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Abstract 

Quadrature  operators are  useful to  obtain the  modulating phase N  in

interferometry and  temporal signals in electrical communications. In carrier

frequency interferometry  and electrical communication  one uses  the  Hilbert

transform to obtain the quadrature of the signal. In these cases the Hilbert transform

gives the desired quadrature because the modulating phase is  monotonically

increasing. Here we propose an n-dimensional  quadrature  operator which

transforms  cos[N] into  -sin[N]   regardless of the frequency  spectrum  of the  signal.

Having the quadrature  of  the  phase  modulated signal one can easily calculate the

value of N over all the domain of interest. Our quadrature operator is composed of

two n-dimensional vector fields: one is related to the gradient of the image

normalized with respect to local frequency magnitude and the other is related to the

sign of the local frequency  of the signal. The inner  product  of these two vector
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fields gives us the desired quadrature signal. This quadrature operator is derived in

the  image space  using differential vector calculus and in the frequency domain using

a n-dimensional generalization of the Hilbert transform. A  robust  numerical

algorithm is given to find the modulating phase  of   two-dimensional single-image

closed-fringe interferograms  using the ideas put forward in this paper.

2650 Fringe Analysis, 3180 Interferometry, 5050 Phase Measurement, 6160 Speckle

Interferometry

I.- Introduction

Recently a number of researchers  [1-5]  have contributed to the understanding

and development of  methods to estimate  the modulating phase  of  a single-image

interferogram having closed fringes. As it is well understood  today, this  is a

problem for which a unique solution does not exist; so, additional constraints must

be added in  order to find a unique solution. The most widely used additional

constraint is to consider the modulating phase  to be smooth. Using this  smoothness

constraint one is able to demodulate a single fringe pattern by  minimizing a non-

linear global cost function as in [3] or by locally minimizing a non-linear cost

function and then propagating its solution following the fringes of the interferogram

as in the case of the regularized phase tracking (RPT) algorithm [2]. In the RPT case

the local phase and frequency are estimated simultaneously. 

The problem of finding the quadrature signal of a single closed-fringe

interferogram may also be achieved by factorizing the whole task into two separate

problems, namely, finding the orientation of the fringes and their local frequency. As

far as we know this was first proposed by Marroquin et. al.   [4] where two separate

cost  functions were proposed   to obtain the orientation and the local  frequency

independently.  The phase estimation problem may also  be  factorized   using the

RPT  by  scanning the interferogram  following the  path defined by its fringes [2].
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By doing this,   one is able to somewhat decouple  the local phase  estimation (which

is almost constant along the fringes of the image) from its local frequency (fringe

orientation). This two dimensional scanning strategy is shown   to be more robust

than following a scanning strategy independent of the form of the interferogram’s

fringes,  such  as  a  row by row  scanning.

On the other hand, efforts have been made for estimating the modulating phase

of a single-image closed-fringe interferogram by  the use of a linear operator [1,5].

This seems to be a very good  approach, since if it were possible to find such an

operator , this process would be as easy as demodulating  a carrier frequency

interferogram [6]. Unfortunately as we show in this paper, such linear system does

not exist. In contrast, what does exist [5] is a linear operator  which gives  the

quadrature  signal in a “direct” way once and only once, the orientation of the fringes

is already estimated (which is not a trivial process).

The first well known work  that uses a linear operator, (the Hilbert transform)

to obtain the modulating phase of a single-image closed-fringe interferogram was

made by Kreis [1]. He uses a two-dimensional generalization (2D) Hilbert operator

H2'{.} to find the modulating phase of the interferogram. As we will see in this paper,

the  trouble with this approach is twofold. Firstly,   the recovered  phase  has spurious

ringing effects along  paths  where the magnitude of the phase gradient is close to

zero,  due to the hard discontinuity of the H2'{.} operator at the origin. Secondly, the

recovered phase is always monotonically increasing even though the actual

modulating  phase may be non-monotonic. 

In this paper  we present a quadrature  operator which  is composed by  two

vector fields; one is related to the image gradient normalized with respect to the local

frequency magnitude , and the other, which we call nN , to the orientation angle  of

the fringes of the interferogram. We also present examples of the application of this

operator to the demodulation of computer simulated fringe patterns and to an
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experimentally obtained interferogram. Finally,  we compare the performance of our

numerical algorithm with  the vortex operator  proposed by Larkin et. al. [5].

II The 1D Quadrature Transform

The Hilbert transform in one dimension (1D) /1{.} is a very  useful

mathematical tool  to obtain the quadrature   of a single frequency sinusoidal signal.

According  to [7] , the Hilbert transform of a cosine and sine functions with a linear

increasing  phase are:

(1)

because of this, we may have the (wrong) impression that the Hilbert transform

H1{.}always  gives the quadrature of a cosine  signal.  The  transforming  properties

of the Hilbert operator  become  clear  by looking at  the form of the   frequency

response of  H1{.} as applied  to a real function g(x)=cos[N(x)], which is [7]:

(2)

where the Fourier transform is represented by ö{.} and,

(3)

The Hilbert transform still renders the expected  result (the quadrature signal) when

it is applied to a more complicated  carrier frequency signal, that is:

(4)

provided the local frequency does not change sign, i.e.
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(5)

in this case  this cosine signal  has its two  spectral lobes well separated, and  the

H1{.} operator may  be used to recover  the  modulating phase R(x) of the signal. This

is the reason why the Fourier  method  is so widely used  to find the  modulating

phase  of  carrier  frequency interferograms.

Unfortunately, Eq.4 will not hold if condition (5) is not satisfied, i.e., if the

phase  modulating signal is not a monotonically increasing  function of  x.   As it is

demonstrated in the next section, without a carrier one needs to know the  sign of the

local frequency   to obtain the expected  quadrature  signal. Therefore, in general, to

obtain the   one dimensional quadrature of cos(N)  one needs  to use the following

formula which relates the one dimensional quadrature transform Q1{.} to the one

dimensional Hilbert transform H1{.}

(6)

where the x dependence of N(x) was omitted for clarity. The result of applying Q1{.}

reduces then to  H1{.} only when the local frequency  T=dN/dx of the signal is

everywhere greater than zero,  so  that the ratio  T/*T* equals one all over the whole

domain of interest. In general,  to obtain the quadrature  signal of the cosine of a  non-

monotonic function N(x) one needs to know the sign of the local spatial frequency to

correct  the sign of  the signal obtained by the application of the Hilbert transform.

III.- The 2-D Quadrature Transform for Carrier Frequency Interferograms

A straight forward generalization for the 1D Hilbert transform has been used

in optical signal  processing  as a component  of  the Schlieren phase analysis  method

[8]. This 2D Hilbert transform  generalization is also the one used by Kreis [1] to find
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the modulating phase of a closed-fringe interferogram.

To describe it, let  us start  by considering a two-dimensional  fringe pattern

with carrier frequency. This is normally represented as:

(7)

This equation represents a  fringe pattern Ia(x,y) that depends on a two dimensional

phase  R(x,y) plus a phase  plane.  The  function a(x,y) is a low frequency signal that

represents the background illumination. The function b(x,y) is also a low frequency

signal that represents the slowly varying contrast of the fringes. The two carrier

frequencies  u0  and  v0 are assumed to be greater  than  the maximum spatial

frequency  of  the  modulating  signal along the x and y directions, that is,

(8)

Now, let us assume that we can eliminate the background  illumination a(x,y)  so our

fringe pattern will be reduced to:

(9)

this fringe pattern may be rewritten as,

(10)

The Fourier transform of this signal may be represented as,

(11)

Where f+(u,v) and  f-(u,v)  are the Fourier transforms of the corresponding complex

exponential terms multiplied by the contrast function b(x,y).  Because of condition
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(8), this signal is composed of  two well separated spectral lobes, corresponding to

the signal f+(u,v), which lies exclusively in the positive side of the half plane u0 u+v0

v=0, and  f-(u,v), which  lies in the negative side. One may  obtain  the quadrature   of

the  interferogram  by filtering this signal using the following operator,

(12)

where 

(13)

where e1 and  e2 are the unit vectors along the u and v spectral coordinates. The result

of applying this 2D  form of the Hilbert transform H2'{.} to the fringe pattern

coincides with the expected  quadrature signal  because the input interferogram  has

its  two spectral lobes  well separated, and the 2D Hilbert transform  reduces in one

dimension to the one given in the last section. If this spectral separation condition is

not satisfied, however,  the result of applying  H2'{.} will not give the expected

quadrature signal.

The Schlieren transform S{.} uses H2'{.} in the following way:

(14)

where the (u,v) space  is the Fourier transform space of the R2 =(x,y) plane. In the

optical laboratory this filter S{.} is easily implemented  simply  by  blocking  out

(using a knife edge for example),  half of the spectral domain along the line given by

 T0Cq=0.   The estimated phase R(x,y) is then obtained from,
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(15)

where,

(16)

Note that, because of condition (8), the phase obtained by this relation is always

monotonic due to the phase carrier. Therefore, when the Schlieren operator S{.} is

used to obtain the phase of a closed-fringe interferogram the estimated phase does not

represent the actual non-monotonic  modulating  phase;   also,  the  estimated phase

in this case  has serious  spurious  ringing effects along the path where this phase is

stationary. However in the case of carrier frequency interferogram phase

demodulation using  the Schlieren  operator,  S{.} works perfectly  well and its

estimated phase is free of undesirable phase distortions.

IV.- The General n-Dimensional Quadrature Transform

In this section we will present a general n-dimensional quadrature transform

that works well for closed-fringes, as well as for carrier frequency interferograms.

Moreover,  the  result of this section  will  also  permit  us  to  obtain  as   special  case

the one dimensional result stated in  section II.

The aim of an  n-dimensional quadrature operator Qn{.} is to transform a given

fringe  pattern into its quadrature, which may be represented by:

(17)

where r=(x1,...,xn) is the n-dimensional vector position.  Using this quadrature signal

one can easily determine the phase N(r) modulo 2B  over the whole domain of

interest.
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The first step towards obtaining the quadrature signal will be to obtain the

gradient of the fringe pattern, which is:

(18)

knowing that in most  practical situations the contrast b(r) is a low frequency signal

the first term in this equation  may be neglected with respect to the second one to

obtain:

(19)

hereafter we will use this approximation as valid so the approximation sign will be

replaced  by an equal sign. Of course  for the special case of a constant contrast

b(r)=b0 the above mathematical relation is exact. Applying the chain rule for

differentiation we obtain,

(20)

if it were possible  to know the actual sign and magnitude of the local frequency

LN(r) one could  use this information as,

(21)

and the quadrature signal would be obtained  dividing both  sides of this equation by

the squared magnitude of the local frequency *LN(r)*2 :

(22)

We start by noticing that the equation for Qn{.} is a little bit tricky because, as

far as we know, there is no a linear system that applied  to our fringe pattern I(r) give

us LN(r) in a direct  way. In the following we propose some techniques to calculate

the gradient of the modulating phase. Eq.22 may be rewritten as
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(23)

where nN=nN(r) is a unit vector normal to the corresponding isophase contour, which

points in the direction of LN . This mathematical relation is the desired  quadrature

operator and the main result of this paper. The remaining of the paper will discuss

some properties of this operator as well as several techniques that may be used to

numerically calculate it as a computer program that can be used to demodulate a

single or multiple closed fringe interferograms.

In 2D, the vector nN points in the direction 22B , which we call the fringe

orientation angle, which is given by,

(24)

with

(25)

from this relation one can  obtain the cosine and sine of the local fringe orientation:

(26)

This relation may be generalized to higher dimensions.  For example in three

dimensions one  obtains,

(27)
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where i,  j,  k, are the unit vectors along the x, y and z coordinates, and  ", $ and ( are

the direction cosines of the normal vector nN . As can be seen the use of direction

cosines permits one  to extend the concept of 2D fringe orientation  to higher

dimensions.   Knowing the following property of direction cosines,

(28)

any two direction cosines or equivalently; two orientation angles are needed to obtain

the third one. In general in an n-dimensional space one would need to obtain the

orientation of (n-1) angles. Conversely,  knowing the magnitude and sign of the phase

gradient  one can find  the direction cosines of the fringe’s orientation. Unfortunately,

there is no direct way (e.g., a linear transformation)  to obtain nN from a single-image

fringe pattern containing closed fringes. That is because there is a fundamental

ambiguity in the global sign of the recovered phase. So, in general, one  decides

arbitrarily the sign  of the phase at a given seed point, and afterwards one propagates

that phase solution  throughout the entire interferogram.

One can see that the quadrature operator of Eq. 23 reduces in one dimension

to the  form for Q1{.} stated in section II. In the next section (IV-1) we give a

numerical technique to calculate the quadrature operator of a closed fringe

interferogram I(x,y).  In the following section (IV-2) we show another  alternative to

calculate LI/|LN| as a linear operator  whose Fourier  transform  corresponds  to  n

Reisz transforms [9] along each spectral coordinate. We denote this  operator by

Hn{.},  given that this is another possible generalization of the 1D Hilbert transform.

This generalization of H1{.} is different from the 2D generalization used in the

Schlieren method mentioned in section III.

IV-1 A Numerical Method to Calculate the Quadrature of a 2D Signal  Q2{I(x,y)}

In this section we will use the ideas put forward in this paper to propose a
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practical numerical method to demodulate a single closed-fringe interferogram. For

the reader’s convenience let us first  recall the form of our quadrature operator in 2D,

(29)

we may see that there are several ways for calculating Q2{.}. The orientation term

LN/|LN| as we mention, is  by far the most difficult term  to  estimate. To calculate

LN/|LN| we  recommend  to use  the Quiroga et. al. [10] technique outlined in section

IV-3. In contrast  the term   LI/|LN|  is easier to compute. A possible way to find

LI/|LN*  is  to estimate  |LN| and  LI  directly from the fringe  pattern. Another

possibility which is very easy to implement  and is the one used in this section is to

calculate just LI  instead of calculating LI/|LN|  by using centered first order

differences. Obviously LI and  LI/|LN| will differ when  |LN|�1.0 so a final

adjustment will be necessary.   By doing this  one obtains,

(30)

where we have assumed that the fringe pattern is  normalized so that b(x,y)=1 and its

fringe  orientation  modulo 2B (LN/|LN|) has been already estimated. We can see that

the signal in the left hand side of Eq. 30 is  proportional to the quadrature signal;

therefore, the  phase obtained  by:

(31)

may have a small phase  error over the two dimensional regions where  |LN|�1, but

fortunately it is in the correct branch of the tan-1(.) function. The correct phase value

may therefore be found as the solution to the non-linear equation:

(32)
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that is closest to the phase value N0(x,y) obtained  above. The value for N0(x,y) is used

as an initial guess in an iterative  algorithm that moves closer to the real modulating

phase. This may be done pixel by pixel using the very efficient iterative Halley

method  [14] which is an improved version of the Newton-Raphson technique; the

iteration is given by:

(33)

where fN(x,y)   and   fNN(x,y) are the first and second derivative of f(x,y)  with respect

to N, which gives 

(34)

This recursive formula is very stable  and extremely efficient given that  the value

Nk+1(x,y)  approaches the searched solution N(x,y) tripling the number of accurate

significant figures at each iteration. So in the average about  two iterations per pixel

are  needed  to correct the estimated  phase.

One might think that to solve Eq.32 one only needs to evaluate,

(35)

the problem  with  this  solution  is  that  our  resultant N(x,y) will  be obtained

modulo B and this is not what we are looking for, so we end up at the beginning of

our problem. In contrast what we  need is the non-monotonic solution for N(x,y)

modulo 2B  which is obtained by the proposed  method. 

IV-2 A Fourier Transform Method to Calculate the Vector Field  LI/|LN| 

In this section we show how the vector field LI/|LN* may also be calculated
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using the Fourier transform. This Fourier operator acting on I(x,y) may be seen as a

n-dimensional generalization of the 1D Hilbert transform.  We will show this  in two

dimensions but it may be readily  extended to n-dimensions. We start by writing a

mathematical generalization of the 2D Hilbert transform and we then demonstrate that

this Fourier transformed kernel is approximately equal to  our operator LI/|LN* . The

2D generalization of the Hilbert transform that we will use is,

(36)

where we define ö-1(a e1 + b e2)=ö
-1(a) e1 +ö

-1(b) e2 . Note that the operator H2{.}

is a vector field. This  linear operator is the vectorial sum of two Reisz transforms [9]

along each coordinate in the spectral space. This H2{.}  operator is equivalent to  the

spiral operator presented by Larkin et. al. [5]  when the vectors e1 and e2 are replaced

by 1 and  i , respectively (note that if this substitution is performed , H2{.} would be

complex valued, but it is not a vector field). We have found, however, that from a

computational viewpoint, equation 36 is  better  behaved  because of the numerical

cross-talk between real and imaginary parts that takes place when a single Fourier

transform is performed. Eq.36  may be rewritten as,

(37)

using the approximation  stated in appendix A, we may write the last equation as,

(38)

which finally gives,
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(39)

given that this relation  is stated in vectorial form it is valid in any dimension in the

Euclidean space. As can be seen from appendix A, the  approximation used to

transform Eq.37 into Eq.38  is more  accurate  when the  modulating phase N(x,y)

varies slowly. The result stated in Eq.39  may be used to  demonstrate that the vortex

operator [5] is an approximation to the quadrature transform Q2{.} proposed in this

paper. As shown in apendix A, this approximation is only valid for a smooth

modulating phase.

According to what has been presented in this section,  we have at least  the

following  two alternative ways to calculate this particular   n-dimensional

generalization of the  Hilbert transform; these are:

(40)

and,

(41)

where   u   is a point in the n-dimensional spectral space.  The variables  r  and  q  are

the position vectors in the spectral and the image domains respectively, which are

given by

(42)

Note that this Hn{.} generalization transform also  reduces to the 1D Hilbert transform

when it is applied to a 1D signal.



Page -16-

IV-3 A Numerical Method to Calculate the Vector Field nN(x,y)

As we have shown  in the previous  section  the  most critical  part  in

computing the quadrature of a fringe pattern I(r)   is the estimation of the fringe

orientation field nN=LN/|LN| . As mentioned, it is impossible  to find  a linear  system

to  calculate this vector field directly from the interferogram. The reason is that N(x,y)

is wrapped by the observation process ( cos[N] ),  so we do  not have  direct  access

to it (otherwise our problem would be solved).  What we do have access from a single

image interferogram I(x,y) is the fringe orientation modulo B. This orientation angle

must be unwrapped  to  obtain the searched  orientation modulo 2B.

For the reader’s convenience in  this  section we briefly outline  the main ideas

behind the technique proposed  by Quiroga  et. al.[10] to unwrap the fringe

orientation angle  modulo B to obtain the required  orientation angle  modulo 2B.  The

orientation angle  modulo B may be easily found  from the interferogram irradiance

by 

(43)

this formula is valid provided the fringe pattern  I(x,y)  has been previously

normalized  which means that the amplitude modulation term b(x,y) is almost constant

over the whole region of interest.

The relation between the fringe orientation angle 2B  modulo B  with the

modulo 2B orientation angle 22B is,

(44)

where k is an  integer. Using this relation one may write,

(45)
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this result states that the value for 22B is indistinguishable from that for the  wrapped

angle   W[222B]. Therefore it is possible to obtain the unwrapped 22B by unwrapping

W[22B]  and finally dividing the unwrapped signal  222B  by 2.

However the unwrapping of 22B cannot be carried out by standard path

independent  techniques [11] ,  because in the presence of closed fringes it  is not a

consistent field: it may be easily verify that the sum of wrapped differences of 22B

along any closed path that contains a center of closed fringes will be non-zero (in fact,

it will be close to 4B) , which is a sufficient condition for path dependency in the

unwrapping process [12]. One useful  path dependent strategy is to unwrap the signal

 22B following the fringes  of  the  interferogram. In this way one normally encircles

(avoids) the discontinuity point at the center of the  closed fringes until its

surrounding  has been  unwrapped  [10].  Due  to the large noise normally

encountered in practice for 22B (due to the ratio of two derivatives) one  must use

robust path dependent strategies. The algorithm that best fits these requirements is the

unwrapping  algorithm  based  on the  RPT  [13]. A detailed account on fringe’s

orientation angle unwrapping along with interesting examples is given by Quiroga et.

al. in Ref. [10].

V.- Discusion

The main contribution of this paper is the expression of the quadrature operator

as the dot product of two vector fields (Eq.23). A particular case this idea is implicit

in the Vortex transform proposed by Larkin [5] , although in that case it is treated as

the product of two complex-valued fields. Here we generalize it in an important way:

by giving explicit vectorial formulae for the characterization of these two fields, we

not only make the extension to higher dimensions direct, but, more importantly, we

open the possibility for using other methods for the computation of each one of these

components, which may be more efficient and/or exhibit a better behavior. Thus, we
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show in  this paper that there are several different ways to compute the vector field

LI/|LN| . One possibility is by estimating LI and |LN| separately and then combining

their outcome; a second one is to use LI as a coarse approximation to this field and

then correct the phase estimate using a pixel-wise iterative procedure  (as in sec. IV-

1); a third way is by  using Fourier transform techniques (as in sec. IV-2) which in the

special two dimensional case is equivalent to  Larkin’s spiral filter [5].  We believe

however that the vectorial representation is preferable, both from a theoretical

viewpoint (since the generalization to higher dimensions becomes direct), and from

a computational one; equation 36 is better behaved because of the numerical cross-

talk between real and imaginary parts that takes place when a single Fourier transform

is performed.  As we will show in section V, the best results are obtained by the

space-domain  method of section IV-1; because of its mathematical form the H2{.}

operator given by Eq.39 gives unreliable results in places where the local frequency

magnitude is close to zero; in contrast, these distortions are automatically and

efficiently corrected by the pixel-wise Halley iterations of Eq.34.

The most difficult part of  the whole process is the estimation of the orientation

angle modulo 2B from its orientation  modulo B, and this last step is the main  reason

why the estimation of the quadrature  of single-image interferograms with closed

fringes is  most  difficult. In any case it seems  hopeless to reach the phase

demodulation  robustness of   phase stepping  or carrier frequency interferometry

when  a  single closed-fringe interferogram is analyzed,   the reason being that  we

have infinitely many solutions compatible with the observations in this case.

One might be tempted to say that the herein proposed quadrature operator

Qn{.}, as well as the vortex operator in [5]  are  “direct” methods  to estimate  the

quadrature of a single image with closed fringes. We feel that the  word “direct” is not

accurate here because it might be interpreted as meaning that with these techniques

one may demodulate a single closed-fringe interferogram as easily as in the case of
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carrier frequency  interferometry, but unfortunately this is not the case. The reason is

that the vortex operator  as well  as the quadrature operator presented  in this paper

readily give  the quadrature of the signal once and only once,  the orientation of the

fringes modulo 2B, and hence nN ,  has been  determined, and  the estimation of  the

fringe orientation modulo 2B from a single closed-fringe pattern  is a process that is

far from  “direct”.

Once nN is known, one may even use the form of the 2D Hilbert transform

H2'{.} contained in the  Schlieren operator S{.}  to obtain  another 2D quadrature

operator Q2'{.}:

(46)

where the vector  T0 = u0 i + v0 j is the  chosen filtering direction that is used by the

operator H2'{.}.  This formula for Q2'{.} is just a two  dimensional application of the

one dimensional quadrature operator presented in section II. It has, however a

drawback:  the  H2'{.}  operator severely distorts  the quadrature signal  obtained

because of the hard spectral discontinuity of the associated filter.  As one  may see,

the n-dimensional quadrature operator is not unique; in  our opinion,  Q2'{.} is more

difficult to evaluate numerically than Q2{.}.  The fact that several quadrature

operators Q are possible, however, opens the possibility of  finding other quadrature

operators  better suited for numerical estimation.

Finally one  may realize that the solution to the problem of demodulating a

single interferogram in 2D may also be obtained  directly from Eq.20 (with b(r)=1.0),

i.e. by solving the following set of non-linear coupled  partial differential equations,
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(47)

where Ix(x,y) and Iy(x,y) are the partials of the interferogram  I(x,y) with  respect  to

coordinates  x and y ,  the  amplitude  modulation of the interferogram  b(x,y).1.0 has

been normalized and the spatial (x,y) dependence was omitted for clarity purposes.

The  form of this set  of  partial differential equations may stimulate our imagination

to find alternative ways or systems to demodulate  interferograms. Among these

demodulating  systems  one  might think of powerful non-linear finite element

methods to find  an  approximate  solution to this set of equations.

VI Experimental results

We begin  by considering the noiseless computer generated fringe pattern of

Fig.1a. We show this noise free example  to appreciate the form  of  the signals

involved in the estimation of the modulating phase N(x,y)  of a single-image

interferogram containing closed fringes. Figure 1(a) shows the input fringe pattern,

Fig.1(b) shows its demodulated wrapped phase. Figures 1(c) and Fig.1(d) show the

two centered first order differences  Ix  and  Iy  along the x  and y  coordinates

respectively. The fringe orientation angle modulo B is shown in Fig.1(e), the black

gray level correspond  to 0 radians and the white gray level  to B radians. This is the

orientation angle that is directly observable from the interferogram I(x,y). This

orientation angle is wrapped modulo B which means that the fringe’s orientation

angle will have the same value at two points  situated  near and  symmetrically away

from  the center of a given  set of closed fringes. Its unwrapped fringe orientation

angle  (modulo 2B) is shown in Fig.1(f) obtained using  the  method  proposed by
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Quiroga et. al..[10]. As can be seen from Fig.1(e) this fringe orientation angle cannot

be unwrapped using path independent  unwrapping techniques, because the

orientation modulo B has three essential phase  discontinuities [12].  These

discontinuities must be preserved, and that is why an unwrapping strategy  following

the fringes  is  the best way to unwrap this signal.  

Our next example is the demodulation of an experimentally obtained fringe

pattern which is shown in Fig.2(a). These fringes were obtained  from a shearing

interferometer using Electronic Speckle Pattern Interferometry (ESPI). Figure 2(b)

shows the fringe orientation modulo 2B that was obtained by unwrapping  the

orientation modulo B estimated from the ESPI image. The angle’s orientation

unwrapping  was achieved using  the algorithm  by Quiroga et. al. [10],  that is, the

fringe orientation was unwrapped following the fringes of the interferogram.    Figure

2  panels “c” and  “d” show the signals obtained using  first order centered differences

to approximate the gradient LI(x,y). Figure 2(e) shows the recovered nNCLI  signal.

Although this signal is orthogonal to the fringe  pattern Fig.2(a) it is not everywhere

in quadrature with it. As consequence the recovered phase from Figs.2(a) and 2(e)

will have some small distortion that can be removed using the Halley algorithm

discussed in section IV-1 to   finally obtain the phase shown in  Fig.2(f).

Finally we have calculated the quadrature signal of the noiseless computer

generated fringe pattern  sin(x2+y2) (i.e., cos(x2+y2)) using the method of section IV-1

to compare it with the vortex operator  proposed by Larkin [5] and the quadrature

operator using the Schlieren filter (Eq.46).  In figure 3a we show the ideal quadrature

signal. Figure 3b shows the quadrature signal obtained using the numerical algorithm

outlined in section IV-1, one can see that this results is identical to the expected

quadrature signal because of the point-wise “adjustment”  using the Halley recursion

formula.  As one can see, the vortex operator distorts the recovered phase (Fig.3c) on

regions of very low spatial frequency. Finally figure 3d shows the quadrature operator
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using the Schlieren filter, this quadrature formula renders the lowest quality result for

the reasons explained above.

VII Conclusions

We have presented a quadrature operator that applied to a single interferogram

gives its quadrature image Q{bcos(N)}=-bsin(N).  This result holds true even when

the spectrum of the fringes is not well separated, i.e., for single closed-fringe

interferograms .   We have also shown that this quadrature operator  Q{I}  can  be

expressed as the vectorial inner product of two vector fields. One of them, i.e., 

LI/|LN| ,  may be seen as an  n-dimensional generalization of the Hilbert  transform

Hn{.}  of the interferogram,  and  the other one  is the orientation of the fringes 

nN=LN/|LN|.  In this way our quadrature  operator may be expressed as

Q{I}=nNCHn{I} in any dimension.

We have also pointed out that the critical step to obtain the quadrature of the

interferogram  Q{I}  is the estimation  of the fringe orientation nN=LN/|LN|. This

operator can only be obtained  modulo  B directly from  the interferogram irradiance,

because the cosine function wraps the required signal N. Given that the wrapped

orientation modulo B has essential discontinuities that must be preserved, path

dependent  unwrapping  processes are necessary to obtain the fringe’s orientation

modulo  2B .

Regarding Hn{.} we have presented two practical algorithms for its estimation;

one is a frequency-domain method , which is closely related to the spiral operator

presented in [5], while the other is space-domain method based on a pixel-wise

correction of a phase estimate which is directly obtained from the image gradient. We

have shown experimentally that this last method works quite well , even in the

presence of moderately high measurement noise (e.g. the ESPI image of figure 2), and

has the additional advantage of avoiding the phase distortions that frequency domain
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methods introduce places where low frequency dominates.

Appendix A

In this appendix we prove in an intuitive way  the following approximation

(48)

where  I
  ̂
(u,v)=ö{I(x,y)} is the two  dimensional Fourier transform of I(x,y) of the

fringe pattern given by,

(49)

and the signals Tx(x,y) and Ty(x,y) are are the local spatial frequencies of the fringe

pattern given by:

(50)

Let us start by considering the following fringe signal decomposition as a sum

of mutually  exclusive  squared  regions, and the local phase N(x,y) expanded as a

linear phase  using Taylor series expansion. This gives,

(51)

where the symbol ÿ(x-n,y-m) is a squared window  centered at coordinates (n,m)

which equals one inside the window and zero otherwise. The value b(n,m) is the

fringe contrast evaluated at (n,m); the  argument of the cosine function is a phase

plane p(x,y,n,m) oriented according to [Tx(n,m),Ty(n,m)] within  the spatial region

around (n,m) and limited by  ÿ(x-n,y-m). If we pass  this signal through a linear spatial

filter having a frequency response H(u,v) we may write its response approximately as:
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(52)

where   p(x,y,n,m) equals the linear Taylor expansion of N(x,y) around the point (n,m)

(53)

An intuitive explanation of this is that inside of a given squared window  ÿ(x-n,y-m)

one has a spatially monochromatic fringe pattern, so its filtered amplitude  depends

only  on its spatial frequency content along the x and y directions (Tx,Ty). Therefore,

(54)

This result is exact only if the fringe pattern is just a modulated   phase  plane.

Conversely this result is less accurate when the modulated phase N(x,y) changes

abruptly within the domain of interest.  This result may not  surprise  us given that this

is the principle behind analog electronic spectrum analyzers  and old  broadcast  FM

demodulators using passive RLC electrical  networks such the  balanced  slope  FM

detector [15].
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FIGURE 1. Demodulation steps using the algorithm proposed in section  IV-1applied to a noiseless computer generated

interferogram. (a) fringe pattern; (b) recovered  phase; ( c) and (d) are the two components of LI ; (e) fringe orientation

angle modulo B ; (f) fringe orientation angle modulo 2B.
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FIGURE 2. Experimentally  specklegram. (a) The fringe pattern ; (b) the estimated fringe angle modulo 2B ; ( c) and (d)

are the two components of LI ; (e) shows the recovered signal nNCLI ; (f) phase  after the pixel-wise adjustment.
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FIGURE 3. Errors obtained using the Vortex operator against the demodulation  algorithm  proposed using a noiseless

computer generated interferogram. (a) The desired quadrature signal; (b) the obtained quadrature signal using the

numerical algorithm proposed in section IV-1; ( c ) quadrature signal obtained using the Vortex operator;  (d) quadrature

signal obtained using the operator of Eq.46.
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