# COMPUTATION OF EIGENFRECUENCIES FOR ELASTIC BEAMS, A COMPARATIVE APPROACH 

Miguel Angel Moreles, Salvador Botello \& Rogelio Salinas
Comunicación Técnica No I-03-09/25-04-2003
(CC/CIMAT)


# Computation of eigenfrecuencies for elastic beams, a comparative approach 

Miguel Angel Moreles Salvador Botello<br>CIMAT<br>moreles@cimat.mx<br>CIMAT<br>botello@cimat.mx<br>Rogelio Salinas<br>CIMAT<br>rogelio@cimat.mx


#### Abstract

In this manuscript we present an extensive study on mathematical and numerical modeling of flexural vibrations of elastic beams. We consider classical one dimensional models. Three fundamental effects are considered; Bending, Rotary Inertia and Shear. Based on the Wave Propagation Method (WPM), we propose an asymptotic method corrected with a root finding technique to compute eigenfrequencies to any desired accuracy. This method is applied successfully to equations involving bending and either rotary inertia and shear.


## Chapter 1

## Introduction

Flexural motion of elastic beams is a problem of interest in structural engineering. In particular, engineers need to calculate the natural frequencies, or eigenfrequencies, of beam elements, that is, frequencies at which the elastic beam freely vibrate. The reason is that another part of the system may force it to vibrate at a frequency near one of its natural frequencies. If so, resonance brings about a large amplification of the forcing amplitude with potentially disastrous consequences.

The most realistic and accurate approach for computing eigenfrequencies is to model the elastic beam based on the fundamentals of elasticity theory, see Malvern [7],Fung [8]. Then compute eigenfrequencies by means of the finite element method (FEM) Zienkiewicz \& Taylor[10], Bathe [11]. The model is three dimensional and consequently, the computational cost is high.

In applications one dimensional models are preferred. Three fundamental effects are considered; Bending, Rotary Inertia and Shear. Following Russell [4] or Achenbach [1] we may consider the energy of the system to obtain the Timoshenko system (TS)

$$
\begin{gathered}
\rho \frac{\partial^{2} Y}{\partial t^{2}}-K \frac{\partial^{2} Y}{\partial x^{2}}+K \frac{\partial \varphi}{\partial x}=0 \\
I_{\rho} \frac{\partial^{2} \varphi}{\partial t^{2}}-E I \frac{\partial^{2} \varphi}{\partial x^{2}}+K\left(\varphi-\frac{\partial Y}{\partial x}\right)=0
\end{gathered}
$$

Here $Y(x, t)$ represents the vertical displacement of the elastic axis of the beam, and $\varphi(x, t)$ is the rotation angle due to bending and shear.

The physical constants in the model are: $\rho \equiv$ linear density, $E I \equiv$ flexural rigidity, $I_{\rho} \equiv$ rotary inertia and $K \equiv$ shear modulus.

By formal differentiation the system can be uncoupled to obtain the Timoshenko equation (TE)

$$
\begin{equation*}
\rho \frac{\partial^{2} Y}{\partial t^{2}}-I_{\rho} \frac{\partial^{4} Y}{\partial t^{2} \partial x^{2}}+E I \frac{\partial^{4} Y}{\partial x^{4}}+\frac{\rho}{K}\left(I_{\rho} \frac{\partial^{4} Y}{\partial t^{4}}-E I \frac{\partial^{4} Y}{\partial t^{2} \partial x^{2}}\right)=0 \tag{1.1}
\end{equation*}
$$

In this equation $-I_{\rho} \frac{\partial^{4} Y}{\partial t^{2} \partial x^{2}}$ is the contribution of rotary inertia and the term due to shear is $\frac{\rho}{K}\left(I_{\rho} \frac{\partial^{4} Y}{\partial t^{4}}-E I \frac{\partial^{4} Y}{\partial t^{2} \partial x^{2}}\right)$. If both effects are neglected we obtain the well known Euler-Bernoulli equation

$$
\rho \frac{\partial^{2} Y}{\partial t^{2}}+E I \frac{\partial^{4} Y}{\partial x^{4}}=0
$$

Equation (1.1) is also obtained from equilibrium considerations if shear and moment are assumed to arise from a distributed applied normal load and moment, each per unit length, see Traill-Nash \& Collar [6]. Therein a frequency study is presented for the Timoshenko equation, the work is limited by the computational resources of the time. A more qualitatively study of the fundamental effects in beam theory is presented in Stephen [5]

The works mentioned above, are only a few of the vast literature on the subject. Nevertheless, the fundamental problem from the modeling point of view, still of current interest, is to asses the accuracy of the different models obtained from the Timoshenko system and Timoshenko equation when some, or all, of the effects are considered. Our purpose is to discuss this problem in the context of natural frequencies and modes of vibration of the Timoshenko equation. Also, we present a method to compute eigenfrecuencies to any desired accuracy.

For the Euler-Bernoulli equation, Chen \& Coleman [2] apply the Wave Propagation Method (WPM) to estimate high order eigenfrecuencies, by means of a formal perturbation approach the estimates are improved to include all low order eigenfrecuencies. Instead of this perturbation approach, we propose a bracketing technique. We show that the WPM can be used to enclose the eigenfrecuencies, which are then found by a simple iterative method to any desired accuracy. An advantage of this approach is that generalizes to more general beam equations. In particular, we consider what
we call the quasi Timoshenko equations, that is, equations which involve bending and either rotary inertia or shear.

Computing eigenfrecuencies involves the solution of an eigenvalue problem for a differential operator, to make the problem well posed boundary conditions need to be prescribed. Following Chen \& Coleman[2] we consider the following configurations: Clamped-Clamped, Clamped-Simply supported, Clamped-Roller Supported, Clamped-Free. It will become apparent that the method applies to any other configuration.

Of interest in its own right, is to provide asymptotic estimates for eigenfrecuencies, see Geist \& McLaughlin [3] for such a study in the case of a free-free Timoshenko system. In the proposed method, when enclosing eigenfrecuencies we provide these estimates.

To test and validate our results, we carry out an exhaustive computational study. We consider beams or four geometries: circular, elliptic, rectangular and square. For each geometry we consider three different materials: aluminium, concrete and steel. To test the modeling virtues of 1-D models, we compute the eigenfrecuencies using 3-D elasticity theory and FEM. For cross validation, eigenfrecuencies for 1-D models are computed with FEM and with the asymptotic method to be introduced.

To conclude this introduction, let us discuss in some detail the content of this work.

In Chapter 1 we present the physical foundations of one dimensional elastic beam models. The purpose is to illustrate the main properties of the Timoshenko system and Timoshenko equation, and the role played for the different physical effects under consideration. The Timoshenko system turns out to be a coupled hyperbolic system for displacement an rotation angle. If the solution is smooth the system can be uncoupled leading to the Timoshenko equation. Remarkably, we shall see that the rotation angle also satisfies the Timoshenko equation.

The eigenvalue problem for the Timoshenko equation is the content of Chapter 2. There, we present the mathematical formulation of the problem, and introduce the quasi Timoshenko Equations with corresponding eigenvalue problems. Hereafter we work with the equation in adimensional form and compute normalized eigenfrecuencies. Also in the chapter, there are two sections describing the basics of FEM computation, 1-D and 3-D. We shall note the numerical and computational requirements when using FEM.

In the context of the Euler-Bernoulli equation in the clamped-clamped configuration, we present a simplified version of WPM in Chapter 3. Eigen-
frecuencies are the roots of trascendental equations. Rouhly speaking, WPM approximates these trascendental equations, by equations that are solved in explicit form. For the same model we introduce an asymptotic method complemented with a root finding technique to obtain high accuracy for eigenfrecuencies. The WPM is used, not to approximate the roots, but to enclose them. The method allows us to compute eigenfrecuencies of any order at virtually no computational cost. Moreover, asymptotic estimates are derived leading to a qualitatively description of the relationship between the physical parameters and eigenfrecuencies of beams.

In Chapter 4 we complete the study of the Euler-Bernoulli equation for the remaining configurations, and show the same analysis for the incomplete Timoshenko equations.

Extension of our work, as well as some problems of future research are part of the content of Chapter 5 entitled Concluding Comments.

The numerical results for all beams are presented in the last chapter. Frequencies are normalized, thus frequencies for an actual beam can be easily derived.

## Chapter 2

## One dimensional models

In practice, elastic beams are modeled as 1-dimensional structures assuming that cross sections move as a whole. The effects to be considered are: bending, rotary inertia and shear. For modelling we select an element of the beam and obtain the equations of motion following two approaches. In the first approach we state equilibrium of forces in the element leading us to the Timoshenko equation. For the second approach we propose an energy functional whose minimizer satisfies the so called Timoshenko System. The former is a fourth order hyperbolic equation on displacement, the latter is a second order hyperbolic systems on displacement and angle of rotation. As a consequence, there is a great difference on the formulation of the initial and boundary value problems of the equations themselves, as well as the formulation of the corresponding eigenvalue problems. We shall explore these differences in what follows.

It is our purpose to provide a tool to compute eigenfrecuencies of beams in a straightforward fashion, hence units and dimensions are necessary. We list the physical parameters under consideration, as well as their dimensions. The dimensions of the quantities are given in term of mass, length, and time, denoted as usual by $\mathrm{M}, \mathrm{L}, \mathrm{T}$ respectively; dimensionless quantities are denoted by a unit.

| Symbol | Dimensions | Definition |
| :--- | :--- | :--- |
| $E I$ | $\mathrm{ML}^{3} \mathrm{~T}^{-2}$ | Bending stiffness |
| $K$ | $\mathrm{MLT}^{-2}$ | Shear modulus |
| $F(x, t)$ | $\mathrm{MLT}^{-2}$ | Distributed moment, per unit length |
| $f(x, t)$ | $\mathrm{MT}^{-2}$ | Distributed force, per unit length |
| $\kappa$ | L | Radius of gytarion of beam section |
| $L$ | L | Length of beam |
| $M$ | $\mathrm{ML}^{2} \mathrm{~T}^{-2}$ | Applied moment |
| $Q$ | $\mathrm{MLT}^{-2}$ | Applied shear force |
| $t$ | T | Time |
| $x$ | L | Length coordinate |
| $Y(x, t), y(x, t)$ | L | Lateral displacement |
| $Z(x, t), z(x, t)$ | L | Component of lateral displacement due to bending |
| $\omega$ | T | Circular frequency of vibration |
| $\rho$ | ML |  |
| $I_{\rho}$ | ML | Linear density of the beam |
| $\theta$ | 1 | Rotatory inertia |
|  |  | Amplitude of shearing angle |

### 2.1 The Timoshenko equation

Consider an element of a uniform beam. The beam is originally straight and lies along the $x$-axis. Let us assume that the shear force $Q$ and the moment $M$ are positive in the $y$ - direction, and in the sense from $x$ to $y$, respectively. If the shear stiffness of the section is $K$, the angle of shear is $Q / C$; if this angle is added to that arising from bending, namely the slope $\partial Z / \partial x$, we have as the total angle

$$
\frac{\partial Y}{\partial x}=\frac{\partial Z}{\partial x}+\frac{Q}{K}
$$

further, since $E I$ is the bending stiffness, the Euler-Bernoulli curvature formula is

$$
\frac{\partial^{2} Z}{\partial x^{2}}=\frac{M}{E I}
$$

The main assumption here is that shear and moment arise from a distributed applied normal load $f(x, t)$ and moment $F(x, t)$, each per unit length.

Equilibrium considerations for the element give

$$
\begin{gathered}
\frac{\partial Q}{\partial x}+f=0 \\
Q+\frac{\partial M}{\partial x}+F=0
\end{gathered}
$$

By differentiation and substitution

$$
\begin{gathered}
\frac{\partial^{2} Y}{\partial x^{2}}=\frac{M}{E I}-\frac{1}{K} f \\
-f+\frac{\partial^{2} M}{\partial x^{2}}+\frac{\partial F}{\partial x}=0
\end{gathered}
$$

and eliminating $M$

$$
\frac{\partial^{4} Y}{\partial x^{4}}=\frac{1}{E I} f-\frac{1}{E I} \frac{\partial F}{\partial x}-\frac{1}{K} \frac{\partial^{2} f}{\partial x^{2}}
$$

This equation defines the displacement $Y$ in terms of the applied force and moment distributions. When this arise from inertia loads, that is, are reversed mass acceleration, we have

$$
\begin{gathered}
f(x, t)=-\rho \frac{\partial^{2} Y}{\partial t^{2}} \\
F(x, t)=-I_{\rho} \frac{\partial^{2}}{\partial t^{2}}\left(\frac{\partial Z}{\partial x}\right)
\end{gathered}
$$

then we have

$$
\frac{\partial F}{\partial x}=-I_{\rho} \frac{\partial^{2}}{\partial t^{2}}\left(\frac{M}{E I}\right)=-I_{\rho} \frac{\partial^{2}}{\partial t^{2}}\left(\frac{\partial^{2} Y}{\partial x^{2}}-\frac{\rho}{K} \frac{\partial^{2} Y}{\partial t^{2}}\right)
$$

leading to the Timoshenko equation

$$
\rho \frac{\partial^{2} Y}{\partial t^{2}}-I_{\rho} \frac{\partial^{4} Y}{\partial t^{2} \partial x^{2}}+E I \frac{\partial^{4} Y}{\partial x^{4}}+\frac{\rho}{K}\left(I_{\rho} \frac{\partial^{4} Y}{\partial t^{4}}-E I \frac{\partial^{4} Y}{\partial t^{2} \partial x^{2}}\right)=0
$$

This equation incorporates bending, rotary inertia and shear.

When vibration is only due to bending we obtain the Euler-Bernoulli equation

$$
\begin{equation*}
\rho \frac{\partial^{2} Y}{\partial t^{2}}+E I \frac{\partial^{4} Y}{\partial x^{4}}=0 \tag{2.1}
\end{equation*}
$$

If shear is neglected we obtain the Rayleigh equation

$$
\rho \frac{\partial^{2} Y}{\partial t^{2}}-I_{\rho} \frac{\partial^{4} Y}{\partial t^{2} \partial x^{2}}+E I \frac{\partial^{4} Y}{\partial x^{4}}=0
$$

For convenience we shall refer to this equation sometimes as $B+R$
In some problems shear is more important than rotary inertia. Neglecting the latter we obtain the equation $B+S$

$$
\rho \frac{\partial^{2} Y}{\partial t^{2}}-\frac{\rho E I}{K} \frac{\partial^{4} Y}{\partial t^{2} \partial x^{2}}+E I \frac{\partial^{4} Y}{\partial x^{4}}=0 .
$$

### 2.2 The Timoshenko system

The E-B equation is also obtained as the simplest equations in the theory of flexural motions of beams of arbitrary but uniform cross section with a plane of simmetry. More precisely, it is assumed that the dominant displacement component is parallel to the plane of simmetry. It is also assumed that the deflections are small and that cross-sectional areas remain plane and normal to the neutral axis. Equation (2.1), is the equation for a beam which is free of lateral loading.

Substituting a harmonic wave, we find for the phase velocity

$$
\begin{equation*}
c=\left(\frac{E I}{\rho}\right)^{1 / 2} \omega \tag{2.2}
\end{equation*}
$$

Thus the phase velocity is proportional to the wave number, which suggests that (2.2) cannot be correct for large wavenumbers (short waves).

By taking in to account shear deformation in the description of the flexural motion of a rod we obtain a model which yields more satisfactory results for shorter wavelengths. In this model it is still assumed that plane sections remain plane; it is, however, not assumed that plane sections remain normal to the neutral plane. After deformation the neutral axis has been rotated through the small angle $\partial Y / \partial x$, while the cross section has been rotated through the angle $\varphi$. The shearing angle $\theta$ is the net decrease angle

$$
\theta=\frac{\partial Y}{\partial x}-\varphi
$$

The bending moment acting over the cross section is related to $\varphi$ by the relation

$$
\begin{equation*}
M=-E I \frac{\partial \varphi}{\partial x} \tag{2.3}
\end{equation*}
$$

The relation between the shear force $Q$ and the angle $\theta$ is

$$
\begin{equation*}
Q=K \theta \tag{2.4}
\end{equation*}
$$

where $K$ is a numerical factor which reflects the fact that the beam is not in a state of uniform shear, but that (2.3) represents a relation between the resultant shear force and some kind of average shear angle. The factor $K$ depends on the cross-sectional shape and on the rationale adopted in the averaging process. Fortunately there is not very much spread in the values of $K$ obtained by different averaging processes. The factor does, however, depend noticeably on the shape of the cross section.

By employing (2.3) and (2.4) the strain energy of a finite segment can be computed as

$$
U=\int_{x_{1}}^{x_{2}}\left[\frac{1}{2} E I\left(\frac{\partial \varphi}{\partial x}\right)^{2}+\frac{1}{2} K\left(\frac{\partial Y}{\partial x}-\varphi\right)^{2}\right] d x
$$

The corresponding kinetic energy is

$$
\mathcal{K}=\int_{x_{1}}^{x_{2}}\left[\frac{1}{2} \rho\left(\frac{\partial Y}{\partial t}\right)^{2}+\frac{1}{2} I_{\rho}\left(\frac{\partial \varphi}{\partial t}\right)^{2}\right] d x
$$

The total energy is

$$
E=\int_{x_{1}}^{x_{2}}\left[\frac{1}{2} \rho\left(\frac{\partial Y}{\partial t}\right)^{2}+\frac{1}{2} I_{\rho}\left(\frac{\partial \varphi}{\partial t}\right)^{2}+\frac{1}{2} E I\left(\frac{\partial \varphi}{\partial x}\right)^{2}+\frac{1}{2} K\left(\frac{\partial Y}{\partial x}-\varphi\right)^{2}\right] d x
$$

Subsequently Hamilton's principle and the Euler equations can be employed to obtain the following set of governing equations for a homogeneous beam

$$
\begin{gathered}
\rho \frac{\partial^{2} Y}{\partial t^{2}}-K \frac{\partial^{2} Y}{\partial x^{2}}+K \frac{\partial \varphi}{\partial x}=0 \\
I_{\rho} \frac{\partial^{2} \varphi}{\partial t^{2}}-E I \frac{\partial^{2} \varphi}{\partial x^{2}}+K\left(\varphi-\frac{\partial Y}{\partial x}\right)=0
\end{gathered}
$$

As inspection quickly shows, these equations have the form of two coupled wave equations. In general the wave speeds $\sqrt{K / \rho}$ and $\sqrt{E I / I_{\rho}}$ are different, resulting in a hyperbolic system with four families of characteristic curves, consisting of two pairs corresponding to wave velocities $\pm \sqrt{K / \rho}$ and $\pm \sqrt{E I / I_{\rho}}$.

If shear is not considered, then the angle $\theta=0$ and $\varphi=\partial Y / \partial x$. The energy of the system is

$$
E=\int_{x_{1}}^{x_{2}}\left[\frac{1}{2} \rho\left(\frac{\partial Y}{\partial t}\right)^{2}+\frac{1}{2} I_{\rho}\left(\frac{\partial \varphi}{\partial t}\right)^{2}+\frac{1}{2} E I\left(\frac{\partial \varphi}{\partial x}\right)^{2}\right] d x
$$

which leads to the Rayleigh equation

$$
\rho \frac{\partial^{2} Y}{\partial t^{2}}-I_{\rho} \frac{\partial^{4} Y}{\partial t^{2} \partial x^{2}}+E I \frac{\partial^{4} Y}{\partial x^{4}}=0
$$

This model involves the rotary inertia effect. When this is neglected, the energy is

$$
E=\int_{x_{1}}^{x_{2}}\left[\frac{1}{2} \rho\left(\frac{\partial Y}{\partial t}\right)^{2}+\frac{1}{2} E I\left(\frac{\partial \varphi}{\partial x}\right)^{2}\right] d x
$$

and we recover the E-B equation

$$
\rho \frac{\partial^{2} Y}{\partial t^{2}}+E I \frac{\partial^{4} Y}{\partial x^{4}}=0
$$

### 2.3 Fourth order equations

If the functions are smooth, it is possible to derive the Timoshenko equation from the Timoshenko system. Indeed, let us recall the Timoshenko system

$$
\begin{gather*}
\rho \frac{\partial^{2} Y}{\partial t^{2}}-K \frac{\partial^{2} Y}{\partial x^{2}}+K \frac{\partial \varphi}{\partial x}=0 \\
I_{\rho} \frac{\partial^{2} \varphi}{\partial t^{2}}-E I \frac{\partial^{2} \varphi}{\partial x^{2}}+K\left(\varphi-\frac{\partial Y}{\partial x}\right)=0 \tag{2.5}
\end{gather*}
$$

Is the first equation we solve for $\frac{\partial \varphi}{\partial x}$ obtaining

$$
\frac{\partial \varphi}{\partial x}=-\frac{\rho}{K} \frac{\partial^{2} Y}{\partial t^{2}}+\frac{\partial^{2} Y}{\partial x^{2}}
$$

differentiating the second equation with respect to $x$ we have

$$
I_{\rho} \frac{\partial^{3} \varphi}{\partial t^{2} \partial x}-E I \frac{\partial^{3} \varphi}{\partial x^{3}}+K\left(\frac{\partial \varphi}{\partial x}-\frac{\partial^{2} Y}{\partial x^{2}}\right)=0
$$

after substitution

$$
\begin{aligned}
& I_{\rho}\left(-\frac{\rho}{K} \frac{\partial^{4} Y}{\partial t^{4}}+\frac{\partial^{4} Y}{\partial t^{2} \partial x^{2}}\right)-E I\left(-\frac{\rho}{K} \frac{\partial^{4} Y}{\partial x^{2} \partial t^{2}}+\frac{\partial^{4} Y}{\partial x^{4}}\right)+ \\
& +K\left(-\frac{\rho}{K} \frac{\partial^{2} Y}{\partial t^{2}}+\frac{\partial^{2} Y}{\partial x^{2}}\right)-K \frac{\partial^{2} Y}{\partial x^{2}}=0
\end{aligned}
$$

simplifying
$\rho \frac{\partial^{2} Y}{\partial t^{2}}-I_{\rho} \frac{\partial^{4} Y}{\partial t^{2} \partial x^{2}}+E I\left(-\frac{\rho}{K} \frac{\partial^{4} Y}{\partial x^{2} \partial t^{2}}+\frac{\partial^{4} Y}{\partial x^{4}}\right)+\frac{\rho}{K}\left(I_{\rho} \frac{\partial^{4} Y}{\partial t^{4}}-E I \frac{\partial^{4} Y}{\partial x^{2} \partial t^{2}}\right)=0$
as asserted.
It is remarkable that the same equation is obtained for $\varphi$. In fact, solving for $\frac{\partial Y}{\partial x}$ in the equation for $\varphi$ in (2.5)

$$
\frac{\partial Y}{\partial x}=\frac{I_{\rho}}{K} \frac{\partial^{2} \varphi}{\partial t^{2}}-\frac{E I}{K} \frac{\partial^{2} \varphi}{\partial x^{2}}+\varphi
$$

differentiate with respect to $x$ in the equation for $Y$ in (2.5)

$$
\rho \frac{\partial^{3} Y}{\partial x \partial t^{2}}-K \frac{\partial^{3} Y}{\partial x^{3}}+K \frac{\partial^{2} \varphi}{\partial x^{2}}=0
$$

after substitution
$\rho\left(\frac{I_{\rho}}{K} \frac{\partial^{4} \varphi}{\partial t^{4}}-\frac{E I}{K} \frac{\partial^{4} \varphi}{\partial t^{2} \partial x^{2}}+\frac{\partial^{2} \varphi}{\partial t^{2}}\right)-K\left(\frac{I_{\rho}}{K} \frac{\partial^{4} \varphi}{\partial x^{2} \partial t^{2}}-\frac{E I}{K} \frac{\partial^{4} \varphi}{\partial x^{4}}+\frac{\partial^{2} \varphi}{\partial x^{2}}\right)+K \frac{\partial^{2} \varphi}{\partial x^{2}}=0$
which leads to
$\rho \frac{\partial^{2} \varphi}{\partial t^{2}}-I_{\rho} \frac{\partial^{4} \varphi}{\partial t^{2} \partial x^{2}}+E I\left(-\frac{\rho}{K} \frac{\partial^{4} \varphi}{\partial x^{2} \partial t^{2}}+\frac{\partial^{4} \varphi}{\partial x^{4}}\right)+\frac{\rho}{K}\left(I_{\rho} \frac{\partial^{4} \varphi}{\partial t^{4}}-E I \frac{\partial^{4} \varphi}{\partial x^{2} \partial t^{2}}\right)=0$
Remark. It is of interest to study these fourth order equations and compare with Timoshenko System.

## Chapter 3

## The Eigenvalue Problem

In this chapter we pose the eigenvalue problems of interest. Next, as a basis for comparison with the asymptotic method to be introduced, we describe the basics of 1-D FEM computations.

The benchmark model for an elastic beam is obtained from 3-D elasticity theory. Eigenfrecuencies are computed with FEM. An example of such a computation is presented in the last section.

### 3.1 Problem Formulation

Let us consider the Timoshenko equation.

$$
\rho \frac{\partial^{2} Y}{\partial t^{2}}-I_{\rho} \frac{\partial^{2}}{\partial t^{2}}\left(\frac{\partial^{2} Y}{\partial x^{2}}\right)+E I \frac{\partial^{4} Y}{\partial x^{4}}+\frac{\rho}{K}\left(I_{\rho} \frac{\partial^{4} Y}{\partial t^{4}}-E I \frac{\partial^{2}}{\partial t^{2}}\left(\frac{\partial^{2} Y}{\partial x^{2}}\right)\right)=0
$$

under harmonic motion

$$
Y(x, t)=y(x) e^{-i \omega t}
$$

we have

$$
\begin{equation*}
-\rho \omega^{2} y+I_{\rho} \omega^{2} \frac{d^{2} y}{d x^{2}}+E I \frac{d^{4} y}{d x^{4}}+\frac{\rho}{K} \omega^{2}\left(I_{\rho} \omega^{2} y+E I \frac{d^{2} y}{d x^{2}}\right)=0 \tag{3.1}
\end{equation*}
$$

In dimensionless form

$$
\begin{gathered}
\xi=x / L \\
\eta=y / L \\
\phi^{2}=\left(\rho \omega^{2} L^{4}\right) / E I \\
\alpha=E I /\left(K L^{2}\right) \\
\beta=I_{\rho} /\left(\rho L^{2}\right)
\end{gathered}
$$

where $L$ is some specified length, e.g. the length of the beam.
Equation (3.1) then becomes

$$
\frac{d^{4} \eta}{d \xi^{4}}+\phi^{2}(\alpha+\beta) \frac{d^{2} \eta}{d \xi^{2}}-\phi^{2}\left(1-\phi^{2} \alpha \beta\right) \eta=0
$$

We are interested in the following boundary conditions
A. Displacement zero: $\quad \eta=0$
B. Total slope zero: $\quad \frac{d \eta}{d \xi}=0$
C. Slope due to bending only zero: $\alpha \frac{d^{3} \eta}{d \xi^{3}}+\left(1+\phi^{2} \alpha^{2}\right) \frac{d \eta}{d \xi}=0$
D. Moment zero:

$$
\frac{d^{2} \eta}{d \xi^{2}}+\phi^{2} \alpha \eta=0
$$

E. Shear zero:

$$
\frac{d^{3} \eta}{d \xi^{3}}+\phi^{2}(\alpha+\beta) \frac{d \eta}{d \xi}=0
$$

To make the eigenvalue problem well posed, two boundary conditions need to be prescribed at both ends. In reference to Table, we consider the following conditions for any end of the beam;

- Clamped: A, B
- Simply sypported: A, D
- Roller supported: B, E
- Free: D, E


### 3.2 Quasi-Timoshenko equations

We call a quasi-Timoshenko equation, an equation of the form

$$
\begin{equation*}
\frac{d^{4} \eta}{d \xi^{4}}+\phi^{2} \gamma \frac{d^{2} \eta}{d \xi^{2}}-\phi^{2} \eta=0 \tag{3.2}
\end{equation*}
$$

where $\gamma$ is a small nonnegative parameter representing either shear or rotary inertia. Next we present the corresponding equations and boundary conditions.

### 3.2.1 $B+R$ equation

In this case there is no shear, that is, $\alpha=0$. Equation (3.1) then becomes

$$
\frac{d^{4} \eta}{d \xi^{4}}+\phi^{2} \beta \frac{d^{2} \eta}{d \xi^{2}}-\phi^{2} \eta=0
$$

Boundary conditions correspond to
A. Displacement zero:

$$
\eta=0
$$

B. Total slope zero:

$$
\frac{d \eta}{d \xi}=0
$$

C. Slope due to bending only zero: $\frac{d \eta}{d \xi}=0$
D. Moment zero:

$$
\frac{d^{2} \eta}{d \xi^{2}}=0
$$

E. Shear zero:

$$
\frac{d^{3} \eta}{d \xi^{3}}+\phi^{2} \beta \frac{d \eta}{d \xi}=0
$$

### 3.2.2 $B+S$ equation

When $\beta=0$ there is no rotary inertia effect and the resulting equation is

$$
\frac{d^{4} \eta}{d \xi^{4}}+\phi^{2} \alpha \frac{d^{2} \eta}{d \xi^{2}}-\phi^{2} \eta=0
$$

The corresponding boundary conditions are given by
A. Displacement zero:

$$
\eta=0
$$

B. Total slope zero:

$$
\frac{d \eta}{d \xi}=0
$$

C. Slope due to bending only zero:
$\alpha \frac{d^{3} \eta}{d \xi^{3}}+\left(1+\phi^{2} \alpha^{2}\right) \frac{d \eta}{d \xi}=0$
D. Moment zero:
$\frac{d^{2} \eta}{d \xi^{2}}+\phi^{2} \alpha \eta=0$

$$
\frac{d^{3} \eta}{d \xi^{3}}+\phi^{2} \alpha \frac{d \eta}{d \xi}=0
$$

### 3.3 1-D FEM computations

To deal with the numerical approximaton of the eigenvalue problem corresponding to equation (3.2), one of the most versatile and accurate method is the Finite Element Method (FEM). Which we use to validate our results.

For the reader's convenience, let us present a brief description of FEM.
Consider the eigenvalue problem for the incomplete Timoshenko equation

$$
\begin{equation*}
\frac{d^{4} \eta}{d \xi^{4}}=\phi^{2}\left(-\gamma \frac{d^{2} \eta}{d \xi^{2}}+\eta\right), \quad \xi \in(0,1) \tag{3.3}
\end{equation*}
$$

For simplicity of exposition, we consider the equation subject to clampedclamped boundary conditions, $\eta(0)=\eta^{\prime}(0)=\eta(1)=\eta^{\prime}(1)$.

We define the test space $V$, as the space of functions $v$ satisfying the clamped-clamped boundary conditions $v(0)=v^{\prime}(0)=v(1)=v^{\prime}(1)=0$.

Multiplying equation (3.3) by a test function $v$ we obtain after integration by parts

$$
\begin{equation*}
\int \frac{d^{2} \eta}{d \xi^{2}} \frac{d^{2} v}{d \xi^{2}}=\phi^{2} \int\left(\gamma \frac{d \eta}{d \xi} \frac{d v}{d \xi}+\eta v\right) \tag{3.4}
\end{equation*}
$$

This leads to the weak formulation of the eigenvalue problem:
Find $\eta \in V$ such that $\eta$ solves (3.4) for all $v \in V$.

Next we apply the Galerkin method, that is, we construct $V_{h}$, a finite dimensional subspace of $V$ and consider the weak formulation in a finite dimensional setting, namely, the Galerkin formulation:

Find $\eta \in V_{h}$ such is $\eta$ solves (3.4) for all $v \in V_{h}$.
If $V_{h}$ of dimension $n$, we may consider a basis, say $\left\{v_{1}, \ldots v_{n}\right\}$. The problem is equivalent to finding $\eta \in V_{h}$ such that

$$
\begin{equation*}
\int \frac{d^{2} \eta}{d \xi^{2}} \frac{d^{2} v_{i}}{d \xi^{2}}=\phi^{2} \int\left(\gamma \frac{d \eta}{d \xi} \frac{d v_{i}}{d \xi}+\eta v_{i}\right), \quad i=1,2, \ldots n \tag{3.5}
\end{equation*}
$$

Since $\eta \in V_{h}$ we have

$$
\eta(\xi)=\sum_{j=1}^{n} \eta_{j} v_{j}(\xi)
$$

and (3.5) becomes a generalized eigenvalue problem

$$
A \boldsymbol{\eta}=\phi^{2}(\gamma B+C) \boldsymbol{\eta}
$$

where $\boldsymbol{\eta}=\left(\eta_{1}, \ldots, \eta_{n}\right)^{t}$, and
$A=\left[A_{i j}\right], A_{i j}=\int v_{j}^{\prime \prime} v_{i}^{\prime \prime}$
$B=\left[B_{i j}\right], B_{i j}=\int v_{j}^{\prime} v_{i}^{\prime}$
$C=\left[C_{i j}\right], C_{i j}=\int v_{j} v_{i}$
It is apparent that to have a good approximation $n$ is necessarily large. Hence the basis of $V_{h}$ has to be chosen carefully.

With FEM a basis is formed by continuous functions which are compactly supported and locally polynomials. For beam equations a convenient basis is formed by using Hermite polynomials. We proceed as follows. The interval $[0,1]$, is partitioned into nonoverlapping subintervals (elements), $I_{1}=\left[\xi_{0}, \xi_{1}\right], \ldots I_{n}=\left[\xi_{n-1}, \xi_{n}\right]$. Here $\xi_{0}=0$ and $\xi_{n}=1$. For each node $\xi_{i}$, a pair of basis functions, $\varphi_{i}, \psi_{i}$ are selected with the following properties:

1. $\varphi_{i}\left(\xi_{j}\right)=\delta_{i j}$
2. $\varphi_{i}^{\prime}\left(\xi_{j}\right)=0$
3. $\operatorname{supp}\left(\varphi_{i}\right)=I_{i} \cup I_{i+1}$
4. $\left.\varphi_{i}\right|_{I_{\mathrm{j}}}$ a cubic polynomial for $j=i, i+1$
5. $\psi_{i}\left(\xi_{j}\right)=0$
6. $\psi_{i}^{\prime}\left(\xi_{j}\right)=\delta_{i j}$
7. $\operatorname{supp}\left(\psi_{i}\right)=I_{i} \cup I_{i+1}$
8. $\left.\psi_{i}\right|_{I_{\mathrm{j}}}$ a cubic polynomial for $j=i, i+1$

The resulting eigenvalue problem involves banded matrices which are symmetric and positive definite. These properties make tractable the numerical approximation.

### 3.4 3-D Theory

Let us consider a rectangular beam in the clamped-clamped configuration with dimensions 30 cm width, 50 cm height, 300 cm length.. The material properties are: Young Modulus $E=200,000 \mathrm{~kg} / \mathrm{cm}^{3}$, Poisson ratio $\nu=0.2$, density $d=2.449 \times 10^{-6} \frac{\mathrm{~kg}-\mathrm{s}^{2}}{\mathrm{~cm}}$. Using the 3-D FEM model, Botello\& Oñate [12], the estimated values for the first frequencies are shown in Table 2.1.

| Frec. | 3-D FEM $(\mathrm{rad} / \mathrm{seg})$ |
| :---: | :---: |
| 1 | 902.690 |
| 2 | 2153.09 |
| 3 | 3680.71 |
| 4 | 5354.43 |
| 5 | 7119.67 |
| 6 | 9121.56 |
| 7 | 10783.9 |
| 8 | 12703.8 |
| 9 | 13337.9 |
| 10 | 14619.1 |

TABLE 2.1
The computation was carried out with a grid of 182406 tetrahedral elements and linear shape functions. To complete the 3-D model we need modes of vibration, a few are shown in Figure 2.1.


Figure 2.1. Fundamental modes of vibration.
Is worth to mention that to estimate the eigenfrecuencies and modes of vibration of a particular elastic beam, a lab experiment can be developed. Unfortunately, the cost to generate a table and figure like the ones shown above is prohibited.

To obtain a similar degree of numerical accuracy with one dimensional models we need no more than 150 elements. The number of elements reflects, not only the size of the linear system to solve, but also the numerical integrations to be computed.

One may argue that the most difficult part for applying FEM, is the partition of the domain in finite elements. For 1-D models this is trivial.

We consider the eigenfrecuencies of the 3-D model as the actual eigenfrecuencies of vibrations of elastic beams, and discuss the modelling virtues of the various one dimensional models presented above.

## Chapter 4

## A symptotic M ethods

With the appropriate boundary conditions, the eigenvalue problem for the quasi-Timoshenko equation has eigenvalues $0<\phi_{1}<\phi_{2}<\ldots<\phi_{n}$, with $\phi_{n} \nearrow \infty$. The corresponding mode of vibration $\eta_{n}(x)$ is the sum of two functions, one of which decays rapidly with $\phi_{n}$. The Wave Propagation Method (WPM) disregards the latter to estimate the eigenvalue $\phi_{n}$. A formal perturbation is proposed in Chen \& Coleman [2] to improve the estimate by WPM for eigenfrecuencies of the Euler-Bernoulli beam. Here we present an alternative approach to improve thr results of WPM also for the quasi-Timoshenko equation.

### 4.1 The wave propagation method (W P M )

To illustrate the WPM we consider the E-B equation

$$
\frac{d^{4} \eta}{d \xi^{4}}-\phi^{2} \eta=0
$$

subject to clamped-clamped conditions

$$
\begin{equation*}
\eta(0)=\eta^{\prime}(0)=\eta(1)=\eta^{\prime}(1)=0 \tag{4.1}
\end{equation*}
$$

For simplicity we write

$$
\begin{equation*}
\eta^{(4)}(\xi)-k^{4} \eta(\xi)=0, \quad 0<x<1 \tag{4.2}
\end{equation*}
$$

where $k^{2}=\phi, k>0$.

The eigenvalue problem, therefore, is to determine all values of $k$ which satisfy equation (4.2), subject to the boundary conditions given in equation (4.1).

Is is well known that the eigenvalue problem does not have any closed form solutions. We first recall the standard, straightforward approach to determine $k$ that is familiar. For $k>0$ the general solution of equation (4.2) is

$$
\eta(\xi)=A \cos k \xi+B \sin k \xi+C e^{-k \xi}+D e^{k \xi}
$$

substitute this equation into the (C-C) boundary conditions in (4.1), yielding

$$
\left[\begin{array}{cccc}
1 & 0 & 1 & e^{-k} \\
0 & k & -k & k e^{-k} \\
\cos k & \sin k & e^{-k} & 1 \\
-k \sin k & k \cos k & -k e^{-k} & k
\end{array}\right]\left[\begin{array}{c}
A \\
B \\
C \\
D
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

In order to have a non-trivial solution, $k$ satisfies the transcendental equation determined by the zero determinant condition

$$
\left|\begin{array}{cccc}
1 & 0 & 1 & e^{-k}  \tag{4.3}\\
0 & k & -k & k e^{-k} \\
\cos k & \sin k & e^{-k} & e^{k} \\
-k \sin k & k \cos k & -k e^{-k} & k e^{k}
\end{array}\right|=0
$$

or

$$
-2 k^{2} \cos k+4 k^{2} e^{-k}-2 k^{2} \cos k e^{-2 k}=0
$$

Hence, we need to find roots of the equation

$$
\begin{equation*}
-\cos k+2 e^{-k}-\cos k e^{-2 k}=0 \tag{4.4}
\end{equation*}
$$

An expression of $k$ from equation (4.4) is not possible, an asymptotic approach to estimate the solution by means of the WPM is shown below..

Let us write the solution $\eta(\xi)$ in the form

$$
\eta(\xi)=A \cos k \xi+B \sin k \xi+C e^{-k \xi}+D e^{k(\xi-1)}
$$

Observe that for $k$ large, the third term $e^{-k \xi}$ is negligible for $\xi=1$, whereas the same is true for the fourth term $e^{-k(\xi-1)}$ if $\xi=0$. Hence the
function $\eta(\xi)$ behaves like $A \cos k \xi+B \sin k \xi+C e^{-k \xi}$ for $\xi$ near zero, and like $A \cos k \xi+B \sin k \xi+D e^{-k(\xi-1)}$ for $\xi$ near one. This suggests to disregard the terms involving $e^{-k}$ in the determinant equation (4.3). Thus we have

$$
\left|\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & k & -k & 0 \\
\cos k & \sin k & 0 & e^{k} \\
-k \sin k & k \cos k & 0 & k e^{k}
\end{array}\right|=0
$$

After some simplification, we are led to solve for $k$ the equation

$$
\cos k=0
$$

Consecuently, the eigenvalue problem

$$
\begin{array}{cc}
\eta^{(4)}(\xi)-k^{4} \eta(\xi)=0, & 0<\xi<1, \\
\eta(0)=\eta^{\prime}(0)=\eta(1)=\eta^{\prime}(1)=0 &
\end{array}
$$

has non-trivial solution $\eta$ when

$$
\phi^{2} \approx k^{4}=\left[(2 n+1) \frac{\pi}{2}\right]^{4}, \quad n=1,2, \ldots
$$

or

$$
\phi \approx k^{2}=\left[(2 n+1) \frac{\pi}{2}\right]^{2}, \quad n=1,2, \ldots
$$

As we can see from Table 3.1, the adimensional frequencies in this expression gives good estimates except for a few of the smallest eigenvalues.

| Frec. | 1-D FEM | WPM |
| ---: | ---: | ---: |
| 1 | 22.37329 | 22.20660 |
| 2 | 61.67282 | 61.68503 |
| 3 | 120.90339 | 120.90265 |
| 4 | 199.85946 | 199.85949 |
| 5 | 298.55557 | 298.55553 |
| 6 | 416.99089 | 416.99079 |
| 7 | 555.16548 | 555.16525 |
| 8 | 713.07941 | 713.07892 |
| 9 | 890.73277 | 890.73180 |
| 10 | 1088.12565 | 1088.12389 |

Table 3.1

Remark. The same conclusion holds for other boundary conditions, that is, the WPM gives good estimates for all but a few low order eigenfrecuencies.

### 4.2 High accuracy of eigenfrecuencies by the WPM and bracketing

Instead of the perturbation approach in Chen \& Coleman [2], we improve the aproximation of the eigenvalues by applying a simple iterative method. We illustrate the technique with the Euler-Bernoulli equation in the C-C case.

Substituting the C-C boundary conditions for

$$
\eta(\xi)=A \cos k \xi+B \sin k \xi+C e^{-k \xi}+D e^{k(\xi-1)}
$$

we obtain

$$
\left[\begin{array}{cccc}
1 & 0 & 1 & e^{-k} \\
0 & k & -k & k e^{-k} \\
\cos k & \sin k & e^{-k} & 1 \\
-k \sin k & k \cos k & -k e^{-k} & k
\end{array}\right]\left[\begin{array}{c}
A \\
B \\
C \\
D
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Let

$$
f_{d}(k)=\operatorname{det}\left[\begin{array}{cccc}
1 & 0 & 1 & e^{-k} \\
0 & k & -k & k e^{-k} \\
\cos k & \sin k & e^{-k} & 1 \\
-k \sin k & k \cos k & -k e^{-k} & k
\end{array}\right]
$$

thus

$$
f_{d}(k)=k^{2} \operatorname{det}\left[\begin{array}{cccc}
1 & 0 & 1 & e^{-k} \\
0 & 1 & -1 & e^{-k} \\
\cos k & \sin k & e^{-k} & 1 \\
-\sin k & \cos k & -e^{-k} & 1
\end{array}\right]
$$

or

$$
\begin{equation*}
f_{d}(k)=-2 k^{2}\left[\left(1+e^{-2 k}\right) \cos k-2 e^{-k}\right] \tag{4.5}
\end{equation*}
$$

$>$ From (4.5) it suffices to find zeros of the function

$$
\begin{equation*}
f(k)=\left(1+e^{-2 k}\right) \cos k-2 e^{-k} \tag{4.6}
\end{equation*}
$$

It is readily seen that in the intervals

$$
\begin{equation*}
n \pi \leq k \leq(n+1) \pi \quad n=1,2, \ldots \tag{4.7}
\end{equation*}
$$

$f(k)$ is strictly monotone and $f(n \pi) f((n+1) \pi)<0$, hence, there is only one root of $f(k)$ in such intervals.

Recall that $\phi=k^{2}$ hence $\phi$ is monotone on $k$. Thus, the interval (4.7) provides asymptotic estimates for the eigenfrecuency

$$
n^{2} \pi^{2} \leq \phi \leq(n+1)^{2} \pi^{2} \quad n=1,2, \ldots
$$

In this case improving these estimates is a trivial matter.
The roots of function (4.6) can be found by bisection to any desired accuracy. See the results in Table 3.2 for the adimensional natural frecuencies.

| Frec. | 1-D FEM | WPMB |
| ---: | ---: | ---: |
| 1 | 22.37329 | 22.37329 |
| 2 | 61.67282 | 61.67282 |
| 3 | 120.90339 | 120.90339 |
| 4 | 199.85946 | 199.85945 |
| 5 | 298.55557 | 298.55554 |
| 6 | 416.99089 | 416.99079 |
| 7 | 555.16548 | 555.16525 |
| 8 | 713.07941 | 713.07892 |
| 9 | 890.73277 | 890.73180 |
| 10 | 1088.12565 | 1088.12389 |

Table 3.2
Remark. By considering the full determinat function, the WPMB is more accurate than 1-D FEM. Starting on the fourth eigenfrecuency, there is a slight difference on the estimates for the eigenfrecuencies. This is due to the accumulation of error when solving the generalized eigenvalue problem arising from FEM.

## Chapter 5

## Eigenfrecuencies of Elastic Beams by WPM and Bracketing

In this chapter we use WPM to estimate the intervals to initiate the iterative search of eigenfrecuencies for all beams and configurations of interest.

In what follows we denote by $f_{d}$ the full determinant function of the beam in consideration, and by $f$ the function for root finding.

For each beam and configuration we list the matrix of the corresponding homogeneous system, $f_{d}, f$, and the intervals enclosing the eigenfrecuencies.

Computations are straightforward, when necessary we provide additional details.

### 5.1 The Euler-Bernoulli Equation

### 5.1.1 The (C-C) case

$>$ From the previous chapter we have

$$
f_{d}(k)=f(k)=\left(1+e^{-2 k}\right) \cos k-2 e^{-k}
$$

and

$$
n \pi \leq k \leq(n+1) \pi \quad n=1,2, \ldots
$$

### 5.1.2 The (C-S) case

$$
\begin{gathered}
{\left[\begin{array}{cccc}
1 & 0 & 1 & e^{-k} \\
0 & k & -k & k e^{-k} \\
\cos k & \sin k & e^{-k} & 1 \\
-k^{2} \cos k & -k^{2} \sin k x & k^{2} e^{-k} & k^{2}
\end{array}\right]} \\
f_{d}(k)=2 k^{3}\left[-\left(1-e^{-2 k}\right) \cos k+\left(1+e^{-2 k}\right) \sin k\right] \\
f(k)=-\left(1-e^{-2 k}\right) \cos k+\left(1+e^{-2 k}\right) \sin k \\
n \pi<k<\left(\frac{1}{2}+n\right) \pi, \quad n=1,2, \ldots
\end{gathered}
$$

### 5.1.3 The (C-R) case

$$
\begin{gathered}
{\left[\begin{array}{cccc}
1 & 0 & 1 & e^{-k} \\
0 & k & -k & k e^{-k} \\
-k \sin k & k \cos k & -k e^{-k} & k \\
k^{3} \sin k & -k^{3} \cos k & -k^{3} e^{-k} & k^{3}
\end{array}\right]} \\
f_{d}(k)=2 k^{5}\left[\left(1-e^{-2 k}\right) \cos k+\left(1+e^{-2 k}\right) \sin k\right] \\
f(k)=\left(1-e^{-2 k}\right) \cos k+\left(1+e^{-2 k}\right) \sin k \\
\left(\frac{1}{2}+n\right) \pi<k<(1+n) \pi, \quad n=1,2, \ldots
\end{gathered}
$$

### 5.1.4 The (C-F) case

$$
\begin{gathered}
{\left[\begin{array}{cccc}
1 & 0 & 1 & e^{-k} \\
0 & k & -k & k e^{-k} \\
-k^{2} \cos k & -k^{2} \sin k & k^{2} e^{-k} & k^{2} \\
k^{3} \sin k & -k^{3} \cos k & -k^{3} e^{-k} & k^{3}
\end{array}\right]} \\
f_{d}(k)=2 k^{6}\left[\left(1+e^{-2 k}\right) \cos k+2 e^{-k}\right] \\
f(k)=\left(1+e^{-2 k}\right) \cos k+2 e^{-k} \\
n \pi \leq k \leq(n+1) \pi \\
n=0,1,2, \ldots
\end{gathered}
$$

### 5.2 Quasi-Timoshenko Equations

Let recall the Timosehnko equation

$$
\frac{d^{4} \eta}{d \xi^{4}}+\phi^{2}(\alpha+\beta) \frac{d^{2} \eta}{d \xi^{2}}-\phi^{2}\left(1-\phi^{2} \alpha \beta\right) \eta=0
$$

The quasi-Timoshenko equations are

$$
\begin{aligned}
& \frac{d^{4} \eta}{d \xi^{4}}+\phi^{2} \beta \frac{d^{2} \eta}{d \xi^{2}}-\phi^{2} \eta=0 \\
& \frac{d^{4} \eta}{d \xi^{4}}+\phi^{2} \alpha \frac{d^{2} \eta}{d \xi^{2}}-\phi^{2} \eta=0
\end{aligned}
$$

Both models have the form

$$
\frac{d^{4} \eta}{d \xi^{4}}+\gamma \phi^{2} \frac{d^{2} \eta}{d \xi^{2}}-\phi^{2} \eta=0
$$

The characteristic polynomial is

$$
P(r)=r^{4}+\gamma \phi^{2} r^{2}-\phi^{2}
$$

It has the four roots

$$
\begin{aligned}
& r_{1}=-r_{2}=-i \lambda \\
& r_{3}=-r_{4}=-\mu
\end{aligned}
$$

Where

$$
\begin{align*}
\lambda & =\sqrt{\frac{1}{2} \gamma \phi^{2}+\frac{1}{2} \sqrt{\left(\gamma^{2} \phi^{4}+4 \phi^{2}\right)}}  \tag{5.1}\\
\mu & =\sqrt{-\frac{1}{2} \gamma \phi^{2}+\frac{1}{2} \sqrt{\left(\gamma^{2} \phi^{4}+4 \phi^{2}\right)}} \tag{5.2}
\end{align*}
$$

For later reference we see that

$$
\begin{aligned}
& \lambda^{2}-\mu^{2}=\gamma \phi^{2} \\
& \mu \lambda=\phi
\end{aligned}
$$

Intervals for the eigenfrecuencies will be given in terms of $\lambda$. Let us deduce some properties of $\lambda$ and $\mu$ as functions of $\phi$.
$>$ From (5.1) it is readily seen that $\lambda^{\prime}(\phi)>0$, hence $\lambda$ is strictly increasing and unbounded. It can be inverted to obtain

$$
\begin{equation*}
\phi^{2}=\frac{\lambda^{4}}{1+\gamma \lambda^{2}} \tag{5.3}
\end{equation*}
$$

Consequently, when finding an interval for $\lambda$, a corresponding interval for $\phi$ is derived from (5.3).

For $\mu$ we ca write

$$
\mu^{2}=\frac{2}{\gamma+\sqrt{\gamma^{2}+\frac{4}{\phi}}}
$$

We see that $\mu$ is also strictly increasing with respect to $\phi$. Moreover,

$$
\begin{equation*}
\mu \rightarrow \frac{1}{\sqrt{\gamma}}, \quad \text { when } \phi \nearrow \infty \tag{5.4}
\end{equation*}
$$

We have the mode of vibration $\eta(\xi)$

$$
\eta(\xi)=A \cos \lambda \xi+B \sin \lambda \xi+C e^{-\mu \xi}+D e^{\mu(\xi-1)}
$$

Because of (5.4), the term $e^{-\mu}$ does not tend to zero with $\phi$, unlike the corresponding term for the Euler-Bernoulli beam. Nevertheless, for actual beams, $\gamma$ is small, thus $e^{-\mu}$ is small and decreases to $e^{-1 / \sqrt{\gamma}}$. Thanks to these properties, we will be able to consider $e^{-\mu}$ negligible.

### 5.3 The B + R Equation

Here we study the equation

$$
\frac{d^{4} \eta}{d \xi^{4}}+\phi^{2} \beta \frac{d^{2} \eta}{d \xi^{2}}-\phi^{2} \eta=0
$$

The corresponding boundary conditions are
A. Displacement zero: $\quad \eta=0$
B. Total slope zero:

$$
\frac{d \eta}{d \xi}=0
$$

C. Slope due to bending only zero: $\frac{d \eta}{d \xi}=0$
D. Moment zero:

$$
\frac{d^{2} \eta}{d \xi^{2}}=0
$$

E. Shear zero:

$$
\frac{d^{3} \eta}{d \xi^{3}}+\phi^{2} \beta \frac{d \eta}{d \xi}=0
$$

### 5.3.1 The C-C case

$$
\left[\begin{array}{cccc}
1 & 0 & 1 & e^{-\mu} \\
0 & \lambda & -\mu & \mu e^{-\mu} \\
\cos \lambda & \sin \lambda & e^{-\mu} & 1 \\
-\lambda \sin \lambda & \lambda \cos \lambda & -\mu e^{-\mu} & \mu
\end{array}\right]
$$

$$
\begin{gathered}
f_{d}=\phi\left[-\gamma \phi\left(1-e^{-2 \mu}\right) \sin \lambda-2\left(1+e^{-2 \mu}\right) \cos \lambda+4 e^{-\mu}\right] \\
f(\lambda)=\phi \gamma\left(1-e^{-2 \mu}\right) \sin \lambda+2\left(1+e^{-2 \mu}\right) \cos \lambda-4 e^{-\mu} \\
\left(\frac{1}{2}+n\right) \pi<\lambda<(1+n) \pi, \quad n=1,2,3, \ldots
\end{gathered}
$$

### 5.3.2 The (C-S) case

$$
\left[\begin{array}{cccc}
1 & 0 & 1 & e^{-\mu} \\
0 & \lambda & -\mu & \mu e^{-\mu} \\
\cos \lambda & \sin \lambda & e^{-\mu} & 1 \\
-\lambda^{2} \cos \lambda & -\lambda^{2} \sin \lambda & \mu^{2} e^{-\mu} & \mu^{2}
\end{array}\right]
$$

$$
\begin{gathered}
f_{d}(\lambda)=\left(\mu^{2}+\lambda^{2}\right)\left[\left(1+e^{-2 \mu}\right) \mu \sin \lambda-\left(1-e^{-2 \mu}\right) \lambda \cos \lambda\right] \\
f(\lambda)=\left(1+e^{-2 \mu}\right) \mu \sin \lambda-\left(1-e^{-2 \mu}\right) \lambda \cos \lambda \\
n \pi<\lambda<\left(\frac{1}{2}+n\right) \pi, \quad n=1,2,3, \ldots
\end{gathered}
$$

### 5.3.3 The (C-R) case

$$
\begin{gathered}
\left.\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & \lambda & -\mu \\
-\lambda \sin \lambda & \lambda \cos \lambda & -\mu e^{-\mu}
\end{array}\right] \begin{array}{c}
e^{-\mu} \\
\lambda^{3} \sin \lambda-\phi^{2} \beta \lambda \sin \lambda \\
f_{d}(\lambda)=\lambda \mu\left(\mu^{2}+\lambda^{2}\right)\left(\mu \cos \lambda+\phi^{2} \beta \lambda \cos \lambda\right. \\
\left.\cos ^{2}\left(1-e^{-2 \mu}\right)+\lambda \sin \lambda\left(1+e^{-2 \mu}\right)\right) \\
f(\lambda)=\left(\mu \cos \lambda\left(1-e^{-2 \mu}\right)+\lambda \sin \lambda\left(1+e^{-2 \mu}\right)\right) \\
\left(\frac{1}{2}+n\right) \pi<\lambda<(1+n) \pi,
\end{array}\right]=0,1,2, \ldots
\end{gathered}
$$

### 5.3.4 The C-F case

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 0 & 1 & e^{-\mu} \\
0 & \lambda & -\mu & \mu e^{-\mu} \\
-\lambda^{2} \cos \lambda & -\lambda^{2} \sin \lambda & \mu^{2} e^{-\mu} & \mu^{2} \\
\lambda^{3} \sin \lambda-\phi^{2} \beta \lambda \sin \lambda & -\lambda^{3} \cos \lambda+\phi^{2} \beta \lambda \cos \lambda & -\mu^{3} e^{-\mu}-\phi^{2} \beta \mu e^{-\mu} & \mu^{3}+\phi^{2} \beta \mu
\end{array}\right]} \\
& f_{d}(\lambda)=\mu \lambda\left[\left(\mu^{4}+\lambda^{4}\right)\left(1+e^{2(-\mu)}\right) \cos \lambda-\lambda \mu\left(\lambda^{2}-\mu^{2}\right)\left(1-e^{2(-\mu)}\right) \sin \lambda+4 \lambda^{2} \mu^{2} e^{-\mu}\right]
\end{aligned}
$$

but from (5.1) and (5.2)

$$
\begin{gathered}
f_{d}(\lambda)=\mu \lambda \phi^{2}\left[\left(2+\beta \phi^{2}\right)\left(1+e^{2(-\mu)}\right) \cos \lambda-\phi \beta\left(1-e^{2(-\mu)}\right) \sin \lambda+4 e^{-\mu}\right] \\
f(\lambda)=\left(2+\beta \phi^{2}\right)\left(1+e^{2(-\mu)}\right) \cos \lambda-\phi \beta\left(1-e^{2(-\mu)}\right) \sin \lambda+4 e^{-\mu} \\
\frac{\pi}{2}<\lambda<\pi \\
n \pi<\lambda<\left(\frac{1}{2}+n\right) \pi \quad n=1,2,3, \ldots
\end{gathered}
$$

### 5.4 The $B+S$ equation

$$
\begin{gathered}
\beta=0 \\
\frac{d^{4} \eta}{d \xi^{4}}+\phi^{2} \alpha \frac{d^{2} \eta}{d \xi^{2}}-\phi^{2} \eta=0
\end{gathered}
$$

Boundary conditions
A. Displacement zero:

$$
\eta=0
$$

B. Total slope zero:

$$
\frac{d \eta}{d \xi}=0
$$

C. Slope due to bending only zero: $\alpha \frac{d^{3} \eta}{d \xi^{3}}+\left(1+\phi^{2} \alpha^{2}\right) \frac{d \eta}{d \xi}=0$
D. Moment zero:

$$
\frac{d^{2} \eta}{d \xi^{2}}+\phi^{2} \alpha \eta=0
$$

E. Shear zero:

$$
\frac{d^{3} \eta}{d \xi^{3}}+\phi^{2} \alpha \frac{d \eta}{d \xi}=0
$$

### 5.4.1 The (C-C) case

$$
\begin{gathered}
{\left[\begin{array}{cccc}
1 & 0 & 1 & e^{-\mu} \\
0 & \lambda & -\mu & \mu e^{-\mu} \\
\cos \lambda & \sin \lambda & e^{-\mu} & 1 \\
-\lambda \sin \lambda & \lambda \cos \lambda & -\mu e^{-\mu} & \mu
\end{array}\right]} \\
f_{d}=\phi\left[-\gamma \phi\left(1-e^{-2 \mu}\right) \sin \lambda-2\left(1+e^{-2 \mu}\right) \cos \lambda+4 e^{-\mu}\right] \\
f(\lambda)=\phi \gamma\left(1-e^{-2 \mu}\right) \sin \lambda+2\left(1+e^{-2 \mu}\right) \cos \lambda-4 e^{-\mu} \\
\left(\frac{1}{2}+n\right) \pi<\lambda<(1+n) \pi, \quad n=1,2,3, \ldots
\end{gathered}
$$

### 5.4.2 The (C-S) case

$$
\left[\begin{array}{cccc}
1 & 0 & 1 & e^{-\mu} \\
0 & \lambda & -\mu & \mu e^{-\mu} \\
\cos \lambda & \sin \lambda & e^{-\mu} & 1 \\
\left(-\lambda^{2}+\phi^{2} \alpha\right) \cos \lambda & \left(-\lambda^{2}+\phi^{2} \alpha\right) \sin \lambda & \left(\mu^{2}+\phi^{2} \alpha\right) e^{-\mu} & \mu^{2}+\phi^{2} \alpha
\end{array}\right]
$$

$$
\begin{gathered}
f_{d}(\lambda)=\left(\lambda^{2}+\mu^{2}\right)\left[\left(1+e^{-2 \mu}\right) \mu \sin \lambda-\left(1-e^{-2 \mu}\right) \lambda \cos \lambda\right] \\
f(\lambda)=\left(1+e^{-2 \mu}\right) \mu \sin \lambda-\left(1-e^{-2 \mu}\right) \lambda \cos \lambda \\
n \pi<\lambda<\left(\frac{1}{2}+n\right) \pi, \quad n=1,2,3, \ldots
\end{gathered}
$$

### 5.4.3 The (C-R) case

### 5.4.4 The (C-F) case

$$
\left[\begin{array}{cccc}
1 & 0 & 1 & e^{-\mu} \\
0 & \lambda & -\mu & \mu e^{-\mu} \\
\left(-\lambda^{2}+\phi^{2} \alpha\right) \cos \lambda & \left(-\lambda^{2}+\phi^{2} \alpha\right) \sin \lambda & \left(\mu^{2}+\phi^{2} \alpha\right) e^{-\mu} & \mu^{2}+\phi^{2} \alpha \\
\left(\lambda^{2}-\phi^{2} \alpha\right) \lambda \sin \lambda & -\left(\lambda^{2}-\phi^{2} \alpha\right) \lambda \cos \lambda & -\left(\mu^{2}+\phi^{2} \alpha\right) \mu e^{-\mu} & \left(\mu^{2}+\phi^{2} \alpha\right) \mu
\end{array}\right]
$$

$$
f_{d}(\lambda)=\mu \lambda\left[\left(\lambda^{2}-\mu^{2}\right)\left(1-e^{2(-\mu)}\right) \mu(\sin \lambda) \lambda+\left(1+e^{-2 \mu}\right) 2 \mu^{2}(\cos \lambda) \lambda^{2}+2\left(\lambda^{4}+\mu^{4}\right) e^{-\mu}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 0 & 1 & e^{-\mu} \\
0 & \lambda & -\mu & \mu e^{-\mu} \\
-\lambda \sin \lambda & \lambda \cos \lambda & -\mu e^{-\mu} & \mu \\
\lambda^{3} \sin \lambda-\phi^{2} \alpha \lambda \sin \lambda & -\lambda^{3} \cos \lambda+\phi^{2} \alpha \lambda \cos \lambda & -\mu^{3} e^{-\mu}-\phi^{2} \alpha \mu e^{-\mu} & \mu^{3}+\phi^{2} \alpha \mu
\end{array}\right]} \\
& f_{d}(\lambda)=\lambda \mu\left(\mu^{2}+\lambda^{2}\right)\left(\mu \cos \lambda\left(1-e^{-2 \mu}\right)+\lambda \sin \lambda\left(1+e^{-2 \mu}\right)\right) \\
& f(\lambda)=\mu \cos \lambda\left(1-e^{-2 \mu}\right)+\lambda \sin \lambda\left(1+e^{-2 \mu}\right) \\
& \left(\frac{1}{2}+n\right) \pi<\lambda<(1+n) \pi, \quad n=0,1,2,3, \ldots
\end{aligned}
$$

again from (5.1) and (5.2)
$f_{d}(\lambda)=\phi\left[\alpha \phi^{3}\left(1-e^{2(-\mu)}\right)(\sin \lambda)+\left(1+e^{-2 \mu}\right) 2 \phi^{2}(\cos \lambda)+2 \phi^{2}\left(\phi^{2} \alpha^{2}+2\right) e^{-\mu}\right]$
thus

$$
\begin{gathered}
f_{d}(\lambda)=\phi^{3}\left[\alpha \phi\left(1-e^{2(-\mu)}\right)(\sin \lambda)+\left(1+e^{-2 \mu}\right) 2(\cos \lambda)+2\left(\phi^{2} \alpha^{2}+2\right) e^{-\mu}\right] \\
f(\lambda)=\alpha \phi\left(1-e^{2(-\mu)}\right)(\sin \lambda)+\left(1+e^{-2 \mu}\right) 2(\cos \lambda)+2\left(\phi^{2} \alpha^{2}+2\right) e^{-\mu}
\end{gathered}
$$

In this case we write

$$
\begin{gathered}
f(\lambda)=\alpha \frac{\lambda^{2}}{\sqrt{1+\alpha \lambda^{2}}}\left(1-e^{2(-\mu)}\right)(\sin \lambda)+\left(1+e^{-2 \mu}\right) 2(\cos \lambda)+2 \frac{\left(1+\alpha \lambda^{2}\right)^{2}+1}{1+\alpha \lambda^{2}} e^{-\mu} \\
\left(\frac{1}{2}+n\right) \pi<\lambda<(1+n) \pi, \quad n=0,1,2,3, \ldots
\end{gathered}
$$

## Chapter 6

## Concluding Comments

In Chapter 2 we described 1-D models for the elastic beam equations. It is readily seen that when shear is neglected, the models arising from Timoshenko equation and Timoshenko system are identical. Thus, we have a 1-D model for the elastic beam incorporating bending and/or rotary inertia. When shear is the main effect to be consider we obtain different models. A comparative study is wanted. Of particular interest is to compare the Timoshenko system against the two Timoshenko equations for displacement and rotation angle.

One of the problems left to study in Chapter 3, is the eigenvalue problem for the Timoshenko equation

$$
\frac{d^{4} \eta}{d \xi^{4}}+\phi^{2}(\alpha+\beta) \frac{d^{2} \eta}{d \xi^{2}}-\phi^{2}\left(1-\phi^{2} \alpha \beta\right) \eta=0
$$

By denoting $\lambda=\phi^{2}$. We obtain a quadratic eigenvalue problem.

$$
\frac{d^{4} \eta}{d \xi^{4}}+\lambda(\alpha+\beta) \frac{d^{2} \eta}{d \xi^{2}}-\lambda(1-\lambda \alpha \beta) \eta=0
$$

By using FEM it can be reduced to a linear generalized eigenvalue problem. The matrices in this problem are unstructured, and due to the change of variable, spurious eigenvalues are found. An algorithm to deal with this problem is part of our current work.

We have introduced an asymptotic method in Chapter 4 and applied it succesfully to the quasi-Timoshenko equations in Chapter 5. The method is simple, higly accurate and allows to compute frequencies of any order at
virtually no cost. An extension to the Timoshenko equation and Timoshenko system is part of our ongoing research. Also, by refining the asymptotic estimates for the eigenfrecuencies, we may have a tool to deal with inverse eigenvalue problem, for instance, in applications is common to have measurments of eigenfrecuencies and modes of vibration. The problem of interest is to characterize the material, that is a problem of parameter identification.

Finally in the Appendix we have considered some common beam specimens. Our purpose is to provide to the reader a tool for making a decision on model choice and beam design, as well as computation of eigenfrecuencies.

To decide over the modelling virtues of the different 1-D models, the numerical data collected in the Appendix, can be used as a basis for a statistical study.

## Chapter 7

## A ppendix

Here we list computations of eigenfrecuencies by 3-D FEM, 1-D FEM and the method developed refered to as the aymptotic method.

In each section a beam is presented with realistic parameters. All tables present normalized frecuencies. To find the actual freecuencies recall that

$$
\phi^{2}=\left(\rho \omega^{2} L^{4}\right) / E I
$$

Thus the true eigenfrecuency is

$$
\omega=\left(\frac{1}{L^{2}} \sqrt{\frac{E I}{\rho}}\right) \phi
$$

For the parameters $\alpha$ and $\beta$ in the quasi-Timoshenko equations, recall that

$$
\begin{gathered}
\alpha=E I /\left(K L^{2}\right) \\
\beta=I_{\rho} /\left(\rho L^{2}\right)
\end{gathered}
$$

In the description of the beam especimens $\rho$ is denoted by $D, I_{\rho}=\frac{I}{A}$, and $K=G A$. All the frecuencies are adimensional in this appendix.

### 7.1 Circular Beam

### 7.1.1 Aluminium



$$
\begin{aligned}
& E=714,000 \mathrm{kgficm}^{2} \\
& G=268,421.05{\mathrm{kgf} / \mathrm{cm}^{2}}^{I}=19,174.76 \mathrm{~cm}^{4} \\
& \mathrm{~A}=490.87 \mathrm{~cm}^{2} \\
& \mathrm{~L}=300 \mathrm{~cm} \\
& \mathrm{~W}=0.00271 \mathrm{~kg} / \mathrm{cm}^{3} \\
& \mathrm{~F}=\frac{\left(\mathrm{E} /(\mathrm{D})^{1 / 2}\right.}{\mathrm{L}^{2}} \\
& \mathrm{D}=\mathrm{WA} / \mathrm{g}
\end{aligned}
$$

Figure 6.1. Physical parameters for a circular aluminium beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 23.70021 | 16.53463 | 6.06864 | 3.83491 |
| 2 | 62.48760 | 51.71088 | 31.86995 | 23.42552 |
| 3 | 116.12042 | 102.90060 | 75.48156 | 63.14110 |
| 4 | 180.70652 | 166.29476 | 133.20936 | 117.69465 |
| 5 | 253.49447 | 240.08138 | 201.72040 | 183.69004 |
| 6 | 332.53738 | 318.45294 | 277.82712 | 258.12165 |
| 7 | 415.75745 | 402.86608 | 360.31236 | 339.06384 |
| 8 | 502.23367 | 490.24914 | 445.94407 | 423.96752 |
| 9 | 590.32520 | 579.69527 | 535.42138 | 512.36483 |
| 10 | 681.74655 | 672.89914 | 634.85981 | 602.21338 |

Table 6.1. Eigenfrecuencies by 3-D FEM for a circular aluminium beam.

Eigenfrecuencies by A symptotic $M$ ethod

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.37329 | 15.41821 | 5.59332 | 3.51602 |
| 2 | 61.67282 | 49.96486 | 30.22585 | 22.03449 |
| 3 | 120.90339 | 104.24770 | 74.63888 | 61.69721 |
| 4 | 199.85945 | 178.26973 | 138.79131 | 120.90192 |
| 5 | 298.55554 | 272.03097 | 222.68295 | 199.85953 |
| 6 | 416.99079 | 385.53142 | 326.31380 | 298.55553 |
| 7 | 555.16525 | 518.77108 | 449.68385 | 416.99079 |
| 8 | 713.07892 | 671.74995 | 592.79311 | 555.16525 |
| 9 | 890.73180 | 844.46803 | 755.64159 | 713.07892 |
| 10 | 1088.12389 | 1036.92531 | 938.22927 | 890.73180 |

Table 6.2. Euler-Bernoulli by Asymptotic Method for a circular aluminium beam..

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.31378 | 15.37983 | 5.58959 | 3.51247 |
| 2 | 61.06537 | 49.50610 | 30.06494 | 21.88103 |
| 3 | 118.38843 | 102.18314 | 73.59222 | 60.68754 |
| 4 | 192.80737 | 172.21256 | 135.11685 | 117.31834 |
| 5 | 282.79060 | 258.09414 | 213.27423 | 190.64546 |
| 6 | 386.61971 | 358.14051 | 306.45644 | 279.07134 |
| 7 | 502.51553 | 470.58588 | 412.92404 | 380.89126 |
| 8 | 628.72830 | 593.67982 | 530.90845 | 494.37512 |
| 9 | 763.60697 | 725.75952 | 658.69546 | 617.84930 |
| 10 | 905.64495 | 865.29884 | 794.68588 | 749.75362 |

Table 6.3. $\mathrm{B}+\mathrm{R}$ by Asymptotic Method for a circular aluminium beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.21602 | 15.31673 | 5.58342 | 3.51776 |
| 2 | 60.09463 | 48.77160 | 29.80339 | 21.86698 |
| 3 | 114.53741 | 99.01098 | 71.94778 | 60.12380 |
| 4 | 182.58435 | 163.39166 | 129.61276 | 114.53490 |
| 5 | 261.36271 | 239.04633 | 199.98635 | 182.58461 |
| 6 | 348.18576 | 323.26106 | 280.24018 | 261.36267 |
| 7 | 440.77501 | 413.69751 | 367.83005 | 348.18576 |
| 8 | 537.32000 | 508.47393 | 460.64297 | 440.77501 |
| 9 | 636.45133 | 606.15066 | 557.02402 | 537.32000 |
| 10 | 737.17129 | 705.66757 | 655.73264 | 636.45133 |

Table 6.4. $\mathrm{B}+\mathrm{S}$ by Asymptotic Method for a circular aluminium beam.
Eigenfrecuencies by 1-D FEM

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.37329 | 15.41821 | 5.59332 | 3.51602 |
| 2 | 61.67282 | 49.96486 | 30.22585 | 22.03449 |
| 3 | 120.90339 | 104.24770 | 74.63888 | 61.69721 |
| 4 | 199.85946 | 178.26974 | 138.79132 | 120.90192 |
| 5 | 298.55557 | 272.03100 | 222.68296 | 199.85954 |
| 6 | 416.99089 | 385.53150 | 326.31384 | 298.55557 |
| 7 | 555.16548 | 518.77127 | 449.68398 | 416.99089 |
| 8 | 713.07941 | 671.75037 | 592.79340 | 555.16548 |
| 9 | 890.73277 | 844.46885 | 755.64218 | 713.07941 |
| 10 | 1088.12565 | 1036.92684 | 938.23040 | 890.73277 |

Table 6.5. Euler-Bernoulli by 1-D FEM for a circular aluminium beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.31378 | 15.37983 | 5.58959 | 3.51247 |
| 2 | 61.06537 | 49.50610 | 30.06494 | 21.88103 |
| 3 | 118.38843 | 102.18313 | 73.59221 | 60.68753 |
| 4 | 192.80736 | 172.21256 | 135.11685 | 117.31833 |
| 5 | 282.79059 | 258.09413 | 213.27422 | 190.64545 |
| 6 | 386.61972 | 358.14051 | 306.45643 | 279.07133 |
| 7 | 502.51561 | 470.58594 | 412.92407 | 380.89127 |
| 8 | 628.72854 | 593.68001 | 530.90856 | 494.37518 |
| 9 | 763.60752 | 725.75996 | 658.69575 | 617.84951 |
| 10 | 905.64604 | 865.29976 | 794.68653 | 749.75411 |

Table 6.6. B + R by 1-D FEM for a circular aluminium beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.21601 | 15.31673 | 5.58342 | 3.51775 |
| 2 | 60.09459 | 48.77157 | 29.80338 | 21.86698 |
| 3 | 114.53727 | 99.01087 | 71.94772 | 60.12376 |
| 4 | 182.58402 | 163.39139 | 129.61258 | 114.53476 |
| 5 | 261.36207 | 239.04579 | 199.98595 | 182.58427 |
| 6 | 348.18470 | 323.26013 | 280.23946 | 261.36203 |
| 7 | 440.77347 | 413.69612 | 367.82890 | 348.18471 |
| 8 | 537.31795 | 508.47203 | 460.64132 | 440.77347 |
| 9 | 636.44880 | 606.14827 | 557.02186 | 537.31795 |
| 10 | 737.16840 | 705.66478 | 655.73003 | 636.44879 |

Table 6.7. B+S by 1-D FEM for a circular aluminium beam.

### 7.1.2 Concrete



Figure 6.2. Physical parameters for a circular concrete beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.85432 | 15.95270 | 5.84632 | 3.69113 |
| 2 | 60.58961 | 50.09921 | 30.81372 | 22.61412 |
| 3 | 113.28675 | 100.22634 | 73.32198 | 61.20083 |
| 4 | 177.37539 | 162.88141 | 130.06387 | 114.67296 |
| 5 | 250.23783 | 235.36139 | 198.50061 | 179.93517 |
| 6 | 329.80304 | 314.98859 | 274.22414 | 254.18381 |
| 7 | 414.23738 | 400.32741 | 357.21785 | 335.34284 |
| 8 | 502.20602 | 488.96673 | 444.02350 | 421.22184 |
| 9 | 592.16000 | 580.16735 | 535.05380 | 510.84678 |
| 10 | 685.83876 | 675.52407 | 628.71744 | 602.27817 |

Table 6.8 Eigenfrecuencies by 3-D FEM for a circular concrete beam.

Eigenfrecuencies by Asymptotic $M$ ethod

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.37329 | 15.41821 | 5.59332 | 3.51602 |
| 2 | 61.67282 | 49.96486 | 30.22585 | 22.03449 |
| 3 | 120.90339 | 104.24770 | 74.63888 | 61.69721 |
| 4 | 199.85945 | 178.26973 | 138.79131 | 120.90192 |
| 5 | 298.55554 | 272.03097 | 222.68295 | 199.85953 |
| 6 | 416.99079 | 385.53142 | 326.31380 | 298.55553 |
| 7 | 555.16525 | 518.77108 | 449.68385 | 416.99079 |
| 8 | 713.07892 | 671.74995 | 592.79311 | 555.16525 |
| 9 | 890.73180 | 844.46803 | 755.64159 | 713.07892 |
| 10 | 1088.12389 | 1036.92531 | 938.22927 | 890.73180 |

Table 6.9. Euler-Bernoulli by Asymptotic Method for a circular concrete beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.31378 | 15.37983 | 5.58959 | 3.51247 |
| 2 | 61.06537 | 49.50610 | 30.06494 | 21.88103 |
| 3 | 118.38843 | 102.18314 | 73.59222 | 60.68754 |
| 4 | 192.80737 | 172.21256 | 135.11685 | 117.31834 |
| 5 | 282.79060 | 258.09414 | 213.27423 | 190.64546 |
| 6 | 386.61971 | 358.14051 | 306.45644 | 279.07134 |
| 7 | 502.51553 | 470.58588 | 412.92404 | 380.89126 |
| 8 | 628.72830 | 593.67982 | 530.90845 | 494.37512 |
| 9 | 763.60697 | 725.75952 | 658.69546 | 617.84930 |
| 10 | 905.64495 | 865.29884 | 794.68588 | 749.75362 |

Tabe 6.10 B+R by Asymptotic Method for a circular concrete beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.23124 | 15.32656 | 5.58438 | 3.51759 |
| 2 | 60.24361 | 48.88444 | 29.84388 | 21.88321 |
| 3 | 115.11567 | 99.48816 | 72.19797 | 60.27230 |
| 4 | 184.07804 | 164.68349 | 130.43020 | 115.11328 |
| 5 | 264.39753 | 241.75140 | 201.90340 | 184.07828 |
| 6 | 353.45104 | 328.05357 | 283.90299 | 264.39750 |
| 7 | 448.95086 | 421.25408 | 373.92228 | 353.45105 |
| 8 | 549.02552 | 519.41902 | 469.82047 | 448.95086 |
| 9 | 652.21701 | 621.02564 | 569.87218 | 549.02552 |
| 10 | 757.43107 | 724.91982 | 672.74621 | 652.21701 |

Table 6.11. B+S by Asymptotic Method for a circular concrete beam.
Eigenfrecuencies by 1-D FEM

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.37329 | 15.41821 | 5.59332 | 3.51601 |
| 2 | 61.67282 | 49.96486 | 30.22585 | 22.03449 |
| 3 | 120.90339 | 104.24770 | 74.63888 | 61.69721 |
| 4 | 199.85946 | 178.26974 | 138.79132 | 120.90192 |
| 5 | 298.55557 | 272.03100 | 222.68296 | 199.85954 |
| 6 | 416.99089 | 385.53150 | 326.31384 | 298.55557 |
| 7 | 555.16548 | 518.77127 | 449.68398 | 416.99089 |
| 8 | 713.07941 | 671.75037 | 592.79340 | 555.16548 |
| 9 | 890.73277 | 844.46885 | 755.64218 | 713.07941 |
| 10 | 1088.12565 | 1036.92684 | 938.23040 | 890.73277 |

Table 6.12. Euler-Bernoulli by 1-D FEM for a circular concrete beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.31378 | 15.37983 | 5.58959 | 3.51247 |
| 2 | 61.06537 | 49.50610 | 30.06494 | 21.88103 |
| 3 | 118.38843 | 102.18313 | 73.59221 | 60.68753 |
| 4 | 192.80736 | 172.21256 | 135.11685 | 117.31833 |
| 5 | 282.79059 | 258.09413 | 213.27422 | 190.64545 |
| 6 | 386.61972 | 358.14051 | 306.45643 | 279.07133 |
| 7 | 502.51561 | 470.58594 | 412.92407 | 380.89127 |
| 8 | 628.72854 | 593.68001 | 530.90856 | 494.37518 |
| 9 | 763.60752 | 725.75996 | 658.69575 | 617.84951 |
| 10 | 905.64604 | 865.29976 | 794.68653 | 749.75411 |

Table 6.13 . B + R by 1-D FEM for a circular concrete beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.23124 | 15.32656 | 5.58438 | 3.51759 |
| 2 | 60.24365 | 48.88447 | 29.84390 | 21.88321 |
| 3 | 115.11583 | 99.48828 | 72.19803 | 60.27234 |
| 4 | 184.07844 | 164.68381 | 130.43041 | 115.11344 |
| 5 | 264.39833 | 241.75207 | 201.90388 | 184.07867 |
| 6 | 353.45243 | 328.05478 | 283.90391 | 264.39830 |
| 7 | 448.95306 | 421.25603 | 373.92383 | 353.45244 |
| 8 | 549.02876 | 519.42193 | 469.82288 | 448.95306 |
| 9 | 652.22157 | 621.02977 | 569.87568 | 549.02876 |
| 10 | 757.43724 | 724.92547 | 672.75107 | 652.22157 |

Table 6.14. B+S by 1-D FEM for a circular concrete beam.

### 7.1.3 Steel


$E=2,100,000 \mathrm{kgf} / \mathrm{cm}^{2}$
$\mathbf{G}=807,692.30 \mathrm{kgFicm}^{2}$
$I=19,174.76 \mathrm{~cm}^{4}$
$A=490.87 \mathrm{~cm}^{2}$
$L=300 \mathrm{~cm}$
$\mathrm{W}=0.0078 \mathrm{kgf} / \mathrm{cm}^{3}$
$F={\frac{(E I J D)^{1 / 2}}{L^{2}}}$
$\mathrm{D}=\mathrm{WA} \mathrm{Fg}$

Figure 6.3. Physical parameters for a circular steel beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 23.44496 | 16.36130 | 6.00264 | 3.79230 |
| 2 | 61.90809 | 51.22489 | 31.55397 | 23.18329 |
| 3 | 115.23385 | 102.08028 | 74.82533 | 62.55596 |
| 4 | 179.61958 | 165.22075 | 132.24545 | 116.76871 |
| 5 | 252.35974 | 237.83531 | 200.54081 | 182.50709 |
| 6 | 331.46025 | 317.21056 | 276.59151 | 256.82163 |
| 7 | 414.91473 | 401.78640 | 359.12703 | 337.73987 |
| 8 | 501.68283 | 489.40393 | 444.97842 | 422.81752 |
| 9 | 590.16101 | 579.21372 | 534.76858 | 511.44428 |
| 10 | 682.07615 | 672.86698 | 627.01453 | 601.61010 |

Table 6.15. Eigenfrecuencies by 3d FEM for a circular steel beam.

Eigenfrecuencies by Asymptotic $M$ ethod

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.37329 | 15.41821 | 5.59332 | 3.51602 |
| 2 | 61.67282 | 49.96486 | 30.22585 | 22.03449 |
| 3 | 120.90339 | 104.24770 | 74.63888 | 61.69721 |
| 4 | 199.85945 | 178.26973 | 138.79131 | 120.90192 |
| 5 | 298.55554 | 272.03097 | 222.68295 | 199.85953 |
| 6 | 416.99079 | 385.53142 | 326.31380 | 298.55553 |
| 7 | 555.16525 | 518.77108 | 449.68385 | 416.99079 |
| 8 | 713.07892 | 671.74995 | 592.79311 | 555.16525 |
| 9 | 890.73180 | 844.46803 | 755.64159 | 713.07892 |
| 10 | 1088.12389 | 1036.92531 | 938.22927 | 890.73180 |

Table. 6.16. Euler-Bernoulli by Asymptotic Method for circular steel beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.31378 | 15.37983 | 5.58959 | 3.51247 |
| 2 | 61.06537 | 49.50610 | 30.06494 | 21.88103 |
| 3 | 118.38843 | 102.18314 | 73.59222 | 60.68754 |
| 4 | 192.80737 | 172.21256 | 135.11685 | 117.31834 |
| 5 | 282.79060 | 258.09414 | 213.27423 | 190.64546 |
| 6 | 386.61971 | 358.14051 | 306.45644 | 279.07134 |
| 7 | 502.51553 | 470.58588 | 412.92404 | 380.89126 |
| 8 | 628.72830 | 593.67982 | 530.90845 | 494.37512 |
| 9 | 763.60697 | 725.75952 | 658.69546 | 617.84930 |
| 10 | 905.64495 | 865.29884 | 794.68588 | 749.75362 |

Table 6.17. B + R by Asymptotic Method for a circular steel beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.21952 | 15.31899 | 5.58364 | 3.51772 |
| 2 | 60.12886 | 48.79754 | 29.81270 | 21.87072 |
| 3 | 114.66989 | 99.12034 | 72.00521 | 60.15792 |
| 4 | 182.92536 | 163.68670 | 129.79979 | 114.66741 |
| 5 | 262.05284 | 239.66173 | 200.42334 | 182.92561 |
| 6 | 349.37832 | 324.34698 | 281.07179 | 262.05281 |
| 7 | 442.61957 | 415.40303 | 369.20774 | 349.37832 |
| 8 | 539.95116 | 510.93508 | 462.71042 | 442.61957 |
| 9 | 639.98311 | 609.48407 | 559.90805 | 539.95116 |
| 10 | 741.69588 | 709.96851 | 659.53922 | 639.98311 |

Table 6.18. B+S by Asymptotic Method for a circular steel beam.
Eigenfrecuencies by 1-D FEM

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.37329 | 15.41821 | 5.59332 | 3.51601 |
| 2 | 61.67282 | 49.96486 | 30.22585 | 22.03449 |
| 3 | 120.90339 | 104.24770 | 74.63888 | 61.69721 |
| 4 | 199.85946 | 178.26974 | 138.79132 | 120.90192 |
| 5 | 298.55557 | 272.03100 | 222.68296 | 199.85954 |
| 6 | 416.99089 | 385.53150 | 326.31384 | 298.55557 |
| 7 | 555.16548 | 518.77127 | 449.68398 | 416.99089 |
| 8 | 713.07941 | 671.75037 | 592.79340 | 555.16548 |
| 9 | 890.73277 | 844.46885 | 755.64218 | 713.07941 |
| 10 | 1088.12565 | 1036.92684 | 938.23040 | 890.73277 |

Table 6.19. Euler-Bernoulli by 1-D FEM for a circular steel beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.31378 | 15.37983 | 5.58959 | 3.51247 |
| 2 | 61.06537 | 49.50610 | 30.06494 | 21.88103 |
| 3 | 118.38843 | 102.18313 | 73.59221 | 60.68753 |
| 4 | 192.80736 | 172.21256 | 135.11685 | 117.31833 |
| 5 | 282.79059 | 258.09413 | 213.27422 | 190.64545 |
| 6 | 386.61972 | 358.14051 | 306.45643 | 279.07133 |
| 7 | 502.51561 | 470.58594 | 412.92407 | 380.89127 |
| 8 | 628.72854 | 593.68001 | 530.90856 | 494.37518 |
| 9 | 763.60752 | 725.75996 | 658.69575 | 617.84951 |
| 10 | 905.64604 | 865.29976 | 794.68653 | 749.75411 |

Table 6.20. B+R by 1-D FEM for a circular steel beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.21952 | 15.31899 | 5.58364 | 3.51772 |
| 2 | 60.12889 | 48.79756 | 29.81271 | 21.87072 |
| 3 | 114.67001 | 99.12043 | 72.00525 | 60.15796 |
| 4 | 182.92565 | 163.68694 | 129.79995 | 114.66753 |
| 5 | 262.05344 | 239.66223 | 200.42369 | 182.92591 |
| 6 | 349.37935 | 324.34788 | 281.07247 | 262.05340 |
| 7 | 442.62121 | 415.40448 | 369.20889 | 349.37936 |
| 8 | 539.95359 | 510.93726 | 462.71221 | 442.62120 |
| 9 | 639.98655 | 609.48718 | 559.91066 | 539.95359 |
| 10 | 741.70059 | 709.97280 | 659.54288 | 639.98655 |

Table $6.21 . \mathrm{B}+\mathrm{S}$ by 1-D FEM for a circular steel beam.

### 7.2 Elliptic Beam

### 7.2.1 Aluminium



Figure 6.4. Physical parameters for an elliptic aluminium beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2.11808 | 15.26753 | 5.78698 | 3.70644 |
| 2 | 5.12851 | 44.35290 | 28.41388 | 21.20357 |
| 3 | 88.44664 | 81.82225 | 62.33461 | 53.13915 |
| 4 | 129.55926 | 124.02450 | 102.51982 | 91.93490 |
| 5 | 173.21970 | 168.92491 | 146.22815 | 134.75636 |
| 6 | 218.61038 | 215.46616 | 191.88239 | 179.64530 |
| 7 | 264.46298 | 262.24403 | 238.42647 | 225.59964 |
| 8 | 310.27875 | 272.56087 | 285.62943 | 271.19464 |
| 9 | 344.96293 | 341.03230 | 332.05307 | 314.52054 |
| 10 | 401.64389 | 407.88557 | $\mathbf{3 7 0 . 1 5 3 5 2}$ | 358.20506 |

Table 6.22. Eigenfrecuencies by 3d FEM for an elliptic aluminium beam.

Eigenfrecuencies by A symptotic $M$ ethod

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.37329 | 15.41821 | 5.59332 | 3.51602 |
| 2 | 61.67282 | 49.96486 | 30.22585 | 22.03449 |
| 3 | 120.90339 | 104.24770 | 74.63888 | 61.69721 |
| 4 | 199.85945 | 178.26973 | 138.79131 | 120.90192 |
| 5 | 298.55554 | 272.03097 | 222.68295 | 199.85953 |
| 6 | 416.99079 | 385.53142 | 326.31380 | 298.55553 |
| 7 | 555.16525 | 518.77108 | 449.68385 | 416.99079 |
| 8 | 713.07892 | 671.74995 | 592.79311 | 555.16525 |
| 9 | 890.73180 | 844.46803 | 755.64159 | 713.07892 |
| 10 | 1088.12389 | 1036.92531 | 938.22927 | 890.73180 |

Table 6.23. Euler-Bernoulli by Asymptotic Method for an elliptic aluminium beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.13799 | 15.26634 | 5.57845 | 3.50191 |
| 2 | 59.34318 | 48.20186 | 29.59712 | 21.43851 |
| 3 | 111.68748 | 96.65501 | 70.69769 | 57.93405 |
| 4 | 175.42061 | 157.18228 | 125.62902 | 108.23810 |
| 5 | 247.22255 | 226.41164 | 190.90204 | 169.24305 |
| 6 | 324.34553 | 301.50713 | 263.37673 | 237.92977 |
| 7 | 404.74469 | 380.31554 | 340.55576 | 311.89981 |
| 8 | 486.99844 | 461.31475 | 420.61521 | 389.35472 |
| 9 | 570.16776 | 543.48272 | 502.30087 | 469.00234 |
| 10 | 653.65735 | 626.16007 | 584.78809 | 549.94062 |

Table 6.24. B + R by Asymptotic Method for an elliptic aluminium beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 21.76280 | 15.02366 | 5.55400 | 3.52302 |
| 2 | 55.98862 | 45.64608 | 28.63435 | 21.38266 |
| 3 | 100.15368 | 87.04643 | 65.34067 | 56.03492 |
| 4 | 149.27949 | 134.32998 | 110.19374 | 100.14545 |
| 5 | 200.48204 | 184.29280 | 159.11281 | 149.28174 |
| 6 | 252.23771 | 235.19357 | 209.69357 | 200.48116 |
| 7 | 303.85629 | 286.19261 | 260.71105 | 252.23816 |
| 8 | 355.06154 | 336.92688 | 311.60457 | 303.85601 |
| 9 | 405.77508 | 387.26560 | 362.14876 | 355.06174 |
| 10 | 456.00315 | 437.18470 | 412.27688 | 405.77492 |

Table 6.25. B+S by Asymptotic Method for an elliptic aluminium beam.
Eigenfrecuencies by 1-D FEM

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.37329 | 15.41821 | 5.59332 | 3.51602 |
| 2 | 61.67282 | 49.96486 | 30.22585 | 22.03449 |
| 3 | 120.90339 | 104.24770 | 74.63888 | 61.69721 |
| 4 | 199.85946 | 178.26974 | 138.79132 | 120.90192 |
| 5 | 298.55557 | 272.03100 | 222.68296 | 199.85954 |
| 6 | 416.99089 | 385.53150 | 326.31384 | 298.55557 |
| 7 | 555.16548 | 518.77127 | 449.68398 | 416.99089 |
| 8 | 713.07941 | 671.75037 | 592.79340 | 555.16548 |
| 9 | 890.73277 | 844.46885 | 755.64218 | 713.07941 |
| 10 | 1088.12565 | 1036.92684 | 938.23040 | 890.73277 |

Table 6.26. Euler-Bernoulli by 1-D FEM for an elliptic aluminium beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.13799 | 15.26634 | 5.57845 | 3.50191 |
| 2 | 59.34316 | 48.20185 | 29.59711 | 21.43851 |
| 3 | 111.68744 | 96.65498 | 70.69768 | 57.93404 |
| 4 | 175.42053 | 157.18221 | 125.62897 | 108.23806 |
| 5 | 247.22241 | 226.41152 | 190.90194 | 169.24298 |
| 6 | 324.34533 | 301.50694 | 263.37657 | 237.92964 |
| 7 | 404.74447 | 380.31532 | 340.55556 | 311.89962 |
| 8 | 486.99824 | 461.31454 | 420.61498 | 389.35449 |
| 9 | 570.16771 | 543.48261 | 502.30069 | 469.00213 |
| 10 | 653.65760 | 626.16020 | 584.78807 | 549.94050 |

Table 6.27 . B + R by 1-D FEM for an elliptic aluminium beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 21.76279 | 15.02365 | 5.55400 | 3.52304 |
| 2 | 55.98856 | 45.64604 | 28.63433 | 21.38266 |
| 3 | 100.15350 | 87.04629 | 65.34059 | 56.03486 |
| 4 | 149.27914 | 134.32969 | 110.19353 | 100.14527 |
| 5 | 200.48149 | 184.29232 | 159.11243 | 149.28139 |
| 6 | 252.23696 | 235.19288 | 209.69299 | 200.48061 |
| 7 | 303.85535 | 286.19173 | 260.71027 | 252.23741 |
| 8 | 355.06048 | 336.92586 | 311.60361 | 303.85508 |
| 9 | 405.77397 | 387.26449 | 362.14769 | 355.06068 |
| 10 | 456.00210 | 437.18362 | 412.27577 | 405.77381 |

Table 6.28 . B+S by 1-D FEM for an elliptic aluminium beam.

### 7.2.2 Concrete



Figure 6.5. Physical parameters for an elliptic concrete beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 20.61210 | 14.81345 | 5.58500 | 3.56557 |
| 2 | 50.58885 | 43.51769 | 27.72862 | 20.60535 |
| 3 | 88.12303 | 81.08336 | 61.48283 | 52.15597 |
| 4 | 130.05345 | 123.87417 | 101.99755 | 91.06099 |
| 5 | 174.70187 | 169.66846 | 146.49581 | 134.47437 |
| 6 | 221.29584 | 217.41559 | 193.21777 | 1807.83239 |
| 7 | 268.47307 | 265.58323 | 241.07324 | 227.43304 |
| 8 | 315.59235 | 313.82872 | 289.78634 | 274.59540 |
| 9 | 362.60833 | 362.03137 | 337.95776 | 320.17175 |
| 10 | 410.45574 | 414.70358 | 375.74439 | 368.92441 |

Table 6.29. Eigenfrecuencies by 3d FEM for an elliptic concrete beam.

Eigenfrecuencies by A symptotic $M$ ethod

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.37329 | 15.41821 | 5.59332 | 3.51602 |
| 2 | 61.67282 | 49.96486 | 30.22585 | 22.03449 |
| 3 | 120.90339 | 104.24770 | 74.63888 | 61.69721 |
| 4 | 199.85945 | 178.26973 | 138.79131 | 120.90192 |
| 5 | 298.55554 | 272.03097 | 222.68295 | 199.85953 |
| 6 | 416.99079 | 385.53142 | 326.31380 | 298.55553 |
| 7 | 555.16525 | 518.77108 | 449.68385 | 416.99079 |
| 8 | 713.07892 | 671.74995 | 592.79311 | 555.16525 |
| 9 | 890.73180 | 844.46803 | 755.64159 | 713.07892 |
| 10 | 1088.12389 | 1036.92531 | 938.22927 | 890.73180 |

Table 6.30. Euler-Bernoulli by Asymptotic Method for an elliptic concrete beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.13799 | 15.26634 | 5.57845 | 3.50191 |
| 2 | 59.34318 | 48.20186 | 29.59712 | 21.43851 |
| 3 | 111.68748 | 96.65501 | 70.69769 | 57.93405 |
| 4 | 175.42061 | 157.18228 | 125.62902 | 108.23810 |
| 5 | 247.22255 | 226.41164 | 190.90204 | 169.24305 |
| 6 | 324.34553 | 301.50713 | 263.37673 | 237.92977 |
| 7 | 404.74469 | 380.31554 | 340.55576 | 311.89981 |
| 8 | 486.99844 | 461.31475 | 420.61521 | 389.35472 |
| 9 | 570.16776 | 543.48272 | 502.30087 | 469.00234 |
| 10 | 653.65735 | 626.16007 | 584.78809 | 549.94062 |

Table 6.31. $\mathrm{B}+\mathrm{R}$ by Asymptotic Method for an elliptic concrete beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 21.82033 | 15.06091 | 5.55781 | 3.52233 |
| 2 | 56.47721 | 46.01960 | 28.77895 | 21.44427 |
| 3 | 101.72572 | 88.36307 | 66.09956 | 56.52104 |
| 4 | 152.60885 | 137.25707 | 112.23820 | 101.71849 |
| 5 | 206.07348 | 189.35897 | 163.05519 | 152.61066 |
| 6 | 260.40775 | 242.74355 | 215.96902 | 206.07283 |
| 7 | 314.77704 | 296.42302 | 269.58390 | 260.40806 |
| 8 | 368.81361 | 349.93613 | 323.21653 | 314.77686 |
| 9 | 422.38524 | 403.09308 | 376.56474 | 368.81373 |
| 10 | 475.46903 | 455.83660 | 429.51717 | 422.38515 |

Table 6.32. $\mathrm{B}+\mathrm{S}$ by Asymptotic Method for an elliptic concrete beam.

Eigenfrecuencies by 1-D FEM

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.37329 | 15.41821 | 5.59332 | 3.51602 |
| 2 | 61.67282 | 49.96486 | 30.22585 | 22.03449 |
| 3 | 120.90339 | 104.24770 | 74.63888 | 61.69721 |
| 4 | 199.85946 | 178.26974 | 138.79132 | 120.90192 |
| 5 | 298.55557 | 272.03100 | 222.68296 | 199.85954 |
| 6 | 416.99089 | 385.53150 | 326.31384 | 298.55557 |
| 7 | 555.16548 | 518.77127 | 449.68398 | 416.99089 |
| 8 | 713.07941 | 671.75037 | 592.79340 | 555.16548 |
| 9 | 890.73277 | 844.46885 | 755.64218 | 713.07941 |
| 10 | 1088.12565 | 1036.92684 | 938.23040 | 890.73277 |

Table 6.33. Euler-Bernoulli by 1-D FEM for an elliptic concrete beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.13799 | 15.26634 | 5.57845 | 3.50191 |
| 2 | 59.34316 | 48.20185 | 29.59711 | 21.43851 |
| 3 | 111.68744 | 96.65498 | 70.69768 | 57.93404 |
| 4 | 175.42053 | 157.18221 | 125.62897 | 108.23806 |
| 5 | 247.22241 | 226.41152 | 190.90194 | 169.24298 |
| 6 | 324.34533 | 301.50694 | 263.37657 | 237.92964 |
| 7 | 404.74447 | 380.31532 | 340.55556 | 311.89962 |
| 8 | 486.99824 | 461.31454 | 420.61498 | 389.35449 |
| 9 | 570.16771 | 543.48261 | 502.30069 | 469.00213 |
| 10 | 653.65760 | 626.16020 | 584.78807 | 549.94050 |

Table 6.34. B +R by 1-D FEM for an elliptic concrete beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 21.82034 | 15.06092 | 5.55781 | 3.52234 |
| 2 | 56.47727 | 46.01964 | 28.77897 | 21.44429 |
| 3 | 101.72590 | 88.36322 | 66.09965 | 56.52111 |
| 4 | 152.60922 | 137.25738 | 112.23842 | 101.71867 |
| 5 | 206.07411 | 189.35951 | 163.05561 | 152.61104 |
| 6 | 260.40868 | 242.74438 | 215.96970 | 206.07345 |
| 7 | 314.77833 | 296.42419 | 269.58489 | 260.40899 |
| 8 | 368.81533 | 349.93769 | 323.21789 | 314.77815 |
| 9 | 422.38748 | 403.09512 | 376.56653 | 368.81545 |
| 10 | 475.47190 | 455.83922 | 429.51949 | 422.38739 |

Table 6.35. $\mathrm{B}+\mathrm{S}$ by 1-D FEM for an elliptic concrete beam.

### 7.2.3 Steel

Figure 6.6. Physical parameters for an elliptic steel beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 21.00586 | 15.13326 | 5.72783 | 3.66534 |
| 2 | 51.04769 | 44.09382 | 28.20770 | 21.02604 |
| 3 | 88.27398 | 81.55966 | 62.05769 | 52.83389 |
| 4 | 129.56452 | 123.88241 | 102.29611 | 91.62897 |
| 5 | 173.43616 | 168.97172 | 146.17294 | 134.57226 |
| 6 | 219.09120 | 215.78037 | 192.05085 | 179.65092 |
| 7 | 265.23404 | 262.86515 | 234.34179 | 225.87940 |
| 8 | 311.18764 | 271.29362 | 286.43487 | 271.28928 |
| 9 | 349.77386 | 341.17018 | 333.27015 | 315.70100 |
| 10 | 403.43546 | 407.42472 | 373.19220 | 360.53744 |

Table 6.36. Eigenfrecuencies by 3d FEM for an elliptic steel beam.

Eigenfrecuencies by A symptotic $M$ ethod

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.37329 | 15.41821 | 5.59332 | 3.51602 |
| 2 | 61.67282 | 49.96486 | 30.22585 | 22.03449 |
| 3 | 120.90339 | 104.24770 | 74.63888 | 61.69721 |
| 4 | 199.85945 | 178.26973 | 138.79131 | 120.90192 |
| 5 | 298.55554 | 272.03097 | 222.68295 | 199.85953 |
| 6 | 416.99079 | 385.53142 | 326.31380 | 298.55553 |
| 7 | 555.16525 | 518.77108 | 449.68385 | 416.99079 |
| 8 | 713.07892 | 671.74995 | 592.79311 | 555.16525 |
| 9 | 890.73180 | 844.46803 | 755.64159 | 713.07892 |
| 10 | 1088.12389 | 1036.92531 | 938.22927 | 890.73180 |

Table 6.37. Euler Bernoulli by Asymptotic Method for an elliptic steel beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.13799 | 15.26634 | 5.57845 | 3.50191 |
| 2 | 59.34318 | 48.20186 | 29.59712 | 21.43851 |
| 3 | 111.68748 | 96.65501 | 70.69769 | 57.93405 |
| 4 | 175.42061 | 157.18228 | 125.62902 | 108.23810 |
| 5 | 247.22255 | 226.41164 | 190.90204 | 169.24305 |
| 6 | 324.34553 | 301.50713 | 263.37673 | 237.92977 |
| 7 | 404.74469 | 380.31554 | 340.55576 | 311.89981 |
| 8 | 486.99844 | 461.31475 | 420.61521 | 389.35472 |
| 9 | 570.16776 | 543.48272 | 502.30087 | 469.00234 |
| 10 | 653.65735 | 626.16007 | 584.78809 | 549.94062 |

Table 6.38. B +R by Asymptotic Method for an elliptic steel beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 21.77603 | 15.03222 | 5.55488 | 3.52286 |
| 2 | 56.10021 | 45.73143 | 28.66751 | 21.39683 |
| 3 | 100.50978 | 87.34488 | 65.51339 | 56.14593 |
| 4 | 150.02796 | 134.98845 | 110.65536 | 100.50179 |
| 5 | 201.73102 | 185.42509 | 159.99666 | 150.03010 |
| 6 | 254.05338 | 236.87221 | 211.09227 | 201.73020 |
| 7 | 306.27356 | 288.45790 | 262.67953 | 254.05380 |
| 8 | 358.09603 | 339.79824 | 314.17139 | 306.27331 |
| 9 | 409.43124 | 390.75020 | 365.32636 | 358.09620 |
| 10 | 460.27958 | 441.28294 | 416.06852 | 409.43110 |

Table 6.39.B +S by Asymptotic Method for an elliptic steel beam.

Eigenfrecuecnies by 1-D FEM

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.37329 | 15.41821 | 5.59332 | 3.51602 |
| 2 | 61.67282 | 49.96486 | 30.22585 | 22.03449 |
| 3 | 120.90339 | 104.24770 | 74.63888 | 61.69721 |
| 4 | 199.85946 | 178.26974 | 138.79132 | 120.90192 |
| 5 | 298.55557 | 272.03100 | 222.68296 | 199.85954 |
| 6 | 416.99089 | 385.53150 | 326.31384 | 298.55557 |
| 7 | 555.16548 | 518.77127 | 449.68398 | 416.99089 |
| 8 | 713.07941 | 671.75037 | 592.79340 | 555.16548 |
| 9 | 890.73277 | 844.46885 | 755.64218 | 713.07941 |
| 10 | 1088.12565 | 1036.92684 | 938.23040 | 890.73277 |

Table 6.40. Euler-Bernoulli by 1-D FEM for an elliptic steel beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.13799 | 15.26634 | 5.57845 | 3.50191 |
| 2 | 59.34316 | 48.20185 | 29.59711 | 21.43851 |
| 3 | 111.68744 | 96.65498 | 70.69768 | 57.93404 |
| 4 | 175.42053 | 157.18221 | 125.62897 | 108.23806 |
| 5 | 247.22241 | 226.41152 | 190.90194 | 169.24298 |
| 6 | 324.34533 | 301.50694 | 263.37657 | 237.92964 |
| 7 | 404.74447 | 380.31532 | 340.55556 | 311.89962 |
| 8 | 486.99824 | 461.31454 | 420.61498 | 389.35449 |
| 9 | 570.16771 | 543.48261 | 502.30069 | 469.00213 |
| 10 | 653.65760 | 626.16020 | 584.78807 | 549.94050 |

Table 6.41 . B + R by 1-D FEM for an elliptic steel beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 21.77604 | 15.03223 | 5.55488 | 3.52283 |
| 2 | 56.10024 | 45.73145 | 28.66752 | 21.39683 |
| 3 | 100.50987 | 87.34495 | 65.51343 | 56.14595 |
| 4 | 150.02814 | 134.98860 | 110.65546 | 100.50188 |
| 5 | 201.73133 | 185.42536 | 159.99686 | 150.03028 |
| 6 | 254.05386 | 236.87263 | 211.09261 | 201.73051 |
| 7 | 306.27424 | 288.45850 | 262.68003 | 254.05427 |
| 8 | 358.09697 | 339.79908 | 314.17210 | 306.27399 |
| 9 | 409.43252 | 390.75134 | 365.32735 | 358.09714 |
| 10 | 460.28133 | 441.28450 | 416.06986 | 409.43239 |

Table 6.42.B +S by 1-D FEM for an elliptic steel beam.

### 7.3 Rectangular Beam

7.3.1 Aluminium


Figure 6.7. Physical parameters for a rectangular aluminium beam.

| Frec | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 20.5387313 | 15.0374476 | 5.78388855 | 3.73412626 |
| 2 | 48.1941219 | 42.381028 | 27.5670382 | 20.731634 |
| 3 | 81.562351 | 76.43705564 | 58.8312543 | 50.5203657 |
| 4 | 117.708771 | 113.762243 | 94.8381509 | 85.5301079 |
| 5 | 155.81919 | 152.9416027 | 133.190066 | 123.195084 |
| 6 | 194.778896 | 192.8363709 | 172.759035 | 161.997719 |
| 7 | 234.185272 | 233.003559 | 212.988683 | 200.724273 |
| 8 | 275.085048 | 264.3674168 | 254.626938 | 235.821754 |
| 9 | 281.220628 | 274.4027715 | 280.802795 | 272.112973 |
| 10 | 311.486217 | 285.8272214 | 295.083726 | 285.815441 |

Table 6.43. Eigenfrecuencies by 3d FEM for a rectangular aluminium beam.

Eigenfrecuencies by A symptotic $M$ ethod

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.37329 | 15.41821 | 5.59332 | 3.51602 |
| 2 | 61.67282 | 49.96486 | 30.22585 | 22.03449 |
| 3 | 120.90339 | 104.24770 | 74.63888 | 61.69721 |
| 4 | 199.85945 | 178.26973 | 138.79131 | 120.90192 |
| 5 | 298.55554 | 272.03097 | 222.68295 | 199.85953 |
| 6 | 416.99079 | 385.53142 | 326.31380 | 298.55553 |
| 7 | 555.16525 | 518.77108 | 449.68385 | 416.99079 |
| 8 | 713.07892 | 671.74995 | 592.79311 | 555.16525 |
| 9 | 890.73180 | 844.46803 | 755.64159 | 713.07892 |
| 10 | 1088.12389 | 1036.92531 | 938.22927 | 890.73180 |

Table 6.44. Euler-Bernoulli by Asymptotic Method for a rectangular aluminium beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.06115 | 15.21669 | 5.57351 | 3.49724 |
| 2 | 58.62221 | 47.65428 | 29.39604 | 21.25000 |
| 3 | 109.05242 | 94.47024 | 69.51631 | 56.82699 |
| 4 | 169.06981 | 151.65822 | 122.00913 | 104.84232 |
| 5 | 235.21602 | 215.64344 | 182.99224 | 161.85457 |
| 6 | 304.91980 | 283.71649 | 249.30278 | 224.82907 |
| 7 | 376.47229 | 354.03155 | 318.68012 | 291.56409 |
| 8 | 448.81430 | 425.41940 | 389.64397 | 360.53536 |
| 9 | 521.32563 | 497.17845 | 461.28304 | 430.72849 |
| 10 | 593.66268 | 568.90774 | 533.06361 | 501.48942 |

Table 6.45. $\mathrm{B}+\mathrm{R}$ by Asymptotic Method for a rectangular aluminium beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 21.56982 | 14.89857 | 5.54107 | 3.52537 |
| 2 | 54.41112 | 44.43719 | 28.15693 | 21.17568 |
| 3 | 95.29467 | 82.96294 | 62.93633 | 54.46632 |
| 4 | 139.38064 | 125.59972 | 103.98049 | 95.28242 |
| 5 | 184.37489 | 169.65960 | 147.55213 | 139.38491 |
| 6 | 229.27247 | 213.92657 | 191.80795 | 184.37280 |
| 7 | 273.73150 | 257.92666 | 235.97376 | 229.27375 |
| 8 | 317.67099 | 301.51369 | 279.77441 | 273.73058 |
| 9 | 361.11720 | 344.67462 | 323.14577 | 317.67173 |
| 10 | 404.12562 | 387.44505 | 366.10567 | 361.11656 |

Table 6.46. $\mathrm{B}+\mathrm{R}$ by Asymptotic Method for a rectangular aluminium beam.

## Eigenfrecuecnies by 1-D FEM

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.37329 | 15.41821 | 5.59332 | 3.51601 |
| 2 | 61.67282 | 49.96486 | 30.22585 | 22.03449 |
| 3 | 120.90339 | 104.24770 | 74.63888 | 61.69721 |
| 4 | 199.85946 | 178.26974 | 138.79132 | 120.90192 |
| 5 | 298.55557 | 272.03100 | 222.68296 | 199.85954 |
| 6 | 416.99089 | 385.53150 | 326.31384 | 298.55557 |
| 7 | 555.16548 | 518.77127 | 449.68398 | 416.99089 |
| 8 | 713.07941 | 671.75037 | 592.79340 | 555.16548 |
| 9 | 890.73277 | 844.46885 | 755.64218 | 713.07941 |
| 10 | 1088.12565 | 1036.92684 | 938.23040 | 890.73277 |

Table 6.47. Euler-Bernoulli by 1-D FEM for a rectangular aluminium beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.06114 | 15.21669 | 5.57351 | 3.49724 |
| 2 | 58.62219 | 47.65427 | 29.39604 | 21.25000 |
| 3 | 109.05234 | 94.47018 | 69.51628 | 56.82697 |
| 4 | 169.06964 | 151.65809 | 122.00903 | 104.84225 |
| 5 | 235.21574 | 215.64319 | 182.99205 | 161.85442 |
| 6 | 304.91939 | 283.71612 | 249.30247 | 224.82880 |
| 7 | 376.47177 | 354.03106 | 318.67969 | 291.56370 |
| 8 | 448.81373 | 425.41884 | 389.64344 | 360.53486 |
| 9 | 521.32510 | 497.17789 | 461.28247 | 430.72791 |
| 10 | 593.66234 | 568.90731 | 533.06310 | 501.48885 |

Table 6.48. $\mathrm{B}+\mathrm{R}$ by 1-D FEM for a rectangular aluminium beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 21.56981 | 14.89857 | 5.54107 | 3.52541 |
| 2 | 54.41111 | 44.43718 | 28.15693 | 21.17569 |
| 3 | 95.29465 | 82.96292 | 62.93631 | 54.46631 |
| 4 | 139.38060 | 125.59969 | 103.98047 | 95.28240 |
| 5 | 184.37484 | 169.65956 | 147.55209 | 139.38487 |
| 6 | 229.27243 | 213.92652 | 191.80790 | 184.37275 |
| 7 | 273.73150 | 257.92664 | 235.97373 | 229.27371 |
| 8 | 317.67108 | 301.51374 | 279.77442 | 273.73058 |
| 9 | 361.11745 | 344.67480 | 323.14587 | 317.67182 |
| 10 | 404.12613 | 387.44545 | 366.10595 | 361.11681 |

Table 6.49. B +S by 1-D FEM for a rectangular aluminium beam.

### 7.3.2 Concrete



Figure 6.8. Physical parameters for a rectangular concrete beam.

| Frec | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 19.69999139 | 15.90386958 | 5.58203152 | 3.5877475 |
| 2 | 46.9924446 | 38.52808355 | 26.9848011 | 20.18918 |
| 3 | 80.32273451 | 72.43549395 | 58.2970239 | 49.780297 |
| 4 | 116.8595887 | 107.9025479 | 94.8262414 | 85.103561 |
| 5 | 155.1291136 | 133.7726009 | 134.027232 | 123.44051 |
| 6 | 195.0830884 | 209.8516998 | 174.684879 | 163.24153 |
| 7 | 235.3495156 | 248.8229333 | 216.172751 | 203.25049 |
| 8 | 277.2316619 | 281.0478575 | 263.90007 | 241.17963 |
| 9 | 319.0527143 | 291.9073231 | 290.491251 | 290.24469 |
| 10 | 362.0323714 | 299.4087985 | 301.383445 | 297.96 |

Table 6.50. Eigenfrecuencies by 3d FEM for a rectangular concrete beam.

Eigenfrecuencies by A symptotic $M$ ethod

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.37329 | 15.41821 | 5.59332 | 3.51602 |
| 2 | 61.67282 | 49.96486 | 30.22585 | 22.03449 |
| 3 | 120.90339 | 104.24770 | 74.63888 | 61.69721 |
| 4 | 199.85945 | 178.26973 | 138.79131 | 120.90192 |
| 5 | 298.55554 | 272.03097 | 222.68295 | 199.85953 |
| 6 | 416.99079 | 385.53142 | 326.31380 | 298.55553 |
| 7 | 555.16525 | 518.77108 | 449.68385 | 416.99079 |
| 8 | 713.07892 | 671.74995 | 592.79311 | 555.16525 |
| 9 | 890.73180 | 844.46803 | 755.64159 | 713.07892 |
| 10 | 1088.12389 | 1036.92531 | 938.22927 | 890.73180 |

Table 6.51. Euler-Bernoulli by Asymptotic Method for a rectangular concrete beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 21.64466 | 14.94710 | 5.54612 | 3.52445 |
| 2 | 55.01206 | 44.89824 | 28.34072 | 21.25601 |
| 3 | 97.10832 | 84.48961 | 63.84420 | 55.06368 |
| 4 | 143.00945 | 128.80489 | 106.28153 | 97.09776 |
| 5 | 190.19400 | 174.95284 | 151.76324 | 143.01282 |
| 6 | 237.47630 | 221.53111 | 198.23800 | 190.19247 |
| 7 | 284.40057 | 267.94474 | 244.77751 | 237.47718 |
| 8 | 330.82626 | 313.97994 | 291.01498 | 284.39996 |
| 9 | 376.74931 | 359.58903 | 336.83743 | 330.82672 |
| 10 | 422.21245 | 404.79128 | 382.23861 | 376.74892 |

Table 6.52 . B +R by Asymptotic Method for a rectangular concrete beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 21.64466 | 14.94710 | 5.54612 | 3.52445 |
| 2 | 55.01206 | 44.89824 | 28.34072 | 21.25601 |
| 3 | 97.10832 | 84.48961 | 63.84420 | 55.06368 |
| 4 | 143.00945 | 128.80489 | 106.28153 | 97.09776 |
| 5 | 190.19400 | 174.95284 | 151.76324 | 143.01282 |
| 6 | 237.47630 | 221.53111 | 198.23800 | 190.19247 |
| 7 | 284.40057 | 267.94474 | 244.77751 | 237.47718 |
| 8 | 330.82626 | 313.97994 | 291.01498 | 284.39996 |
| 9 | 376.74931 | 359.58903 | 336.83743 | 330.82672 |
| 10 | 422.21245 | 404.79128 | 382.23861 | 376.74892 |

Table 6.53. $\mathrm{B}+\mathrm{S}$ by Asymptotic Method for a rectangular concrete beam.

Eigenfrecuencies by 1-D FEM

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.37329 | 15.41821 | 5.59332 | 3.51602 |
| 2 | 61.67282 | 49.96486 | 30.22585 | 22.03449 |
| 3 | 120.90339 | 104.24770 | 74.63888 | 61.69721 |
| 4 | 199.85946 | 178.26974 | 138.79132 | 120.90192 |
| 5 | 298.55557 | 272.03100 | 222.68296 | 199.85954 |
| 6 | 416.99089 | 385.53150 | 326.31384 | 298.55557 |
| 7 | 555.16548 | 518.77127 | 449.68398 | 416.99089 |
| 8 | 713.07941 | 671.75037 | 592.79340 | 555.16548 |
| 9 | 890.73277 | 844.46885 | 755.64218 | 713.07941 |
| 10 | 1088.12565 | 1036.92684 | 938.23040 | 890.73277 |

Table 6.54. Euler-Bernoulli by 1-D FEM for a rectangular concrete beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.06114 | 15.21669 | 5.57351 | 3.49724 |
| 2 | 58.62219 | 47.65427 | 29.39604 | 21.25000 |
| 3 | 109.05234 | 94.47018 | 69.51628 | 56.82697 |
| 4 | 169.06964 | 151.65809 | 122.00903 | 104.84225 |
| 5 | 235.21574 | 215.64319 | 182.99205 | 161.85442 |
| 6 | 304.91939 | 283.71612 | 249.30247 | 224.82880 |
| 7 | 376.47177 | 354.03106 | 318.67969 | 291.56370 |
| 8 | 448.81373 | 425.41884 | 389.64344 | 360.53486 |
| 9 | 521.32510 | 497.17789 | 461.28247 | 430.72791 |
| 10 | 593.66234 | 568.90731 | 533.06310 | 501.48885 |

Table 6.55. B +R by 1-D FEM for a rectangular concrete beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 21.64467 | 14.94711 | 5.54612 | 3.52449 |
| 2 | 55.01211 | 44.89828 | 28.34073 | 21.25603 |
| 3 | 97.10848 | 84.48973 | 63.84428 | 55.06374 |
| 4 | 143.00976 | 128.80515 | 106.28172 | 97.09792 |
| 5 | 190.19451 | 174.95328 | 151.76359 | 143.01314 |
| 6 | 237.47703 | 221.53176 | 198.23854 | 190.19298 |
| 7 | 284.40157 | 267.94565 | 244.77829 | 237.47792 |
| 8 | 330.82757 | 313.98114 | 291.01602 | 284.40096 |
| 9 | 376.75102 | 359.59058 | 336.83879 | 330.82804 |
| 10 | 422.21466 | 404.79329 | 382.24037 | 376.75063 |

Table 6.56. B +S by 1-D FEM for a rectangular concrete beam.

### 7.3.3 Steel



Figure 6.9. Physical parameters for a rectangular steel beam.

| Frec | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 20.388347 | 14.91324852 | 5.72516373 | 3.69174309 |
| 2 | 48.044858 | 42.18446502 | 27.3912722 | 20.5677627 |
| 3 | 81.524982 | 76.29533602 | 58.6467841 | 50.2874357 |
| 4 | 117.8567 | 113.7737148 | 94.76352 | 85.3553533 |
| 5 | 156.18287 | 153.1663082 | 133.302249 | 123.165736 |
| 6 | 195.3861 | 193.3175953 | 173.114127 | 162.1927 |
| 7 | 235.04454 | 233.7796434 | 213.623882 | 201.218207 |
| 8 | 276.258 | 266.5977003 | 256.183324 | 237.045426 |
| 9 | 283.20035 | 275.570923 | 282.868829 | 268.644595 |
| 10 | 313.27375 | 287.1152071 | 296.3686 | 287.107559 |

Table 6.57. Eigenfrecuencies by 3d FEM for a rectangular steel beam.

Eigenfrecuencies by A symptotic $M$ ethod

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.37329 | 15.41821 | 5.59332 | 3.51602 |
| 2 | 61.67282 | 49.96486 | 30.22585 | 22.03449 |
| 3 | 120.90339 | 104.24770 | 74.63888 | 61.69721 |
| 4 | 199.85945 | 178.26973 | 138.79131 | 120.90192 |
| 5 | 298.55554 | 272.03097 | 222.68295 | 199.85953 |
| 6 | 416.99079 | 385.53142 | 326.31380 | 298.55553 |
| 7 | 555.16525 | 518.77108 | 449.68385 | 416.99079 |
| 8 | 713.07892 | 671.74995 | 592.79311 | 555.16525 |
| 9 | 890.73180 | 844.46803 | 755.64159 | 713.07892 |
| 10 | 1088.12389 | 1036.92531 | 938.22927 | 890.73180 |

Table 6.58. Euler-Bernoulli by Asymptotic Method for a rectangular steel beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.06115 | 15.21669 | 5.57351 | 3.49724 |
| 2 | 58.62221 | 47.65428 | 29.39604 | 21.25000 |
| 3 | 109.05242 | 94.47024 | 69.51631 | 56.82699 |
| 4 | 169.06981 | 151.65822 | 122.00913 | 104.84232 |
| 5 | 235.21602 | 215.64344 | 182.99224 | 161.85457 |
| 6 | 304.91980 | 283.71649 | 249.30278 | 224.82907 |
| 7 | 376.47229 | 354.03155 | 318.68012 | 291.56409 |
| 8 | 448.81430 | 425.41940 | 389.64397 | 360.53536 |
| 9 | 521.32563 | 497.17845 | 461.28304 | 430.72849 |
| 10 | 593.66268 | 568.90774 | 533.06361 | 501.48942 |

Table 6.59. $\mathrm{B}+\mathrm{R}$ by Asymptotic Method for a rectangular steel beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 21.58703 | 14.90973 | 5.54224 | 3.52516 |
| 2 | 54.54811 | 44.54235 | 28.19903 | 21.19416 |
| 3 | 95.70421 | 83.30793 | 63.14243 | 54.60247 |
| 4 | 140.19349 | 126.31814 | 104.49825 | 95.69237 |
| 5 | 185.67012 | 170.83841 | 148.49279 | 140.19754 |
| 6 | 231.08980 | 215.61182 | 193.23618 | 185.66818 |
| 7 | 276.08648 | 260.13860 | 237.92092 | 231.09099 |
| 8 | 320.56688 | 304.25848 | 282.25256 | 276.08563 |
| 9 | 364.55118 | 347.95143 | 326.15694 | 320.56755 |
| 10 | 408.09244 | 391.24983 | 369.64707 | 364.55061 |

Table 6.60. $\mathrm{B}+\mathrm{S}$ by Asymptotic Method for a rectangular steel beam.
Eigenfrecuencies by 1-D FEM

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.37329 | 15.41821 | 5.59332 | 3.51602 |
| 2 | 61.67282 | 49.96486 | 30.22585 | 22.03449 |
| 3 | 120.90339 | 104.24770 | 74.63888 | 61.69721 |
| 4 | 199.85946 | 178.26974 | 138.79132 | 120.90192 |
| 5 | 298.55557 | 272.03100 | 222.68296 | 199.85954 |
| 6 | 416.99089 | 385.53150 | 326.31384 | 298.55557 |
| 7 | 555.16548 | 518.77127 | 449.68398 | 416.99089 |
| 8 | 713.07941 | 671.75037 | 592.79340 | 555.16548 |
| 9 | 890.73277 | 844.46885 | 755.64218 | 713.07941 |
| 10 | 1088.12565 | 1036.92684 | 938.23040 | 890.73277 |

Table 6.61. Euler-Bernoulli by 1-D FEM for a rectangular steel beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.06114 | 15.21669 | 5.57351 | 3.49724 |
| 2 | 58.62219 | 47.65427 | 29.39604 | 21.25000 |
| 3 | 109.05234 | 94.47018 | 69.51628 | 56.82697 |
| 4 | 169.06964 | 151.65809 | 122.00903 | 104.84225 |
| 5 | 235.21574 | 215.64319 | 182.99205 | 161.85442 |
| 6 | 304.91939 | 283.71612 | 249.30247 | 224.82880 |
| 7 | 376.47177 | 354.03106 | 318.67969 | 291.56370 |
| 8 | 448.81373 | 425.41884 | 389.64344 | 360.53486 |
| 9 | 521.32510 | 497.17789 | 461.28247 | 430.72791 |
| 10 | 593.66234 | 568.90731 | 533.06310 | 501.48885 |

Table 6.62. Euler-Bernoulli by 1-D FEM for a rectangular steel beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 21.58702 | 14.90973 | 5.54224 | 3.52517 |
| 2 | 54.54809 | 44.54233 | 28.19903 | 21.19416 |
| 3 | 95.70415 | 83.30788 | 63.14240 | 54.60245 |
| 4 | 140.19338 | 126.31804 | 104.49818 | 95.69231 |
| 5 | 185.66996 | 170.83827 | 148.49266 | 140.19743 |
| 6 | 231.08961 | 215.61163 | 193.23601 | 185.66801 |
| 7 | 276.08628 | 260.13839 | 237.92072 | 231.09079 |
| 8 | 320.56673 | 304.25830 | 282.25236 | 276.08543 |
| 9 | 364.55114 | 347.95133 | 326.15679 | 320.56739 |
| 10 | 408.09262 | 391.24991 | 369.64706 | 364.55057 |

Table 6.63 . $\mathrm{B}+\mathrm{S}$ by 1-D FEM for a rectangular steel beam.

### 7.4 Square Beam

7.4.1 Aluminium


Figure 6.10. Physical parameters for a square aluminium beam.

| Frec | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 15.1805293 | 12.09525292 | 5.15468483 | 3.53820492 |
| 2 | 31.1998538 | 29.54913735 | 20.4682335 | 15.7687474 |
| 3 | 50.0427722 | 48.92462407 | 39.1311953 | 34.2972786 |
| 4 | 67.8374267 | 69.07748879 | 58.9623102 | 52.0775146 |
| 5 | 78.2657039 | 73.45565461 | 79.0786069 | 69.2197729 |
| 6 | 89.4597015 | 86.71955145 | 82.0381039 | 77.985676 |
| 7 | 100.276484 | 91.34553335 | 98.2054799 | 89.7346982 |
| 8 | 111.21291 | 107.5873953 | 103.896844 | 97.005974 |
| 9 | 126.047515 | 112.119012 | 122.36316 | 111.765112 |
| 10 | 133.653793 | 132.9920097 | 127.899846 | 118.567016 |

Table 6.64. Eigenfrecuencies by 3d FEM for a square aluminium beam.

Eigenfrecuencies by A symptotic $M$ ethod

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.37329 | 15.41821 | 5.59332 | 3.51602 |
| 2 | 61.67282 | 49.96486 | 30.22585 | 22.03449 |
| 3 | 120.90339 | 104.24770 | 74.63888 | 61.69721 |
| 4 | 199.85945 | 178.26973 | 138.79131 | 120.90192 |
| 5 | 298.55554 | 272.03097 | 222.68295 | 199.85953 |
| 6 | 416.99079 | 385.53142 | 326.31380 | 298.55553 |
| 7 | 555.16525 | 518.77108 | 449.68385 | 416.99079 |
| 8 | 713.07892 | 671.74995 | 592.79311 | 555.16525 |
| 9 | 890.73180 | 844.46803 | 755.64159 | 713.07892 |
| 10 | 1088.12389 | 1036.92531 | 938.22927 | 890.73180 |

Table 6.65. Euler-Bernoulli by Asymptotic Method for a square aluminium beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 21.19562 | 14.65554 | 5.51529 | 3.44251 |
| 2 | 51.59430 | 42.26738 | 27.26307 | 19.31314 |
| 3 | 87.33686 | 76.22974 | 58.80387 | 47.23900 |
| 4 | 124.27723 | 112.20319 | 94.11778 | 79.90055 |
| 5 | 161.09717 | 148.41509 | 130.33093 | 114.67699 |
| 6 | 197.38756 | 184.30066 | 166.41156 | 150.04497 |
| 7 | 233.13394 | 219.74126 | 202.07662 | 185.39942 |
| 8 | 268.39189 | 254.76139 | 237.30033 | 220.50194 |
| 9 | 303.25179 | 289.42193 | 272.13257 | 255.30602 |
| 10 | 337.78184 | 323.78523 | 306.63713 | 289.82212 |

Table 6.66. $\mathrm{B}+\mathrm{R}$ by Asymptotic Method for a square aluminium beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 19.58609 | 13.60275 | 5.39245 | 3.55430 |
| 2 | 42.09529 | 34.84500 | 23.82358 | 19.01901 |
| 3 | 65.32579 | 57.31778 | 46.09347 | 42.30733 |
| 4 | 87.67960 | 79.41722 | 68.43244 | 65.18720 |
| 5 | 109.55146 | 101.03069 | 90.27867 | 87.79740 |
| 6 | 130.90999 | 122.26758 | 111.68898 | 109.43874 |
| 7 | 152.03009 | 143.23321 | 132.77893 | 131.02414 |
| 8 | 172.87953 | 164.00357 | 153.63910 | 151.91150 |
| 9 | 193.61536 | 184.63087 | 174.33257 | 173.00451 |
| 10 | 214.19172 | 205.15114 | 194.90262 | 193.48308 |

Table 6.67. $\mathrm{B}+\mathrm{S}$ by Asymptotic Method for a square aluminium beam.
Eigenfrecuencies by 1-D FEM

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.37329 | 15.41821 | 5.59332 | 3.51602 |
| 2 | 61.67282 | 49.96486 | 30.22585 | 22.03449 |
| 3 | 120.90339 | 104.24770 | 74.63888 | 61.69721 |
| 4 | 199.85946 | 178.26974 | 138.79132 | 120.90192 |
| 5 | 298.55557 | 272.03100 | 222.68296 | 199.85954 |
| 6 | 416.99089 | 385.53150 | 326.31384 | 298.55557 |
| 7 | 555.16548 | 518.77127 | 449.68398 | 416.99089 |
| 8 | 713.07941 | 671.75037 | 592.79340 | 555.16548 |
| 9 | 890.73277 | 844.46885 | 755.64218 | 713.07941 |
| 10 | 1088.12565 | 1036.92684 | 938.23040 | 890.73277 |

Table 6.68. Euler-Bernoulli by 1-D FEM for a square aluminium beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 21.19563 | 14.65555 | 5.51529 | 3.44251 |
| 2 | 51.59434 | 42.26741 | 27.26308 | 19.31314 |
| 3 | 87.33697 | 76.22983 | 58.80393 | 47.23904 |
| 4 | 124.27742 | 112.20335 | 94.11790 | 79.90064 |
| 5 | 161.09746 | 148.41534 | 130.33113 | 114.67715 |
| 6 | 197.38796 | 184.30102 | 166.41186 | 150.04523 |
| 7 | 233.13449 | 219.74175 | 202.07704 | 185.39979 |
| 8 | 268.39262 | 254.76205 | 237.30090 | 220.50243 |
| 9 | 303.25276 | 289.42280 | 272.13333 | 255.30668 |
| 10 | 337.78313 | 323.78638 | 306.63813 | 289.82299 |

Table 6.69. $\mathrm{B}+\mathrm{R}$ by 1-D FEM for a square aluminium beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 19.58614 | 13.60278 | 5.39245 | 3.55450 |
| 2 | 42.09549 | 34.84515 | 23.82366 | 19.01909 |
| 3 | 65.32617 | 57.31809 | 46.09370 | 42.30754 |
| 4 | 87.68016 | 79.41771 | 68.43285 | 65.18758 |
| 5 | 109.55221 | 101.03136 | 90.27926 | 87.79796 |
| 6 | 130.91093 | 122.26844 | 111.68975 | 109.43948 |
| 7 | 152.03124 | 143.23427 | 132.77989 | 131.02508 |
| 8 | 172.88090 | 164.00484 | 153.64027 | 151.91265 |
| 9 | 193.61700 | 184.63239 | 174.33396 | 173.00589 |
| 10 | 214.19368 | 205.15295 | 194.90428 | 193.48472 |

Table 6.65 . $\mathrm{B}+\mathrm{S}$ by 1-D FEM for a square aluminium beam.

### 7.4.2 Concrete



Figure 6.11. Physical parameters for a square concrete beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 15.10463 | 11.74620 | 4.99880 | 3.38777 |
| 2 | 31.55736 | 38.21584 | 20.36515 | 15.59032 |
| 3 | 50.65098 | 50.59207 | 39.39757 | 34.30451 |
| 4 | 70.63593 | 71.74981 | 59.63792 | 52.66545 |
| 5 | 80.73805 | 73.21104 | 80.61564 | 71.46114 |
| 6 | 91.45787 | 89.35809 | 84.08807 | 79.77516 |
| 7 | 104.44166 | 94.56919 | 100.26697 | 92.70080 |
| 8 | 114.10618 | 110.28235 | 106.42972 | 100.95253 |
| 9 | 128.95531 | 117.63327 | 125.34858 | 116.11356 |
| 10 | 137.93286 | 136.96735 | 129.56734 | 123.98945 |

Table 6.71. Eigenfrecuencies by 3d FEM for a square concrete beam.

Eigenfrecuencies by A symptotic $M$ ethod

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.37329 | 15.41821 | 5.59332 | 3.51602 |
| 2 | 61.67282 | 49.96486 | 30.22585 | 22.03449 |
| 3 | 120.90339 | 104.24770 | 74.63888 | 61.69721 |
| 4 | 199.85945 | 178.26973 | 138.79131 | 120.90192 |
| 5 | 298.55554 | 272.03097 | 222.68295 | 199.85953 |
| 6 | 416.99079 | 385.53142 | 326.31380 | 298.55553 |
| 7 | 555.16525 | 518.77108 | 449.68385 | 416.99079 |
| 8 | 713.07892 | 671.74995 | 592.79311 | 555.16525 |
| 9 | 890.73180 | 844.46803 | 755.64159 | 713.07892 |
| 10 | 1088.12389 | 1036.92531 | 938.22927 | 890.73180 |

Table 6.72. Euler-Bernoulli by Asymptotic Method for a square concrete beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 21.19562 | 14.65554 | 5.51529 | 3.44251 |
| 2 | 51.59430 | 42.26738 | 27.26307 | 19.31314 |
| 3 | 87.33686 | 76.22974 | 58.80387 | 47.23900 |
| 4 | 124.27723 | 112.20319 | 94.11778 | 79.90055 |
| 5 | 161.09717 | 148.41509 | 130.33093 | 114.67699 |
| 6 | 197.38756 | 184.30066 | 166.41156 | 150.04497 |
| 7 | 233.13394 | 219.74126 | 202.07662 | 185.39942 |
| 8 | 268.39189 | 254.76139 | 237.30033 | 220.50194 |
| 9 | 303.25179 | 289.42193 | 272.13257 | 255.30602 |
| 10 | 337.78184 | 323.78523 | 306.63713 | 289.82212 |

Table 6.73. $\mathrm{B}+\mathrm{R}$ by Asymptotic Method for a square concrete beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 19.81475 | 13.75305 | 5.41117 | 3.55046 |
| 2 | 43.24577 | 35.75254 | 24.27717 | 19.27055 |
| 3 | 67.69086 | 59.36945 | 47.54877 | 43.43311 |
| 4 | 91.33334 | 82.70716 | 71.10063 | 67.57625 |
| 5 | 114.45382 | 105.55393 | 94.18804 | 91.42664 |
| 6 | 137.04111 | 127.99808 | 116.81930 | 114.36695 |
| 7 | 159.34852 | 150.14484 | 139.10301 | 137.12747 |
| 8 | 181.37110 | 172.07448 | 161.13280 | 159.25990 |
| 9 | 203.25256 | 193.84369 | 182.97635 | 181.46365 |
| 10 | 224.96745 | 215.49213 | 204.68104 | 203.15521 |

Table 6.74. $\mathrm{B}+\mathrm{S}$ by Asymptotic Method for a square concrete beam.

Eigenfrecuencies by 1-D FEM

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.37329 | 15.41821 | 5.59332 | 3.51601 |
| 2 | 61.67282 | 49.96486 | 30.22585 | 22.03449 |
| 3 | 120.90339 | 104.24770 | 74.63888 | 61.69721 |
| 4 | 199.85946 | 178.26974 | 138.79132 | 120.90192 |
| 5 | 298.55557 | 272.03100 | 222.68296 | 199.85954 |
| 6 | 416.99089 | 385.53150 | 326.31384 | 298.55557 |
| 7 | 555.16548 | 518.77127 | 449.68398 | 416.99089 |
| 8 | 713.07941 | 671.75037 | 592.79340 | 555.16548 |
| 9 | 890.73277 | 844.46885 | 755.64218 | 713.07941 |
| 10 | 1088.12565 | 1036.92684 | 938.23040 | 890.73277 |

Table 6.75. Euler-Bernoulli by 1-D FEM for a square concrete beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 21.19563 | 14.65555 | 5.51529 | 3.44251 |
| 2 | 51.59434 | 42.26741 | 27.26308 | 19.31314 |
| 3 | 87.33697 | 76.22983 | 58.80393 | 47.23904 |
| 4 | 124.27742 | 112.20335 | 94.11790 | 79.90064 |
| 5 | 161.09746 | 148.41534 | 130.33113 | 114.67715 |
| 6 | 197.38796 | 184.30102 | 166.41186 | 150.04523 |
| 7 | 233.13449 | 219.74175 | 202.07704 | 185.39979 |
| 8 | 268.39262 | 254.76205 | 237.30090 | 220.50243 |
| 9 | 303.25276 | 289.42280 | 272.13333 | 255.30668 |
| 10 | 337.78313 | 323.78638 | 306.63813 | 289.82299 |

Table 6.76. B +R by 1-D FEM for a square concrete beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 19.81472 | 13.75303 | 5.41117 | 3.55047 |
| 2 | 43.24564 | 35.75244 | 24.27712 | 19.27051 |
| 3 | 67.69060 | 59.36924 | 47.54862 | 43.43297 |
| 4 | 91.33296 | 82.70683 | 71.10036 | 67.57600 |
| 5 | 114.45333 | 105.55349 | 94.18765 | 91.42626 |
| 6 | 137.04053 | 127.99754 | 116.81880 | 114.36646 |
| 7 | 159.34786 | 150.14421 | 139.10242 | 137.12688 |
| 8 | 181.37039 | 172.07379 | 161.13213 | 159.25923 |
| 9 | 203.25184 | 193.84297 | 182.97563 | 181.46294 |
| 10 | 224.96679 | 215.49144 | 204.68032 | 203.15450 |

Table 6.77. B +S by 1-D FEM for a square concrete beam.

### 7.4.3 Steel



Figure 6.12. Physical parameters for a square steel beam.

| Frec | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 19.69999139 | 15.90386958 | 5.58203152 | 3.5877475 |
| 2 | 46.9924446 | 38.52808355 | 26.9848011 | 20.18918 |
| 3 | 80.32273451 | 72.43549395 | 58.2970239 | 49.780297 |
| 4 | 116.8595887 | 107.9025479 | 94.8262414 | 85.103561 |
| 5 | 155.1291136 | 133.7726009 | 134.027232 | 123.44051 |
| 6 | 195.0830884 | 209.8516998 | 174.684879 | 163.24153 |
| 7 | 235.3495156 | 248.8229333 | 216.172751 | 203.25049 |
| 8 | 277.2316619 | 281.0478575 | 263.90007 | 241.17963 |
| 9 | 319.0527143 | 291.9073231 | 290.491251 | 290.24469 |
| 10 | 362.0323714 | 299.4087985 | 301.383445 | 297.96 |

Table 6.78. Eigenfrecuencies by 3d FEM for a square steel beam.
Eigenfrecuencies by A symptotic $M$ ethod

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.37329 | 15.41821 | 5.59332 | 3.51602 |
| 2 | 61.67282 | 49.96486 | 30.22585 | 22.03449 |
| 3 | 120.90339 | 104.24770 | 74.63888 | 61.69721 |
| 4 | 199.85945 | 178.26973 | 138.79131 | 120.90192 |
| 5 | 298.55554 | 272.03097 | 222.68295 | 199.85953 |
| 6 | 416.99079 | 385.53142 | 326.31380 | 298.55553 |
| 7 | 555.16525 | 518.77108 | 449.68385 | 416.99079 |
| 8 | 713.07892 | 671.74995 | 592.79311 | 555.16525 |
| 9 | 890.73180 | 844.46803 | 755.64159 | 713.07892 |
| 10 | 1088.12389 | 1036.92531 | 938.22927 | 890.73180 |

Table 6.79. Euler-Bernoulli by Asymptotic Method for a square steel beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 21.19562 | 14.65554 | 5.51529 | 3.44251 |
| 2 | 51.59430 | 42.26738 | 27.26307 | 19.31314 |
| 3 | 87.33686 | 76.22974 | 58.80387 | 47.23900 |
| 4 | 124.27723 | 112.20319 | 94.11778 | 79.90055 |
| 5 | 161.09717 | 148.41509 | 130.33093 | 114.67699 |
| 6 | 197.38756 | 184.30066 | 166.41156 | 150.04497 |
| 7 | 233.13394 | 219.74126 | 202.07662 | 185.39942 |
| 8 | 268.39189 | 254.76139 | 237.30033 | 220.50194 |
| 9 | 303.25179 | 289.42193 | 272.13257 | 255.30602 |
| 10 | 337.78184 | 323.78523 | 306.63713 | 289.82212 |

Table 6.80. B + R by Asymptotic Method for a square steel beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 19.63821 | 13.63703 | 5.39676 | 3.55341 |
| 2 | 42.35286 | 35.04837 | 23.92605 | 19.07642 |
| 3 | 65.84948 | 57.77245 | 46.41753 | 42.55911 |
| 4 | 88.48395 | 80.14172 | 69.02162 | 65.71659 |
| 5 | 110.62680 | 102.02311 | 91.13780 | 88.59586 |
| 6 | 132.25203 | 123.52200 | 112.81316 | 110.52034 |
| 7 | 153.62962 | 144.74390 | 134.16214 | 132.35942 |
| 8 | 174.73368 | 165.76582 | 155.27609 | 153.51834 |
| 9 | 195.71807 | 186.64096 | 176.21914 | 174.85073 |
| 10 | 216.54165 | 207.40614 | 197.03549 | 195.59434 |

Table 6.81. $\mathrm{B}+\mathrm{S}$ by Asymptotic Method for a square steel beam.
Eigenfrecuencies by 1-D FEM

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 22.37329 | 15.41821 | 5.59332 | 3.51602 |
| 2 | 61.67282 | 49.96486 | 30.22585 | 22.03449 |
| 3 | 120.90339 | 104.24770 | 74.63888 | 61.69721 |
| 4 | 199.85946 | 178.26974 | 138.79132 | 120.90192 |
| 5 | 298.55557 | 272.03100 | 222.68296 | 199.85954 |
| 6 | 416.99089 | 385.53150 | 326.31384 | 298.55557 |
| 7 | 555.16548 | 518.77127 | 449.68398 | 416.99089 |
| 8 | 713.07941 | 671.75037 | 592.79340 | 555.16548 |
| 9 | 890.73277 | 844.46885 | 755.64218 | 713.07941 |
| 10 | 1088.12565 | 1036.92684 | 938.23040 | 890.73277 |

Table 6.82. Euler-Bernoulli by 1-D FEM for a square steel beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 21.19563 | 14.65555 | 5.51529 | 3.44251 |
| 2 | 51.59434 | 42.26741 | 27.26308 | 19.31314 |
| 3 | 87.33697 | 76.22983 | 58.80393 | 47.23904 |
| 4 | 124.27742 | 112.20335 | 94.11790 | 79.90064 |
| 5 | 161.09746 | 148.41534 | 130.33113 | 114.67715 |
| 6 | 197.38796 | 184.30102 | 166.41186 | 150.04523 |
| 7 | 233.13449 | 219.74175 | 202.07704 | 185.39979 |
| 8 | 268.39262 | 254.76205 | 237.30090 | 220.50243 |
| 9 | 303.25276 | 289.42280 | 272.13333 | 255.30668 |
| 10 | 337.78313 | 323.78638 | 306.63813 | 289.82299 |

Table 6.83 . $\mathrm{B}+\mathrm{R}$ by 1-D FEM for a square steel beam.

| Frec. | C-C | C-S | C-R | C-F |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 19.63820 | 13.63702 | 5.39676 | 3.55323 |
| 2 | 42.35282 | 35.04834 | 23.92604 | 19.07639 |
| 3 | 65.84940 | 57.77239 | 46.41748 | 42.55906 |
| 4 | 88.48384 | 80.14162 | 69.02154 | 65.71651 |
| 5 | 110.62667 | 102.02298 | 91.13768 | 88.59575 |
| 6 | 132.25188 | 123.52185 | 112.81302 | 110.52020 |
| 7 | 153.62947 | 144.74375 | 134.16199 | 132.35927 |
| 8 | 174.73356 | 165.76569 | 155.27595 | 153.51820 |
| 9 | 195.71803 | 186.64088 | 176.21904 | 174.85062 |
| 10 | 216.54173 | 207.40616 | 197.03545 | 195.59430 |

Table 6.84. $\mathrm{B}+\mathrm{S}$ by 1-D FEM for a square steel beam.

## Bibliography

[1] J.D. Achenbach: Wave Propagation in Elastic Solids; North-Holland; Amsterdam. (1993)
[2] G. Chen, M.P. Coleman: Improving low order eigenfrecuency estiamtes derived from the wave propagation method for an Euler-Bernoulli Beam; Journal of Sound and Vibration; 204(4); 696-704. (1997)
[3] B. Geist, J.R. McLaughlin: Asymptotic formulas for the eigenvalues of the Timoshenko beam. J. Math. Anal. Appl. 253 (2001), no. 2, 341-380.
[4] D. L. Russell, Mathematical Models for the elastic beam and their control-theoretic implications, in Semigroups, Theory and Applications, Vol. II, H. Brezis, M.G. Crandall, and F. Kappel, eds., Longman, New York, (1986), 177-216.
[5] N.G. Stephen: Considerations on second order beam theories: Int. J. Solid Structures, VOl17; pp. 325-333. (1981)
[6] R.W. Traill-Nash, A.R. Collar: The effects of shear flexibility and rotatory inertia on the bending vibrations of beams; Quart. Journ. Mech. and Applied MAth., VolVI, Pt. 2 (1953)
[7] L.E Malvern, Introduction to the Mechanics of a Continuous Medium, Pretence Hall Inc. Englewood Cliffs New jersey, (1969)
[8] y.C. Fung, Foundations of Solid Mechanics, Pretence Hall Inc. Englewood Cliffs New jersey, (1965)
[9] K.J. Bathe and E.L. Wilson, Numerical Methods in Finite Element Analysis, Pretence Hall Inc. Englewood Cliffs New jersey, (1977)
[10] O.C. Zienkiewicz and R.L. Taylor, The Finite Element Method, Fourth Edition, volume 2, McGraw hill, London (1991)
[11] K. J. bathe, Finite Element Procedures in Engineering Analysis, Pretence Hall Inc. Englewood Cliffs New jersey, (1982)
[12] S. Botello, E. Oñate CALSEF 2.1. Programa para Cálculo de Sólidos y Estructuras por el Método de los Elementos Finitos"CIMNE 83, (1996).

