NON-GENERICITY OF MINIMISING PERIODIC
ORBITS

Daniel Massart

Comunicacion Técnica No 1-02-13/10-07-2002
(MB/CIMAT)

£ " COMUNICACIONES DEL CIMAT

2
&




NON-GENERICITY OF MINIMSING PERIODIC ORBITS

DANIEL MASSART

ABSTRACT. We answer in the negative Problem IV of [Mn95], for con-
figuration spaces of dimension > 3. A positive answer is given for the
two-dimensional case in [Mt02].

1. INTRODUCTION

Let M be a smooth, closed, connected manifold and L be a Lagrangian
on the tangent bundle T'M, that is, a C",r > 2 function on T'M which is
convex and superlinear when restricted to any fiber. The Euler-Lagrange
equation then defines a complete flow ®; on T'M.

Given a closed one-form w, L — w is again a Lagrangian and its Euler-
Lagrange flow is the same as that of L. We are interested in probability
measures on the tangent bundle 7'M, that are invariant under the Euler-
Lagrange flow, and minimise the action of L—w, that is, the integral fT 2 (L=
w)dp. Actually this action only depends on the cohomology class ¢ of w (see
[Mr91] and the next section). The measures achieving the minimum are
called c-minimising, or simply minimising if ¢ = 0.

We say a property is true for a generic Lagrangian if, given a Lagrangian
L, there exists a residual (countable intersection of open and dense subsets)
subset O of C°°(M) such that the property holds for L + f,Vf € O. Mané
([Mn96]) proved for a generic Lagrangian, there exists a unique minimising
measure and proposed in [Mn95] (Problem IV)(see also [Mn96], Problem
III) the following

Problem 1 (Mané). Is it true that for a generic Lagrangian, there exists
a dense open subset of U of H'(M,R) such that for any c in U there is a
unique c-minimising measure and it is supported on a periodic orbit ?

The answer is yes when M is a closed, orientable surface (see [Mt02]). It
turns out to be no in higher dimensions, as shown our next Theorem.

If the conjecture was true, we could find a sequence f, of C*° functions on
M, going to zero in the C* topology, such that for every n, there exists an
open dense subset U,, of H!(M,R), such that for any c in U,, the conjecture
holds. The intersection U over N of the U, is dense in H'(M,R). So for
every c in U, the set of functions f such that L + ¢ 4+ f has a minimising
periodic orbit accumulates at zero.

Given a Lagrangian L and a cohomology class ¢, denote Oy, . the set of
f € C°(M) such that for w in ¢, L+ w + f has a minimising periodic orbit.
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Theorem 2. Let M be a manifold of dimension > 3. There exists a La-
grangian L on M and an open neighborhood U of 0 in H'(M,R) such that
for any c in U, the set Or, . does not accumulate at zero in the C*-topology.

See [Mn97] and [CDI97], for a stronger conjecture where we perturb only
by a function ; and [Mt02a] for a disproof thereof when M is the two-torus.

The idea here is, first, to construct a Lagrangian on M, the minimising
set of which is contained in a contractible part of M. Theorem 1 of [Mt02]
then ensures that for a small enough cohomology class ¢ = [w], the min-
imising measure of L — w is the same as that of L. Besides, we make up
the Lagrangian so the Euler-Lagrange flow restricted to the support of its
minimising measure is an irrational flow on an imbedded two-torus, with the
slope quadratic. From there the idea is to use the Diophantine approxima-
tion properties of the slope as in [Mt02a], to prove that a C* perturbation
by a function on M cannot create a minimising periodic orbit.

2. PREREQUISITES

Given a C' curve 7 defined on some compact interval I into M, the L-
action of v is the integral [, L(7,*)ds. The curve  is said to be minimising
if it minimises the L-action over all C'! curves defined over the same interval,
with the same endpoints. A C' curve : R — M is said to be minimising
if its restriction to any compact interval is. An orbit v: R — T'M is said to
be minimising if its projection to M is. We denote by G(L) the union in T'M
of all minimising orbits. Note that the support of a minimising measure is
always contained in G(L). The Aubry set, denoted Ag(L), is the projection
to M of a special set of of minimising orbits, containing all supports of
minimising measures (see [Fa00] for more information).

Mather’s a-function is defined in [Mr91] as

a(w) = — min{ (L —w)dp: pe M}
T™
where M is the set of closed measures on T'M, that is (see [Ba99]) the
compactly supported probability measures p on T'M such that [ df du =0
for every C! function f on M. In other words, those are the measures with
a well-defined homology class. The measures achieving the minimum are
invariant by the Euler-Lagrange flow ®; of L (see [Ba99]).

The quantity o defines a convex and superlinear function on H'(M,R).
It may not be stricly convex, however. It turns out ([Mt02]) that whenever
there exists a closed, non-exact one-form w supported away from Ao (L), the
a-function has a flat. That is to say, its epigraph contains a piece of affine
subspace, and the underlying vector space of this affine subspace contains
the cohomology class of w.

3. THE LAGRANGIAN

Let M be a 3-dimensional manifold and let B be an embedding into
M of the unit ball of R3. Consider an embedding into B of T?x] — 1, 1],
the two-torus times an open interval, equipped with coordinates (z,y, z).
Take a Riemannian metric on M, such that its restriction to T?x] — 1, 1[ is
dz? + dy? + dz%. Let p,q be real numbers such that p?> + ¢> = 1 and p/q is
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irrational and quadratic. We define a differential 1-form « in T?x] —1,1[ by
(z,y,2,u,v,() — —(pu+ quv) where (x,y, z,u,v, () is a tangent vector to M
at the point of coordinates (z,y, z). Extend « to a 1-form on M. Let ¢ be a
C*> function on M, the restriction of which to T?x] — 1,1[ is (z,v, 2) > 2>
and such that f(P) > 1 for all P in M \T?x]—1,1[. Our Lagrangian is then
defined as the sum of the quadratic form that comes with the Riemannian
metric, the 1-form «, and the function ¢. In particular, in T2x] — 1,1[ it
takes the form

1
L(xay,Z,%UyC) = §(u2—|—1)2—|—1) —pu—qv—i—z2.

Furthermore we choose a so that L is a non-negative function on T'M,
vanishing only on the set hereafter defined.

Proposition 3. The minimising set of the Lagrangian L is
{(:Uv ¥,0,p,q, 0) : (J}, y) € TQ}

Proof. The vector field (z,y, 0, p, ¢,0) defines an irrational foliation of T? x 0,
hence it admits a unique, ergodic invariant measure which we denote u. First
note that this measure is the L-minimising. Indeed its L-action is zero, since
L(z,y,0,p,q,0) = 0 for any (z,y), while the action of any measure is non-
negative since L itself is non-negative.

Then observe that y is the only minimising measure. Indeed if a measure
is not, supported inside T? x {0}, it must have positive action. But then a
minimising measure, which must be invariant by the Euler-Lagrange flow
of L, must be invariant by the vector field (z,y,0,p, q,0), which is uniquely
ergodic.

Thus any minimising orbit must be asymptotic, positively and negatively,
to supp(p) ([Fa00]). Assume that a minimising orbit v: R — T'M is not
contained in supp(u). Then there exists 6 > 0 and a,b in R such that for
every s < a, t > b, we have fStL(v(r))dr > 0. On the other hand, v being
asymptotic, positively and negatively, to supp(u), there exists S < a,T > b
in R such that for any ¢ > T, s < S, the point y(t) (resp. (s)) may be
joined to a point P; (resp. Ps) in supp(u) by a path of L-action less than
§/3. The orbits of the vector field (z,y,0,p, ¢,0) are dense in T? x 0, and
have zero L-action, so there exists a path in T? x 0 of L-action less than
d/3, joining P, and Ps. Hence we can build a path between v(t) and ~(s) of
L-action strictly less than §, contradicting the fact that + is minimising. [J

Corollary 4. There exists a neighborhood U of 0 in H'(M,R) such that
for any w in U, the only w-minimising measure s [i.

Proof. Since the projection to M of G(L), hence the Aubry set Ay(L), is con-
tained in B which is contractible, there exists 1-forms wq,...w,, supported
away from Ag(L), the cohomology classes of which generate H'(M,R). By
[Mt02], Theorem 1, this implies that the a-function of L has a face of codi-
mension zero containing the null cohomology class in its interior. Such a
face is a neighborhood of the origin. Call U its interior. Then by [Mt02],
Proposition 6, for every 1-form w with [w] in U, the Aubry sets for L and
L — w coincide. In particular, every L — w-minimising measure is also L-
minimising, hence p is the only L — w-minimising measure. U
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4. COVERINGS

Assume that for some w in U there exists a sequence f,, of C*° functions on
M converging to zero in the C2-topology, and closed curves ~,: [0,t,] —
M such that the probability measure evenly distributed along ~,, is L + f,-
minimising. First note that by semi-continuity of G(L) with respect to L
([Mt02a], Proposition 3) for n large enough, for any ¢ € U, G(L +c+ fp) is
contained in T?x] — 1, 1[. Then we may write v,(t) = (2, (1), yn(t), 2,(t)) in
(R/Z)?x] —1,1].

The closed curve 7, represents an integer homology class in Hy(T?x] —
1,1[,R) which is generated by the curves {z = z = 0},{y = z = 0}. Let
(Pn, qn) be the corresponding coordinates of [7,].

Lift this curve to the universal cover R%?x] — 1,1[, keeping the same
notations. Then the coordinates x,, and y, belong to R and we have
Tn(t + tn) = zp(t) + Pny Yn(t + tn) = yn(t) + ¢n. By semi-continuity of
g, for n large enough, the tangent vector to v, (t), being close to (p,q,0),
is not orthogonal to 9/0z, so the function t — x,(t) is injective. For the
same reason, the derivative &, (t) does not vanish for large n’s. Define, for
any real number s, v, 5(t) = (Xn(t), yn(t) + 8, 2n(t)). SO Yn.sy (t1) = Yn,s5(t2)
implies

Tp(t1) = xn(t2)
Yn(t1) +51 = yn(tz) + s2
Zn(tl) = Zn(tz).

By injectivity the first equation implies t; = t3, whence s; = sy from the
second equation. Hence the =, s foliate a surface S,, homeomorphic to R,
endowed with the (possibly not free) action of Z? which takes (z,,(t), yn () +
s, 2n(t)) to (w,(t) + a,yn(t) + s + b,2,(t)) for (a,b) in Z2. The tangent
space to Sy at (zn(t),yn(t) + s, 2n(t)) is generated by (in(t),yn(t), 2n(t))
and (0, 1,0), thus it contains the vector

(pr @, 2n(t)) = %(abn(t),yn(t),zn(t)) +(q— %@)(o, 1,0).

T (t

The above formula defines a vector field Y on the surface S,. Note that
while the aforementioned Z2-action on S,, may not be free, the action of the
subgroup p,Z x {0} + {0} x g,Z is free. Indeed, assume for some 1, s; and
to, so and integer k, kK’ we have

(20 (t1) + kpn, yn(t1) + 51, 20(t1)) = (zn(t2) + K'pny yn(t2) + s2, 20 (t2)).
Then we have

{ (1) = z,(t2) + (K — E)pn
yn(t1) +s1 = yn(t2) + s2.

Now since 7, is t,-periodic with homology (pn, ¢n) the first equation reads
xn(t1) = zp(ta + (K — k)t,) and by injectivity of ¢ — x,, this implies t; =
to + (K — k)t,. Then y,(t1) + s1 = yn(t2) + (k — k')gn + s1 whence sy =
s1+ (k — k')gn. In particular if k = k¥’ we have t; = to and s; = s9 so the
action is free. Its quotient is a two-torus Tgmqn which covers a (possibly not
embedded) T? in T2x] — 1, 1[ with covering group Z/pnZ x Z/q,Z.

The vector field Y descends to a vector field on Tz%n, and defines an

dn
irrational foliation there, since the ratio of p and ¢ is irrational. Hence Y
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admits a unique, ergodic invariant measure .. This measure is closed since
it is invariant by a flow (see [Mr91]).

5. PROOF OF THE THEOREM

From now on we work in T2 _ x]—1, 1], still denoting f,, the composition

Pndn
fnom, where 7 is the projection of the cover szn#In x]—1,1[— T%x]—1,1].
So fy is now a Z/pnZ x L/ qnZ-periodic function on T2 x]—1,1[. Neither
do we change notations for .

Since the curve 7, is L + w + f,-minimising, its lift to Tgmqn x]—1,1]is
again minimising ([Fa98, CP02]) and we have

1) /@+W+th§/@+w+hﬂ%,

where we denote 7, the probability measure evenly distributed on the curve
Yn. Note that [wdy, = [ wdp], = 0 since both ~,, and ), are supported in a
contractible region of M. Besides, we have L(xy,(t), yn(t), 2n(t),p, q, 2,(t)) =

22(t) so Equation 1 becomes

@ [+ 41) = pu— o) < [+ fdu, [+ L,
The ratio p/q being quadratic, the left-hand term in the above equation is
greater than or equal to C/g} for some positive C' (see [Mt02a], 2.3).
Define on the circle T N {x = 0} = R/p,Z the function ¢, (y) as the
mean value of f,, + 22 on the leaf of the foliation going through y. Then ¢,
is C% if £, is C*. Besides, since the derivatives with respect to y of 22 are
everywhere zero, ngLk) (y) is the mean value of %) f,, /9y¥) on the leaf of the
foliation going through y, that is

1Tt

vk € N\ {0}, 6{P(y) = y:

(z,y)dx.

Note that the C*-norm of f, is greater than or equal to that of ¢,. Indeed
so if for some y we have 7(14) (y) > K for some K, then there exists = such
that 9% £, /0y"(z,y) > K. Besides the mean value of ¢,, over {x = 0} equals
the mean value of f, over T2. Note that ¢, is 1-periodic and C*, so for
any k, <b$lk) vanishes at least once in [0, 1].

Assume for definiteness that -, crosses {z = 0} at y = 0. Since 7,
is minimising in particular it minimises among its translates so we may
assume, up to adding a constant, that ¢, > 0 = ¢,(0). Since 7, crosses
{z = 0;y € [0,1]} gy times, there exists at least one interval in {x = 0;y €
[0,1]} of length < 1/g, which is crossed exactly once by all leaves of the
foliation. Changing the origin if we have to, to another point of v,, we may
assume this interval is [0,a,]. So every value of ¢, and its derivatives is
taken at least once in [0, a,]. Thus for every k in N, there exists xy in [0, a,,]
such that qbq(zk) (zg) = 0.

Proposition 7 of [Mt02a] (see below) then shows shows that ¢,,, hence f,,
does not go to zero in the C*-topology.
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Proposition 5. Let ¢, be a sequence of real-valued,non-negative, C°, 1-
periodic functions with ¢,(0) = 0. Assume there exists a sequence of integers
gn — 00 such that

e the mean value of ¢, is > 1/q}
o cvery value of ¢, and its derivatives is taken at least once in an interval
0, an] with a, < 1/¢y,.

Then for all k in N, there exists yy in [0, a,] such that ¢£Lk) (yx) > Cqk=2.
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