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Abstract

Parametric image segmentation consists in finding a label field, that defines a
partition of an image into a set of non—overlapping regions, and the parameters
of the models that describe the variation of some property within each region. A
new Bayesian formulation for the solution of this problem is presented, based on
the key idea of using a doubly stochastic prior model for the label field, which
allows one to find exact optimal estimators, for both this field and the model
parameters, by the minimization of a differentiable function. An efficient mini-
mization algorithm, and comparisons with existing methods on synthetic images
are presented, as well as examples of realistic applications to the segmentation of
Magnetic Resonance volumes, to motion segmentation, and to edge-preserving
filtering.
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1 Introduction

After the seminal work by Besag [1, 2] and Geman and Geman [3], probabilistic meth-
ods, and in particular, Markov Random Field (MRF) models, have been used with
great success for the solution of a number of important problems in image analysis;
there is a vast amount of published works on the subject, that include applications
in image restoration [3, 4, 5, 6], segmentation [7, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16],
edge—preserving filtering [17, 18, 19, 20], reconstruction in inverse problems [21, 22],
etc. (see also [23], [24], and references contained therein). There are 2 main reasons
for this success: discrete MRF’s provide a systematic way —firmly rooted in Bayesian
estimation theory — for including prior constraints about the shape and average size
of homogeneous regions in an image; since these macroscopic properties result from
local interactions, a wide variety of behaviors may be obtained, simply by varying a
few parameters in the definition of local potentials in the MRF model. The second
reason is that, even when exact optimal estimators cannot be precisely computed, it
is possible to design reasonable approximate algorithms that work well in many cases,
although sometimes with high computational costs.

A particular problem, that has been approached with these kind of models, is image
segmentation: it consists in finding a partition of an image into a set of non—overlapping
regions { Ry, ..., Ry}, so that the variation of some property (such as intensity, depth,
velocity, color, etc.) within each region Ry is either constant, or follows a simple model
®,. What makes this problem specially difficult is the fact that one has to estimate
both the parameters that characterize each model ®; , and the corresponding regions
of validity R at the same time. To solve it, prior MRF models have been used in
conjunction with iterative procedures —in particular, the Expectation Maximization
(EM) algorithm [25], which are reasonably effective, but entail a high computational
cost. The goal of this paper is to present a new class of probabilistic models that
permits the characterization of the solution to complex segmentation problems in terms
of the minimization of a differentiable energy function, for which efficient algorithms
can be devised. We will show that these models, which are also rigorously based on
Bayesian estimation theory, represent a significant improvement over classical MRF’s,
both in terms of the accuracy of the solutions and of computational complexity, and are
also versatile and generally applicable. The plan of our presentation is the following;:
in section 2, we review the classical MRF formulation of parametric segmentation
problems, introduce our new model, and present efficient estimation algorithms. In
section 3, we compare experimentally the performance of the new scheme with that
of classical ones, and discuss the problem of control parameter selection. In section 4,
we present 3 examples of applications, to illustrate the versatility of our approach: to
the segmentation of brain Magnetic Resonance (MR) volumes; to motion segmentation
and to edge preserving filtering. Finally, some conclusions are drawn in section 5.



2 Hidden Markov Field Models for Image Segmen-
tation

2.1 Classical MRF Models

The probabilistic models that have been used in most cases to formulate segmentation
problems, fit the general description given in Fig. 1. To understand it, we introduce the
following notation: let L represent the pixel (or voxel, in 3-D problems) lattice, where
images I are observed. The model assumes that there are M regions, {Ry, ..., Ry},
such that L = UM, Ry; R; N R; = 0,7 # j, so that the observation at pixel r € L is

given by:
M

I(r) = > @(r,04)bi(r) + n(r) (1)
k=1
where n(r) is a white noise field with known distribution P, (e.g., {n(r),r € L} are
O—mean, independent, identically distributed Gaussian random variables with standard
deviation o); ®(-,-) is a parametric model; 6y is the parameter vector that corresponds
to region Ry, and by(r) is the corresponding indicator function: by(r) =1 < r € Ry;
note that b(r) satisfies the constraints:

% bp(r) =1, bp(r) € {0,1} ,for all r € L (2)

Associated with b, there is a label field f, with f(r) € Zy; = {1,..., M}, that indicates
to which region does r belong, i.e., by(r) = 6(f(r) — k). In this model, the field f is
assumed to be a sample from a MRF, i.e., a sample from the state space Z}; (where
N is the cardinality of L), obtained with a Gibbsian distribution:

Py(f) iexp[—;wf)] (3)

=7
where Z; is a normalizing constant and the sum in the exponent ranges over the cliques
of a given neighborhood system on L, and {V(f)} are “potential functions”, each one
of which depends only on the value of f at the sites that belong to the clique C
(see [3, 23] for details). These potential functions, together with the the neighborhood
system selected, control the appearance of the sample field f, and hence, the properties
of the estimated segmentation. A potential that is often used is the generalized Ising
model, which considers cliques of size 2 (e.g., pairs of sites that are less than 2 units
appart), and potentials of the form:

VC(fivfj) = _/Bvlffz:fj

= [3, otherwise
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where (3 is a parameter that controls the granularity of the field. Since the field f is

not directly observable, it is often called a hidden MRF model.

2.1.1 Estimation Algorithms

The segmentation problem consists in finding an optimal estimator for both the field
f and the parameter vector 6 = (0y,...,60y), given the observations /. To obtain it,

using Bayesian estimation theory, one follows the steps [6]:

1. Find the likelihood of the observations P(I|f,0).

2. Using the prior distribution Pr(f) (and Fy(6), if available), find the posterior

distribution P(f,6|I), using Bayes rule.

3. Define an appropriate cost function C( f , é, f,0), that associates a cost to esti-

mators f, 6, given that the true values are f, 6.

4. Find the optimal estimators f*,6* by minimization of:
Q(f,0) = E[C(f,0, f,0)|1]

We now analyze them in detail.

(4)

The likelihood of the observations is obtained from the observation model (1) and

the noise distribution P, (assumed known):

I|f0 H’l)f,,.)

rel

where each M—vector v(r) is defined by:
vk(r) = P (I(r)|f(r) = k,0) = B (I(r) — ®(r, 04))

For example, for Gaussian noise, we have:

on(r) = /L expl11(r) — B(r. )]

where 7 is a parameter that depends on the noise variance.

Using (7), (3) and Bayes rule, one finds the posterior distribution as:

P(J,611) = - exp-U(f,0)

P

where Z, is a normalizing constant, and

U(f,0) =—=> loguvswm(r Z Vo(f) — log Py(6)

relL

()



where a non—informative (constant) prior Py may be used, if there are no prior con-
straints on 6.

The minimization of Q) (Eq. (4)) is usually performed by 2-step procedures, which
may be generically called Segmentation/Model Estimation (SM) algorithms, in which,
the best segmentation, given the current estimate for the model parameters 6 is found
in step S, and the best estimate for 6, given the current estimate for the segmentation,
is found in step M. It has been found that finding a “soft” or “fuzzy” segmentation
in the S step, increases the robustness of SM procedures with respect to the initial
estimate for #, which must be given. Thus, it is more convenient to work with the
indicator vector field b instead of f, where one imposes the constraints: > bg(r) = 1
and by (r) > 0, for all r, instead of the “hard” constraints (2).

The general form for SM algorithms is thus:

1: Find an initial estimate 6 for 6;
2: Repeat until convergence:

S Step: Set b = arg min; Q(l;, 0)
M Step: Set § = arg ming Q(b, 6)

The cost functions that are normally used (although, in most cases they are not
explicitly defined) are separable; expressed in terms of b they are of the form:

C(b,0,b,0) = Cy(b,b) + Cy(0,0)

Depending on the form of C, and Cjy, one gets different SM algorithms. For example,
setting
Co(0,0) = 0,if6=10

= 1, otherwise

and

Ci(b,0) = 3 [b(r) — b(r) |

rel

one gets the well known EM algorithm [25] (although this is not its usual derivation):
in this case one has that

Qu(b) = E[Cy(b,b) 1] = e S E[(by(r) — bi(r))?|1]
=Y er Saly (bi(r) — 2(bg (1) E[bx (r) | 1]) + E[bi(r)lf])

By setting 0Q,/dby, (r) = 0, one gets that b in the S step is given by by(r) = E[by(r)|I] =
P(f(r) = k|I), i.e., b(r) corresponds to the posterior marginal probability distribution
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for f(r). 8 in the M step is simply the Maximum a Posteriori (MAP) estimate for 6,
given b = b, which is found by minimizing (8), appropriately modified, so that it is
expressed in terms of b, i.e., by minimization, with respect to € of:

Ub,0) =" by(r)logvg(r) — log Py(6)

rel k=1

Other choices for Cy (with the same choice for Cy) give other SM algorithms, in
which a hard segmentation is computed in the S step; for example, using

Co(b,b) = > [1 = 8(b(r) — b(r))]

relL

where 6(z) equals 1 if and only if z is the zero vector (i.e., Cj corresponds to the
number of segmentation errors), one gets the Maximizer of the Posterior Marginals
(MPM estimator) in the S step [6]. Using

Cy(bb) = 1,ifb=1b

= 0, otherwise

one gets the MAP estimator for b in the S step [13, 16], etc.

The problem with this class of algorithms is that it is not possible to perform the
exact minimization of Q(B, 6) with respect to b in the S step, i.e., neither the poste-
rior marginals, nor the optimal MPM or MAP estimators can be exactly computed,
since they involve either the computation of a sum with M"Y terms (for the poste-
rior marginals) or the solution of a combinatorial optimization problem with N = |L|
variables (for the MAP estimator). Hence, one must resort to approximations; the
most precise are based on stochastic, Markov Chain Monte Carlo (MCMC) algorithms
[3, 26], and are computationally very expensive; fast approximations (e.g., the ICM al-
gorithm [2]) are highly sensitive to noise. Approximations based on Mean Field theory
[27, 28, 19, 29], are faster than MCMC, but still relatively expensive, and also sensitive
to noise (see section 3). A recent algorithm for the MPM estimator, presented in [30],
based on a Gaussian approximation for the posterior marginals, is fast and resistant
to noise; however, since the MPM estimator corresponds to a hard segmentation, the
corresponding MPM-MAP procedure is very sensitive to the initial estimate for 6.

2.2 Hidden Markov Measure Field Models

The difficulties mentioned above may be solved if one uses a different probabilistic
model for the generation of the label field f. Instead of the 1-step procedure described
in Fig. 1, we propose to use a 2-step probabilistic model, with an additional hidden
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field p. This model is presented in Fig. 2: on a first step, a Markov random vector field

p is generated with distribution P(p) = + exp[— ¢ We/(p)], where K is a normalizing
constant, C' are the cliques of a given neighborhood system, and W are given potential

functions, and where each vector p(r) takes values on the M—vertex simplex Sy;:

M
SMZ{UG%MIZUkzl,UkEO,k:L-‘wM} (9)
k=1

Hence, p(r) may be interpreted as a discrete probability measure on Z,; (the label
state space). On a second step, the label field f is generated in such a way that each
f(r) is an independent sample from the distribution p(r), so that

P(flp) = T1 s (r) (10)

rel

Note that the prior for f is:

() = [, PUIP)APE)

M

which is not Gibbsian. To see this, note that for f to be a MRF with respect to
any neighborhood system {N,,r € L}, one should have that for any 2 sites r, ¢, with
t ¢ N,, f(r) should be independent of f(t), given f(s),s € N,. Now, the probabilistic
dependencies of f are induced by the corresponding dependencies of the p field, which
are a consequence of its Markovian structure, and conditioning on f(s),s € N, does
not alter these dependencies, since

P(f(s);s € N.|p)P(p)
P(f(s),s € N,)

[Lsen, pf(s)<3)P<p) _ ier(p)

Jox Tsen, Pro)(s)dP(p) — Za

where Z,; is a normalizing constant and

Ulp) = EC: We(p) — Y logpss)(s)

SEN,

P(plf(s),s € Ny)

Thus, knowledge of f(s),s € N, does not provide complete knowledge of p(s), s € N,,
but only biases P(p) introducing new potentials — that correspond to cliques of size
1 — on U(p), which means that the probabilistic dependencies of p are not altered;
this, in turn, implies that the long range dependencies on f are preserved as well.
Therefore, even though p is Markovian, f is not a MRF of any order, so that this class
of models is different from the classical ones. As in the classical case, however, the
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potential functions (for the p field in this case) may be used to enforce the appropriate
prior constraints on the label field. The spatial coherence of regions { Ry, ..., Ry}, for
instance, may be enforced by requiring that each vector p(r) is similar to its spatial
neighbors. A simple quadratic potential that expresses this condition is:

Wos(p(r),p(s)) = A|p(r) — p(s)|* = A ];(pk(r) — pi(s))” (11)

where \ is a positive parameter, and < r,s > are neighboring sites in L. Other
potentials may be defined to enforce more complex constraints (see section 4), but,
here we concentrate on this simple one.

The posterior distribution P(p,6|I) is obtained from Bayes rule as:

P(p.011) = P (Ilp,6)P,(p) Py(6) (12)

where Z is a normalizing constant. The conditional distribution P(I|p, ) is obtained
as:

P(Ilp.0) =[] P(I(r)|p,0)

relL

The conditional distribution P(I(r)[p,6) may be obtained by first computing the joint
conditional distribution P(I(r), f(r)|p,8) = P(I(r)|f(r),p,0)P(f(r)|p,0), and then

marginalizing over f(r):

P(I(r)|p,0) = ;P(I(T)If(?“) = k,p,0)P(f(r) = k|p,0)

Using the fact that P(I(r)|f(r),p,0) = P(I(r)|f(r),0) and that P(f(r) = k|p,0) =
pi(r), one obtains:

r)|p, 0) 2 =(r) - p(r) (13)

where vi(r) is given by (7).
From (13) and (12) one finally gets:

P(p,0|I) = %exp[—U(p, 0)] (14)
with
=— Eilog(v(r) -p(r)) + EC: We(p) — log Fy(6) (15)

where we consider cliques of size 2 and potentials given by (11). To obtain the optimal
estimator f* for the label field, we use the following 2-step procedure:
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1: Find the MAP estimators p*, 8* for p, 6:

p*,0" = arg max P(p,0|I) (16)

pESAA/’[,G

2: Find f* as the maximizer of P(f|p = p*,0*,1)

The first step is equivalent to the minimization of U(p, ), given by (15), subject to
the constraints:
p(r) € Sy, forall r € L (17)

with Sy, defined by (9), while the second step consists simply on finding the mode for
each discrete measure p*(r) in a decoupled way:

f* = argmax pi(r) (18)

The computational burden, thus, lies on the first step; since (15) is differentiable,
however, this minimization may be carried out very efficiently, as we now show.

2.3 Energy Minimization Algorithm

The minimization of (15) may be effected using any general purpose constrained op-
timization technique; we have found, however, that due to the simplicity of the con-
straints (17), and the structure provided by the Markovianity of the p field, a multi-
scale gradient projection Newtonian descent (GPND) [31, 32] gives best results. This
method is based on the idea of moving, at each iteration, in a direction d such that
VU -d < 0 ( so that it is a descent direction), and that the new point lies in the feasible
region. This is achieved by choosing d as the projection of the negative gradient onto
the tangent subspace defined by the set of active constraints (see [32], pp 331-339).
The convergence may be accelerated if one considers each element py(r) (or 6,(r)) as
the position of a particle of unit mass, subject to a force equal to —OU/Opy(r) (resp.
—0U/00;). The equations of motion for these particles may be obtained from Newton’s
second law:

0=—VoU — 200
p=—V,U—2ap

where « is the friction coefficient. The discretization of these equations gives an itera-
tive gradient descent algorithm with inertia; to satisfy the constraints (17), each new



particle position pg(r) must be projected back into Sy, to get the complete iteration
as:

2 ah—1 h?
glt+h) g L =0~ pglt=h) _ ®) g 1
ah+1 +0zh—|—1 ozh—i—lva(p 07) (19)
2 ah—1 2
- (t) (t—h) _ U(p® o
P ah+1p ah+1p ozh—i—lvp (P, 07)

pUM(r)y = g, (p(r)) , for all r € L

where the operator Ilg,,(u) finds the closest point in Sy to a vector u € RM. To
find this projection, we consider the following observations: a simplex Sy 4, with K
vertices, defined by

M
Sua={ueRM: Y uy=1;u,>0keA;u=0k¢ A}

k=1

where A C Z); is a set of indices and |A| = K, is contained in the hyperplane:

Hy={ueR":> u;=1andu; =0, for j ¢ A}

jeA

The orthogonal projection x = T4 (u) of a point u € R onto the hyperplane H4
satisfies u; — z; = ¢, where ¢ is a constant, for j € A, and z; = 0, for j ¢ A. The
constant ¢ may be found by noting that 37,4 7; = 34 u; — ¢K = 1, so that z may
be found by the formula:

eati —1 .
T = uk—&%,lfkefl (20)
— 0,ifk¢ A

Now, if z is the closest point in Sy; 4 to P, and z is in the interior of Sy, 4, then z must
be equal to II4(p). On the other hand, if x is not in the interior of Sy 4, then it must
lie on a simplex Sy a4/, with |A’| < |A| on the boundary of Sy 4. This active simplex
corresponds precisely to A’ = {k € A : x; > 0}, where x = II4(p). This observation
suggests that the closest point in Sy, to a given point p may be found by recursively
projecting p into H 4, and then updating A if necessary, so that it corresponds to the
active subsimplex in the boundary of Sj,;. This is done simply by excluding from A
those indices that correspond to negative components of x. This gives the following
algorithm for finding = = Ilg,, (p(r)):

1: set x = p(r) and A = Zy;

2: while z ¢ Sy, do:



a: set x = I14(p) using (20) ;
b: set A={k:xz, >0} ;

Note that this algorithm will converge at most in M iterations.

The minimization of (15) may be further accelerated using a multiscale approach:
one may get descriptions of the observed image I at increasingly coarser scales {I =
Iy, ..., Ik}, by recursively smoothing and subsampling it (the standard Gaussian pyra-
mid [34]). At each scale k, one may then obtain a corresponding likelihood field v,
replacing I by I, in (7), and minimize the corresponding energy U (p®*), ). At scale
K, this may be done efficiently, because of the reduced number of variables. Once
the minimizers p*®,6**) are found, they are transmitted as starting points for the
minimization at scale k — 1, until scale 0 (the original image) is reached. Care must
be exercised when transmitting a solution p**) to a finer scale, since the interpolation
process that is involved should guarantee that the interpolated p field is also in S3]. If
one considers interpolation methods of the form:

PEVE) = Y wep™(s)

SENk(r)

where N*(r) denotes the set of sites in the coarse grid k on which the interpolation for
site 7 in grid k — 1 is based, then the constraint p*~Y € SN will hold if p* € S¥ and
Y seNt(r) Wrs = 1, for all r. This is the case, for example, of bilinear (or trilinear, in the
case of 3-D data) interpolation, which is the method we use; note that the 6 variables
are not interpolated, but only transmitted. Finally, the A parameter that controls the
strength of the interacion between neighboring pixels, and hence, the granularity of
the solution, must also be adjusted; since the inter—pixel distance is duplicated when
going from a fine to a coarse scale, the corresponding A parameter should be halved,
so that A\ = 275 ). This multiscale optimization procedure is the one we use in all
the experiments reported below.

3 Experimental Performance

In this section we use synthetic images to compare the experimental performance of
the new approach presented here (labeled HMMF') with that of classical MRF models;
we compare with MPM estimators, first, because they are known to perform better
than MAP estimators, particularly for high noise levels [6], and second, because they
are based on the estimation of the posterior marginals, which are the basis for EM
procedures, whose performance is also interesting to compare. For the classical case, we
use the generalized Ising model, and 3 methods for computing the posterior marginals
for the f field: a stochastic MCMC algorithm (the Gibbs Sampler [3]); the Mean Field
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(MF) approximation [27] and the Gaussian approximation reported in [30] (labeled
GMMF).

In the first set of experiments, the task is to perform intensity—based segmentation
from noisy data, when the regions corresponding to each class have known constant
intensity (i.e., ®(r,0;) = 0k, assumed known), and the purpose is to compare the
robustness of each method with repect to noise. We assumed 5 classes, with the
class distribution shown in Fig. 3, and with 6, = k, k = 1,...,5. The observed
images are obtained by adding white Gaussian noise with increasing variance. As
a performance measure, we choose the average number of segmentation errors. The
results are summarized in Fig. 4. As one can see, for low noise levels, all methods give
similar results; as the noise level increases, the performance of the MF and MCMC
approximations break down (for o = 1.5 and o = 2, respectively), while GMMF and
HMMF degrade more gracefully, with HMMF giving the best results. In all cases,
the control parameters for each method were hand—adjusted to get the best possible
performance.

We also compared the performances of HMMF and GMMF using the same 8—class
segmentation problem presented in [30]. Suppose that one is given, for each pixel of
a 256 x 256 region L, observations of 3 features (for example, RGB values), and one
knows a priori that there are 8 possible classes (colors), whose (known) mean values
Hmi,m = 1,..3,k = 1,..8 correspond to the vertices of the unit cube. The true
spatial class distribution ¢(r) is assumed to be as shown in Fig. (5-a); the observations
(91(1), g2(r), g3(r),r € L) are constructed using the model:

gm(T) = Hm,e(r) + nm(r)

where n,,(r), m = 1,...3 are Gaussian random variables with zero mean and variance
o = 4 (which corresponds to a SNR~ 0.25). The normalized likelihood field is thus
computed as:

R 1 1 3
pr(k) = EeXp _F Zl(gm('r) - /th,Ic)2

where Z is a normalizing constant. The maximum likelihood estimator (MLE) ¢ of the
field c is defined as:
&(r) = arg maxp (k)

The results are shown in Fig. 5-b and c¢. As one can see, the performance of the 2
methods is similar, which is consistent with the results of Fig. 4.

In a second set of experiments, we test the relative robustness of the EM algorithm
and our proposed procedure, with respect to initialization. To do this, we take again
a synthetic, piecewise constant image with 3 classes, but this time we assume that the
intensities (61, 02, 03) are not known. We then generate 20 random starting points, with
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uniform distribution on the dynamic range of the observed image, and note whether the
corresponding algorithm converged to a neighborhood (a ball of radius 0.1) of the true
values of 6, in which case, the run was labeled as a “success”. Fig 6 illustrates this pro-
cedure. We tested the EM algorithm, using MF and MCMC to compute the posterior
marginals, and the direct HMMF method presented here. The results are summarized
in table 1, which also includes the corresponding average processing times. As one
can see, the EM algorithm, even with an accurate approximation for the marginals
(obtained with MCMC) is quite sensitive to initialization, giving a maximum success
rate of 60%. This rate falls down to 0 for high noise levels, if the MF approximation
is used. HMMF, on the other hand, is much more robust (giving 100% success rate in
both cases), and, since it does not need to iterate, alternating between E and M steps,
achieves this at a fraction of the computational time (all times refer to a PC—based
workstation running at 1.8GHz).

HMMEF has an additional advantage: if the exact number of models is not known
in advance, one may initialize the procedure with a relatively large number of models,
and the superfluous models will be automatically eliminated, in the sense that if the
parameter vectors for 2 models j, £k become almost equal, the p distributions will exhibit
only one dominant mode in the corresponding support region, corresponding to either
one of these models.

A final word must be said about the setting of the control parameters for these
methods. In all cases (i.e., for EM/MCMC, EM/MF and HMMF), there are 2 con-
trol parameters: one that corresponds to the noise variance and the regularization
parameter that controls the granularity of the reconstructed regions. Ideally, these
parameters should be estimated —or at least fine-tuned — from the data, and in prin-
ciple, some of the procedures that have been proposed to do this in the classical case
[12, 35,2, 22, 27, 28, 9, 36] may be extended to the case of HMMF as well. The problem
is that these procedures have, in general, a very high computational cost, which we are
trying to avoid in this case. The development of efficient hyperparameter estimation
methods for HMMF is thus an important open problem, which we are currently investi-
gating; however, HMMF is not too sensitive to the precise setting of these parameters:
Fig. 7 shows the level curves for the error surface (i.e., average number of segmentation
errors) obtained by a systematic variation of the noise and granularity parameters (7
in Eq. (7) and X in Eq. (15)), for the experiment of Fig. 4, for different values of the
Signal to Noise Ratio (SNR), defined in this case as that average separation between
adjacent class intensities divided by the noise Std. deviation. As one can see, there is
a large region around the optimal setting where the error surface is very flat, and the
overlap between these flat regions for different values of the SNR is also quite large.
This means that it is possible to calibrate the method for a particular problem class,
selecting “good” values for the control parameters for a test image that belongs to the
class, and use these values for the whole class of problems, getting acceptable results.
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This is the approach we follow for the applications described in the next section.

4 Applications

4.1 Segmentation of Brain Magnetic Resonance Images

Magnetic resonance (MR) images of the brain provide a means for imaging tissue at
very high resolutions, and the assignment of each voxel to a specific class (i.e., White
Matter (WM), Gray Matter (GM) or Cerebro Spinal Fluid (CSF)) is important for
visualization (as in surgical planning); for solving inverse problems (e.g., in electric
tomography); for relative volume quantification, which is important for the diagnosis
and prognosis of certain illnesses, etc. The main difficulties found in the automatic
segmentation of brain MR volumes are due to 2 reasons: one is the presence of noise
in the data, which cause voxel-by-voxel classification methods to produce granular or
fragmented regions that violate anatomical constraints [37, 38], and the other is that
image intensities are, in general, non—constant for each tissue class, due to irregularities
in the magnetic fields, varying magnetic properties of biological tissues, operating
conditions of the MR equipment, etc. For these reasons, a precise segmentation method
should include an appropriate model for spatial interactions —+to control the spurious
granularity due to noise — and also the simultaneous estimation of smoothly varying
intensity models for each class. This makes this problem an ideal candidate for the
probabilistic segmentation methods that we have described in the previous sections.

Bayesian estimation, with prior MRF models for the label field, combined with SM
methods (such as EM) for the estimation of smooth intensity models, have in fact been
used by a number of researchers [13, 14, 15, 16], with the problems and limitations
discussed in section 2. In most of these works, the smooth intensity models & are
assumed to be of the form:

O(r,0,k) = piB(r,0)

where (1, ..., upr) are the mean intensities for each tissue class, and ((r, ) is a mul-
tiplicative bias field that is supposed to affect all tissue classes in the same way. If one
wants a model that depends linearly on the parameters, however, it is necessary to
perform a logarithmic transformation on the image intensities, which alters the noise
distribution in a complex way, so that the Gaussian assumption is no longer valid,
and also alters the image histogram, making the separation more difficult. For these
reasons, and also because this simple model does not take into account the spatial
variation of magnetic properties of specific tissues, we prefer to follow [40] and use a
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more flexible, spline-based model of the form:

J
(r,0,k) =Y 0,;N;(r) (21)

j=1
where {N;,j = 1,...,J} are quadratic tensor product B-spline basis functions [41],

translated to a node of a regular sub-grid of the voxel lattice, which we call the spline
sub-grid: N;(r) = B*((r — n;) - d), where n; denotes the coordinate vector (in voxels)
of the j'" node of the spline sub-grid and d = (1/A,,1/A,,1/A,)T is a scaling vector,
with Az, Ay, A, denoting the distance between neighboring nodes on the spline sub—
grid for each direction. Since inter—slice intensity variations in MRI are usually larger
than intra—slice ones, we use a value of 32 voxels for A, and A, and of 1 voxel for A,.
B?(x,y, z) is given by:
B*(z,y, z) = b*(2)b*(y)b*(2)

with

P(z) = %(1.5—2m2),|x|€[0,0.5]

1
= 5(:1:2 — 3|z| +2.25) , |z| € [0.5,1.5]
= 0,|z]>15

To further control the rigidity of the models, we impose a “membrane” Gibbsian
prior on 6, of the form:

1 M
Py(0) = —exp[—= > > Nrs(Oku — Ok)’] (22)
Z k=1 <u,v>

where the second sum is taken over nearest neighbor pairs of nodes < u,v > in the
spline sub-grid. For 7,, we used 0.1 in the z — y direction and 0.01 in the z direction.

To validate this application of the HMMF procedure, we use the Brainweb MRI
simulator [42, 43], which allows one to generate high quality simulated MRI volumes
from known (ground truth) anatomical models, for different levels of noise and spatial
inhomogeneities. Fig. 8 shows a sample slice of the simulated MRI, the anatomical
model, the HMMF segmentation and the reconstructed intensity ®(r,0}.(,)). Fig 9
shows a comparison between HMMF results and the best —to our knowledge — pub-
lished results on the same data, namely, the procedure presented in [44], which uses
an EM/MF approach. The performance index £ used for the comparison is:

2Vark

S = Ve + Var
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where Vipr denotes the total number of voxels that were correctly assigned to class k
by a given procedure; Vpy is the total (correct + incorrect) number of voxels assigned
to class k by this procedure and Vi denotes the total number of voxels belonging to
class k in the anatomical model (ground truth). Note that & is always between 0 and
1, with 1 corresponding to a perfect segmentation. As one can see, the performance of
HMMEF is practically insensitive to the presence of spatial inhomogeneities, indicating
they are adequately modeled. The values for the control parameters were: A = 0.01
in the z — y direction; A = 0.001 in the z direction and v = 1. It is important to
note that the same values were used for the complete set of experiments (i.e., for
different values of the noise intensity and of the spatial inhomogeneities). The initial
values for p and 6 were: pi(r) = 1/M, for all k,r, and 6 selected in such a way
that each model ®(r, ) corresponded to a constant intensity, with these intensities
corresponding to the minimimum, middle and maximum intensities of the MR volume.
It is worth noting that the procedure presented in [44] is more complex, and includes
the estimation of prior probabilities for each class and for each voxel from statistical
studies, and the registration of the volume under study with a reference brain, in order
to get an appropriate mapping of these probabilities. With our procedure, we get a
competitive performance without the inclusion of these probabilities, which makes the
method easier to generalize to other cases (i.e., segmentation of MRI of other organs).

We have also applied the HMMF procedure to real brain MR volumes; a sample
of the results appears in Fig. 10. In all cases, the separation of the brain parenchyma
from non—brain tissue was performed automatically using non-rigid registration with
an atlas [40].

4.2 Motion Segmentation

We now present an application example where the parameter vector 6 enters into
the energy function in a highly non-linear way, and show that the HMMF method
still gives very good results. This example is the segmentation of objects moving
according to different velocity models from an image sequence. This is an important
problem in computational vision [45][46][47]: useful descriptions of complex scenes
are usually composed of several moving objects and simple parametric descriptions of
their motions. What makes this problem difficult is that one has to find both the
model parameters and the corresponding objects (i.e., the region where the model is
applicable) at the same time. Although other approaches are possible (e.g., [48]), the
most successful follow the Bayesian paradigm discussed in section 2.1 [49, 50, 51, 52,
53, 36]. In this case, the models ® are vector—valued (since they represent velocities in
2-D), and the observation model is:

Ii(r) = L(r 4+ ®(r,0pr))) + n(r) (23)
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where [, I, represent 2 succesive frames from the sequence, and f(r) indicates the
active model in pixel r, as before. Note that since # enters as an argument of the
intensity I, one would need to solve a highly non-linear optimization problem in the
M step in the EM procedure, if this approach is used. To avoid this problem and
lower the computational cost, often a globally smooth optic flow is pre-computed, and
then segmented [53, 47], in which case the energy function in the M step becomes
quadratic. This has a disadvantage, however; since a regularization method must
be used to compute the optic flow, the final segmentation results are likely to lose
small details and localization of the boundaries between regions. With the HMMF
approach one may work directly with the image intensities, since the added non—
linearity represents only a marginal increase in the computational complexity of the
procedure. The motion models ® that have been used in most cases, correspond either
to pure translation (constant) or affine (planar) models. Constant models are easy to
fit, but their application is restricted to simple cases; affine models, on the other hand,
have some problems: ideally, one would like the support regions for each model to be
spatially localized and compact, since they correspond to a moving object; an affine
model supported in a particular region, however, may also have low fitting error in
places that are far away, producing spurious granularity in the segmentations. Also,
if in the course of the segmentation procedure the support region for an affine model
includes 2 objects moving at different velocities, the slopes of the planes that represent
each velocity component may become very high, making impossible for the procedure
to recover and converge to the desired values. These problems are avoided if one uses
the spline models (21) with a Gibbsian prior (“membrane splines”), as described above,
for each component of the velocity, since these models extrapolate as constants outside
their support region, and hence are less prone to produce spurious interactions with
other regions, and are numerically more stable. Besides, they provide a way (via the
n parameter in (22)) to control the rigidity of the model, and hence, the character of
the reconstructed optic flow, which may go from piecewise constant (for high values of
n) to piecewise smooth (for low values). The smooth patches approximate well affine
flows. This is illustrated in the synthetic example of Fig. 11, where we show how a
piecewise affine flow is reconstruced using piecewise constant (7 = 100) and piecewise
smooth (7 = 1) models. Note that membrane spline models are more general than
affine ones, and can accurately model more complex (e.g., projective) transformations
that often occur in real image sequences.

The initial values for 6 for the minimization of (15), are not very critical in the
piecewise constant (pure translation) case (see section 3). We have found that it is not
necessary in this case to precompute the optic flow; we took 15 x 15 pixel windows,
randomly placed in image I, and found, for each window W}, the parameter vector 6y,
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as:
0 = arg main > (Li(r) — ©(Ir(r + 0))*
reWyg

which may be very efficiently done using the Gauss—Newton algorithm [54]. Once
the minimum of (15) is found for the piecewise constant case, the piecewise smooth
segmentation is initialized with constant membrane spline models which are set equal
to the optimal translations. The performance of this scheme, using 2 frames of a real
motion sequence, is illustrated in Fig. 12. For the piecewise constant case, we used 8
models, which were automatically reduced to 5 for the piecewise smooth case. Since
the vertical component of the motion was very small in this case, we show only the
horizontal component of the reconstructed flow in panels (e) and (f). The values for
the control parameters were v = 0.0001 and A = 1 in both cases, and the distance
between nodes of the membrane spline grid was 32 pixels.

4.3 Edge—Preserving Denoising

Experimentally, one finds that the optimal estimated field p* has an interesting prop-
erty: if the models for 2 spatially adjacent regions R;, i) are similar, in the sense that
Dji(r) = |®(r,0;) — ®(r, 0})| is small, for r close to the boundary between R; and Ry,
then the corresponding p}(r) and pi(r) will also be relatively close, while if Djx(r) is
large, p}(r) and pj(r) will be very different, indicating a sharp transition between R;

and Ry. A consequence of this is that the mean estimated intensity I , for an observed
image I, which is given by:

. M

I(r) =3 ®(r, 0)pi(r) (24)

k=1

will in fact be a smoothed version of I, in which sharp intensity changes (i.e., edges)
are preserved. This is illustrated in Fig. 13, where we show: a noise corrupted
“Lena” image (panel a); the reconstruced intensity from the optimal segmentation
(i.e., (r,0%.,), panel b); the mean intensity computed using (24) (panel c) and the
value of pf for a particular model (panel d); note, for example in Lena’s hat, how the
value of pj, falls sharply in the right edge of the hat, and smoothly in the transition to
a similar model inside the hat. In this case we used 8 constant models, A = 0.3 and
v = 0.05. The filtering time was 12 sec.

This application is included here to illustrate an interesting property of the mean
estimated intensity; there are many published edge—preserving filtering methods, based
on a wide variety of techniques, such as: wavelets; non—linear partial differential equa-
tions; robust statistics, etc. We do not include a comparison here, since to do this
meaningfully, would fall beyond the scope of this paper, whose main purpose is to
present the HMMF models and illustrate their versatility.
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5 Discussion

We have presented a new energy—minimization method for image segmentation, in the
case when the parameters of the models that describe the spatial variation of a given
attribute within each segment are not known, and when it is necessary to include prior
constraints for the spatial coherence of the supports for each model. This method
is rigorously based on Bayesian estimation theory, and its key idea is to introduce a
hidden Markov random measure field, so that the (also hidden) label field is generated
by a 2-step stochastic procedure. The resulting posterior energy, given by (15), may
be directly minimized with respect to p and 6, subject to the constraints p(r) € Sy,
instead of using costly 2—step iterative procedures, such as EM, and without having to
use approximations, such as MF. For the minimization of this function, any non-linear
constrained optimization method may be used. We have tried, for instance, a Quasi—
Newton scheme, using a barrier function to handle the constraints [54]; the results we
have gotten so far, however, are practically indistinguishable from the ones obtained
with the simple gradient projection scheme reported here, and the computational cost
is significantly higher.

We have presented examples that illustrate the performance of this method in a va-
riety of situations: in intensity—based segmentation, using simple constant models, and
also parametric models of high order (membrane splines), and in motion segmentation,
where the model parameters enter in a highly non-linear fashion. In all these cases,
one gets a consistently robust behavior, both with respect to noise, and with respect to
initialization, with a reasonable computational cost. The enhanced performance of this
method, may be due, in part, to the non-linear data term — >, log(v(r) - p(r)), which
is used instead of the classical — . logv(r) (which is quadratic for Gaussian noise):
this term, in combination with the quadratic regularization term Y- _, .- [p(r) — p(s)|?
permits the energy function (15) to strike a good balance between 2 opposing tenden-
cies: on one hand, the data term pushes each distribution p(r) towards low entropy
configurations, in which one component pg(r) dominates, because the minimum of
—log(v(r) - p(r)), subject to p(r) € Sy, is attained by p;(r) =6(j — k), j=1,...,M
where k = argmax; v;(r). On the other hand, the regularization term acts as a diffu-
sion, and hence, tends to produce high entropy (uniform) configurations; this balance
permits the solution to evolve from an initial uniform state to a final low entropy
configuration at an appropriate rate, so that the model parameters 6 can escape from
local minima at the beginning, when the segmentation induced by p is “soft”, and be
optimally adjusted at the end, when each p(r) is sharply peaked.

As in the classical case, the potentials W may be adjusted to include constraints
that are relevant to particular applications. We have found that the simple quadratic
potentials given by (11) are sufficient to enforce general spatial coherence prior as-
sumptions, but variations of these potentials, and the inclusion of additional terms

18



should improve the results in specific cases.

We presented 3 examples of applications, to show the versatility of the models
presented here. We showed how HMMF prior models, together with membrane splines,
may be used to construct procedures for MRI and motion segmentation, as well as
for edge—preserving filtering. It should be clear, however, that these examples were
introduced only for illustrative purposes, since the complete solution of any of these
problems, and a meaningful validation of the corresponding procedures, involves many
subtle points that fall beyond the scope of this presentation.

The main limitation of the procedures presented here is the determination of ap-
propriate values for the control parameters, which at present must be done “by hand”.
This is, of course, undesirable, even when the performance is relatively robust with
repect to their precise setting. We think, however, that since this methodology is
rigorously based on Bayesian estimation theory, it should be possible to devise strate-
gies for their automatic determination, as has been done in certain cases for classical
MREF’s. The design of computationally efficient procedures for doing this is, in our
view, the main open problem of the field.
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Table 1 Success rates and average processing times for different estimation procedures
for the experiment explained in the text.

Success rate | Success rate | Avg. Time
oc=1 oc=15 (sec)
EM/MCMC 60 % 60 % 800
EM/Mean Field 60 % 0% 200
HMMF 100 % 100 % 5
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Figure 2: Hidden Measure Field Model for image segmentation.
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Figure 3: Left: class distribution; right: observed image for noise std. dev. = 1.5, for
the set of experiments described in the text.
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Figure 5: (a) Class distribution for the classification problem discussed in the text. (b)
GMMEF reconstruction. (¢) HMMF reconstruction.
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Figure 6: Left: observed image and typical successful and unsuccessful segmentations.
Right: 20 random initial values for the parameters.
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Figure 7: Level curves for the error surface (average number of segmentation errors)
plotted against the values for the control parameters for 2 noise levels: (a) SNR = 1,
(b) SNR = 2.
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Figure 8: (a) Sample slice of a simulated brain MR volume. (b) Anatomical model
(ground truth). (c) HMMF segmentation. (d) Reconstructed intensity ®(r, 6}. ().
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Figure 10: HMMF segmentation (left column) for 2 sample slices of a real brain MR
volume (right column).
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) and (c) Piecewise constant and

(b

(a) One frame of a synthetic sequence.
piecewise smooth segmentations. (d) and (e) Piecewise constant and piecewise smooth

reconstructed flows. (f) True piecewise affine flow.

Figure 11:
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Figure 12: (a) and (b) 2 frames of a real motion sequence. (c) and (d) Piecewise
constant and piecewise smooth segmentations. (e) and (f) Magnitude of the horizontal
component of the velocity for the piecewise constant and piecewise smooth cases.
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Figure 13: (a) Lena image corrupted with additive Gaussian noise. (b) Reconstructed

intensity ®(r,607.(,)). (c) Mean reconstructed intensity. (d) p* field for one of the
models

35



