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Abstract

We present the applicability of differential system (DS) method for
identification of hydraulic conductivity and effective porosity in a phreatic
aquifer. In the classical setting, the first step of the DS system is to
solve an overdetermined algebraic system using least squares. A natural
extension of the method is to pose a least squares problem in an appropiate
functional space, we consider the space of square integrable functions in
the time variable for a finite interval. Also we present different methods
of approximation and discuss how to deal with noisy data.

1 Introduction
Numerical simulators of groundwater flow have been developed to study the
effects of changes in geohydrologic conditions and management policy on the
groundwater storage, flow directions, and water quality in aquifers. There are
many difficulties to apply such models to real field situations, among others,
the estimation of the model parameters is one of the most important. These
simulators require the hydraulic properties, such as conductivity and storativity
all over the flow domain. In order to understand the groundwater flow phe-
nomenon is very important to know the physical properties of the media at
the scale in which we want to study the problem. If model parameters are not
accurately estimated at the scale of interest, the model prediction may be use-
less for management of groundwater resource. The inverse problem solution in
geohydrology is an important part of a more general issue that concerns aquifer
model validation.
Hydrologist and petroleum engineers have used numerical models for the

simulation of flow and solute transport for more than three decades, to study
problems related to flow in porous media. Most if not all, practical solutions to
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groundwater simulation problems are obtained via one or more of the forward
operators approximating the physically based mass balance relation.
There are three types of requirements for the model to be close to the real

system, at least with regards to the simulated variables (the output of the
model):

1. The model should include all physical processes relevant to the simulation.

2. The structure of the model should resemble that of the real system.

3. The values assigned to the variables controlling the process must be similar
to their real counterparts.

These concepts are defined in the literature as: process identification, model
structure identification and parameter estimation, Carrera [2]. Parameter esti-
mation or deterministic calibration is also defined in Ginn et. al. [4].Throughout
this work we follow the latter.
For the confined aquifer case, Parravicini et. al.[6], proposed a direct method,

based on the solution of a Cauchy problem that allows for the determination of
both transmissivity T and storativity S, when the potentials and source terms
are given for three different flow conditions, at least one of them transient.
Vázquez et. al. [7] developed further the method and show the advantages of
using more than three flow situations data. The method essentially consists in
writing the differential equation for each one of the flow conditions. Forming
the set of equations as a first order partial differential system in the unknown
T and an algebraic system in the unknown S. Therefore the name DS Method
(for Differential System Method).
In this work we are concerned primarily with an isotropic phreatic aquifer

that satisfies Dupuit assumption and for which Darcy’s law and the two-dimensional
approximation hold, so the flow is regulated by the Boussinesq equation, Bear
[1]:

∂

∂x

µ
K(h− η)

∂h

∂x

¶
+

∂

∂y

µ
K(h− η)

∂h

∂y

¶
= ne

∂h

∂t
− f (1)

where h(x, y, t) is the elevation of the aquifer free surface (piezometric head, or
hydraulic potential), η(x, y) is the elevation of the bottom of the aquifer,f(x, y, t)
is the source term, representing a vertical flux, positive if downward.
Our purpose is to develop the DS method for the identification of the model

parameters, hydraulic conductivity, K(x, y), and effective porosity, ne(x, y). We
will show that for the inversion, no a priori knowledge of effective porosity
is needed and, moreover, the identification of hydraulic conductivity does not
depend upon it.
The first step in the method requires to solve an algebraic system in the

unknowns ∂K/∂x, ∂K/∂y, ne when the point (x, y) is fixed. The system is
overdetermined, hence, the solution is found in the least squares sense. We
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shall see that a natural extension is to solve this least squares problems for
more general hilbertian norms, and we show some advantages.
The aquifer under study is generated synthetically, thus the data for the DS

method is obtained by solving a direct problem. We discuss briefly the effect
of different discretization methods, namely, balance cell models and the finite
element method (FEM). Also, we show how to deal with noisy data by means of
Tikhonov regularization. Here we consider both, confined and phreatic aquifers.
We remark that the full analysis of the DS method when the generation of

synthetic data is by means of the Galerkin-FEM, and the study of noisy data,
is carried out in Fregoso [3] for confined aquifers, and Kú [5] for the phreatic
case.

2 The continuous inverse problem
In order to show how the DS method applies to a phreatic aquifer; let us describe
the method with explicit reference to an isotropic phreatic aquifer described by
equation (1). For simplicity assume that the aquifer bottom coincide whit the
datum ( h(x, y) = 0 ) then:

∂

∂x

µ
Kh

∂h

∂x

¶
+
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= ne
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Consider equation (2) and suppose that the source term f(x, y, ti), the po-
tential h(x, y, ti) and its time derivative ∂h(x, y, ti)/∂t are known as a function
of space, at p different times ti, i = 1, 2, . . . , p. A set of data is given by these
functions, so p sets of data are assumed to be known.
Let us introduce the notation:

f i ≡ f(x, y, ti)

hi ≡ h(x, y, ti)

∂hi/∂t ≡ h(x, y, ti)/∂t

then equation (2) gives:

∂
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Applying derivatives we obtain after some simplification

hi
∂hi

∂x

∂K

∂x
+ hi

∂hi

∂y

∂K

∂y
− ∂hi

∂t
ne = −∆hiK − f i

3



where

∆hi = hi∆hi +

µ
∂hi

∂x

¶2
+

µ
∂hi

∂y

¶2
Let us define

u =(u1, u2, u3) =

µ
∂K

∂x
,
∂K

∂y
, ne

¶
(3)

And the vectors z, f with components ∆hi and f i respectively.
Assuming that conductivity K is known, we have for a fixed point (x, y) the

following linear system.

Au = −Kz+ f (4)

If Rank(A) = 3 then system (4) has a unique solution in the least squares
sense given by

u = −Ka+ b (5)

Where the three component vector function a and b are the solution of the
systems:

Aa = z

Ab = f
(6)

Now, let us rewrite equation (5) recalling definition (3) and writing down
the dependence upon x explicitly. We have the following system for the first
two components of u

u1 =
∂K

∂x
= −Ka1 + b1

u2 =
∂K

∂y
= −Ka2 + b2

(7)

And the following equation for the third component of u

u3 = ne = −Ka3 + b3 (8)
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The second step for identifying the parameters consists in considering the
equations in (7) as a first order differential system for K.
To solve this differential system we need Cauchy data, that is, the assignment

of conductivity at a point x0 = (x0, y0) of the domain. The Cauchy problem to
solve is the following

u1 =
∂K

∂x
= −Ka1 + b1

u2 =
∂K

∂y
= −Ka2 + b2

K(x0, y0) = K0

(9)

The solution of system (9) is unique, provided it exists.
The solution at a point x = (x, y) is found by choosing an appropriate path

joining x with the initial point, and integrating (9) along it.
Indeed, let γ(s), be a path joining x0 with x.

γ : [0, 1]→ R2, γ(0) = x0, γ(1) = x

Let k(s) = K(γ(s)), then

dk

ds
= ∇K(γ(s)) · dγ

ds

= (−K(γ(s))a+ b) · dγds
= −a · dγdsK(γ(s)) + b · dγds

Here, a ≡ a(γ(s)), and b ≡ b(γ(s)). We are led to the initial value problem

dk

ds
= −

µ
a · dγ
ds

¶
k(s) + b · dγ

ds
, k(0) = K0 (10)

which is easily solved.
When conductivity has been evaluated, then equation (8) is used to obtain

the effective porosity at every point of the domain.

3 A Synthetic Phreatic Aquifer
The DS method, as described in the previous section, is applied to a synthetic
but realistic example

The Numerical Evaluation of the Model Parameters
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Consider a regularly spaced lattice of nodes, each located at the center of a
square cell, with sides parallel to the orthogonal Cartesian coordinate axes, and
with spacing ∆x along the x and y directions.
Nodes are labeled with the ordered pair of integer numbers (m,n), m =

1, 2, ...,M , n = 1, 2, ...N , so that the pair (m,n) represents the node x(m,n) =
m∆xi+ n∆xj , where the vectors i and j are the unit vectors.
Recalling the discrete conservative scheme with finite differences for the un-

confined aquifer Bear [1] then the model parameters that need to be identified
are easily pointed out.
Consider an interior cell B(m,n) of the discrete domain of the aquifer. The

integral balance equation for B(m,n) is the following.

ne(m,n)
¡
hi(m,n)− hi−1(m,n)¢ (∆x)2

∆ti
= −N i(m,n)+

+(KD∗) ((m,n), (m+ 1, n))
¡
hi(m+ 1, n)− hi(m,n)¢+

+(KD∗) ((m,n), (m− 1, n)) ¡hi(m− 1, n)− hi(m,n)¢+
+(KD∗) ((m,n), (m,n+ 1))

¡
hi(m,n+ 1)− hi(m,n)¢+

+(KD∗) ((m,n), (m,n− 1)) ¡hi(m,n)− hi(m,n− 1)¢
(11)

where

(KD∗) ((m,n), (m+ 1, n)) =
2K(m,n)K(m+ 1, n)

K(m,n) +K(m+ 1, n)

¡
hi−1(m+ 1, n)− hi−1(m,n)¢

2

(KD∗) ((m,n), (m− 1, n)) = 2K(m,n)K(m− 1, n)
K(m,n) +K(m− 1, n)

¡
hi−1(m− 1, n)− hi−1(m,n)¢

2

(KD∗) ((m,n), (m,n+ 1)) =
2K(m,n)K(m,n+ 1)

K(m,n) +K(m,n+ 1)

¡
hi−1(m,n+ 1)− hi−1(m,n)¢

2

(KD∗) ((m,n), (m,n− 1)) = 2K(m,n)K(m,n− 1)
K(m,n) +K(m,n− 1)

¡
hi−1(m,n− 1)− hi−1(m,n)¢

2

which is a formulation of the multiple cells models Bear [1].
The choice of space and time intervals ∆x and ∆ti is based on geometrical

factors and frequency of measurements, which depend upon the goals of the
forecasting model.
The discrete parameters that appear in equation (11) are the internode con-

ductivity K ((m,n), (m0, n0)) and the cell effective porosity ne(m,n). These are
the discrete model parameters relevant for the description of groundwater flow
at the given, fixed, space and time scales.

6



Therefore, the goal of the discrete inverse problem for the case of unconfined
aquifers is the determination of the internode conductivity and the effective
porosity of the cell.

Generation of Synthetic Data
The synthetic phreatic aquifer that we consider is divided into a square

regular lattice of cells, with M = N = 9, ∆x = 25m. Conductivity values in
m2/s are constant on each cell. Its values are summarized in the following table

m
n 1 2 3 4

1 0.000525 0.000510 0.000495 0.000480
2 0.000475 0.000460 0.000445 0.000430
3 0.000425 0.000410 0.000395 0.000380
4 0.000375 0.000360 0.000345 0.000330
5 0.000325 0.000310 0.000295 0.000280
6 0.000275 0.000260 0.000245 0.000230
7 0.000225 0.000210 0.000195 0.000180
8 0.000175 0.000160 0.000145 0.000130
9 0.000125 0.000110 0.000095 0.000080

· · ·

· · ·

5 6 7 8 9
0.000465 0.000450 0.000435 0.000420 0.000405
0.000415 0.000400 0.000385 0.000370 0.000355
0.000365 0.000350 0.000335 0.000320 0.000305
0.000315 0.000300 0.000285 0.000270 0.000255
0.000265 0.000250 0.000235 0.000220 0.000205
0.000215 0.000200 0.000185 0.000170 0.000155
0.000165 0.000150 0.000135 0.000120 0.000105
0.000115 0.000100 0.000085 0.000070 0.000055
0.000065 0.000050 0.000035 0.000020 0.000005

Since the domain is divided into zones of constant conductivity and the regu-
lar spacing of the cells, the internode conductivities, denoted withK((m,n), (m0, n0)),
are the harmonic mean of the cell values. Porosity is constant on each cell as
well and its values are given in the following table
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m
n 1 2 3 4

1 0.033333 0.044444 0.050000 0.053333
2 0.044444 0.066667 0.080000 0.088889
3 0.050000 0.080000 0.100000 0.114286
4 0.053333 0.088889 0.114286 0.133333
5 0.055556 0.095238 0.125000 0.148148
6 0.057143 0.100000 0.133333 0.160000
7 0.058333 0.103704 0.140000 0.169697
8 0.059259 0.106667 0.145455 0.177778
9 0.060000 0.109091 0.150000 0.184615

· ··

· · ·

5 6 7 8 9
0.055556 0.057143 0.058333 0.059259 0.060000
0.095238 0.100000 0.103704 0.106667 0.109091
0.125000 0.133333 0.140000 0.145455 0.150000
0.148148 0.160000 0.169697 0.177778 0.184615
0.166667 0.181818 0.194444 0.205128 0.214286
0.181818 0.200000 0.215385 0.228571 0.240000
0.194444 0.215385 0.233333 0.248889 0.262500
0.205128 0.228571 0.248889 0.266667 0.282353
0.214286 0.240000 0.262500 0.282353 0.300000

It will become apparent that the fact that the domain is divided into zones
of constant conductivity and porosity, and the correlation between these two
parameters, does not play a role in the identification process.
Dirichlet boundary conditions for the piezometric head have been assigned

at the border of the domain. They do no vary with time. The values are as
follows (in meters)

m
n 1 2 3 4 5 6 7 8 9

1 40.00 40.05 40.10 40.15 40.20 40.25 40.30 40.35 40.40
2 39.80 x x x x x x x 40.20
3 39.60 x x x x x x x 40.00
4 39.40 x x x x x x x 39.85
5 39.20 x x x x x x x 39.70
6 39.00 x x x x x x x 39.55
7 39.80 x x x x x x x 39.40
8 38.60 x x x x x x x 39.30
9 38.40 38.50 38.60 38.70 38.80 38.90 39.00 39.10 39.20

The initial conditions for the piezometric head are given by the solution of
a steady-state forward problem corresponding to the source term given in the
following table (m3/s)
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m
n 1 2 3 4

1 0.00003675 0.00003075 0.00002675 0.00002475
2 0.00002475 0.00001875 0.00001475 0.00001275
3 0.00001675 0.00001075 0.00000675 0.00000475
4 0.00001275 0.00000675 0.00000275 0.00000075
5 0.00001275 0.00000675 0.00000275 0.00000075
6 0.00001675 0.00001075 0.00000675 0.00000475
7 0.00002475 0.00001875 0.00001475 0.00001275
8 0.00003675 0.00003075 0.00002675 0.00002475
9 0.00005275 0.00004675 0.00004275 0.00004075

· ··

· · ·

5 6 7 8 9
0.00002475 0.00002675 0.00003075 0.00003675 0.00004475
0.00001275 0.00001475 0.00001875 0.00002475 0.00003275
0.00000475 0.00000675 0.00001075 0.00001675 0.00002475
0.00000075 0.00000275 0.00000675 0.00001275 0.00002075
0.00000075 0.00000275 0.00000675 0.00001275 0.00002075
0.00000475 0.00000675 0.00001075 0.00001675 0.00002475
0.00001275 0.00001475 0.00001875 0.00002475 0.00003275
0.00002475 0.00002675 0.00003075 0.00003675 0.00004475
0.00004075 0.00004275 0.00004675 0.00005275 0.00006075

Which represents leakage in the aquifer and is present in all the situations
devised.
A numerical comparison of the predicted parameters, conductivity and poros-

ity, will be made with the reference parameters. More important for the man-
agement of the aquifer, is to verify that with the predicted parameters it is
possible to recover the evolution of the aquifer. A numerical comparison is also
possible, we content ourselves with a graphical comparison. We plot the contour
flows of the piezometric head for synthetic aquifer as well as the contour flows of
the piezometric head for the aquifer with the identified parameters. The contour
flows of the initial conditions for the piezometric head are shown in Figure 1.
The transient regime is set up by a sudden start of some array of wells at

t = 0. The array of wells are placed in the cells corresponding to the nodes:
(2, 2), (3, 8), (4, 8), (6, 8), (7, 8). At these nodes the source term during the
transient regime is equal to 0.01 m3/seg
Piezometric heads at different times are obtained by solving the forward

problem with the reference parameters, the boundary and initial conditions,
and the source term described above. The piezometric head is computed at the
times in years

t1 = 0.001, t2 = 0.0022, t3 = 0.0046, t4 = 0.0100.
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The contour maps of the four transient flow situations are represented in
Figure 2

4 Numerical Implementation of the DS Method
The sets of data used in the identification are given by h(m,n, i), (∂h/∂t) (m,n, i) ,
F (m,n, i), with i = 0, 1, 2, 3, 4. The time derivatives of the piezometric heads
for the sets of data from 1 to 4 are evaluated with the backward differences.
There are two numerical problems to consider when implementing the DS

method. First, the solution of the linear systems (6) , and second, the integration
of equation (10) .
The systems (6) are overdetermined and ill-conditioned, the preferred algo-

rithm is QR decomposition with householder transformations.
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To integrate equation (10) we use polygonal paths through the nodes of the
lattice. Moreover, a, b are approximated by constants along internode seg-
ments and denoted aA, bA. These quantities are scalars since between internode
segments the path of integration is parallel to a coordinate axis.
It is possible to establish an a priori estimate for the difference between the

true conductivity, k(s), and the identified conductivity, kA(s). Following the
proof of Gonwall’s lemma we obtain

|k(s)− kA(s)| ≤ exp
¡− R s

0
aA(r)dr

¢ ·
· (|k(0)− kA(0)|+R s
0
exp

¡R r
0
aA(p)dp

¢ |k(r)| |a(r)− aA(r)|+ |b(r)− bA(r)| dr¢
This suggests that among the possible integration paths that join the node

(m,n) , where we want to compute conductivity, to the initial node (m0, n0) we
choose that one for which the sum

P(m,n)
(m0,n0)

|aA|, performed over all internode
segments connecting the vertices of the path, is the smallest.
In the next table we show the identified conductivity in the inner nodes

m
n 2 3 4

2 0.0004728 0.0003964 0.0004300
3 0.0003703 0.0003503 0.0003377
4 0.0003191 0.0003041 0.0002921
5 0.0002736 0.0002584 0.0002461
6 0.0002281 0.0002126 0.0001998
7 0.0001826 0.0001663 0.0001529
8 0.0001366 0.0001194 0.0001049

· ··

· · ·

5 6 7 8
0.0003692 0.0003552 0.0003410 0.0003315
0.0003242 0.0003103 0.0002968 0.0002839
0.0002788 0.0002653 0.0002519 0.0002204
0.0002330 0.0002198 0.0002065 0.0001591
0.0001867 0.0001739 0.0001609 0.0001074
0.0001399 0.0001276 0.0001151 0.0000080
0.0000916 0.0000788 -0.0000587 -0.0000483

At first sight the prediction is correct except near the nodes where wehave
wells. This is to be expected since near a well the flow is no longer laminar or
aquifer-like.
Next we show a table with the absolute errors.
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m
n 2 3 4

2 0.0000128 0.0000486 0
3 0.0000397 0.0000447 0.0000423
4 0.0000409 0.0000409 0.0000379
5 0.0000364 0.0000366 0.0000339
6 0.0000319 0.0000324 0.0000302
7 0.0000274 0.0000287 0.0000271
8 0.0000234 0.0000256 0.0000251

· ··

· · ·

5 6 7 8
0.0000458 0.0000448 0.0000440 0.0000385
0.0000408 0.0000397 0.0000382 0.0000361
0.0000362 0.0000347 0.0000331 0.0000496
0.0000320 0.0000302 0.0000285 0.0000609
0.0000283 0.0000261 0.0000241 0.0000626
0.0000251 0.0000224 0.0000199 0.0001120
0.0000234 0.0000212 0.0001437 0.0001183

From this table is not clear if the predictions are correct. The next table
presents relative errors, which shows that the errors away from the wells are
acceptable.

m
n 2 3 4
2 0.0278 0.1091 0
3 0.0968 0.1132 0.1114
4 0.1136 0.1186 0.1148
5 0.1176 0.1239 0.1209
6 0.1226 0.1324 0.1315
7 0.1307 0.1470 0.1506
8 0.1460 0.1768 0.1932

· ··

· · ·

5 6 7 8
0.1103 0.1120 0.1142 0.1041
0.1119 0.1133 0.1142 0.1128
0.1150 0.1157 0.1161 0.1839
0.1209 0.1210 0.1212 0.2766
0.1317 0.1306 0.1301 0.3684
0.1520 0.1494 0.1473 0.9333
0.2032 0.2118 1.6911 1.6893

Now we present the corresponding tables for effective porosity. The predic-
tions are
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m
n 2 3 4
2 0.0494 0.0716 0.0867
3 0.0793 0.0918 0.0999
4 0.0805 0.1001 0.1145
5 0.0829 0.1057 0.1238
6 0.0831 0.1083 0.1290
7 0.0829 0.1090 0.1308
8 0.0827 0.1083 0.1288

· ··

· · ·

5 6 7 8
0.0830 0.0873 0.0910 0.0978
0.1082 0.1160 0.1231 0.1909
0.1266 0.1379 0.1483 0.2580
0.1395 0.1542 0.1667 0.1520
0.1474 0.1656 0.1833 0.3278
0.1508 0.1722 0.1949 0.5521
0.1479 0.1684 -0.1641 -0.2139

Again we see that there are meaningless predictions near the wells.
The absolute errors are

m
n 2 3 4
2 0.0000173 0.0000084 0.0000022
3 0.0000007 0.0000082 0.0000144
4 0.0000083 0.0000142 0.0000189
5 0.0000123 0.0000193 0.0000243
6 0.0000169 0.0000251 0.0000310
7 0.0000209 0.0000310 0.0000389
8 0.0000239 0.0000372 0.0000490

· ··

· · ·

5 6 7 8
0.0000122 0.0000127 0.0000127 0.0000089
0.0000168 0.0000173 0.0000169 0.0000454
0.0000216 0.0000221 0.0000214 0.0000802
0.0000272 0.0000276 0.0000277 0.0000532
0.0000344 0.0000344 0.0000320 0.0000992
0.0000437 0.0000432 0.0000385 0.0003032
0.0000573 0.0000602 0.0004130 0.0004806

and the relative errors
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m
n 2 3 4
2 0.2590 0.1052 0.0250
3 0.0082 0.0819 0.1261
4 0.0939 0.1239 0.1415
5 0.1291 0.1545 0.1641
6 0.1685 0.1881 0.1935
7 0.2011 0.2217 0.2293
8 0.2244 0.2556 0.2754

· ··

· · ·

5 6 7 8
0.1282 0.1268 0.1224 0.0831
0.1344 0.1300 0.1206 0.3122
0.1457 0.1383 0.1261 0.4510
0.1630 0.1519 0.1425 0.2592
0.1891 0.1718 0.1488 0.4341
0.2246 0.2007 0.1649 1.2183
0.2791 0.2633 1.6595 1.8021

The main motivation of parameter identification for aquifers is the ability to
predict the evolution of the aquifer. We do so graphically, we plot the contour
lines of the different flow situations (solid line) for the piezometric head, and the
contour lines using the identified parameters of the corresponding piezometric
head (dashed line). See the initial condition in Figure 3. The predictions for
the transient flow situations are in Figure 4. We observe that the prediction
of aquifer evolution is satisfactory. This in spite of the poor identification of
parameters near the wells.
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5 An alternative approach to the DS Method
The continuous problem
Let us proceed as in Section 2 and consider the equation (2) in the form

h
∂h

∂x

∂K

∂x
+ h

∂h

∂y

∂K

∂y
− ∂h

∂t
ne = −∆hK − f

where

∆h = h∆h+

µ
∂h

∂x

¶2
+

µ
∂h

∂y

¶2
As before define
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u =(u1, u2, u3) =

µ
∂K

∂x
,
∂K

∂y
, ne

¶
Let us fix (x, y) again. In this case we assume that h, ∇h, ∆h and f are

known in (x, y, t) for t ∈ I = [0, T ], and belong to L2(0, T ).
Recall that

L2(0, T ) =

(
ϕ :

Z T

0

|ϕ(t)|2 dt < +∞
)

with inner product

hϕ,ψi =
Z T

0

ϕ(t)ψ(t)dt

and induced norm

kϕk2 = hϕ,ϕi =
Z T

0

|ϕ(t)|2 dt

Consider the map

R : R3 → L2(0, T )

given by

R (u1, u2, u3)=1
2

°°°°h∂h∂xu1 + h∂h∂y u2 − ∂h

∂t
u3 +∆hK + f

°°°°2
Assuming thatK is known, the minimum satisfies∇R (u1, u2, u3) = 0, which

leads us to a system

Au = −Kz+ f (12)

If Rank(A) = 3 this system has a unique solution given by

u = −Ka+ b

Where the three component vector function a and b are the solutions of the
systems

16



Aa = z

Ab = f

Once we solve these algebraic systems, we mimic the second step in the DS
method as in Section 2.

Numerical Implementation
Throughout the development of the DS method with L2-norm, we assumed

that the functions involved were known for all times. In practice this is not the
case, instead we have observation for a finite number of time situations, that
is, we know, h(m,n, i), (∂h/∂t) (m,n, i) , F (m,n, i), with i = 0, 1, . . . , p. The
time derivatives of the piezometric heads for the sets of data from 1 to p are
evaluated with the backward differences.
First we have to solve the linear system (12). When using the L2-norm, the

system reads


hhhx, hhxi hhhx, hhyi hhhx,−hti

hhhx, hhyi hhhy, hhyi hhhy,−hti

hhhx,−hti hhhy,−hti hht, hti



u1

u2

u3

 = −K


­
hhx,∆h

®
­
hhy,∆h

®
­−ht,∆h®



+


hhhx, fi

hhhy, fi

h−ht, fi


(13)

The components of the system (13) are integrals in t, this are approximated
numerically by interpolating with linear functions at time t1, t2, t3 and t4. The
system is again ill-conditioned and solved with QR decomposition as before.
There is no change when integrating the corresponding Cauchy problem.

Parameter Identification
Next we present the tables of the identified parameters, as well as the tables

of errors. First the table for conductivity
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m
n 2 3 4
2 0.00029191 0.000445 0.00038077
3 0.00036835 0.00035074 0.00034553
4 0.00031122 0.0003095 0.00031062
5 0.00027155 0.00026996 0.00026711
6 0.00023007 0.00022536 0.0002185
7 0.00018559 0.000178624 0.00016871
8 0.00014005 0.000130535 0.00011794

· ··

· · ·

5 6 7 8
0.00038564 0.00040672 0.00041533 0.00040893
0.00034363 0.00035522 0.00035748 0.0004394
0.00031738 0.00032548 0.0003296 8.1903
0.0000002 0.00026904 0.00028467 0.00030661
0.000212 0.00021001 0.0002134 0.00029135
0.00015859 0.00015049 0.00014255 0.00011805
0.00010412 8.8846e-005 5.86e-005 5.0739e-005

Observe that in the node (3, 8), where there is a well located, we have an
unrealistic identification.
Let us look at the corresponding table for porosity.

m
n 2 3 4
2 0.045446 0.073957 0.081039
3 0.075467 0.094369 -0.003454
4 0.087773 0.04075 0.081392
5 0.022469 0.070784 0.10514
6 0.059599 0.088017 0.11483
7 0.067653 0.094547 0.11941
8 0.070582 0.098384 0.1219

· ··

· · ·

5 6 7 8
0.037925 0.084428 0.107 0.10359
0.089526 0.12655 0.14796 0.18364
0.12082 0.16172 0.19782 17191
0.13502 0.17512 0.23987 0.3004
0.14272 0.18265 0.24638 0.31801
0.14458 0.17762 0.22642 0.25531
0.14227 0.15949 0.12279 0.228785

In agreement with the previous table, we have a meaningless prediction at
the node (3, 8). There is also an incorrect prediction at node (3, 4).
As before, we compare the tables for errors. The absolute errors are
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m
n 2 3 4
2 0.00016809 0 4.9232e-005
3 4.1653e-005 4.4259e-005 3.4471e-005
4 4.8782e-005 3.5499e-005 1.9381e-005
5 3.8446e-005 2.5041e-005 1.289e-005
6 2.9928e-005 1.9639e-005 1.1504e-005
7 2.4409e-005 1.6382e-005 1.1293e-005
8 1.9954e-005 1.4466e-005 1.2061e-005

· ··

· · ·

5 6 7 8
2.9358e-005 6.7217e-006 3.0334e-005 3.8934e-005
2.1368e-005 5.2161e-006 2.2481e-005 0.0001194
2.3787e-006 2.5477e-005 4.4597e-005 8.19
2.0168e-007 1.9039e-005 4.9666e-005 8.6613e-005
2.9981e-006 1.0012e-005 2.8401e-005 0.00012135
6.4055e-006 4.8503e-007 7.5455e-006 1.95e-006
1.0877e-005 1.1154e-005 2.64e-005 1.9261e-005

Better conclusions can be drawn by looking at the table of relative errors.

m
n 2 3 4
2 0.36542 0 0.11449
3 0.10159 0.11205 0.090714
4 0.13551 0.1029 0.058731
5 0.12402 0.084886 0.046036
6 0.11511 0.080161 0.050016
7 0.11623 0.08401 0.06274
8 0.12471 0.099768 0.09278

· ··

· · ·

5 6 7 8
0.070743 0.016804 0.078789 0.10523
0.058542 0.014903 0.067106 0.37311
0.0075515 0.084922 0.15648 30333
0.00076107 0.076156 0.21135 0.3937
0.013944 0.050058 0.15352 0.71382
0.038821 0.0032335 0.055892 0.01625
0.094583 0.11154 0.31059 0.27516

We conclude that identification with the L2-norm is better than before.
The same holds true for porosity. Here is the table of absolute errors.
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m
n 2 3 4
2 0.021221 0.006043 0.00785
3 0.0045332 0.0056309 0.11774
4 0.001116 0.073536 0.051941
5 0.072769 0.054216 0.043007
6 0.040401 0.045316 0.045168
7 0.036051 0.045453 0.050283
8 0.036085 0.047071 0.055883

· ··

· · ·

5 6 7 8
0.057313 0.015572 0.0032961 0.0030723
0.035474 0.0067844 0.0079573 0.038182
0.027332 0.0017243 0.028118 17191
0.031643 0.0067009 0.045423 0.09527
0.039098 0.017353 0.030995 0.089443
0.049859 0.037762 0.0069176 0.006423
0.062861 0.069081 0.1261 0.037886

and the table with absolute errors.

m
n 2 3 4
2 0.31832 0.075538 0.088312
3 0.056664 0.056309 1.0302
4 0.012555 0.64344 0.38956
5 0.76407 0.43373 0.2903
6 0.40401 0.33987 0.2823
7 0.34764 0.32466 0.29631
8 0.3383 0.32362 0.31434

· ··

· · ·

5 6 7 8
0.60179 0.15572 0.031783 0.028803
0.28379 0.050883 0.056838 0.2625
0.18449 0.010777 0.1657 96699
0.18986 0.036855 0.23361 0.46444
0.21504 0.086767 0.1439 0.39131
0.25642 0.17532 0.029647 0.025806
0.30645 0.30223 0.50666 0.14207

We see that the predictions are correct except at the nodes (3, 4) and (3, 8).
This is remarkable since we have good predictions for 46 out of 48 nodes.
Finally, figures 5 and 6, show that the aquifer evolution is predicted correctly.
We remark that the solution of the direct problem, was carried out without

modifying the identified parameters, that is,without disregarding the meaning-
less predictions. To simulate a physically correct model, it is necessary to replace
those incorrect values using, for instance, some technique of interpolation.
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6 Finite Elements and Noisy Data
The direct problem in aquifer simulation involves the numerical solution of par-
tial differential equations (PDE) of parabolic type. The solution presented above
is by the Finite Difference method. Another approach is the Galerkin approxi-
mation followed by the Finite Element Method (FEM), Galerkin-FEM for short.
It is well known that finite differences is not well suited to work with irregular
geometries, hence, in this case the Galerkin-FEM is preferred. As a consequence,
it is natural to develop the DS method when the synthetic data is generated
with Galerkin-FEM.
In real cases, besides the fact that the aquifer’s domain is irregular, the data

collected is not noisy free in general. In order to apply the DS method to a case
as realistic as possible, we may add noise to the data generated synthetically. For
instance, in Vazquez et al [7] the DS method is applied successfully to a confined
aquifer, then correlated and uncorrelated noise is added to the piezometric head
before inversion. It is shown that the DS method is not as effective. We obtain
the same conclusion for the phreatic aquifer under study.
Our ultimate goal is to apply this theory to real aquifers, an step in that

direction is to implement the DS method with data generated synthetically
by the Galerkin-FEM approach, and then add noise to the piezometric head.
The same conclusions hold, the DS method is only effective when the data is
noise free. Since the model of aquifer evolution is a PDE, some smoothness is
assumed in the functions involved. Although somewhat artificial, noisy data
can be regularized by Tikhonov’s method. The identification improves greatly.
A full analysis of this approach for the confined aquifer in Vazquez et al [7] is
carried out in Fregoso [3]. The analogue for the phreatic aquifer presented in
this work is developed in Kú [5].

7 Comments and conclusions
The DS method, like any other inverse method in geophysics, needs high qual-
ity data. Thanks to recent improvements in instrumentation, it is nowadays
possible. However, data have to be carefully analyzed before its use for inverse
methods. Also, it is fundamental to collect independent sets of data.
The DS method can be applied to small subregions of an aquifer. In partic-

ular we can assess where the independence condition is verified by analyzing the
collected data. The DS method identifies the parameters directly at the scale
determined by the spacing of the observation points where data are collected.
Some other features of the method are:

(i) uses those measurable quantities that are usually collected in aquifers under
control or that can be interpolated from these,
(ii) no prior information on effective porosity is required,
(iii) no initial guess of the unknown parameters is required,
(iv) no forward problem solutions are needed,
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(v) the identification of hydraulic conductivity does not depend upon effective
porosity, even when only transient data are used,
(vi) the internode hydraulic conductivity and cell effective porosity are ready-to-
use parameters for the numerical implementation of the forward problem with
conservative schemes,
(vii) takes into account several flows with different directions, all over the
aquifer, using data on the whole flow field.
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