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Abstract: In this paper, we define a new class of multivariate skew-normal distribution. Its properties
are studied. In particular we derive its density, moment generating function and the first two moments. The
moment generating function of the corresponding quadratic form and its moments are also given.

1 Introduction

The univariate skew normal distribution was introduced by Azzalini (1985, 1986) and its multivariate version
by Azzalini and Dalla Valle (1996) and Azzalini and Capitanio (1999). These classes of distributions include
the normal and have some properties like the normal and yet are skew. They are useful in studying robust-
ness. Whereas Azzalini and Dalla Valle (1996) and Azzalini and Capitanio (1999) obtain the multivariate
distribution by conditioning on one random variable being positive; we condition on the same number of
random variables being positive. Hence, by construction, in the univariate case the two families are the
same. From related reference ones refers to Kelker (1970), Fang et al (1990), Gupta and Varga (1993), and
Gupta and Nagar (2000).

We study in this work this new family of multivariate skew normal (MSN) distributions. This class of
distributions includes the normal distribution and has some properties like the normal family and yet are
skewed. In the next section we give the definition of this distribution, some of its properties and a method
for simulating random vectors with this distribution. In Section 3 we compute the first two moments of
the MSN distribution and the expectation of some quadratic forms. We discuss in detail the bivariate skew
normal distribution in Section 4. Finally in Section 5 we discuss a general version of the MSN distribution.

2 The multivariate skew normal distribution
A continuous random vector Y (p x 1) is said to have a multivariate skew normal distribution (MSN) if its
p-d.f. is given by

1
(0:1+ DxD')

fo (Y5 11,2, D) = T, by (Y3 11, 2) @4 [D (y — )], (2.1)
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where p € RP, ¥ >0, D(pxp), ¢, (-;11,%) and @, (-;X) denote the p.d.f. and the c.d.f. of p-dimensional
normal distribution with mean x and covariance matrix ¥ > 0. However we will denote ¢, (-;0,1) by &, (-),
and @, (;0,X) by ®,(-;X). We will denote that a random vector is distributed according to MSN with
parameters p, 2, D by writing Y ~ SN, (i, %, D) .

In this section we first prove a lemma which is used in the sequel (see Azzalini, 1985, Zacks 1981,
Marsaglia, 1967).
2.1 Some properties of SN, (i, >, D)
I)If D' = (0,...,0,6,0,...,0), § = (81, ..., 6,)", 0(p x 1)is a null vector, then

fo (i, 3, D) = Azzf (y; . 3.6" (y — )

where Azzf denotes the skew normal density of Azzalini and Dalla Valle (1996).

IT) If D = [diag (61, ..., 6,)] ©~'/2 then the density function (2.1) reduces to

F (1.2, D) = 2, (4: 1. D) @, {[ding (51....6,)] T2 (v — )} .
III) The distribution function of ¥ ~ SN, (u, 3, D) is
Fy(y; 1,5, D) =Pr(Y <y) =Pr (Y1 <1, ., Yp < 9p)

1 Y1 Yp
- 50T TEm7 ) D e D )
p I — 00 —00

1 Y1 yp  p[D(s—w)]; [D(s—p)],,
- = (O'I+D§]D’)/ / / / By (t: 11, D) 6, (s) dsdt
P\ —0o0 —o0 J—00
1

— 00

= Pr(U; < LU, < V <D(U -
q)p(();f—l-DED’) t(Ur <1, Up < yp, VS D( )

/
where D (t — p) = {[D (t—p))y - [D(t— ,u)]p} LU~ Ny (p,2), V~N,(0,I) and U is independent of V.
IfW =V — D (U — u) we have that

(i) =% [(6)-( b + 70w )|

Thus, the distribution function of Y is

y—p IS 3
Fp(y;u,Z,D)—%p[( 0 >9<_D2 I+ DxD! >]

Proposition 2.1. Let Y ~ SN, (1,3, D). If ¥ = diag (o7, ...,0%) . D =diag (61,...,6p), then

fo (U5 1, %, D) = @, (0; 1 + DXD') ¢, (y; 1, %) @5 [D (y — )]

= HQ(/) (vi: 1y (Tf) D [6; (yi — ;)]

=1

p
== Hfl (yi;)u‘qjao—?aéi) 3

=1
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i.e., Y’s are independently distributed as SNy (,ul-,og-,éi) . This means that if we have a collection of n
independent random variables with distribution skew normal then the joint distribution of the n random
variables is multivariate skew normal. This property does not hold for the multivariate skew normal distri-
bution defined by Azzalini and Dalla Valle (1996). Thus, > = 02T and D = §I give us the i.i.d. case. Notice
that Azzalini (1985, Section 4) proposed a generalization which is a particular case of Proposition 2.1.

2.1.1 The moment generating function
The following lemma is useful for evaluating some integrals that we will use in the rest of the paper.
Lemma 2.2. Let B be a constant (p X p) matrix, and a € RP. If V' ~ N, (1;, ) then
Ey [®p (a+ BV:pg, Q)] = @ (a — py + Bpuy; Q2+ BEB').
Proof.

By (@, (a+ BV: iy, 0)] = By [Pr(U <a+ BV|V)
= Pr(U<a+ BYV)

where U ~ N, (49, 2) . Then
Ey [®,(a+ BV;py, Q) =Pr (U - BV <a)
Given that U — BV ~ N, (g — Bpy, Q + BEB') we get
Pr(U — BV <a)=®,(a; 1y — Buy,Q+ BEB').

|
Proposition 2.3. If Y ~ SN, (11, X, D) then its m.g.f. is given by
&, (DSt 1+ DED') uyooy
My (t) = 2 : WHREEt e RP. 2.2
() = IR D e, 22)
Proof. By definition of m.g.f. we have
My (t) = Be" = @, (0;1 + DED') / "V, (y 1, %) @y [D (y — p)] dy
RP
=@, (0: 1+ DxD') et'“ﬁt'ﬂ/ by (5 11+ 38, 5) @y [D (y — )] dy
Rp
_ Ew [®, (DW — Dp)] ol nt3t'St
3, (0;1+ DxD) ’
where W ~ N, (1 + Xt,X) . The result follows from Lemma 2.2. |

If D = diag (61, ...,6,) and ¥ = diag (07, ...,O’IQJ) then

P .24,
My (1) =2 [[ @ | —22L

i=1 \/1+ 8302

12,2
etv‘#i"‘?"itw"
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which is the independent case.
From Proposition 2.3 we give the distribution of a linear transform of Y.

Proposition 2.4. Let Y ~ SN, (1,2, D). Let A(p x p) a non-singular matrix and b € R? be constants,
then AY +b ~ SN, (b+ Ap; AXA', DA™Y).

Proof. For t € R? the m.g.f. of AY + b is given by

May 4y () = E [et’<AY+b>} = et )My (A't)

_ Oy (DEA'G T+ DED') p(ausn)t e asa’e
3,(0,1+ D=D)

o, [[DATY] [AZA) ;1 + [DATY] [ARA') (DATY)']
®, (0:1+ [DA 1| [ASA] (DA 1))

et'(A/J.—H))-}-%t'AZA/t

2.2 Construction of the MSN

In this section we give a derivation of the MSN distribution based on a partitioned-conditional method. This
procedure is useful for simulating random vectors with this distribution.

Proposition 2.5. Let X ~ N, ({, I+ DXD’) and Y ~ N, (p,X) with Cov(X,Y) = DX. Then the
distribution of the random vector Y| (X > &) is SN, (1, X, D).

Proof. Write the joint distribution of X and Y as
X N 13 I+ DD DY
v 2p M B} ED/ b I

XY ~ N, (§+D(y—p),I).

then

By using the fact

frix (| X >€) = fy () Pr (X > ¢ly)

Pr(X >¢)
we observe that
Uy
Frix X >¢€) = %Pr (€~ X <0[y)
o, (i X)
- @p((iI—I—DED’)(I)p [D(y—,u)}.
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3 Some expected values

3.1 First and second moment of the MSN distribution

Let Y be a random variable with distribution SN, (¢, X, D). In order to compute the first and second
moment for the MSN distribution we consider the derivatives of the m.g.f. given in equation (2.2). From
the Appendix A we have that the mean of Y is

G? (0; DS, I + DX.D')

EY =
Pt =3 1+ DsD)

where

G? (0; DS, I + DXD') = %@p (DXt, I+ DSD')

t=0
From Lemma C.1, we get that the i'" element of G? (0; DX, I + DX.D’) is
G? (0; DX, I + DXD') = Z(DZ o o
+ ot 0015
\/2_7r|I+DZD’ 12 )

where H ;) is the matrix obtained by eliminating the j'* row and the j™ column from (I + DX.D’ )

If D = diag (61, ...,6,) and ¥ = diag (07, ...,02) then

2

G? (0, DX, I + DSD') = 2p_11 =1 j;(ﬂ (3.1)
which implies that

EY = u+2PG?(0; DX, I + DXD')

=+ \/2{ 6105 e 6”02% }/.
T |1+ 6702 1+6,02
From Appendix B we get that the second moment of Y is
EYY' =¥+ quéf}f;?’f ;é)z?)m [2]@(: ((l)? ij ;zl:)DE)D : + qu()(:(l(izl,i er)g E)D/) w s (3.2)

where

G? (t; DX, I + DX.D') =[G (t; DX, I + DD

2

®, (DXt I+ DED)|

9]
? (0; DX, 1+ DXD') = =GP (t; DX, 1 + DXD' = —
Gl (D%, T+ ) o’ (6D, I+ )t:O otor ” 0
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The expression for Gf;] (0; DX, I + DXD’) is given in the Appendix by Lemma C.2. If D = diag (6?, ceey 6%)

and X = diag (0%, ey O'IQJ) are diagonal then by equation (C.8) we get

51‘53‘0?0? e

D / 2 5 2 o\ if i # 7,
G} (0;D%, 1+ DXD') = 201z (14 870%) (1 + 8502) (3.3)

0, if i=j.

In order to evaluating the variance of Y we need the following quantity
G?(0; DX, I+ DxD") G?' (0; DX, I+ DX.D’)
3,(0;1+DxD) " M8, (0;1+ DuD)
n G?(0; DX, I+ DXD')G? (0; DX, I + DXD’)
o2 (0; I + DXD') ’

(EY)(EY) = pp +

thus
Var(r)=x_ & (0; D%, I +(I)12)(2()p;) fg éol;) 1/;2, I+ DxD) sz]@(();( (l;if ;r EDDE)D’)
p\V p (U;
If D = diag (61, ...,6,) and X = diag (07, ..., (ff,) are diagonal then from equations (3.1) and (3.3) and letting
A = diag (146-15?;% S eens li%gff%) we get

Var (V) =% — %AQ. (3.4)

3.2 Moment generating function of quadratic forms

In this section we consider the quadratic form Y’ AY, where Y ~ SN,, (0, %, D). By using Lemma 2.2 we can
obtain the m.g.f. of Y'AY.

Proposition 3.1. Let Y ~ SN, (0,3, D) then
(i) The m.g.f. of Y'AY is

o, [0; [+ DX (I —2tAS) " D’}
3, (0.1 + DSD')
(ii) The joint m.g.f. of Y’ A1Y and Y’ A5Y is

My ay (£) = I —2tAS|~"/2.

3, [0; I+ DS (I 2(t A +tads) )™ D’}
3, (0,1 + DD)

My ay,yray (t,t2) = [T —2(t1 A1 +t24) Z|_1/2.

Proof. (i) We have

My ay (t) = Ee™"'4Y = &1 (0;1 + DED) / WAy (y,0,5) @, (Dy) dy

RP

= &1 (0;1+ DED)|I — 2tAx|"/? /]R b, [y; 0,5 (I - 2tAD)™"| @, (Dy) dy.
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Now by using Lemma 2.2 we get

3, [0; [+ DX (I 2tAx) D}
,(0:1 + DSD)

My ay (t) = I —2tAS| 12,

(ii) By noting that My 4,v,y A,y (t1,%2) = My (4,4, 4 ,t,)y (1) and using (i) the proof is complete. M
Corollary 3.2. If ¥ and D are diagonal matrices and Y ~ SN, (0,3, D), then Y/S71Y ~ x2.

From (3.2) and the identity F(Y'AY) = tr[AE(Y'Y)] we can evaluate the expectation of Y'AY. For
computing moments of higher orders is better to use the derivatives of My 4y (t) evaluated at zero. The
arguments for derivative are similar as those given for calculating F(Y’Y) in lemmas C.1 and C.2. The
expressions of F (Y'AY) and Var (Y’/AY') have a closed form and can be evaluated without major problem,
however they are tedious and will not be included here.

4 The bivariate skew normal distribution

In this section we obtain a closed expression for the density of a random vector with distribution SNs (p, 2, D) .

When D = b1 & or D= 00 the bivariate skew normal density reduces to
0 0 61 09
1 1+ 6302 4 26,890102p + 6305 0
f? (.T,y;[L,E,D) :@2 Oa 0 1 ¢2 (Jc,y;u,E)
X B, [<61 (@ — ) :)réz (y— uz)ﬂ

= 2y (2,5 1. 2) B [61 (& — py) + 62 (y — 1))

which is the same as given by Azzalini and Dalla Valle (1996). This case will not be discussed in this paper.

611 612

We will consider the general case where D =
021 622

>. The next lemma helps us to evaluate the

constant of the density (2.1).

2
Lemma 4.1. f R= | '! ﬁQQ is a positive definite matrix, then @, (0; R) = 4 — 5= arccos -2
19 r3 T 172

Note that if 712 = 0 we get @3 (0; R) = 1, because arccos (0) = 2, this result coincides with the fact
that when R = diag (7"%, r%) it follows that

@y (0;R) = @ (0,r]) @ (0.73) = (3) (3) =

PN

2
Corollary 4.2: If X = o1 UIUQQP is a positive definite matrix, and D = o1z is an
g102p g3 021 022
arbitrary matrix, then

@, (0;1 + DED') = 1 — s-arccos (ppy) (4.1)
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where
P 62101103 + 62261203 + (812021 + 622611) 0109p
DY — .
\/(1 + (5%10'% + 26116120’10’2p + (5%20'%) (1 + 6%10% + 2(521(5220’10’2/) + (5320'%)

Ifp=0
82161102 + 62261203

Ppx = 2 9, 2 2 2 9, 2 2
(14 67,07 + 61203) (1 + 85,07 + 63903)

and if D = diag (61, 52)

02010102p

Pps = ) (42)
V (1+803) (1+6303)
and if D = diag (61, 62) and §; = 0 and/or 62 = 0 then ppy, = 0.
If 621 = 611 and 612 = 622, then
s = 8110% + 63003 + 26226110102p
by 6%10% + 26116290102p + 6%205
’ 0% 01020 .
Let = (pq,p5) and X = o109p 02 . From (2.1) and (4.1) we have that the density of the
102 2

bivariate skew normal distribution (BSN) is given by

1 [(m—#1)2 _oele=p)=ps) | (y—;ga)g}}

T 2(1-p2) o3 0102 o2

210109/ 1 — p? [ — 5= arccos (ppy)]

X @ [611 (= py) + 612 (Y — pg)| D [621 (2 — p1q) + 622 (y — o)) -

exp{
f? (may7ﬂaEaD) =

With the explicit expression for the density of the BSN distribution we can draw some contours of this
density. Note that these contours are not elliptical.

(i) For u = (8) , Y= (1 p) , D= (30) and p =0, %, 19—0, respectively:

p1l 01
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4.1 The marginal and conditional density of the BSN
From Proposition 2.3 we have that the m.g.f. of (X,Y) is

Dy (DSET+ DSD) riyyvs

Mxy (t1,t2) = @, (0; 1 + DX.D')

thus, the m.g.f. of X is given by

Mx (t1) = Mx,y (t1,0)
_ Dy [(D1211 + DoXoy) t; I + DXD)

it +3oit] 4.3
3, (0;1 + DRD) ¢ ’ (43)

where D was partitioned as D = ( D1 (2x 1) Dy (2x1) ). It is easy to verify that (4.3) corresponds to a
random variable with distribution GMSN given in Section 5,

GSNi 2 (11,211, D1 + D01 507, Dipty + DoSa1 Si1 iy, I + Do (So3 — $21 577 Su2) D5)
Hence the marginal density of X is given by
fX(xall‘laZaD) - (P2_1(0aI+DZD/)¢(‘T7I’L1a211)
x®y [(D; + D2221Ef11) (£ —pq) ;1 + Dy (Sg2 — 2212f11212) Dj].
. . 211 212 0'% 0102p
By using (4.1) and replacing ¥ = by ¥ = 5 and D = (Dy,D3) by D =

Yo1 Yoo o109p 0%
611 612
< o1 o we get

. 2
i (o, 3. D) = it

1 — & arccos (ppy)

o {[(2) o (22) 2] oy (11 SR ) i 1)
622 O’lp K1) 5125220% (]. — pQ) 1 =+ (5320'% (1 - pQ) '
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and if D = diag (61, 62), then ppy; is given by (4.2) and the marginal density of X reduces to

(/5 (377 .LLlu 0%)

- %arccos(pDE)@{[<%1> * (602) Z_ﬂ (7 =) <(1)1 +6§o§(1 p?))}

- ) g5 (0 )

2 — 5= arccos (ppy,)

fX (‘TalulazuD) =

ba0ap (@ — 1) . (4.4)
o1y/1+ 6303 (1 p?)

Now, the conditional density of Y given X =z is

¢ [y o + Son 27 (& — 1) s Top — Yoa 203 Tna] o [Da (y — 1) ; =D (& — py)]
Dy [(D1 + DQZleil) (.’L‘ — Ml)]

¢ [y;u2 +2Zp(x—py),03 (1 pQ)}

T () e (AT 7
2 b21 b22 ) 01 r Ha)s 61262203 (1 — p?) 1+ 83,03 (1 — p?)

X @ [012 (Y — pig) + 011 (7 — py)| @ [022 (Y — p1g) + 021 (2 — p1y)]

which correspond to the distribution (5.1)
GSN12 (pg + X157 (2 — p1y) , So2 — B9y 077' S12, Do, Doty — Dy (x — py) , 1) .
If D = diag (61, 062), ppx; is given by (4.2) and the density of Y| X reduces to
¢ [y; fio + Z2p(x —py),03 (1 - pg)}
frix (ylz; 1, 2, D) = oo
|t )
The m.g.f. of the conditional distribution of Y given X = z is
Dy [Ds (22121_11 (& — py — S12t) 4+ Boat) 5 —D1 (2 — py) , I + D2 (a2 — 22121_11212) Dj]
@y [1)222121_11 (x = py)s=D1(x — py);: I+ Do (222 - E2121_11212) Dé]

pot+Z2 pla—p, )t+303 (1-p) ¢

D [62 (y — po)] -

My x (t) =

X e

If D = diag (61, 62), then ppy, is given by (4.2) and the m.g.f. of Y|X reduces to

o)~ @, [<602> Z2p(x — py — 0102pt) + (i) o2t — (%) (xﬂl),<(1n+6§0%0(1 _p2)>]
(O B L (|

pot+ 22 pla—p, )i+ o3 (1—p% )22

X e
P [52%§p(m—#1)+520§t(1—p2)}
2,2 (1_ 2 o . 2 ¢
\/1+62‘72(1 p?) eugt—k;%p(m—p])t+%o§(1—p2)t2. (45)

B @( Sa0ap(x—p,) >

014/ 146303 (1—p2?)
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We get the conditional expectation of Y| X by differentiating the m.g.f. (4.5), thus

d oy phatt Z2pla—p)t+ 303 (1-p7 )12
—My|x (t) = [ug +p—=(z— )+ (1-p7) 0315]
g1 (P [

dt pbaoa(x—py)
o14/1+0263(1—p2)
po2Z* (x — py) + (1 — p?) 6203t
V140383 (1 42)
et Ttk 3os (108 | psy 2 (a2 — puy) + (1= p?) 6203t (1—p?) 6203

—Laal ) 14 0363 (1 p? 140362 (1— p2
e |:0'1\/1+0'§5§(1p2):| \/ +0365 (1 —p?) \/ + 0363 (1 —p?)

From the last expression we get that the conditional expectation of Y given X = z is

x ®

+

E(Y|x) = %E (e™]X)

t=0
pdaoa(z—p) :|

(1—p?) 6203 ¢ [01\/1+6§a§<1p2)
1+ (1—p2) 6202 @ | —pb2z2z—p)

( p?) 6503 /110202100

If 63 = 0 then ppy, = 0, and by using equation (4.4) we get that the marginal densities of X and Y are
SNy (,ul, o2, 61) and SNV, (,u2, o3, 0) =N (,u2, (7%) , respectively. Thus, when D = diag (61,0) the conditional
expectation of Y, given X = z, is the usual regression line of Y on X. Note that in this case the BSN density
of (X,Y) reduces to

T2
=py+p— (v —py) +
g1 \/

fa (@5 11,5, D) = 205 (2, y; 1, 2) @61 (2 — )],
which is the Azzalini-Dalla Valle density with o = (61,0).

5 General MSN distribution

In order to have a closed family such that it contains its marginal and conditional densities it is necessary to
define a general version of the MSN distribution. We define the general multivariate skew normal distribution
(GMSN) as a distribution whose density is of the form

foa 1.2, D, v, A) =0 (Dpsv, A+ DED') ¢, (y; 1, 2) @ (Dy; v, A) (5.1)

where p € R?, v € R?, and X (p x p) and A (¢ x q) are two covariance matrices and D (¢ X p) is an arbitrary
matrix. We say that a random variable W has distribution GMSN by writing W ~ GSN,, , (1, X, D, v, A).
The fact that (5.1) is a density is readily verified with the help of Lemma 2.2.
The m.g.f.. of this density is given by:

Proposition 5.1. If Y ~ SN, , (11,3, D, v, A) its m.g.f. is given by

S, [D(p+%t);v, A+ DED'] B

My (t) =
v (1) ®, (Dp; v; A + DXD)




6 Concluding remarks 12

6 Concluding remarks

The skew normal distribution is very useful in applied statistics for modelling the skewness, see for example
the works of Azzalini and Capitanio (1999) and Genton (2001).

For the bivariate case we saw that the contours of the BSN density are not elliptical as we showed in
Section 4. When the contours of a bivariate density are not elliptical the correlation coefficient is not a
good measure of association between variables. Bjerve and Doksum (1993) suggest to use a correlation curve
which is a natural local measure of the strength of the association between Y and X near Y = z. We are
working on the computation of the correlation curve for the BSN distribution and on the properties and
applications of the general multivariate skew normal distribution see Dominguez-Molina et al. (2001).

Appendix

A Computations for the first moment of the MSN distribution

In order to compute the first and second moment for the MSN distribution we consider the derivatives of
the m.g.f.. The first derivative of

O, (DSt 1+ DYD') vy 1y

_ 'Y _
My (1) = Be™™ = 3,(0;I+ DxD')

is given by

0

@, (DSt1 + DED')  GP (4, D%, 1+ DED')| pyiy
> My (1) = [(u+2t) p (DXL ) G HDE T )] erersese,

3,011 DxD) | @, (0.1 DED)

= (A1)

Then the mean of Y is

P

d
EY = = My (1)

=ntg 3,0 I—|—DZD’ Zez(;f (0; DX, I + DX.D'),
t=0 z:l

where e; (p x 1) has one in the i*" position and zero elsewhere and

G? (t; DX, I + DX.D') = %ép (DSt; I+ DSD') .

G (0; DX, I + DX.D') = %ép (DSt; I + DSD')

t=0

From Lemma C.2, we get

1/2

G} (0; D%, 1+ DXD') = /1/22 )i [Hip|

V27 I + DSD/| @1 [0 () (4.2)

where Hj) is the matrix obtained by eliminating the j"* row and the 5™ column from (I + DX.D’ )
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B Computations for the second moment of the MSN distribution
From (A.1) we obtain

& vy _ [ @ (DI1 + DED) GP (t; DX, I + DXD')
ator’ 3, (0;1 + DxD) 3, (0; 1+ DXD)
Gly (t; DX, I+ DED') (g ) (s sy B (DZ6 1+ DED)
3, (0;1+ DxD) @, (0; 1+ DXD)
GP (t; DX, I + DX.D')
3, (0; 1+ DXD)

+ (p+3t)

(1 + St | e tHatst

where

G” (t; DX, I + DED') = [GP (t; DX, I + DXD")]

2
Gl (; DX, 1 + DXD') = aiap (t; DS, I+ DD') = &?at,

See Lemma C.2 for the full expression of G[Q] (t; DX, I + DXD'). Thus

@, (DXt; I + DYD).

GY (0, D%, I+ DxD') Gy (DX, 1+ DXD')  Ggr(0; DX, 1+ DD

EYY' =% 3
THTG (0.1 DED) &,(0.11DsD) | @,(0:11D=D) M T

C Derivatives of the multinormal integral

C.1 First derivative of the multinormal integral

Lemma C.1. Let A (p x p) be an arbitrary matrix and let 2 be a positive definite matrix. Then
P

GP(0; A,Q) = g (At0) =) eGP (0, 4,9),
1=1

where e; (p x 1) has one in the i position and zero elsewhere and

1/2 o1\t
|Q|1/2 Zaﬂl% ®p [O’ (2}) }

and where Q@)l is the matrix constructed by eliminating the i'" row and the i column of Q~'. With the
convention that Q(;)l = (Q_l)(i) .

G? (0:4,Q) = %@, (At; Q)

t=0

Proof. For At = [(At)1 s e (At)p}/ write

(A1), (A1),
@, (At; Q) :/ / Gy (21,0 Tp; Q) dy - - - .

—OoQ — 00
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Then the partial derivative with respect to t; is
9 P (At), (At),_, (At), (At)p
%QJp (At; Q) :Z/ / / / agip, (@1, 1. (Ab) ), Tty s 23 ) (Cl1)
) k=1 —00 —00 —o00 —o00

X dxy - dTp—1dTpqq - - - dp,
whence

2, (4t:0)

P 0
ET = Z/ / agiPy (1, s T 1,0, Thg 1, oy Tp; Q) dvy - - - drp1dTpey s - - - day,
) —oo —0o0

N 1/2 .0 0 r Nt
%'WZ @) | [ [t o (96

X dxy---drg_ 1dxk+1 - dxy
-1
>, . [0; (Q(*,j))

\/_|Q|1/QZ ki (Qacl)>71

t=0

Jui

1/2

|
If Q = diag (w3, ...,w3) the expression for GY (0; A, ) reduces to
GP = Z &t (C.2)
b 1\/27r '

C.2 Second derivative of the multinormal integral

Lemma C.2. Let A(p x p) be an arbitrary matrix and let © (p X p) be a positive definite matrix. Then

Gl (0;A,Q) = 2 3, (At; Q)

0

Xp:i (0, A, Q) Hyj, (C.3)

where the matrix H;; (m x m) has unit element at the (3, 7)™ place and zero elsewhere. And

0
P (0, 4,Q) = T, 3, (At; Q) (C.4)
t=0
-1
LY S mm( o] )
| | k=1 l#£k

ST L

i#k

-1
—1
X Pp g I:ml, ey T 1y Thed 1y -y T [Q(k)} :| drq - - .dmkfldmk+1dmp.
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where QFF is the element (k,k) of Q=1 and Qfl‘ is the matrix constructed by eliminating the i'" and j'"

rows and the 7" and j* columns of Q! Wlth Q 1= Q). ..
(4,4) (4,)

Proof. From equation (C.1) we have

(At), (A1), (A1), (At),_, p(AD),,, (At),
TECCLED 9 B S I I B N I

k=1 1k
ayagjdy [T1, s i1, (At) ) Thegr, s W11, (A1), Trg123 Q)

X dxl coedxp_1dTpyq - - drg_dripade,

(A1), (At),, (At) )1y (A1),
/ / / / Qi QL Gk (t,x,A, Q)

X qSP [T, oy 21, (AL)), Tpegr, oo, 23 Q)
x dxy - - drp_1deRpada,
where
q (t,x, A, Q) = 2ej Q12" +2 (At),, QFk,
with 2* = (21, ..., 21,0, Tpy1, ...,:cp)/ (see C.6 and C.7) and ey (p x 1) has one in the k' position and zero

elsewhere.
Note that

qr (0,2,A4,Q) = eﬁchl Z kg,
z;ék

and evaluating ﬁ@l, (At; Q) at t = 0 and after some manipulations we get
5oL,

8 —1
—% & (At:0)| = ; |Q ‘@ [ }
o0t p (A6 o |Q|1/2 ;#Zk“l kg |* (k)| Fp=2 ( (k)
0 0 40 0 .
+ZZ/ / / / arsar; Oz,
k=1 i=1 /=00 —oo J—oo —o0
=
-1
X Py [ml, ey 1 T 1y -ey T [Q@ﬂ ] dxy - - dry_ degqde,. (C.5)

In order to obtain
. d _
qr (t,z,A,Q) = akiIE [(xl, s T, (At) L, T, ...,xp)' QO (21, T, (At),, Try1, ...,xp)] ,  (C.6)
first observe that,

(@15 s 1, (A) s Thgets ooy xp)’ QO (g, T, (At Thg1s ooy Tp)
= [z" + (A1), ek]/ 01! [x* + (At), ek
= (@) Q2" + 2(At), Q2" + (A1) ep ey = () Q2" + 2(At), e, Q2" + (At)2 QFF
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where 2* = (21, ..., 21,0, Zp 41, -, 7). Given that

d d &
— (At), = — E t; = ayq,
dt; )k dt; - Al = ag

and we get
ar (t, 2, A, Q) = 2ay,e, Q7 2" + 2 (At), ap; QFF (C.7)
where QFF is the element (k, k) of Q™.
If Adiag (ay,...,ap) = Q = diag (wi, ...,w3) the expression for G7 ; (0; A, Q) reduces to
a;a;

GP (0;A,Q) =< 2 'mww;’ 475,
%3 . . .
0 if =7

(C.8)
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