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Abstract. In this paper we propose the use of Information Theory as
the basis of the fitness function for Boolean circuit design using Genetic
Programming. Boolean functions are implemented by only replicating
binary multiplexers. Entropy based measures, such as Mutual Informa-
tion and Normalized Mutual Information are investigated as tools for
similarity measures between circuits. Three fitness functions are built
over a primitive one. We show that the landscape of Normalized Mutual
Information is more amenable for fitness functions than simple Mutual
Information. A comparison of synthesized (through evolution) and min-
imized circuits through other methods denotes the advantages of the
Information-Theoretical approach.

1 Introduction

The implementation of Boolean functions using the minimum number of
components is important for ASIC circuit designers and programmable
devices since silicon surface on a chip is a limited resource. Classic graphic
methods such as Karnaugh Maps become harder to use when the number
of variables increases, and certainly impossible to use for a relatively small
number of variables. Tabular methods such as Quine-McCluskey, although
amenable for digital computers, have been proved to need memory in the
order of 3n. Such simple automated design tools make use of a priori
knowledge that human experts have extracted from the problem domain.
Knowledge is stored and represented in the form of axioms and rules, for
example, Boolean algebra. For many design domains, human knowledge
encoded in this form suffices to automate the design process. For some
other areas, for example, logic circuit minimization, humans have not
yet derived the whole set of rules that would allow to find the smallest
circuit that implements a Boolean function. Therefore, computation of the
smallest circuit is achieved by searching for a solution in a combinatorial
space spawned by operators of Boolean algebra.



As noted, the search space humans know (in some domains) is con-
structed by a deduction process, or repetitive application of the rules of
the problem domain over an initial seed. But the search space could con-
tain other elements not known to humans if it is created in some other way.
Evolutionary computation methods build the search space in a bottom-up
fashion by combining only some sampling elements [27] (called individuals
of the population). Hence, solutions found in this space challenge human
designers since the deduction rules that lead to them are not common, or
sometimes unknown.

In this article we propose the use of Genetic Programming to synthe-
size logic circuits using binary multiplexers (“mux” or “muxes”). Here,
muxes are the only element replicated to construct circuits. Since such
circuits are equivalent to the Shannon expansion of the Boolean formula
implemented, the symbolic representation is equivalent to the real circuit.
We also propose the use of Information Theory concepts for the design of
fitness functions.

The organization of this paper is the following: first, we will describe
some related work. Then we will state the problem we wish to solve in de-
tailed form. Next, we allocate some space to the description of “Multiplex-
ers as Universal Logic Elements”, then “Basic Concepts of Information
Theory”, and “Genetic Programming Concepts” related to our approach.
The use of entropy for circuit design is discussed in the following section
“Entropy and Circuits”. With these ideas in mind, we introduce fitness
functions for evolutionary circuit design in section “Fitness function based
on Normalized Mutual Information”. A set of experiments illustrating the
design of logic circuits is described in section “Experiments”. In the last
section we give final remarks and conclusions.

2 Previous Work

Most work in this domain has been done using Genetic Algorithms (GA).
We could consider Genetic Programming as an extension of GAs in which
a tree-based representation is used instead of the traditional linear binary
chromosome.
Louis [17] introduced the use of GAs for the design of combinational cir-
cuits, and the use of a matrix array inside of which a circuit is evolved.
A layer or stage of his circuits was constrained to get its inputs only
from the previous stage. Thus, he defined a new operator called masked
crossover that exploits information unused by standard genetic operators
over the matrix representation. After Louis several authors followed his



representation, for example, Miller [21] also evolved logic circuits in a ma-
trix but the position of the circuit output is also considered a variable. In
his approach, Miller encodes a set of complex Boolean expressions instead
of simple gate functions aiming to design more complex circuits given the
set of more powerful primitives. In principle the idea is sound but, un-
fortunately, its main drawback is the lack of flexibility to handle a large
number of inputs. Miller [22, 23], and also Louis, studied the combination
of GAs with Case-Based Reasoning tools that incorporate and preserve
knowledge about the problem domain.
Our own previous work using GAs for circuit design [6, 7, 4, 5], show suc-
cesfull results when small circuits are evolved inside the mentioned matrix.
We concluded the matrix causes a strong representation bias since some
inputs and gates are favored by the genetic operators in the probabilis-
tic sense. Some time later, the same authors proposed another approach
based on genetic programming and multiplexers that seems to have more
neutral representation [2, 1, 12].
Koza [15] has used Genetic Programming to design combinational cir-
cuits, but his emphasis has been in the generation of functional circuits
(in symbolic form) rather than their optimization. Iba et al. [13], have
studied the Boolean function learning problem at gate-level concluding
that it is harder for a GA than a neural network to learn. We showed that
it is in fact possible for a GA to learn Boolean functions if we estimate
correctly the V C dimension of our design tool [11, 10]
Claude Shannon suggested the use of information entropy as a measure of
the amount of information [25]. Thus, entropy tell us there is a limit in the
amount of information that can be removed from a random process with-
out information lost. For instance, music can be (loss less) compressed
and reduced up to its entropy limit. Further reduction is only possible at
the expense of information lost [28]. In a few words, entropy is a measure
of disorder and the basis of Information Theory.
The ID3 algorithm for the construction of classifiers (based on decision
trees) probably is the best known computer science representative that
relies on entropy measures [24]. For ID3, an attribute is more important
for concept classification if it provides greater “information gain” than
the others. Information Theory (IT)was early used by Hartamann et al.
[9] to convert decision tables into decision trees. Boolean function mini-
mization through IT techniques has been approached by several authors
[14, 16]. A related work to this article is from Luba et al. [19], whom
address the synthesis of logic functions using a genetic algorithm and a
fitness function based on conditional entropy. Their system EvoDesign



works in two phases: first, the search space is partitioned into subspaces
via Shannon expansions of the initial function. Then the GA is started
in the second phase. The authors claim the partition of the space using
entropy measures is the reason for their success. In their domain, a fitness
function based on Mutual Information seemed to work better than what
we report in this article.
In the next section we prepare the road towards the presentation of the
main material on fitness functions based on Normalized Mutual Informa-
tion and its landscape.

3 Problem Statement

For the purpose of this article, consider a Boolean function specified by its
truth table. The problem is the design of the smallest logic circuit, with
the minimum number of binary multiplexers (described in Section 4), that
implements the given function. The design metric driving the implemen-
tation is the number of components, therefore, the best circuit among a
set of circuits with same functionality is the one with lesser number of
components. Our goal is to determine 100 % functional circuits, specifying
components and connections, not a symbolic representation of it. Thus,
the approach of this paper could be classified as “gate-level synthesis”.
Since the number of circuit components is unknown for most circuits, the
use of a heuristic method such as Genetic Programming seems adecuate.
Also, the tree-like structure of the circuits makes Genetic Programming
the proper evolutionary technique. In our approach, multiplexers are con-
trolled by direct variables of the Boolean function, and only 1s and 0s are
fed into the multiplexers (the analog of the Shannon’s expansion of Figure
1)

4 Multiplexers as Universal Logic Elements

In this article, the binary multiplexer is the only component replicated
to create Boolean functions. This is a sound approach since the binary
multiplexer is a basis for Boolean functions, that is, “universal generators”
of Boolean functions. A binary multiplexer (mux) is a logic circuit with
two inputs a and b, one output f , and one control signal s, related as
follows:

f = as + bs′ (1)

In other words, the output is the value a when the selector is “high”, and
b when the selector is “low”.



The Shannon expansion is the representation of a Boolean function
through the residues of a Boolean function.
Definition 1. Residue of a Boolean function The residue of a Boolean
function f(x1, x2, . . . , xn) with respect to a variable xj is the value of the
function for a specific value of xj. It is denoted by fxj , for xj = 1 and
by fx̄j for xj = 0. The Shannon expansion in terms of residues of the
function is,

f = x̄jf |x̄j + xjf |xj (2)

For mapping Boolean expansions into circuits using binary multiplex-
ers, the variable xj in Equation 2 takes the place of the control vari-
able s in Equation 1. For the sake of an example consider the function
f(a, b, c) = a′b′c + a′bc′ + ab′c′.

The residue of the expansion over the variable a is:

f(a, b, c) = a′f |a=0 + af |a=1

= a′ · (b′c + bc′) + a · (b′c′)
The factor b′c + bc′ must be taken by the mux when the selector a is
“low”, and b′c′ when a is “high”. These factors could also be expanded in
the same way. The expansion of the first factor over the variable b is:

b′c + bc′ = b′(b′c + bc′)|b=0 + b(b′c + bc′)|b=1

= b′ · c + b · c′

And the expansion of the second factor over b is:

b′c′ = b′(b′c′)|b=0 + b(b′c′)|b=1

= b′ · c′ + b · 0

Since in our approach the only valid inputs to the muxes are “0”
and “1”, the variable “c” has to be fed to the circuit through a mux.
This is done by the two muxes at the botton of the “tree”. The circuit
implementing the function of our example is shown in Figure 1.

5 Basic concepts of IT

Uncertainty and its measure provide the basis for developing ideas about
Information Theory [8]. The most commonly used measure of information
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Fig. 1. Shannon expansion implemented with binary multiplexers

is Shannon’s entropy .
Definition 2. Entropy The average information supplied by a set of k
symbols whose probabilities are given by {p1, p2, . . . , pk}, can be expressed
as,

H(p1, p2, . . . , pk) = −
k∑

s=1

pklog2pk (3)

The information shared between the transmitter and a receiver at either
end of a communication channel is estimated by its Mutual Information,

MI(T ;R) = H(T ) + H(R)−H(T,R) = H(T )−H(T |R) (4)

The conditional entropy H(T |R) can be calculated through the joint prob-
ability, as follows:

H(T |R) = −
n∑

i=1

n∑

j=1

p(tirj)log2
p(tirj)
p(rj)

(5)

An alternative expression of mutual information is

MI(T ;R) =
∑

t∈T

∑

r∈R

p(t, r)log2
p(t, r)

p(t)p(r)
(6)



Mutual information, Equation 4, is the difference between the marginal
entropies H(T )+H(R), and the joint entropy H(T,R). We can explain it
as a measure of the amount of information one random variable contains
about another random variable, thus it is the reduction in the uncertainty
of one random variable due to the knowledge of the other [8]. Conditional
entropy is used in top-down circuit minimization methods [3], and also in
evolutionary approaches [19, 18].
Mutual information is not an invariant measure between random variables
because it contains the marginal entropies. Normalised Mutual Informa-
tion is a better measure of the “prediction” that one variable can do about
the other [26].

NMI(T ;R) =
H(T ) + H(R)

H(T,R)
(7)

The joint entropy H(T,R) is calculated as follows:

H(T,R) = −
∑

t∈T

∑

r∈R

p(t, r)log2p(t, r) (8)

Normalized MI has been used in image registration with great success
[20].

Example We illustrate these concepts by computing the Mutual Infor-
mation between two Boolean vectors f and c, shown in Table 1. Variable
c is an argument of the Boolean function f(a, b, c) = a′b′c + a′bc′ + ab′c′.
We wish to estimate the description the variable c can do about variable
f , that is, MI(f ; c).

a b c f=a’b’c+a’bc’+ab’c’

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

Table 1. Function f = a′b′c + a′bc′ + ab′c′ used to compute MI(f;c)

We use Equations 4 and 5 to calculate MI(f ; c). Thus, we need the
entropy H(f) and the conditional entropy H(f |c).



Entropy requires the discrete probabilities p(F = 0) and p(F = 1) which
we find by counting their occurrences

H(f) = −(
5
8
log2

5
8

+
3
8
log2

3
8
) = 0.9544

The conditional entropy, Equation 5, uses the joint probability p(fi, cj),
which can be estimated through conditional probability, as follows: p(f, c) =
p(f)p(c|f). Since either vector f and c is made of two symbols, the discrete
joint distribution has four entries. This is:

p(f = 0, c = 0) = p(f = 0)p(c = 0|f = 0) =
5
8
× 2

5
= 0.25

p(f = 0, c = 1) = p(f = 0)p(c = 1|f = 0) =
5
8
× 3

5
= 0.375

p(f = 1, c = 0) = p(f = 1)p(c = 0|f = 1) =
3
8
× 2

3
= 0.25

p(f = 1, c = 1) = p(f = 1)p(c = 1|f = 1) =
3
8
× 1

3
= 0.25

Now we can compute the conditional entropy by using Equation 5.
The double sumation produces four terms:

H(f |c) = −(
1
4
log2

1
2

+
3
8
log2

3
4

+
1
4
log2

1
2

+
1
8
log2

1
4
)

H(f |c) = 0.9056

Therefore, MI(f ; c) = H(f)−H(f |c) = 0.9544− 0.9056 = 0.0488. In
fact, for the three arguments of the example function we get MI(f ; a) =
MI(f ; b) = MI(f ; c). The normalized mutual information between ei-
ther argument and the Boolean function is NMI(f ; a) = NMI(f ; b) =
NMI(f ; c) = 1.0256. Although no function argument seems to carry
more information about the function f , we show later that the landscape
of NMI contains a region implying information sharing. This region is
hard to find on the MI landscape.

6 Genetic Programming concepts

Genetic Programming is the proposal of Evolutionary Computation to the
field of Automatic Programming. Problems like the exponential growth



of the search space even for specific problem domain, and the represen-
tation or encoding of computational structures of the objective language,
remained unsolved for some years. John R. Koza [15], used genetic algo-
rithms to tackle the search space problem, and S-expressions which are
naturally encoded as trees, to represent programs. The evolutionary op-
erations applied over trees always produce valid trees, therefore, syntacti-
cally correct programs. One of the early genetic programming systems ran
in LISP, thus, the language interpreter “runs” the evolutionary algorithm,
and at the same time is the evaluator of the S-expressions produced.

Genetic Programming evolves functions encoded as trees. We should
see a tree as the abstract semantic view of a program, this is, a parse tree.
Therefore, nodes and leaves of the tree represent non-terminal and ter-
minal grammar elements of the objective language. All together, genetic
programming has to be initialized with a set of operators and functions
that work as a basis for the evolutionary synthesis of programs. For ex-
ample,

– Arithmetic operations (e.g., +,−,×,÷)
– Mathematical functions (e.g.,sine, cosine, log, exp)
– Boolean operations (e.g., AND, OR, NOT)
– Conditionals (IF-THEN-ELSE)
– Iterators (DO-UNTIL)

are common operators and functions in genetic programming. For the
evolution of logic circuits we define a pertinent set of grammar elements
(notice the relationship with Figure 1):

– Terminals= {0, 1}
– Non-terminals= {a multiplexer}

Therefore, a circuit is represented as a tree using binary multiplexers
as node functions, and 0s and 1s for the leaves. An illustration of this kind
of tree is shown in Figure 2 (the circuit was derived using the technique
described in this article). The circuit is 100 % functionally equivalent to
the one derived by Shannon expansions in Figure 1. Notice the circuits
are also structurally similar but the muxes are controlled by different
variables.

The main body of the standard Genetic Programming algorithm is as
follows:

Genetic Programming Algorithm
t=0;
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Fig. 2. Logic function specification, encoding of the circuit using lists, and the circuit

Pt ← initial population
Pt ← fitness(Pt)
while (stopcondition = false) {

S ← selection(Pt);
C ← crossover(S);
M ← mutation(C);
t=t+1;
Pt ← fitness(M);

}

Several issues regarding the application of Genetic Programming as a
problem solving tool for Boolean function synthesis are discussed next.

– Implementation language: Although the implementation language
is not relevant for the results, we chose Prolog because lists are natural
structures of this language and allow the representation of trees. The
evaluation of either circuit just requires one predicate that translates
a list into a tree.

– Initial population In genetic programming the size of the trees plays
an important role. We found an experimental setting for the size of
the trees: maximum tree height should not exceed half the number of



variables of the Boolean function. These trees could be required to be
complete binary trees but our strategy was to randomly create them
as to have a rich phenotypic blend in the population.

– Representation: A circuit is represented using binary trees, and
trees are encoded as prolog lists. A circuit tree is a recursive list of
triplets of the form: (mux, left−child, right−child). Mux is assigned
a control variable, and either child could be a subtree or a leaf. The
muxes are treated as “active high” elements, therefore the left sub-
tree is followed when the control is 0, and the right subtree otherwise.
The tree captures the essence of the circuit topology allowing only the
children to feed their parent node, as shown in Figure 2. The repre-
sentation also captures with no bias the requirement for the leaves of
being only 0 or 1.

– Crossover operator: The exchange of genetic information between
two parent trees is accomplished by exchanging subtrees as shown
in Figure 3. Crossover points are randomly selected, therefore, node-
node, node-leaf, and leaf-leaf exchange are allowed since they produce
correct circuits. The particular case when the root node is selected
to be exchanged with a leaf is disallowed, so invalid circuits are never
generated. In Figure 3, two parents exchange genetic information (sub-
trees circled) and produce two children in the way used in this article.

– Mutation operator: Mutation is a random change with very low
probability of any gene of the chromosome. The mutation of a tree
can alter a mux or a leaf. If a mux is chosen then a random variable
is generated anew and placed as new gene value. The mutation of a
leaf is as simple as the changing of a 0 to 1, and 1 to 0. The mutation
of both a node and a leaf of the tree is shown in Figure 4.

– Fitness function: The design of the fitness function using entropy
principles is explained in Section 7. Nevertheless, every fitness function
used in our experiments works in two stages since the goal is two fold:
the synthesis of 100 % functional circuits, and their minimization. In
stage one, genetic programming explores the search space and builds
improved solutions over partial solutions untill it finds the first 100
% functional circuit. The fitness function for this stage uses entropy
concepts in order to reproduce the truth table. Once the first func-
tional circuit appears in the population, a second fitness function is
activated for measuring the fitness of the new kind of circuit. Thus, if
a circuit is not 100 % functional its fitness value is estimated through
entropy; if the circuit is 100 % functional its fitness value denotes its
size and smaller circuits are preferred over larger ones. The fitness
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value of a 100 % functional circuit is always larger than the value
of a not functional one, therefore, circuits are protected from fitness
conflicts.

7 Entropy and Circuits

Entropy has to be carefuly applied to the synthesis of Boolean functions.
Assume any two Boolean functions, F1 and F2, and a third F3 which is
the one’s complement of F2, then F3 �= F2.

H(F2) = H(F3)

Also Mutual Information shows a similar behaviour.

MI(F1, F2) == MI(F1, F3)

The implications for Evolutionary Computation are important since
careless use of mutual information can anulate the system’s convergence.
Assume the target Boolean function is T, then MI(T, F2) = MI(T, F3),
but only one of the circuits implementing F2 and F3 is close to the solution
since their Boolean functions are complementary. A fitness function based



on mutual information will reward both circuits with the same value, but
one is better than the other. Things could go worst as evolution progresses
because the mutual information increases when the circuits are closer to
the solution, but in fact, two complementary circuits are then given larger
rewards. The scenario is one in which the population is driven by two
equally strong attractors, hence convergence is never reached.
The fitness function of that scenario is as follows. Assume T is the target
Boolean function (must be seen as a truth table), and C is output of any
circuit in the population. Fitness function is either the maximization of
mutual information or minimization of the conditional entropy term. This
is,

badfitnessfunction#1 = MI(T,C) = H(T )−H(T |C)

The entropy term H(T ) is constant since this is the expected target vec-
tor. Therefore, instead of maximizing mutual information the fitness func-
tion can only minimize the conditional entropy,

badfitnessfunction#2 = H(T |C) (9)

We called bad to these fitness functions based on mutual information be-
cause we were not able to find a solution with them. Although mutual
information has been described as the “common” information shared by
two random processes, the search space is not amenable for evolutionary
computation. In Figure 5 we show this search space over mutual informa-
tion for all possible combinations with two binary strings of 8 bits (shown
in decimal). The area shown corresponds to about 1

4 ( [1, 150] × [1, 150])
of the whole search space of ( [1, 254] × [1, 254]) (the values 0 and 255
were not used).

The mutual information space, clearly full of spikes, does not favors
the area of common information. For any two equal vectors, their Mutual
Information lies on the line at 45o (over points {(1, 1), (2, 2), (3, 3) . . . (n, n)}
). In the next Section we continue this discussion and design fitness func-
tions whose landscape seems more promisory for exploration.

8 Fitness Function based on Normalized Mutual
Information

So far we have described the poor scenario where the search is driven by
a fitness function based on the sole mutual information. We claim that
fitness functions based on Normalized Mutual Information (NMI) should
improve the performance of the genetic programming algorithm because



20

40

60

80

100

120

140

20406080100120140

0

0.5

1

1.5

Fig. 5. The search space of Mutual Information



of the form of the NMI landscape. This is shown in Figure 6 for two 8-
bit vectors (as previous case). Note on the figure how the search space
becomes more regular, and more important, notice the appearance of the
wall at 45o where both strings are equal.
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Fig. 6. The search space of Normalized Mutual Information

We propose three new fitness functions based on Normalized Mutual
Information (Equation 7) and report experiments using the next three
fitness functions (higher fitness means better).

Assume a target Boolean function of m atributes T (A1, A2, . . . , Am),
and the circuit Boolean function C of the same size. In the following,
we propose variations of the basic fitness function of Equation 10, and
discuss the intuitive idea of their (expected) behavior.

fitness = (Length(T ) −Hamming(T,C))×NMI(T,C) (10)



We tested Equation 10 in the synthesis of several problems and the
results were quite optimistic. Thus, based on this primary equation we
designed the following fitness functions. In Figure 7 we show the fitness
landscape of Equation 10.
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Fig. 7. Fitness landscape of: f = (Length(T ) − Hamming(T,C)) × NMI(T, C)

fitness1 =
m∑

i=1

fitness

NMI(Ai, C)
(11)

fitness2 =
m∑

i=1

fitness×NMI(Ai, C) (12)

fitness3 = (Length(T ) −Hamming(T,C))× (10−H(T |C)) (13)



The function fitness, Equation 10, is driven by NMI(T,C) and adjusted
by the factor Length(T ) − Hamming(T,C). This factor tends to zero
when T and C are far in Hamming distance, and tends to Length(T ) when
T and C are close in Hamming distance. The effect of the term is to give
the correct rewarding of the NMI to a circuit C close to T . Equation 10
is designed to remove the convergence problems described in the previous
section.Fitness1 and Fitness2, Equations 11 and 12, combines NMI of T
and C with NMI of C and the attributes Ak of the target function. Thus,
fitness1 and fitness2 pretends to use more information available in the
truth table in order to guide the search. Fitness3 is based on conditional
entropy and it uses the mentioned factor to supress the reproduction
of undesirable trees. Since conditional entropy has to be minimized we
use the factor 10 − H(T |C) in order to maximize fitness. Equations 11
and 9 use the conditional entropy term, nevertheless, only Equation 11
works fine. As a preliminar discussion regarding the design of the fitness
function, the noticeable difference is the use of Hamming distance to guide
the search towards the aforementioned optimum wall of the search space.
The Hamming distance destroys elements of the population on one side
of the wall, and favors the other side. Thus, there is only one attractor in
the search space.

9 Experiments

In the following experiments we find and contrast the convergence of the
GP system for the three fitness functions of Equations 11,12,13.

9.1 Experiment 1

Here we design the following (simple) Boolean function:

F (a, b, c, d) =
∑

(0, 1, 2, 3, 4, 6, 8, 9, 12) = 1

Population size of 300 individuals, pc = 0.35, pm = 0.65, 100 gener-
ations.The optimal solution has 6 nodes, thus we find the generation in
which the first 100% functional solution appears, and the generation num-
ber where the optimal is found. The problem was solved 20 times for each
fitness function. The Table 2 shows the results of these experiments.

9.2 Experiment 2

The next test function is:

F (a, b, c, d, e, f) = ab + cd + ef



Event Gen. at fitness1 Gen. at fitness2 Gen. at fitness3

100% Functional 13 ± 5 14 ± 7 18 ± 6
Optimum Solution 30 ± 7 30 ± 10 40 ± 20

Table 2. Generation number where the first 100% functional circuit is found, and the
generation where the optimum is found, for three fitness functions

Population size of 600 individuals, pc = 0.35, pm = 0.65, stop at 200
generations. The optimal solutions has 14 nodes. Each problem was solved
20 times for each fitnesss function. The Table 3 shows the results of these
experiments.

Event Gen. at fitness1 Gen. at fitness2 Gen. at fitness3

100% Functional 39 ± 12 40 ± 11 50 ± 12
Optimum Solution 160 ± 15 167 ± 15 170 ± 20

Table 3. Generation number where the first 100% functional circuit is found, and the
generation where the optimum is found, for three fitness functions

A solution found to this problem is shown in Figure 8. We contrast
the evolutionary solution against the optimum found by Reduced Order
Binary Decision Diagrams.

9.3 Experiment 3

The last problem is related with partially specified Boolean functions
[1]. With this experiment we address the ability of the system to design
Boolean functions with “large” number of arguments and specific topol-
ogy. For this, we have designed a synthetic problem were the topology is
preserved when the number of variables increases.
Boolean functions with 2k variables are implemented with (2 ∗ 2k) − 1
binary muxes if the truth table is specified as shown in Table 4.

We ran experiments for k = 2, 3, 4, thus 4,8, and 16 variables and con-
trast these results with the best known so far for this problem (reported
in [1]). For completeness, all previous results are reported together with
the results of the new experiments in Table 5, where we use the three
fitness functions (Equations 11,12,13).

All parameters are kept with no change for similar experiments, av-
erage is computed for 20 runs. In previous reports we did use a fitness
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Fig. 8. Solution found by Genetic Programming to Experiment 2

ABCD F(ABCD)

0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 1 0 0 1
1 0 0 0 1
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

Table 4. Partially specified Function of Example 3 needs (2 ∗ 2k) − 1 muxes



k variables size Avg(previous) Avg(fitness1) Avg(fitness2) Avg(fitness3)

2 4 7 60 60 60 60
3 8 15 200 190 195 194
4 16 31 700 740 731 748
5 32 63 2000 2150 2138 2150

Table 5. Generation number where the first 100% functional circuit is found, and the
generation where the optimum is found, for three fitness functions

function based on the sole Hamming distance between the current solu-
tion of an individual and the target solution of the truth table [1]. One
important difference is the percentage of correct solution found. Previ-
ously we reported that in 90% of the runs we found the solution (for the
case of fitness based on Hamming distance). For the three fitness functions
based on entropy we found the solution in 99% of the runs.

10 Final remarks and conclusions

A fitness function using only conditional entropy was tested with no suc-
cess at all. We believe this is a clear indication of a fitness function that
does not take into account entropy properties, therefore, the evolution-
ary algorithm can not converge because there is more than one attractor
in the search space. Figure 5 reveals an amorphous search MI landscape
with a quite weak wall at 45o. The left hand side of the wall seems more
regular than the right hand side. Although it is hard to take conclusions
from the figure, it is clear that no attractor dominates the area and it
could explain the failure of the fitness function based on MI only.
The landscape of Normalized Mutual Information seems less chaotic and
more regular. The great advantage of of a fitness function designed over
NMI is the appearance of the wall at 45o. It is clear the wall must appear
when the random vectors are equal; as the intersection of the vectors in-
creases so it does the MU. What we have shown in this paper is that,
in spite of all the credit given to MI as the “real information” shared
between two random processes, the NMI landscape is more suitable for
searching than the MI landscape. In the landscape of the fitness function
of Figure 7, we can see the wall due to equal vectors is preserved, so we
believe it is part of the landscape of three fitness functions using Equation
10.
In general, the three fitness functions worked quite well, all of them found
the optimum in most cases, thus comparable to other fitness functions



based on Hamming distance [1]. The final remark goes to the conver-
gence time and quality of results that are comparable to those previously
reported. From Tables 2 and 3 we would give some advantage to normal-
ized mutual information over simple mutual information because it is less
biased. Results from Table 5 could imply that mutual information is able
to capture “that” relationship between the data that the sole Hamming
distance can not convey to the population.
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