones, having transition
functions of the form a;;, and odd ones, having transition functions 14+6;ca.; (observe
that 1 + Oiaji = exp(@iozji)).

In fact, in the case of split manifolds, the cocycle conditions simplify to
Aki = OkjOj; 5 Ok = Oji + OgjNji,

so that the conditions are indeed consistent (the former determining the even bun-
dles and the latter the odd ones). This shows in particular that the even bundles
are completely determined by an ordinary line bundle £ over M,;eq (the reduced
bundle, given by the reduced expressions of the a;;); put another way, even line
bundles are always of the form O ® L. In particular, this gives a proof of the well
known result that the even cohomology group HZ, (O) of a split manifold is free,
and its rank as a A module is the genus g of M,q.

For odd bundles the situation is slightly more complicated: due to the unavoid-
able presence of nilpotent terms in the transition functions, odd bundles are not
determined by their reduced part (put another way, the reduced bundle of an odd
bundle is always trivial, even when the bundle itself is not). Nevertheless, as is also
well known, H} ,(O) is also free, since odd bundles are also of the form O ® H,
but where now # is not an O,eq-locally free sheaf, but rather a quotient sheaf (this
is because one has to “quotient out” the terms quadratic in 6 in the transition
functions exp(f;a;;)). Its rank can be computed from the super Riemann-Roch
theorem (which is valid in this case): for a locally free sheaf of O-modules £ the
super Riemann-Roch formula reads

RO(M, L) — h' (M, L) = deg L+ 1 — g|deg £L + degN + 1 — g,
so that for £ = O we get as rank for H!,;, g — 1 — deg .

Going back to the general case, if we try to subdivide bundles into even and odd
ones, we would get as cocycle conditions

pi = drjai ; @ kjvjiazi = 0 (even bundles)

1=1- dkj/,LjZ' ; Opg = (1 — dkj,uji)aji + dkjnji — &’kjﬂji')/ji (Odd bundles).
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But we see that in general neither of these conditions is consistent (in each case at
least one of the equations cannot hold), so such a subdivision makes no sense for
arbitrary supercurves. In fact (cf. [BR], theorem 2.6.1), the result in the general case
is that the cohomology groups H'(M) are quotients of the corresponding groups
(free A-modules) of the associated split supermanifolds, and the point is that these
quotients do not split into even and odd direct summands. However, by the very
definition of projectedness and injectedness, it is also clear that the conditions for
even bundles are consistent for projected curves, while for injected curves it is the
conditions for odd bundles that are consistent.

As a consequence of this, the even cohomology groups for projected curves, and
the odd cohomology groups for injected curves, are well defined, and moreover, if
the f;; and nj; do not involve the odd constants 7,, they are free A-modules.

More precisely:

Proposition 2. Let M be a projected supercurve, then H® (respectively H') ad-
mits a submodule of even sections (a quotient submodule defining even line bundles).
If the f;; and nj; do not involve the constants 1,, they are free and of the maxi-
mum possible rank, as given by the super Riemann-Roch formula stated above. For
injected curves, replace even by odd.

Proof: This follows easily from the discussion in section 1, by considering the coho-
mology sequences of the short exact sequences constructed there. Indeed, suppose
for instance that the fj; and nj; do not involve the odd constants 7., and that
we want to prove the assertion regarding the even cohomology of projected curves.
Consider the exact sequence

0= Ored ®A = O = Mea ®A — 0
then, the two ends of the corresponding cohomology sequence are
0 — H°(Myedq, Ored) @ A — H°(Myeq, 0) — ...
and

cee— Hl(Mredvo) — Hl(Mred,Med) ®A — 0,

the first giving a submodule of H°(M,cq,O) and the second a quotient module of
HY(Myeq, ©O); their ranks can be easily computed from the super Riemann-Roch
formula above (or even from the standard Riemann-Roch theorem in this case) and
are obviously maximal, since they coincide with the ranks of the even cohomology
groups of My, as claimed.

O
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4. N = 2 line bundles.

Let us now consider line bundles over the associated N = 2 SRS, M;. We ask
what are the conditions for an N = 2 line bundle to split as a tensor product of line
bundles over M and M.

First of all, we make the observation that any N = 2 local superfunction
I'=h+0;¢0+ pitp + 0ipig
can be decomposed as a product of a function on M and a function on M , l.e.,
L = (a(z;) + Oia(z:)) (b(2:) + piB(2:)).

In fact
h=ab; ¢=ab; v=aB; g=—(ab + ap)

(where according to our convention all functions depend on z;); since we can obtain
b’ /b from them, these conditions actually determine b up to a multiplicative constant
(and S also); a is then determined up to the reciprocal constant (and so is «).

Remark. There is a similar decomposition of N = 2 local superfunctions as sums
of N = 1 superfunctions, I'(2;,0;, p;) = F(z,0;) + F(Qi,pi), modulo an additive
constant. This, of course, is essentially “taking the logarithm” of the decomposition
above, and is a manifestation of the existence of an exponential exact sequence

0—-Z—0—0*—=0,

where, as usual, * denotes the invertible elements; however, we will not need this
construction in what follows.

Now, if I';; are the transition functions of an /N = 2 line bundle, written as above,
since the aj; and b;; themselves are only determined up to a constant, say c;;, what
this actually gives is the existence of a short exact sequence of the form
(4) 0— AL = OF % @;(V — 02X’ev — 0,
where O, x @gv is the sheaf described at the presheaf level by taking direct products
of the groups OX, (U;) and O, (U;). The second arrow is the map ¢ — (c,c™!) and
the third is (F, F') — F'F. Notice that all objects appearing in the construction of
the sequence above are even; in particular the sheaves are sheaves of abelian groups.
(And to be more precise, recall that we should write such sequences as

0— AX — 10X x m3OX — OF,, = 0.)

2,ev

We then have the following result:
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Proposition 3. Let M be an N = 1 supercurve. Then for any given line bun-
dle L over the associated N = 2 SRS My, there exists a cohomology class in
H?(Myeq, AY,), that measures the obstruction to express L as a tensor product of
line bundles over M and M.

Proof: Recall that in general, line bundles over a complex (super) manifold are
classified by the first cohomology group, H'(OX)).

Now, taking the cohomology sequence of the short exact sequence (4) above, the
last part reads

(5) cee —> Hl(MI‘ed) OeXV X @exv) — Hl(Mred, ) _> H2(Mred,AX) - 0'

Qev

However, there is a canonical map of cohomology groups
H( redaox)XHl( I‘ed’ox) ( I”edac)>< XOX)

and this map is in fact an isomorphism, because the domain and range are both
defined by equivalence relations on pairs of cocycles of transition functions. In-
deed, the isomorphism is (essentially) determined by the assignment (F(z), F(2)) —

(F(2), F(2) — 0pF'(2)).

Therefore, we have a group morphism
d: H ( red, OX ) X Hl( red) OX ) (Mreda ;,ev)a

whose image, by construction, consists of the isomorphism classes of N = 2 bundles
that can be expressed as tensor product of bundles over M and M. Thus, a line
bundle over M5 can be decomposed as a tensor product if and only if the corre-
sponding class is in the image of §, which equals the kernel of 8 in (5); this gives
the cohomology obstruction whose existence was asserted.

O
Let us make some remarks in relation to this result.

First of all, a more concrete proof of the proposition can be given along the
following lines: Given a cocycle of transition functions for an N = 2 line bundle L,
we can form the quotients

D+Fji ) D_Fji
Ty ' Ty’

and these are in fact sections of Ber(M) and Ber(M) respectively. By indefinite
integration of these local sections and then exponentiation, up to multiplicative
constants one gets functions F}; and F};, and this gives a factorization of the form
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[ = FF for the transition functions of L. Now, the cocycle conditions for I';; show
that on triple overlaps one has

10gFji + 10ngj + log Fy; = 10gﬁji + logﬁ’kj + logﬁ’ki

modulo some integers, representing the Chern class of the bundle £. But the left
hand side is chiral while the right hand side is antichiral, so that they are necessarily
equal to a constant, say cy;;; then expcyj; gives an explicit representative for the
desired class in H?(Myeq, AZ,).

On the other hand, the proof of the proposition given above sheds some light
on an interesting phenomenon. Namely, it was known that for certain supercurves
(nonprojected generic SKP curves, cf. below) there are examples of nontrivial N =1
bundles £ giving a nontrivial factorization Oy = L ® O, in addition to the trivial
one, O =0 ® 0.

This can be explained as follows:

By going one further step backwards in the cohomology sequence, we get an
exact sequence of the form

. _>H1<MredaAe>;<v) _>H ( redaox) X Hl( redaox) ( redaO;ev)

By construction, the second arrow in this sequence maps a flat line bundle (or, to be
precise, its isomorphism class), say £, defined by the cocycle of constant transition
functions c;;, to the pair of bundles (£,£'), defined by the pair (c;;, Cj; 1), where

the bundles of the pair are regarded as being over M and M respectively.

Thus, the assertion above is that the cocycle c¢j; might be trivial when seen as
representing an element of H'(M,eq, OF,) (1 e., as defining a bundle over M), but
not when seen as an element of H' (Mred, ) (i.e., as defining a bundle over M),
or vice versa. But this might very well happen because as we have already said,
in general H'(Myeq, OF) and H'(M;eq, OF,) are both quotients of the free rank g
A-module H'(M,eq, (’)Sp,ev) (where g is the genus of M.q), and the two quotients
are different in general. Moreover, this also shows that the bundles allowed in a
nontrivial decomposition of O, are necessarily flat (hence of degree zero).

Finally, let us point out that one can gain some further insight into the meaning
of this cohomological obstruction by considering the relatively simple but important
case of a generic SKP curve (which, by the way, are the curves needed for studying
the super KP equation). Recall that generic SKP curves are curves for which
deg N =0, N # O, and the point is that they have free cohomology, so in this case
hY(M,0) = glg — 1, and h'(Ms, O3) = g + 1|g — 1, while H'(M, O) is in general a
quotient of a free rank g|0 A-module. We know that all bundles over M and M lift
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to Ms, but the bundles coming from M lie in the same submodule as those lifted
from M.

Thus, there is an “extra” even bundle on M, that does not come from bundles
over M or M , but rather from the group H'(M, Ber), appearing when one considers
the long cohomology sequence associated to (3); this group is the Serre dual to
H°(M, O) in the category of supercurves. Now, to identify this bundle, consider a
covering of M,eq consisting of an open disk D centered at a point P, with coordinate
z =0, and M;eq \ {P}; then the extra line bundle has as transition function in the
annulus 0 .

1- k?p = Z—k(z — 0p)*.

(That this has to be the form of the transition function can be justified by the
fact that the residue mapping is integration of the principal parts representing
elements of H'(M, Ber), which has rank 0|1, so the dual of a constant function k&
should represent a bundle having a transition function with a pole of the form k/z;
see [BR] for the details on these constructions). The point is that when k is not
an integer, z* is not single valued in D \ {P}, so the functions appearing in the
decomposition in these cases cannot define line bundles over M and M , and one
sees that some (indeed, most) of these bundles cannot come from tensor products
of bundles.
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