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Abstract

In this paper, we determine the density of a singular elliptically contoured

matrix. From this, the study of Wishart and Pseudo- Wishart distributions,

whether central or non-central, whether singular or non-singular, is extended

to the case of elliptical models. Some applications of these results are studied

in the context of shape theory. Particular attention is paid to singular size-

and-shape and size-and-shape cone densities.

Keywords: Elliptic Distribution, Wishart distribution, Pseudo-Wishart distri-

bution, Singular distribution, Shape distributions.
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1. Introduction

Consider the random matrix Z ∈ IRp×s where, if Z has a density function with

respect to the Lebesgue measure in IRps, the ps-dimensional Euclidean space, this

function is given by fZ(Z) = h(trZ ′Z). The distribution of Z is called vector-spherical

distribution by Fang and Zhang (10, p. 96). Note that if Z is vectorized, that is, if

all the columns of Z are located one below the other, and this vector is defined as
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z = vecZ ∈ IRps (see Gupta and Varga (14, p. 13)), the density function of z is given

by fz(z) = h(z′z) = h(vec′ Z vecZ), because vec′ Z vecZ = trZ ′Z (see Theorem 2.1.1

in Gupta and Varga (14, p. 20)), which we call spherical distribution.

Let A ∈ IRN×p, B′ ∈ IRs×m, with a rank of A, r(A) = k ≤ min(N, p), r(B) =

r ≤ min(m, s), and µ ∈ IRN×m are matrices of constants such that Σ = AA′ and

Θ = BB′. Then, from Theorem 2.1.1 in Gupta and Varga (14, p. 20), Y = AZB ′ + µ

has an elliptically-contoured matrix distribution with characteristic function ψY (T ) =

etr(iµ′T )φ(trTΣT ′Θ) which denotes

Y ∼ EN×m(µ,Σ,Θ, φ).

Observe that r(Σ) = r(AA′) = r(A) = r and r(Θ) = r(BB′) = r(B) = k, that

is, Σ ≥ 0 and Θ ≥ 0. Therefore, the distribution rank of Y is kr, that is, Y has a

singular distribution. Thus, Y ∈ IRN×m (vecY ∈ IRNm) does not have density with

respect to the Lebesgue measure in IRNm. Nevertheless, the density function does

exist in the subspace M of IRNm (see Cramér (2, p. 297), Gupta and Varga (14, p.

26) and Fang and Zhang (10, pp. 59 and 70)). Formally, as described in Section 2, the

density of Y exists with respect to the Hausdorff measure, which coincides with that

of Lebesgue when this is defined on the above-mentioned subspace M (see Theorem

19.1 in Billingsley (1, p. 209) and Remarks 2.2 and 2.3 in Dı́az-Garćıa, Gutiérrez and

Mardia (6)).

In this context, if Y has a distribution as defined above, this is denoted

Y ∼ Ek,r
N×m(µ,Σ,Θ, h)

where the product of the supra-indices is the rank of the distribution and let c is a

real constant, such that f
Y
(Y ) = c h(·), is the density function with respect to the

Hausdorff measure. This measure, of course, can be replaced by the Lebesgue measure

if we specify the subspace M or if k = N and r = m.

Let us now consider the nonsingular part of the singular value decomposition (SVD)

of a matrix E = U1DW
′
1, where E ∈ IRN×m, D is diagonal and D11 > · · · > Dqq and

r(E) = q = min(k, r); U1 ∈ Vq,N , the Stiefel manifold, and W1 ∈ Vq,m (see Rao (19,

p. 42)). By defining S = Y ′Θ−Y , it is possible, by means of SVD, to find a single

expression for the density function of S by considering all the possible order relations
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between N, m, k and r, taking into account that k ≤ N and r ≤ m. By analogy with

the case in which Y has a matrix variate normal distribution, matrix S is termed the

singular or nonsingular generalised Wishart or Pseudo-Wishart matrix, depending on

the order relation between N and m or between k and r (Wishart or Pseudo-Wishart)

and on that betweenN and k or betweenm and r (singular or nonsingular). In practice,

twelve cases of the S matrix may be given. The density of Y exists with respect to

the Hausdorff measure and, as a consequence of this, the density of S also exists, in

general, with respect to the Hausdorff measure.

The density of S, when Y has a matrix variant normal distribution with Σ > 0

and N > m, has been studied by various authors, both in the central and noncentral

cases; see, for example, Srivastava and Khatri (17), James (15) and Muirhead (16),

among many others. In the same context, considering N < m and only the central

case, the density of S with Θ = IN has been studied by Uhlig (21) and Dı́az-Garćıa

and Gutiérrez (5). A detailed study of the density of S (in which the normality of Y

was also assumed), considering all the possible cases arising in the definition of S, was

described in Dı́az-Garćıa, Gutiérrez and Mardia (6). Various authors have studied the

distribution of S, when Y has an elliptically-contoured distribution, N > m, Θ = IN

and µ = 0. These studies are summarized in Fang and Zhang (10) and Gupta and

Varga (14). In the noncentral, nonsingular, generalised Wishart case, with Θ = IN ,

the density of S has been studied by Fan (9) and Teng, Fang and Deng (20).

Unfortunately, even in classical multivariate analysis based on matrix normal dis-

tribution, the study of singular distributions has received little attention, with the

exception of some studies by Khatri presented in Rao (19) and a few recent publications

(see Uhlig (21), Dı́az-Garćıa and Gutiérrez (5) and Dı́az-Garćıa, Gutiérrez and Mardia

(6). These cases of singularity were resolved by other means, such as type F matrix

distributions associated with MANOVA (see theorems 10.4.1 and 10.4.4 in Muirhead

(16, pp. 449-451). Some other types of singularity have been resolved by different

methods applied to discriminate between variables (columns) or individuals (rows) in

the observation matrix X in order to obtain a nonsingular matrix. It is important

to note that such a singularity may be due to a numerical dependence between the

rows and/or columns of the observation matrix, and/or there may really exist a linear

dependence between the variables or individuals. The latter case could occur when
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we seek to represent a matrix in a lower dimension, for example in Factor Analysis,

Principal Component Analysis, Analysis of Correspondences, Multidimensional Scaling

and Analysis of Canonic Correlation. In such cases, in general, the confirmatory

analysis is based on the distribution of the eigenvalues of a certain matrix associated

with the corresponding technique which is a function of the data matrix, X. All these

cases of singularity are also present within generalised multivariant analysis (in which

an elliptical matrix distribution is assumed) and, indirectly, constitute one of the topics

examined in the present article.

The fundamental aim of this article is to extend the results presented in Dı́az-Garćıa,

Gutiérrez and Mardia (6) to the case of elliptical models. We determine the density

of a singular elliptically-contoured matrix, taking into account the linear dependence

between the rows or columns of Y (see Theorem 2.1). From this density, we define the

generalised S Wishart (Pseudo-Wishart) matrix. Making certain assumptions about

the function h, described above, we find the density of S for the central/noncentral and

singular/nonsingular cases (see Theorem 3.1 and Corollary 3.1). As these densities are

still a function of h, various results, described in the literature, have been obtained as

particular cases, see Corollaries 2.1, 3.1 and 3.4. Also, we study other particular cases

of a singular elliptically-contoured distribution, that is, the matrix variate symmetric

Kotz type distribution and the matrix variate symmetric Pearson Type VII distri-

bution. Furthermore, and as particular cases of the above, we study matrix variate

normal, t-, and Cauchy distributions (see Corollary 3.2).

In the context of shape theory, the generalised Wishart (Pseudo-Wishart) distribu-

tion extends the results obtained for the normal case to that of singular elliptical models

(see Goodall and Mardia (12) and (13)). Specifically, this density could perform the role

of a size-and-shape density (see Dı́az-Garćıa, Gutiérrez and Mardia (6)). Alternatively,

as a size-and-shape distribution, it is possible to use the joint density of the singular

values of matrix Y (or the joint density of the eigenvalues of matrix S), called size-

and-shape cone density in Goodall (11) and Goodall and Mardia (13). Unfortunately,

even in the normal case, these distributions are difficult to compute, even in the case

of low dimensions, a problem that has led to some approximate distributions of such

cases being studied, as suggested by Goodall and Mardia (13), see also Section 9.5 in

Muirhead (16, pp. 390-405). Nevertheless, it is necessary to identify the explicit form
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of such densities in order to propose approximate densities. The size-and-shape cone

density, in the central case, has been studied by Dı́az-Garćıa et al (7) for elliptical

models.

Finally, Section 4 proposes the density of S as the size-and-shape density. Theorem

4.1 determines the singular size-and-shape cone density in terms of matrix Y and,

making use of certain properties of symmetric polynomials (Davis (4)), obtains two

particular cases, one of which was presented in Teng, Fang and Deng (20) (see Corollary

4.1 and Remark 4.1).

2. Singular Elliptically Contoured Distribution

The following result is an extension of Theorem 2.1 given in Dı́az-Garćıa, Gutiérrez

and Mardia (6) to the case of an elliptical model. In this theorem, an alternative proof

is given, using the characteristic function (see Srivastava and Khatri (17, pp. 42-43)).

Theorem 2.1 Let Y ∼ EN×m(µ,Σ,Θ, h) with Σ : m×m, r(Σ) = r ≤ m and/or Θ :

N×N , r(Θ) = k ≤ N . This is termed the Singular Elliptically-Contoured Distribution

and is expressed as:

Y ∼ Ek,r
N×m(µ,Σ,Θ, h)

omitting the supra-indices when r = m and k = N . Moreover, the density function is

given by:
1

(

r
∏

i=1

λ
k/2
i

)





k
∏

j=1

δ
r/2
j





h
(

tr Σ−(Y − µ)′Θ−(Y − µ)
)

(1)

H ′
1(Y − µ)P ′

2 = 0

H ′
2(Y − µ)P ′

1 = 0

H ′
2(Y − µ)P ′

2 = 0



















a. s. (2)

where A− is a symmetric generalised inverse of A, λi and δj are the nonzero eigenvalues

of Σ and Θ, respectively, and H1 ∈ Vk,N , H2 ∈ VN−k,N , P ′
1 ∈ Vr,m and P ′

2 ∈ Vm−r,m.

Proof. Let P = (P ′
1|P

′
2) ∈ O(m), the group of orthogonal matrices and H =

(H1|H2) ∈ O(N), with P ′
1 ∈ Vr,m, P

′
2 ∈ Vm−r,m, H1 ∈ VN,k y H2 ∈ VN−k,k such that
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(Srivastava and Khatri (17, p. 42))

Σ = P





DΣ 0

0 0



P ′ and Θ = H





DΘ 0

0 0



H ′

where DΣ = diag(λ1, . . . , λr) and DΘ = diag(δ1, . . . , δk), λi and δj are the nonzero

eigenvalues of Σ and Θ, respectively. Then, from the characteristic function of Y :

ψY (T ) = etr(iµ′T )φ(trTΣT ′Θ).

Note that

i trµ′T = i tr





P1

P2



µ′(H1

...H2)





H ′
1

H ′
2



T (P ′
1

...P ′
2)

= i tr





P1µ
′H1 P1µ

′H2

P2µ
′H1 P2µ

′H2









H ′
1TP

′
1 H ′

1TP
′
2

H ′
2TP

′
1 H ′

2TP
′
2





= i tr





∆′
11 ∆′

12

∆′
21 ∆′

22









W11 W12

W21 W22



 = i tr ∆′W

and that

trTΣT ′Θ = trH ′TP





DΣ 0

0 0



P ′T ′H





DΘ 0

0 0





= W





DΣ 0

0 0



W ′





DΘ 0

0 0



 .

Thus the characteristic function of Y can be expressed as

ψY (T ) = E(etr(iY ′T ))

= E(etr(i(H ′Y P )′(H ′TP )))

= etr(i tr ∆′W )φ



W





DΣ 0

0 0



W ′





DΘ 0

0 0









which is valid for all values of W . Consider the following transformation:

H ′Y P =





H ′
1

H ′
2



Y ( P ′
1 P ′

2
) =





H ′
1Y P

′
1 H ′

1Y P
′
2

H ′
2Y P

′
1 H ′

2Y P
′
2



 =





R11 R12

R21 R22



 = R.

(3)
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Then, from Theorem 2.3.3 in Gupta and Vargas (14, p. 32)

R11 ∼ EK×r(∆11, DΣ, DΘ, h)

R12 = ∆12

R21 = ∆21

R22 = ∆22



















a. s.

In other words, the density of R or, equivalently, that of Y , is given by the following

(see Theorem 2.2.1, Gupta and Vargas (14, p. 26)):

1

|DΣ|K/2|DΘ|r/2
h
(

tr
(

D−1
Σ (R11 − ∆11)

′D−1
Θ (R11 − ∆11)

))

(4)

R12 − ∆12 = 0

R21 − ∆21 = 0

R22 − ∆22 = 0



















a. s. (5)

An expression as a function of Y may be obtained, noting that |DΣ| =
∏r

i=1 λi and

|DΘ| =
∏K

j=1 δj . Furthermore, given that Σ = P ′
1DΣP1 and Θ = H1DΘH

′
1, it follows

that Σ− = P ′
1D

−1
Σ P1 = P ′

1(P1ΣP
′
1)

−1P1 and Θ− = H1D
−1
Θ H ′

1 = H1(H
′
1ΘH1)

−1H ′
1

define symmetric generalised inverses of Σ and Θ, respectively. Note, also, that

tr(D−1
Σ (R11 − ∆11)

′D−1
Θ (R11 − ∆11))

= tr(P ′
1(P1ΣP

′
1)

−1P1(Y − µ)′H1(H
′
1ΘH1)

−1H ′
1(Y − µ)

= tr(Σ−(Y − µ)′Θ−(Y − µ))

and the desired result is obtained.

Note that the expression for densities (1)-(2), (4)-(5) and for the symmetric gener-

alised inverses is not unique, as P and H are not unique. Nevertheless, such densities

can be used to calculate probabilities and for the inference of the density parameters,

without these depending on the particular values of P and H. Note, also, that

taking into account the notation used by Billingsley (see Billingsley (1, pp. 208-218)),

defining the set A ∈ IRN×m by (5) or by (2) and considering its elements (aij) to

be the coordinates of a point on a (subspace) surface of dimension kr in IRNm (in

this particular case, the surface defines a hyperplane, see Cramér (2, pp. 16-17)), the

density (4) or (1) exists with respect to the Hausdorff measure, which coincides with the

Lebesgue measure, when the latter is defined on the above-mentioned hyperplane (see
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Remark 2.3 in Dı́az-Garćıa, Gutiérrez and Mardia (6) and Theorem 19.1 in Billingsley

(1, p. 209)).

A geometric interpretation of density (1) -(2) ((4)-(5)) may be made, noting that,

when R is defined by (3), this is equivalent to

vecR = vec(H ′Y P )

= (P ′ ⊗H ′) vecY

=

















P1 ⊗ H ′
1

P1 ⊗ H ′
2

P2 ⊗ H ′
1

P2 ⊗ H ′
2

















vecY

=

















(P1 ⊗ H ′
1) vecY

(P1 ⊗ H ′
2) vecY

(P2 ⊗ H ′
1) vecY

(P2 ⊗ H ′
2) vecY

















=

















vecR11

vecR12

vecR21

vecR22

















.

Note, too, that the covariance matrix of Y (R), Cov(vecY ′), is proportional to the

matrix Σ ⊗ Θ, whose rank is r(Σ ⊗ Θ) = r(Σ)r(Θ) = kr. From Cramér (2, p. 297),

the rank of the distribution is kr < Nm, from which we deduce that Y has a singular

distribution and therefore that there are Nm − kr linear relationships between the

coordinates of vecY (vecR) that contain the whole distribution mass. Moreover, these

Nm− kr linear relationships are such that











P1 ⊗ H ′
2

P2 ⊗ H ′
1

P2 ⊗ H ′
2











(vecY − vecµ) = 0 (6)

are satisfied with a probability equal to one. In summary, the density (2) is interpreted

as being the density on the subspace of dimension kr defined by (6). In other words,

it is the density with a total mass on the hyperplane of dimension kr, as defined by

(6) (see Cramér (2, pp. 297-298)).

Corollary 2.1 Assume that Y ∼ Ek,r
N×m(µ,Σ,Θ, h). If, in particular, Y has a
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matrix normal distribution, its density function is given by (see Dı́az-Garćıa, et al (5))

1

(2π)kr/2
(

∏r
i=1 λ

k/2
i

)(

∏k
i=1 δ

r/2
j

) etr
(

− 1
2Σ−(Y − µ)′Θ−(Y − µ)

)

H ′
1(Y − µ)P ′

2 = 0

H ′
2(Y − µ)P ′

1 = 0

H ′
2(Y − µ)P ′

2 = 0

Proof. The proof is immediate, noting in Theorem 2.1 that, h(u) =
exp(−u/2)

(2π)kr/2
.

3. Generalised Wishart and Pseudo-Wishart Distributions

From Theorems 3.1 and 3.2 (in Dı́az-Garćıa, Gutiérrez and Mardia (6)), with (dD) =
∧q

i=1 dDii and expressing the nonnormalised invariant probability measure on Vq,N by

(U ′
1dU1) (see Muirhead (16, pp. 67-72)), the jacobian J(E → U1, D,W1) is given by

(dE) = 2−q|D|N+m−2q

q
∏

i<j

(D2
ii −D2

jj)(dD)(U ′
1dU1)(W

′
1dW1).

Similarly, if we define the matrix F = E ′E = W1DU
′
1U1DW

′
1 = W1LW

′
1, with

L = D2, we find that the jacobian J(E → F,U1) is defined as

(dE) = 2−q|L|(N−m−1)/2(dF )(U ′
1dU1)

The following result is an extension of Theorem 3.3 in Dı́az-Garćıa, Gutiérrez and

Mardia (6) to the case of an elliptical model. It also extends Theorem 1 from Teng, Fang

and Deng (20) to the singular generalised Wishart and the singular and nonsingular

generalised Pseudo-Wishart noncentral cases.

Theorem 3.1. Assume that Y ∼ Ek,r
N×m(µ,Σ,Θ, h), with h expanding in series of

powers in IR. Let, also, q = min(r, k); then the density of S = Y ′Θ−Y is given by

πqk/2|L|(k−m−1)/2

Γq(
1
2k)

(

r
∏

i=1

λ
k/2
i

)

∞
∑

t=0

∑

κ

h(2t)(tr(Σ−S + Ω))

t!

Cκ(ΩΣ−S)
(

1
2k
)

κ

(7)

P2(S − µ′Θ−µ)P ′
2 = 0. (8)
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where S = W1LW
′
1, A

− is a symmetric generalised inverse of A, Ω = Σ−µ′Θ−µ,

Cκ(B) are the zonal polynomials of B corresponding to the partition κ = (t1, . . . , tl) of

t, with
∑l

1 ti = t, ( 1
2k)κ is the generalised hypergeometric coefficient (see James (15))

and h(j)(·) is the j-th derivate of h with respect to v = trΣ−S.

Proof. Note that from the factorization of the complete rank of Θ = Q′Q, Q : k×N

and Q−, a generalised inverse of Q

(Q−)′ΘQ− = (Q−)′(QQ′)Q− = (QQ−)′(QQ−) = Ik,

given that r(Θ) = r(QQ−) = k and QQ− is of the order k × k .

Defining X = (Q−)′Y by Theorem 2.1.1 (Gupta and Varga (14)) and by Theorem

2.1, we find that

X ∼ Ek,r
k×m(µx,Σ, Ik, h),

in which µx = (Q−)′µ. Thus

S = Y ′Θ−Y = ((Q−)′Y )′Θ−((Q−)′Y ) = X ′X.

Let us now consider the SVD of the matrix X = U1DW
′
1. Then

S = W1DU
′
1U1DW

′
1 = W1D

2W ′
1 = W1LW

′
1

where L = D2, whose jacobian is given by

(dX) = 2−q|L|(k−m−1)/2(dS)(U ′
1dU1)

in which q = r(S) = r(Y ) = r(X) = min(r, k). From Theorem 2.1, the density of X is

given by
1

(

r
∏

i=1

λ
k/2
i

)h
(

trΣ−(X − µx)′(X − µx)
)

(X − µ)P ′
2 = 0 a. s.

Taking the nondegenerate part, we find that the joint density of U1, S and W1 is

2−q|L|(k−m−1)/2

(

r
∏

i=1

λ
k/2
i

) h
(

tr
(

Σ−S + Ω
)

+ tr
(

−2µxΣ−W1DU
′
1

))

(dS)(U ′
1dU1),
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where Ω = Σ−µ′Θ−µ.

Let us now assume that h can be expanded in series of powers (Fan (8)), that is,

h(v) =

∞
∑

t=0

at
vt

t!
.

The joint density of U1, S and W1 is

2−q|L|(k−m−1)/2

(

r
∏

i=1

λ
k/2
i

)

∞
∑

t=0

at

t!

(

tr
(

Σ−S + Ω
)

+ tr
(

−2µxΣ−W1DU
′
1

))t
(dS)(U ′

1dU1).

After developing the binomial, we obtain

2−q|L|(k−m−1)/2

(

r
∏

i=1

λ
k/2
i

)

∞
∑

t=0

at

t!

t
∑

η=0

(

t

η

)

(

tr
(

Σ−S + Ω
))t−η

(tr (−2µxΣ−W1DU
′
1))

η(dS)(U ′
1dU1).

The integral with respect to U1 ∈ Vq,k is zero when t is odd (see Eqs. (34)-(46) in

James (15)); thus the marginal of S can be expressed as

2−q|L|(k−m−1)/2

(

r
∏

i=1

λ
k/2
i

)

∞
∑

t=0

at

t!

[ t
2 ]
∑

η=0

(

t

η

)

(

tr
(

Σ−S + Ω
))t−2η

∫

U1∈Vq,k

(tr (−2µxΣ−W1DU
′
1))

2η(dS)(U ′
1dU1)

where [·] represents the integer part of the quotient.

By integrating (see Lemma 9.5.3 in Muirhead (16, p. 397) and Eq. (22) in James

(15)), we obtain:

∫

U1∈Vq,k

(tr (−2µxΣ−W1DU
′
1))

2η
(U ′

1dU1)

=
2qπqk/2

Γq[
1
2k]

∑

κ

(

1
2

)

η
Cκ(4µxΣ−W1DDW

′
1Σ

−µ′
x)

(

1
2k
)

κ

=
2qπqk/2

Γq[
1
2k]

∑

κ

4η
(

1
2

)

η
(

1
2k
)

κ

Cκ(ΩΣ−S).

Therefore the marginal of S is

πqk/2|L|(k−m−1)/2

Γq[
1
2k]

(

r
∏

i=1

λ
k/2
i

)

∞
∑

t=0

at

t!

[ t
2 ]
∑

η=0

(

t

η

)

4η
(

1
2

)

η

(

tr
(

Σ−S + Ω
))t−2η∑

κ

Cκ(ΩΣ−S)
(

1
2k
)

κ

.
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Bearing in mind (see Muirhead (16, p. 21)) that

4η
(

1
2

)

η
=

(2η)!

η!
= 2η(2η − 1)!!

the nondegenerate marginal of S is (see Fan (8) and Teng, Fang and Deng (20))

πqk/2|L|(k−m−1)/2

Γq(
1
2k)

(

r
∏

i=1

λ
k/2
i

)

∞
∑

t=0

∑

κ

h(2t)(tr(Σ−S + Ω))

t !

Cκ(ΩΣ−S)

( 1
2k)κ

.

To obtain the degenerate part, note that

P2X
′XP ′

2 = P2SP
′
2 = P2µ

′
xµxP

′
2

Given that µx = (Q−)′µ and µ′
xµx = µ′Θ−µ, then P2SP

′
2 = P2µ

′Θ−µP ′
2. In other

words,

P2(S − µ′Θ−µ)P ′
2 = 0 a.s.

and thus the desired result is obtained.

Note that the singularity of the matrix S may be the consequence of three circum-

stances: the linear dependence between rows, the linear dependence between columns of

matrix Y or the singularity in the definition of S (generalised Pseudo-Wishart matrix),

that is, when N < m or k < r . Thus, when q = k < m, S does not have a density

with respect to the Lebesgue measure in IRm(m+1)/2 (note, the measure (dS) defined

on L+
m, the manifold of positive definite symmetric matrices with distinct eigenvalues,

is equivalent to the ordinary Lebesgue measure, taking the elements of S to be the

coordinates of points on an m(m+ 1)/2-dimension surface in IRm2

). In this case, the

density of S exists with respect to the measure (dS) defined on L+
m,q, the manifold

of positive semidefined symmetric matrices with q nonzero distinct eigenvalues. The

explicit definition of (dS) is obtained by taking the decomposition S = W1LW
′
1 to be

a system of coordinates for this manifold such that

(dS) = 2−q

q
∏

i=1

lm−q
i

q
∏

i<j

(li − lj)(W
′
1dW1)

q
∧

i=1

dli (9)

where, as above, L is diagonal with l1 > · · · > lq (see Dı́az-Garćıa, Gutiérrez and

Mardia (6)). By analogy to the case of the Y matrix (see Section 2), this measure is a

particular case of the Hausdorff measure, which is eqivalent to the Lebesgue measure
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when the latter is defined on L+
m,q, taking the elements of S to be coordinates of points

on an mq−q(q−1)/2-dimension surface in IRm2

. When r < m, the degenerate part (7)

appears explicitly; in this case, an explicit form of the measure with respect to which

the density given in (8) exists is given by the product of a count measure for P2SP
′
2

with a single point on the support given by P2µΘ−µP ′
2 and the Hausdorff measure

(or the Lebesgue measure, as appropriate) defined above. Therefore density (7) is

interpreted as being the density on subspace (8) with respect to the volume given in

(9).

Corollary 3.1 In Theorem 3.1, note that:

1. If k = N , r = m with N ≥ m then q = m. Then

f
S
(S) =

πNm/2|S|(N−m−1)/2

Γm

(

1
2N
)

|Σ|N/2

∞
∑

t=0

h2t(tr(Σ−1S + Ω))

t!

∑

κ

Cκ(ΩΣ−1S)
(

1
2k
)

κ

.

(See Teng, Fang and Deng (20)).

2. If h(u) = (2π)−kr/2 exp(−u/2). Then

f
S
(S) =















πk(q−r)/2|L|(k−m−1)/2

2qk/2Γq

(

1
2k
)

(

∏r
i=1 λ

k/2
i

) etr
(

1
2Σ−S + 1

2Ω
)

0F1

(

1
2k;

1
4ΩΣ−S

)

P2SP
′
2 = 0

(See Dı́az-Garćıa, et al (6)).

Proof.

1. The proof is immediate from Theorem 3.1, noting that P = P1 ∈ O(m),
∏r

i=1 λ
k/2
i =

|Σ|N/2, |L|(k−m−1)/2 = |W ′
1LW1|

(N−m−1)/2 = |S|(N−m−1)/2, and that W1 =

W ∈ O(m).

2. Observe that
dh2t(u)

du2t
=

1

(2π)kr/2
exp(−u/2)

(

1

2

)2t

. Then, from Theorem 3.1,

the nonsingular part of density S can be written as

πk(q−r)/2|L|(k−m−1)/2

2kr/2Γq

(

1
2k
)

(

∏r
i=1 λ

k/2
i

) etr
(

1
2Σ−S + Ω

)

∞
∑

t=0

∑

κ

Cκ(ΩΣ−S)

22tt!
(

1
2k
)

κ

.

The result follows, noting that Cκ(aX) = Cκ(X)/ak and that 0F1(b;X) =
∞
∑

l=0

∑

κ

Cκ(X)

l!(b)κ
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We now present another two particular cases of elliptically-contoured distribution:

the matrix variate symmetric Kotz type distribution and the matrix variate symmetric

Pearson Type VII distribution (see Gupta and Varga (14, pp. 75-76)).

Corollary 3.2. Let Y ∼ Ek,r
N×m(µ,Σ,Θ, h), with h expanding in series of powers

in IR. Then,

1. If Y has a matrix variate symmetric Pearson Type VII distribution, the density

of S = Y ′Θ−Y is given by

πk(q−r)/2Γ[b]|L|(k−m−1)/2

ark/2Γ[b− rk/2]Γq(
1
2k)

(

r
∏

i=1

λ
k/2
i

)

∞
∑

t=0

∑

κ

(b)2t



1+
tr(Σ−S + Ω)

a





−(b+2t)

t!

Cκ

(

1
a2 ΩΣ−S

)

(

1
2k
)

κ

P2(S − µ′Θ−µ)P ′
2 = 0.

in which a, b ∈ IR and (b)2t = b(b+ 1) · · · (b+ 2t− 1).

2. If Y has a matrix variate symmetric Kotz type distribution, the density of S =

Y ′Θ−Y is given by

πk(q−r)/2a b(2c+kr−2)/2aΓ[ 12kr]|L|
(k−m−1)/2

Γ[(2c+ kr − 2)/2a]Γq(
1
2k)

(

r
∏

i=1

λ
k/2
i

)

∞
∑

t=0

∑

κ

∞
∑

z=0

(−b)z(ω)2t(tr(Σ
−S + Ω))az+c−1

(z + 2t)!

Cκ(b2(tr(Σ−S + Ω))2(a−1)ΩΣ−S)
(

1
2k
)

κ

P2(S − µ′Θ−µ)P ′
2 = 0.

where a, b, c ∈ IR, a > 0, b > 0, 2c+ kr > 2 and ω = a(z + 2t) + c− 1.

Proof. The proof is immediate from Theorem 3.1, noting that:

1. For the Pearson Type VII case,

h(v) =
Γ[b]

(π a)kr/2Γ[b− kr/2]
(1 + v/a)−b



Wishart and Pseudo-Wishart Distributions 15

from which

h(2t)(v) =
Γ[b]

(π a)kr/2Γ[b− kr/2]

(b)2t

a2t
(1 + v/a)−(b+2t).

2. For the Kotz case

h(v) =
a b(2c+kr−2)/2aΓ[ 12kr]

πkr/2Γ[(2c+ kr − 2)/2a]
vc−1 exp(−bva)

=
a b(2c+kr−2)/2aΓ[ 12kr]

πkr/2Γ[(2c+ kr − 2)/2a]

∞
∑

l=0

(−b)lval+c−1

l !

from which, effecting a change to the sum parameter, we obtain

h(2t)(v) =
a b(2c+kr−2)/2aΓ[ 12kr]

πkr/2Γ[(2c+ kr − 2)/2a]

∞
∑

z=0

(−b)z+2t(a(z + 2t) + c− 1)2t

v−(a(z+2t)+c−1−2t)(z + 2t)!

Remark 3.1. Note that, when b = (rk+a)/2 in the singular symmetric Pearson Type

VII distribution we obtain the singular distribution t of a random matrix with a degrees

of freedom. Note, too, that if we take a = 1 in the definition of the distribution t of a

random matrix, we obtain the Cauchy singular distribution of a random matrix. And

if we take a = c = 1 and b = 1/2 in the Kotz type singular symmetric distribution, we

obtain the matrix variate normal singular distribution. Making the same substitutions

in the corresponding distributions of S, we obtain the generalised Wishart or Pseudo-

Wishart for each of the particular cases, see Corollary 3.1.

Corollary 3.3. Assume that in Theorem 3.1, µ = 0. Then, the density of S is

given by
πqk/2|L|(k−m−1)/2

Γq(
1
2k)

(

r
∏

i=1

λ
k/2
i

)h(tr Σ−S)

P2SP
′
2 = 0.

Corollary 3.4 For Corollary 3.3:

1. If Y has a matrix normal distribution with r = m, k = N such that N < m then

q = N , and then

f
S
(S) =

πN(N−m)/2|L|(N−m−1)/2

2Nm/2ΓN

(

1
2N
)

|Σ|N/2
etr
(

1
2Σ−S

)

.
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(See Uhlig (21)).

2. If Y has a matrix t distribution, with r = m = q, k = N , m ≤ N . Then

f
S
(S) =

aa/2Γ
(

1
2 (a+Nm)

)

|S|(N−m−1)/2

Γ
(

1
2a
)

Γm

(

1
2N
)

|Σ|N/2
(a+ tr Σ−1S)−(a+Nm)/2.

(See Sutradhar and Ali (18)).

Proof. The proof follows from Corollary 3.3, noting again that P = P1 ∈ O(m),
∏r

i=1 λ
k/2
i = |Σ|N/2, |L|(k−m−1)/2 = |S|(N−m−1)/2, and

1. taking h(u) = (2π)−Nm/2 exp(u/2)

2. taking h(u) =
Γ
(

1
2 (a+Nm)

)

(aπ)Nm/2Γ
(

1
2a
) (1 + u/a)−(a+Nm)/2.

4. Shape Theory

By analogy with the Gaussian case, in the context of shape theory the densities

given in Theorem 3.1 and in Corollary 3.1 are termed size-and-shape densities (see

Dı́az-Garćıa, Gutiérrez and Mardia (6)). In this section, we determine the joint density

of the singular values D11, . . . , Dqq of X, termed the size-and-shape cone density as

an extension of the singular noncentral case of Theorem 2.1 in Dı́az-Garćıa, Gutiérrez

and Ramos (7). This can be obtained from the density of the eigenvalues of the matrix

S = W1LW
′
1, noting that L1/2 = D, or directly from the SVD of X.

Theorem 4.1. The size-and-shape cone density is given by

2qπq(k+m)/2

q
∏

i=1

Dk+m−2q
ii

q
∏

i<j

(D2
ii −D2

jj)

Γq[
1
2m]Γq[

1
2k]

(

r
∏

i=1

λ
k/2
i

)

∞
∑

θ,κ

∑

φ∈θ,κ

h(2t+l)(tr Ω)

t! l!

∆θ,κ
φ Cφ(D2)Cθ,κ

φ (Σ−,ΩΣ−)
(

1
2k
)

κ
Cφ(Im)

(D −Dµx
)P ′

2 = 0 a.s.

where Dµx
is the diagonal matrix in the SVD of the matrix µx, X = U1DW

′
1 and

q = min(k, r) . The notation of the sum operators, ∆θ,κ
φ and Cθ,κ

φ is given in Davis

(4) (see also Chikuse (3)).
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Proof. Consider the SVD of the matrix X = U1DW
′
1. The joint density of U1, D

and W1 (the nondegenerate part) is given by:

q
∏

i=1

Dk+m−2q
ii

q
∏

i<j

(D2
ii −D2

jj)

2q

(

r
∏

i=1

λ
k/2
i

) h(tr(Σ−W1D
2W ′

1 + Ω − 2Σ−W1DU
′
1µx))

(dD)(U ′
1dU1)(W

′
1dW1).

Assume that h can be expanded in series of powers and integrated with respect to

U1 ∈ Vq,m, proceed in an analogous form to the proof of Theorem 3.1. We then find

that the joint density of W1 and D is given by

πqk/2|D|(k+m−2q)
∏q

i<j(D
2
ii −D2

jj)

Γq[
1
2k]

(

r
∏

i=1

λ
k/2
i

)

∞
∑

t=0

∑

κ

h(2t)(tr(Σ−W1D
2W ′

1 + Ω))

t!

Cκ(ΩΣ−W1D
2W ′

1)
(

1
2k
)

κ

(dD)(W ′
1dW1).

By expanding h(2t) into series of powers

h(2t)(v) =

∞
∑

l=0

bl
l!
vl

the joint density of W1 and D can be expressed as

πqk/2|D|(k+m−2q)
∏q

i<j(D
2
ii −D2

jj)

Γq[
1
2k]

(

r
∏

i=1

λ
k/2
i

)

∞
∑

t,l=0

∑

κ

bl
l!

l
∑

f=0

(

l
f

)

(tr Ω)l−f

t!
(

1
2k
)

κ

(tr Σ−W1DW
′
1)

fCκ(ΩΣ−W1D
2W ′

1)(dD)(W ′
1dW1).

After expanding (tr Σ−W1DW
′
1)

f into zonal polynomials and integrating with respect

to W1 ∈ Vq,m, with the help of Eq. (4.13) from Davis (4), we obtain
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∫

W1∈Vq,m

(tr Σ−W1DW
′
1)

fCκ(ΩΣ−W1D
2W ′

1)(W
′
1dW1)

=
∑

θ

∫

W1∈Vq,m

Cθ(Σ
−W1DW

′
1)Cκ(ΩΣ−W1D

2W ′
1)(W

′
1dW1)

=
2qπqm/2

Γq[
1
2m]

∑

θ

∫

O(m)

Cθ(Σ
−W1DW

′
1)Cκ(ΩΣ−W1D

2W ′
1)(dW )

=
2qπqm/2

Γq[
1
2m]

∑

θ

∑

φ∈θ,κ

∆θ,κ
φ Cφ(D2)Cθ,κ

φ (Σ−,ΩΣ−)

Cφ(Im)
.

The final equality is a consequence of (5.1) in Davis (4). Therefore, applying

the notation used by Davis (4), the joint density (of the nondegenerate part) of

D11, . . . , Dqq is given by

2qπq(k+m)/2|D|k+m−2q

q
∏

i<j

(D2
ii −D2

jj)

Γq[
1
2m]Γq[

1
2k]

(

r
∏

i=1

λ
k/2
i

)

∞
∑

θ,κ

∑

φ∈θ,κ

bl
l!

l
∑

f=0

(

l
f

)

(tr Ω)l−f∆θ,κ
φ

t!
(

1
2k
)

κ

Cφ(D2)Cθ,κ
φ (Σ−,ΩΣ−)

Cφ(Im)
.

Finally,

2qπq(k+m)/2

q
∏

i=1

Dk+m−2q
ii

q
∏

i<j

(D2
ii −D2

jj)

Γq[
1
2m]Γq[

1
2k]

(

r
∏

i=1

λ
k/2
i

)

∞
∑

θ,κ

∑

φ∈θ,κ

h(2t+l)(tr Ω)

t! l!

∆θ,κ
φ Cφ(D2)Cθ,κ

φ (Σ−,ΩΣ−)
(

1
2k
)

κ
Cφ(Im)

.

For the degenerate part, consider the SVD of µx = U1µx
Dµx

W ′
1µx

. Then,

(D −Dµx
)P ′

2 = 0 a.s.

and thus the desired result is obtained.

An important consequence of Theorem 4.1 in shape theory is that when Σ = σ2Im,

this result is obtained by making use of certain properties of symmetric polynomials,

Davis (4).

Corollary 4.1. In the hypotheses of Theorem 4.1, assume that Σ = σ2Im. Then,
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the size-and-shape cone density is given by

2qπq(k+m)/2

q
∏

i=1

Dk+m−2q
ii

q
∏

i<j

(D2
ii −D2

jj)

Γq[
1
2m]Γq[

1
2k]σ

mk

∞
∑

κ

h(2t)(tr Ω +
1

σ2

q
∑

i=1

D2
ii)

t!

Cκ(
1

σ2
D2)Cκ(Ω)

(

1
2k
)

κ
Cκ(Im)

.

Proof. Note that the degenerate part disappears,

r
∏

i=1

λ
k/2
i = |Σ|k/2 Ω = σ−2µ′

xµx = σ−2µ′Θ−µ

and from (5.7) and (5.2), Davis (4),

Cθ,κ
φ (Σ−,ΩΣ−) = Cθ,κ

φ

(

1

σ2
Im,

1

σ2
Ω

)

=

(

1

σ

)2t+l ∆θ,κ
φ Cφ(Im)

Cκ(Im)
Cκ(Ω).

Therefore, from Theorem 4.1, we have

I =

∞
∑

θ,κ

∑

φ∈θ,κ

h(2t+l)(tr Ω)

t! l!

∆θ,κ
φ Cφ(D2)Cθ,κ

φ (Σ−,ΩΣ−)
(

1
2k
)

κ
Cφ(Im)

=
∞
∑

θ,κ

∑

φ∈θ,κ

h(2t+l)(tr Ω)

t! l! (σ2)2t+l

(

∆θ,κ
φ

)2

Cφ(D2)Cκ(Ω)
(

1
2k
)

κ
Cκ(Im)

.

Note that
∑

φ∈θ,κ

(

∆θ,κ
φ

)2

Cφ(D2) = Cκ(D2)Cθ(D
2) (see Eq. (5.10), Davis (4)), from

which we obtain

I =
∞
∑

θ,κ

h(2t+l)(tr Ω)

t! l! (σ2)2t+l

Cκ(D2)Cθ(D
2)Cκ(Ω)

(

1
2k
)

κ
Cκ(Im)

.

After summing on θ and on l, noting that

1.
∑

θ

Cθ(D
2) = (trD2)l and that

2. h(v) =

∞
∑

l=0

h(l)(a)

l!
(v − a)l, with a = trΩ, v = tr Ω +

1

σ2

q
∑

i=1

D2
ii and

h(v) = h(2t)(v)

the desired result is obtained.
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Remark 4.1. As a particular case of Corollary 4.1, we obtained Theorem 2 in Teng,

Fang and Deng (20). By taking D2 = Λ with (dD) = 2−q|Λ|−1/2(dΛ), σ = 1, k = n

and r(X) = q = m ≤ n.

Remark 4.2. Proceeding as in Corollary 3.2, it is simple to obtain particular

examples of the size-and-shape cone density. For this purpose we only need to evaluate

the (2t+ l) derivative of the function h.
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[6] J. A. Dı́az-Garćıa, R. Gutiérrez J., and K. V. Mardia, Wishart and Pseudo-Wishart

distributions and some applications to shape theory, J. Multivariate Anal. 63 (1997),

73-87.



Wishart and Pseudo-Wishart Distributions 21
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