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Abstract. Let L be a convex superlinear autonomous Lagrangian on a closed con-
nected manifold N . We consider critical values of Lagrangians as defined by R. Mañé
in [23]. We define energy levels satisfying the Palais-Smale condition and we show that
the critical value of the lift of L to any covering of N equals the infimum of the values
of k such that the energy level t satisfies the Palais-Smale condition for every t > k
provided that the Peierls barrier is finite. When the static set is not empty, the Peierls
barrier is always finite and thus we obtain a characterization of the critical value of L
in terms of the Palais-Smale condition.

We also show that if an energy level without conjugate points has energy strictly
bigger than cu(L) (the critical value of the lift of L to the universal covering of N),
then two different points in the universal covering can be joined by a unique solution
of the Euler-Lagrange equation that lives in the given energy level. Conversely, if the
latter property holds, then the energy of the energy level is greater than or equal to
cu(L). In this way, we obtain a characterization of the energy levels where an analogue
of the Hadamard theorem holds. We conclude the paper showing other applications
such as the existence of minimizing periodic orbits in every non-trivial homotopy class
with energy greater than cu(L) and homologically trivial periodic orbits such that the
action of L + k is negative if cu(L) < k < ca(L), where ca(L) is the critical value of
the lift of L the abelian covering of N . We also prove that given an Anosov energy
level, there exists in each non-trivial free homotopy class a unique closed orbit of the
Euler-Lagrange flow in the given energy level.

1. Introduction

In this paper we study geometric and dynamical properties of convex and superlinear
Lagrangians, and it can be considered as a continuation of our previous paper [9]. This
time we study the action functional from the viewpoint of Morse theory and we show,
among other results, that for a compact manifold the critical value as defined by R.
Mañé in [23] can be characterized by the Palais-Smale condition. This will follow from
more general results to be precisely stated below.
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It is well known that the action functional of the Lagrangian

L(x, v) =
1

2
|v|2x

arising from a Riemannian metric satisfies the Palais-Smale condition (cf. [29]). This
condition ensures that the minimax principle holds and from the latter many standard
properties of geodesics easily follow, namely, The Hopf-Rinow theorem, the Hadamard
theorem and the existence of closed geodesics in each homotopy class. As we explain
below, these and other properties as well as the approach in [29] and [31] hold for energy
levels of convex and superlinear autonomous Lagrangians if the energy is greater than
the critical value.

In order to describe precisely our results let us recall some preliminaries.
Let N be a closed connected smooth manifold and let L : TN → R be a smooth

convex superlinear Lagrangian. This means that L restricted to each TxN has positive
definite Hessian and that for some Riemannian metric we have that

lim
|v|→∞

L(x, v)

|v|
=∞,

uniformly on x ∈ N.
Since N is compact, the extremals of L give rise to a complete flow φt : TN → TN

called the Euler-Lagrange flow of the Lagrangian.
Recall that the energy EL : TN → R is defined by

EL(x, v) =
∂L

∂v
(x, v).v − L(x, v).

Since L is autonomous, EL is a first integral of the flow φt.
Recall also that the action of the Lagrangian L on an absolutely continuous curve

γ : [a, b]→ N is defined by

SL(γ) =

∫ b

a

L(γ(t), γ̇(t)) dt.

Given two points, q1 and q2 in N and T > 0 denote by C(q1, q2;T ) the set of absolutely
continuous curves γ : [0, T ] → N , with γ(0) = q1 and γ(T ) = q2. For each k ∈ R we
define the action potential Φk : N ×N → R by

Φk(q1, q2) = inf{SL+k(γ) : γ ∈ ∪T>0C(q1, q2;T )}.

The critical value of L, which was introduced by Mañé in [23], is the real number
c(L) defined as the infimum of k ∈ R such that for some q ∈ N , Φk(q, q) > −∞. Since
L is convex and superlinear and N is compact such a number exists and it has various
important properties [23, 6]. We briefly mention a few of them since we shall need them
below. For any k ≥ c(L), the action potential Φk is a Lipschitz function that satisfies
a triangle inequality. In general the action potential is not symmetric but if we define
dk : N ×N → R by setting

dk(q1, q2) = Φk(q1, q2) + Φk(q2, q1),
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then dk is a distance function for all k > c(L) and a pseudo-distance for k = c(L). In
[23, 6] the critical value is characterized in other ways relating it to minimizing measures
or to the existence of Tonelli minimizers with fixed energy between two points.

We can also consider the critical value of the lift of the Lagrangian L to a covering of
the compact manifold N . Suppose that p : M → N is a covering space and consider the
Lagrangian L : TM → R given by L := L ◦ dp. For each k ∈ R we can define an action
potential Φk in M ×M just as above and similarly we obtain a critical value c(L) for L.
It can be easily checked that if M1 and M2 are coverings of N such that M1 covers M2,
then

c(L1) ≤ c(L2),(1)

where L1 and L2 denote the lifts of the Lagrangian L to M1 and M2 respectively.
Among all possible coverings of N there are two distinguished ones; the universal

covering which we shall denote by Ñ , and the abelian covering which we shall denote by
N . The latter is defined as the covering of N whose fundamental group is the kernel of
the Hurewicz homomorphism π1(N) 7→ H1(N,R). When π1(N) is abelian, Ñ is a finite
covering of N .

The universal covering of N gives rise to the critical value

cu(L)
def
= c(lift of L to Ñ),

and the abelian covering of N gives rise to the critical value

ca(L)
def
= c(lift of L to N).

From inequality (1) it follows that

cu(L) ≤ ca(L),

but in general the inequality may be strict as it was shown in [30].
The critical values have another important feature: they single out those energy levels

in which relevant globally minimizing objects (orbits or measures) live [10, 23, 6]. The
study of these globally minimizing objects has a long history that goes back to M.
Morse [27] and G.A. Hedlund [19]. Recent work on this subject has been done by V.
Bangert [3, 4], M.J. Dias Carneiro [10], A. Fathi [14, 15, 16, 17], R. Mañé [23, 24] and
J. Mather [25, 26]. We refer to [8, 18] for comprehensive accounts of the theory. Static
and semistatic curves are the paradigms of what we mean by globally minimizing orbits
and since they will play an important role in our results we give now their definition (cf.
[23, 26]).

Set c = c(L). We say that x : [a, b] → M is a semistatic curve if it is absolutely
continuous and:

SL+c

(
x|[t0,t1]

)
= Φc (x(t0), x(t1)) ,(2)

for all a < t0 ≤ t1 < b; and that it is a static curve if

SL+c

(
x|[t0,t1]

)
= −Φc(x(t1), x(t0))(3)

for all a < t0 ≤ t1 < b. Observe that since

Φc(x(t0), x(t1)) + Φc(x(t1), x(t0)) = dc(x(t0), x(t1)) ≥ 0
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a static curve is a semistatic curve for which dc(x(t0), x(t1)) = 0 for all a < t0 ≤ t1 < b.

Let Σ̂(L) be the set of vectors v ∈ TM such that the solutions γ : R → M of the

Euler-Lagrange equation satisfying γ̇(0) = v are static. We call Σ̂(L) the static set.
As we mentioned before, one of our aims in this paper is to relate the Morse theory

of the action functional to the critical values. Let H1(Rk) be the set of absolutely
continuous curves x : [0, 1]→ R

k such that∫ 1

0

|ẋ(t)|2 dt <∞.

It is well known that H1(Rk) is a Hilbert space with the inner product defined by

〈x, y〉1 = 〈x(0), y(0)〉
Rk

+

∫ 1

0

〈ẋ(t), ẏ(t)〉
Rk
dt,

where 〈 · , · 〉
Rk

is the standard inner product of Rk.
Given any Riemannian metric ofM we may assume, on account of the Nash embedding

theorem, that M is isometrically embedded in some Rk. Take q1 and q2 in M and
let Ω(q1, q2) be the set of elements of H1(Rk) such that x([0, 1]) ⊂ M , x(0) = q1 and
x(1) = q2. It follows from the arguments in [29] that Ω(q1, q2) inherits a Hilbert manifold
structure compatible with the Riemannian metric on M . We now define another action
AL closely related to the action SL we defined before. Given the Lagrangian L : TM → R

define

AL : R+ × Ω(q1, q2)→ R

by

AL(b, x) =

∫ 1

0

b L(x(t), ẋ(t)/b) dt.

Observe that

AL(b, x) = SL(y),

where y(t) = x(t/b).
We now recall the definition of the Palais-Smale condition. In fact, this is a rather

stronger version of the condition in [29] and [31] that we borrow from [20] and [22].

Definition 1. Let f : X → R be a C1 map where X is an open set of a Hilbert
manifold. We say that f satisfies the Palais-Smale condition if every sequence {xn}
such that {f(xn)} is bounded and ||dxnf || → 0 as n→∞ has a converging subsequence.

We remark that the manifold R+ × Ω(q1, q2) is not complete, however if q1 6= q2 then
the set {AL+k ≤ a} is complete when k is strictly bigger that the critical value. (see
Lemma 15). This is important when we apply the minimax principle (see Proposition
21).

In order to show that the action functional AL+k is C2 and satisfies the Palais-Smale
condition we need the Lagrangian to be quadratic at infinity:
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Definition 2. We say that L : TN → R is quadratic at infinity if there exists a Rie-
mannian metric on N and R > 0 such that for each x ∈ N and |v|x > R, L(x, v) has
the form

L(x, v) =
1

2
|v|2x + θx(v)− V (x),

where θ is a smooth 1-form on N and V : N → R a smooth function.
A lifted Lagrangian L : TM → R is said to be quadratic at infinity if it is the lift of a

Lagrangian quadratic at infinity on N .

In Section 3 (cf. Proposition 18) we shall show that given a Lagrangian L and k ∈ R
there is a Lagrangian L0 quadratic at infinity such that L(x, v) = L0(x, v) for all (x, v)
with E(x, v) ≤ k + 1. We shall also show (cf. Lemma 19) that given two Lagrangians
L and L0 which agree for any (x, v) with E(x, v) ≤ c(L) + 1, then c(L) = c(L0). These
properties motivate the following definition:

Definition 3. We say that the energy level E−1(k) of a convex and superlinear La-
grangian L satisfies the Palais-Smale condition if there is a Lagrangian L0 quadratic at
infinity such that L and L0 agree for any (x, v) with E(x, v) ≤ k + 1 and the action
functional AL0+k satisfies the Palais-Smale condition on R+×Ω(q1, q2) for every q1 6= q2.

In Section 3 we shall prove:

Theorem A. Let M be any covering of the closed manifold N and let L : TM → R be

the lifted Lagrangian. If the static set Σ̂(L) is not empty, then

c(L) = inf
{
t ∈ R : E−1

L (k) satisfies the Palais-Smale condition for every k > t
}
.

When M is compact the set Σ̂(L) is not empty [6, 23] and therefore we obtain:

Corollary. Suppose that M is compact. Then

c(L) = inf
{
t ∈ R : E−1

L (k) satisfies the Palais-Smale condition for every k > t
}
.

S. Bolotin in [5] explores ideas which are similar to the ones we develop here. Using
a somewhat different language he also notes that the Palais-Smale condition holds for
the action AL+k for large values of k but he does not give a characterization of c(L) as
before.

Theorem A will follow from Theorems B and C below. To state these theorems we
need two more definitions. For k ∈ R, let

Φk(q1, q2;T ) := inf
γ∈C(q1,q2;T )

SL+k(γ)

hk(q1, q2) := lim inf
T→+∞

Φk(q1, q2;T ).

The function hc is known as the Peierls barrier [15, 26].
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Theorem B. Assume that L is quadratic at infinity and hk(q1, q2) = +∞. Then the
action functional

AL+k : R+ × Ω(q1, q2)→ R

satisfies the Palais-Smale condition provided q1 6= q2.

Theorem C. Assume that L is quadratic at infinity and that for some pair (q1, q2),
hc(q1, q2) < +∞. Then the action functional

AL+c : R+ × Ω(q1, q2)→ R

does not satisfy the Palais-Smale condition.

At the end of Section 3 we explain in detail how to derive Theorem A from Theorems
B and C. Two extra ingredients needed for this derivation are given by Corollary 12 in
Section 3, which states that the Peierls barrier is finite for every pair (q1, q2) in M when

the static set Σ̂(L) is not empty and Lemma 10 which states that hk(q1, q2) = +∞ for
every pair (q1, q2) provided that k > c(L). We remark that if hc(q1, q2) is finite for some
pair (q1, q2) then it is finite for all pairs (q1, q2).

In the appendix we give an example of a Lagrangian on R2 for which the static set is
empty and the Peierls barrier hc is infinite (and hence the Palais-Smale condition holds
at critical energy). Even though this Lagrangian is not the lift of a Lagrangian on a
compact manifold, it shows that most likely Theorems A, B and C are optimal.

It is unknown whether the energy level E−1
L (k) satisfies the Palais-Smale condition

for k < c(L) (some authors have assumed that the Palais-Smale condition holds at
subcritical energies for magnetic Lagrangians and this gap has been pointed out by S.
Bolotin, see [33] for a discussion of the problem).

In Section 4 we prove an analogue of the Hadamard theorem on fixed energy levels.
A pair of points (x1, v1), (x2, v2) in TM are said to be conjugate if (x2, v2) = φt(x1, v1)
for t 6= 0 and dφt(V (x1, v1)) intersects V (x2, v2) non-trivially. Here, V (x, v) is the
vertical fibre at (x, v) defined as usual as the kernel of dπ(x,v) : T(x,v)TN → TxN where
π : TN → N is the canonical projection. We have:

Theorem D. Let L : TN → R be a convex and superlinear Lagrangian. Assume that
there is q0 ∈ N such that q0 has no conjugate points in E−1

L
(k). Let q̃0 be a lift of q0

to Ñ , the universal covering of N and let L be the lift of L to Ñ . Denote the following
statement by (H):

(H) For every q̃ in Ñ there is a unique solution of the Euler-Lagrange equation of L
with energy k, joining q̃0 to q̃.

Then,

k > cu(L) =⇒ (H)

(H) =⇒ k ≥ cu(L).
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We note that when k = cu(L) there are examples in [7] where (H) does not hold. Also
there are examples in [7] of multivalued Lagrangians, that become honests Lagrangians
in the universal covering for which (H) does hold.

In Section 5 we recall some results on Morse theory that we will use in the last section.
In Section 6 we give applications such as the existence of minimizing periodic orbits in
every non-trivial free homotopy class with energy greater than cu(L) and homologically
trivial periodic orbits such that the action of L + k is negative if cu(L) < k < ca(L),
where ca(L) is the critical value of the lift of L to the abelian covering of N . These results
should be compared with the work of S.P. Novikov, I. Taimanov and A. Bahri and I.
Taimanov on the existence of closed orbits for magnetic Lagrangians. See [2, 28, 33, 34]
and the extensive references therein. We also prove in Section 6 that given an Anosov
energy level, there exists in each non-trivial free homotopy class a unique closed orbit of
the Euler-Lagrange flow in the given energy level.

Acknowledgments: M. Paternain thanks the CIMAT, Guanajuato, for hospitality while
this work was in progress. We thank the referee for pointing out a mistake in a pre-
vious version of this manuscript and for various other corrections and suggestions for
improvement.

2. First and Second Variations

In this section we calculate the first and second variations of the action functional
AL+k. These computations do not need any assumptions on the Lagrangian. However,
if we want them to be the first and second derivative of the action functional AL+k we
need the Lagrangian to be quadratic at infinity.

Take a curve s→ (bs, xs) ∈ R+×Ω(q1, q2) and set b := b0 , x := x0, ξ(t) := ∂xs
∂s
|s=0(t),

α := dbs
ds
|s=0 and g(s) := AL+k(bs, xs). A straightforward calculation in local coordinates

gives:

Lemma 4.

d(b,x)AL+k(α, ξ) := g′(0) = α

∫ 1

0

{
k − EL(x(t), ẋ(t)/b)

}
dt

+

∫ 1

0

{
bLx(x(t), ẋ(t)/b)ξ(t) + Lv(x(t), ẋ(t)/b)ξ̇(t)

}
dt.

Remark 5. If (b, x) is a critical point of AL+k, then y : [0, b]→M given by y(t) = x(t/b)
is a solution of the Euler-Lagrange equation of L with energy k (see [1] and [6]). Indeed,
the second term in the last equation is equal to∫ b

0

(
Lx(y, ẏ)− d

dt
Lv(y, ẏ)

)
η dt ,

where η(t) := ξ(t/b). Since it is zero for all variations η, then y satisfies the Euler-
Lagrange equation. Since the first term is zero for α = 1, then EL(y, ẏ) ≡ k.
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Remark 6.

∂AL+k

∂b
(α) :=

dAL+k(bs, x)

ds
|s=0 = α

∫ 1

0

{
k − EL(x(t), ẋ(t)/b)

}
dt,

=
α

b

∫ b

0

{
k − EL(y(s), ẏ(s))

}
ds,

where y(s) = x(s/b).

Lemma 7.

∂2AL+k

∂2x
(ξ, ξ) :=

d2AL+k(b, xs)

ds2
|s=0

=

∫ b

0

{ηLxx(y, ẏ)η + ηLxv(y, ẏ)η̇ + η̇Lvx(y, ẏ)η + η̇Lvv(y, ẏ)η̇} dt,

where η(t) = ξ(t/b) and y(t) = x(t/b).

Proof . Calculate g′′(0) where g(s) = AL+k(b, xs).

The following lemma is an immediate consequence of the Morse Index Theorem for
convex Lagrangians (cf. [11]).

Lemma 8. Let y, (b, x) be as in the previous lemma. If in addition y is a solution of

the Euler-Lagrange equation with no conjugate points, then ∂2AL+k

∂2x
is positive definite.

The following theorem is a particular case of a theorem due to Smale [31].

Theorem 9. If a Lagrangian L is quadratic at infinity then the corresponding action
functional AL+k : R+ × Ω(q1, q2) → R is a C2 function with respect to the canonical
Hilbert structure of R+ × Ω(q1, q2). Moreover, the differential of AL+k evaluated at the
tangent vector (α, ξ) is given precisely by the number d(b,x)AL+k(α, ξ) defined in Lemma
4.

Lemma 8 motivates the following:

Question: Is it true that (b, x) is a local minimum of AL+k provided that x(t/b) is a
solution of the Euler-Lagrange equation with no conjugate points?

The next example shows that the answer to this question is negative. This example
was motivated by the referee who pointed out a mistake in a previous version of the
mansucript. We thank him or her for this observation. On the other hand we shall show
in Lemma 30 that the answer to the question is affirmative in the case of Anosov energy
levels and the space of closed paths with a fixed non-trivial homotopy class.

Let L be the Lagrangian on TR2 given by:

L(x, y, ẋ, ẏ) = 1
2
(ẋ2 + ẏ2)− xẏ.

We take k = 1/2, q1 = (1, 0) and q2 = (−1, 0). The orbits of L with energy 1/2 are circles
of radius one oriented counterclockwise. Let c0 be the half circle of radius one connecting
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q1 to q2. Let (−ε, ε) 3 s 7→ cs be a small variation of c0 by circles with center at (0, s)
and radius

√
1 + s2. We parametrize these circles by arc length, hence cs connects q1

to q2 in time b(s) =
√

1 + s2(π + 2 a(s)), where a(s) is the angle in (−π/2, π/2) whose
tangent is s. By observing that

(L+ 1
2
)(x, y, ẋ, ẏ) = 1− x ẏ,

when ẋ2 + ẏ2 = 1 one obtains:

A(s) := AL+1/2(bs, xs) = SL+1/2(cs) = b(s)− (1 + s2)
(
π
2

+ a(s) + 1
2

sin(2a(s))
)
.

A somewhat tedious computation shows that:

A′(0) = 0, A′′(0) = 0, A′′′(0) = −2.

Hence s 7→ A(s) does not have a local minumum at s = 0. On the other hand the piece
of orbit [0, π] 3 s 7→ c0(s) does not have conjugate points [8, Example A.3]. Finally we
observe that if we consider a ball in R2 with radius, let us say, four, then L restricted
to this ball can be embedded into a convex superlinear Lagrangian on a closed surface.

3. The Palais-Smale condition for Lagrangians quadratic at infinity

3.1. The Peierls barrier. For k ∈ R, let

Φk(q1, q2;T ) := inf
γ∈C(q1,q2,T )

SL+k(γ)

hk(q1, q2) := lim inf
T→+∞

Φk(q1, q2;T ).

The function hc is called the Peierls barrier [15].

Lemma 10. Set c := c(L).
If k > c then hk(q1, q2) = +∞ for all q1, q2 ∈M .
If k < c then hk(q1, q2) = −∞ for all q1, q2 ∈M .

Proof. If k > c, we have that

Φk(q1, q2;T ) ≥ Φc(q1, q2) + (k − c) T.
Hence hk(q1, q2) = +∞.

If k < c, since Φk(q2, q2) = −∞, there is a curve γ ∈ C(q2, q2;T ) with T > 0 and
SL+k(γ) < 0. Then

Φk(q1, q2; 1 + nT ) ≤ Φk(q1, q2; 1) + nSL+k(γ)
n−→ −∞.

Thus hk(q1, q2) = −∞.

Proposition 11. hc(p, p) = 0 iff p ∈ πΣ̂(L).

Proof. First take p ∈ πΣ̂(L) and let γ : R → M be a static curve with γ(0) = p. Let
ε > 0 be given. For any t > 0 there is a curve γt : [0, Tt] → M such that γt(0) = γ(t),
γt(Tt) = γ(0) and

SL+c(γt) ≤ Φc(γ(t), p) + ε.
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Then

0 ≤ hc(p, p) ≤ lim inf
t→+∞

SL+c(γ|[0,t] ∗ γt)

≤ lim inf
t→+∞

(
SL+c(γ|[0,t]) + SL+c(γt)

)
≤ lim inf

t→∞
(Φc(p, γ(t)) + Φc(γ(t), p)) + ε

= ε,

where the last equality holds because γ is a static curve.
Now assume that hc(p, p) = 0. Then there is Tn → ∞ and Tonelli minimizers γn :

[0, Tn]→M with γn(0) = γn(Tn) = p and SL+c(γn)→ 0. By Lemma 16 the speed of the
Tonelli minimizers γn is bounded and hence there is a subsequence such that γ̇n(0)→ v.
Let γ be the solution of the Euler-Lagrange equation with initial conditions (p, v). We
are going to show that γ is static. Take 0 < t1 < t2 and ε > 0. Since Φc is continuous
we can take n so big that Tn > t2,

SL+c(γn) < ε,

Φc(γ(t1), γ(t2)) < Φc(γn(t1), γn(t2)) + ε

and

Φc(γ(t2), γ(t1)) < Φc(γn(t2), γn(t1)) + ε.

Next observe that

Φc(γn(t1), γn(t2)) ≤ SL+c(γn|[t1,t2])

and

Φc(γn(t2), γn(t1)) ≤ SL+c(γn|[t2,Tn]) + SL+c(γn|[0,t1]).

Hence

Φc(γ(t1), γ(t2)) + Φc(γ(t2), γ(t1)) ≤ 3ε,

and since ε was arbitrary we deduce that γ|(0,∞) is static. By Proposition 3.5.5 in [8],
γ : R→M is a static curve as desired.

Corollary 12. If the static set Σ̂(L) is not empty, then for any pair (q1, q2) we have

hc(q1, q2) ≤ Φc(q1, p) + Φc(p, q2),

for any p ∈ πΣ̂(L).

Proof. From the definition of the Peierls barrier hc we have:

hc(q1, q2) ≤ Φc(q1, p) + hc(p, q) + Φc(q, q2).

Set p = q ∈ πΣ̂(L) and use Proposition 11.
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Even though we do not need the next result for the proof of the theorems in the
introduction, we include it here because it gives an interesting characterization of the
Peierls barrier in terms of the action potential. This result should be compared with
Fathi’s results in [15], in which he characterizes the Peierls barrier in terms of conjugate
weak KAM solutions.

Proposition 13. If M is compact then

hc(x, y) = inf
p∈π(Σ̂(L))

{Φc(x, p) + Φc(p, y)} .

Proof. Recall that when M is compact the set Σ̂(L) is not empty [6, 23]. Using Corollary
12 we get that

hc(x, y) ≤ inf
p∈πΣ̂(L)

[
Φc(x, p) + Φc(p, y)

]
.

Now let γn ∈ C(x, y;Tn) be Tonelli minimizers with Tn → +∞ and SL+c(γn) →
hc(x, y) < +∞. Then 1

Tn
SL+c(γn) → 0. Observe that by Lemma 16 the speed of

the Tonelli minimizers γn is bounded. Let µ be a weak limit of a subsequence of the
probability measures µγn supported on the piece of orbits

[0, Tn] 3 t 7→ (γn(t), γ̇n(t)).

Then µ is a minimizing measure (see [6, 23]). Let q ∈ π
(
supp(µ)

)
and qn ∈ γn([0, Tn])

be such that limn qn = q. Then,

Φc(x, q) + Φc(q, y) ≤ Φc(x, qn) + Φc(qn, y) + Φc(qn, q) + Φc(q, qn)

≤ SL+c(γn) + Φc(qn, q) + Φc(q, qn).

Letting n→∞, we get that

Φc(x, q) + Φc(q, y) ≤ hc(x, y).

3.2. Proof of Theorem B. We begin with the following lemma:

Lemma 14. Suppose that L is quadratic at infinity. Given any coordinate chart there
are positive numbers δ, B, C and D such that in the given chart we have:

C|v − w|2 ≤ (Lv(x, v)− Lv(y, w)) · (v − w) + [B (|v|+ |w|) +D] |v − w| d(x, y)

provided that d(x, y) < δ.

Proof . Take δ such that if d(x, y) < δ then x, y belong to the same coordinate chart
of M . Next we work in local coordinates as if L were defined in R2n.∫ 1

0

(v − w) · Lvv
(
t (x, v) + (1− t) (y, w)

)
· (v − w) dt =

=
(
Lv(x, v)− Lv(y, w)

)
· (v − w)

−
∫ 1

0

(v − w) · Lxv
(
(x, v)t+ (y, w)(1− t)

)
· (x− y) dt.
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Now, since L is quadratic at infinity |Lxv(x, v)| ≤ B1 |v|x+D1 for some positive constants
B1 and D1. On the other hand, since Lvv is positive definite, there is C > 0 such that

uLvv u ≥ C |u|2

for every u. If we now take into account the equivalence between d and the euclidean
metric in the given coordinate chart we can easily obtain the statement of the lemma
for appropriate constants B and D.

The next lemma will ensure that if q1 6= q2 then the set {AL+k ≤ a} is complete when
hk(q1, q2) =∞. This observation is needed when we apply the minimax principle given
by Proposition 21.

Lemma 15. If q1 6= q2 and AL+k(bn, xn) ≤ D then bn is bounded away from zero.

Proof. Since our Lagrangian is quadratic at infinity, there are positive constants D1 and
D2 such that

L(x, v) ≥ D1 |v|2 −D2,

consequently

D ≥ AL+k(bn, xn) ≥ D1

bn

∫ 1

0

|ẋn|2 dt + (k −D2) bn,

and thus there are positive numbers D3 and D4 such that for all n,∫ 1

0

|ẋn|2 dt ≤ D3 bn +D4 b
2
n.(4)

Observe that if bn → 0 then ||xn||1 → 0 and then the length of xn goes to 0 which is
absurd provided q1 6= q2.

Let us begin now with the proof of Theorem B.
Take {(bn, xn)} such that {AL+k(bn, xn)} is bounded and ||d(bn,xn)AL+k||1 → 0. Let

yn(t) = xn(t/bn). Then {bn} is bounded, for if not, we may assume that bn → +∞ and
then

AL+k(bn, xn) = SL+k(yn) ≥ Φk(q1, q2; bn)
n−→ +∞.

So, we can assume that {bn} converges. Let b = limn bn. Let

wn(s) =

{
yn(s) if s ≤ bn,

q2 if bn ≤ s ≤ b+ 1.

Then wn ∈ C(q1, q2; b+ 1) and

SL(wn) = SL(yn) + L(q2, 0) (b+ 1− bn)

≤ AL+k(bn, xn)− k bn + 2L(q2, 0),

if bn ≥ b − 1. By the same arguments in the proof of Tonelli’s Theorem and by the
Arzela-Ascoli Theorem there is a convergent subsequence of wn in the C0 topology (cf.
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[8, 25]). This implies that also {yn} and {xn} have convergent subsequences in the C0

topology. For the sequel we work with a convergent subsequence of {xn}. We shall
assume without loss of generality that the limit point of the sequence {xn} is contained
in a coordinate chart, for if not we can cover it with a finite number of charts and we do
the argument below on each chart. Hence for n large enough xn has its image contained
in the same local chart as the limit point.

By Lemma 15 we may assume that bn → b 6= 0. Write zn = xn/bn. Also by Lemma
15 (see inequality (4)) there is K > 0 such that

||xn||1 ≤ K and ||zn||1 ≤ K

(recall that || . ||1 is the norm in H1(Rk)). Now we follow the lines of Lemma 7.1 in [31].
Since ||d(bn,xn)AL+k||1 → 0 , given ε there is N such that

||d(bn,xn)AL+k(η)− d(bm,xm)AL+k(η)||1 < ε

for every n, m ≥ N and ||η||1 ≤ 2K. We can take in particular η = xn − xm and
therefore using Lemma 4 we have,∣∣∣ ∫ 1

0

{bnLx(xn, żn)− bmLx(xm, żm)} (xn − xm) dt+

+

∫ 1

0

{Lv(xn, żn)− Lv(xm, żm)} (ẋn − ẋm) dt
∣∣∣ < ε

for m, n > N . Since our Lagrangian is quadratic at infinity, then there are positive
constants a and c such that ||Lx|| < a |v|2x + c. Using (4) in the proof of Lemma 15
we have that the first term is bounded by (2 aD3 + (bn + bm)(aD4 + c))||xn − xm||∞.
Consequently the second integral is small for big m and n.

Now we apply Lemma 14 to obtain

C

∫ 1

0

∣∣żn − żm∣∣2 dt ≤ ∫ 1

0

{Lv(xn, żn)− Lv(xm, żm) } ·
(
żn − żm

)
dt+

+ B

∫ 1

0

(
|żn|+ |żm|)

∣∣żn − żm∣∣ |xn − xm| dt
+D

∫ 1

0

∣∣żn − żm∣∣ |xn − xm| dt.
Now ∫ 1

0

(
|żn|+ |żm|)

∣∣żn − żm∣∣ dt ≤ (||zn||1 + ||zm||1
)
‖zn − zm‖1

by the Cauchy-Shwartz inequality. Therefore

C
∥∥żn − żm∥∥2

L2 ≤
∫ 1

0

{Lv(xn, żn)− Lv(xm, żm) } ·
(
żn − żm

)
dt+

+ (4K2 B + 2KD) ||xn − xm||∞.
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Since xn converges in the C0 topology and the integral is small, we conclude that zn
converges in the H1-norm. Again, since b 6= 0, xn also converges in the H1-norm,
finishing the proof of the theorem.

3.3. Proof of Theorem C.

Lemma 16 ([25]). For B > 0 there exists C = C(B) > 0 such that if x, y ∈ M and
γ ∈ C(x, y;T ) is a solution of the Euler-Lagrange equation with AL(γ) ≤ B T , then
|γ̇(t)| < C for all t ∈ [0, T ].

Proof. By the superlinearity there is D > 0 such that L(x, v) ≥ |v| −D for all (x, v) ∈
TM . Since SL(γ) ≤ B T , the mean value theorem implies that there is t0 ∈ (0, T ) such
that

|γ̇(t0)| ≤ D +B.

The conservation of the energy implies that there is C = C(B) > 0 such that |γ̇| ≤ C.

Lemma 17. For all x, y ∈ M and ε > 0, the function t 7→ Φk(x, y; t) is Lipschitz on
ε < t < +∞.

Proof. Fix ε > 0. If T > ε, let γ ∈ C(x, y;T ) be a Tonelli minimizer. Let τ : [0, T ]→M
be a geodesic with speed d(x, y)/T < d(x, y)/ε connecting x to y. Let

B = max
{(x,v): |v|≤d(x,y)/ε}

L(x, v).

Then since γ is a Tonelli minimizer we have SL(γ) ≤ SL(τ) ≤ B T . On account of
Lemma 16 there exists C = C(ε) > 0 such that |E(γ, γ̇) − k| ≤ C(ε) + |k|. Denote
h(s) := Φk(x, y; s). If γs(t) := γ(Tt/s) with t ∈ [0, s], then h(s) ≤ SL+k(γs) =: B(s).
Using Remark 6 we have that

f(T ) : = lim sup
δ→0

h(T + δ)− h(T )

δ

≤ B′(T ) =
1

T

∫ T

0

[
k − E(γ, γ̇)

]
dt

≤ C(ε) + |k|.

If S, T > ε we have that

Φk(x, y;S) ≤ Φk(x, y;T ) +

∣∣∣∣∫ S

T

f(t) dt

∣∣∣∣
≤ Φk(x, y;T ) + C(ε) + |k| |T − S|.

Since we can reverse the roles of S and T , this implies the Lipschitz condition for
T 7→ Φk(x, y;T ).
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We begin now with the proof of Theorem C. Let f(t) := Φc(x, y; t).

Case 1: Suppose first that there is T0 > 0 such that f is monotonous on [T0,+∞).
Since by Lemma 17 f is Lipschitz on [T0,+∞) by Rademacher’s theorem [13], f is
differentiable almost everywhere and

f(t)− f(T0) =

∫ t

T0

f ′(s) ds.(5)

Since f is monotonous f ′ ≥ 0 or f ′ ≤ 0 for all t ≥ T0 and lim
t→+∞

f(t) = lim inf
t→+∞

f(t) =

hc(x, y) < +∞. This implies that there is a sequence of differentiability points tn → +∞
such that f ′(tn) → 0, for otherwise there would exist K > 0 and R > 0 such that
f ′(s) ≥ K > 0 for s ≥ R or f ′(s) ≤ −K for s ≥ R. Consequently equation (5) would
imply that limt→+∞ f(t) is infinite.

Let γn be a Tonelli minimizer in C(x, y; tn) and ηs(t) = γn( tn
s
t). Then SL+k(ηs) ≥ f(s)

for s in an open interval contaning tn. This implies that

f ′(tn) = d
ds

∣∣
tn
SL+k(ηs) =

1

tn

∫ tn

0

[
k − E(γn, γ̇n)

]
dt,

where the second equality follows from Remark 6. Since γn is a solution of the Euler-
Lagrange equation, by Remark 5 and Remark 6, if xn(s) = γn(s tn)

dAL+k(tn, xn)(ξ, α) = α f ′(tn)→ 0.

Observe also that AL+k(tn, xn) → hc(x, y) < +∞. On the other hand (tn, xn) does not
converge.

Case 2: Suppose that the set of local minima of f is unbounded. We claim that there
exists a sequence tn → +∞ of local minima of f such that limn f(tn) = lim inft→+∞ f(t).
For let sn be an increasing sequence of local minima of f such that sn → +∞. There
exists a sequence rn > sn such that limn f(rn) = lim inft→+∞ f(t). Excluding some
sn’s if necessary we can assume that sn < rn < sn+1. Minimizing f on the interval
[sn, sn+1], we obtain a local minimum tn ∈ [sn, sn+1] such that limn tn = limn sn = +∞
and f(tn) ≤ f(rn) so that limn f(tn) = lim inft→+∞ f(t).

Let γn be a Tonelli minimizer in C(x, y; tn) and ηs(t) = γn( tn
s
t). Then SL+k(ηs) ≥ f(tn)

for s in a neighbourhood of tn. In particular, tn is also a local minimum of s 7→ SL+k(ηs).
Since s 7→ SL+k(ηs) is differentiable, d

ds
|tnAL+k(ηs) = 0. By Remark 5 and Remark 6, if

xn(s) = γn(s tn)

dAL+k(tn, xn)(ξ, α) = α d
ds
|tnAL+k(ηs) = 0.

Observe also that AL+k(tn, xn) → hc(x, y) < +∞. On the other hand (tn, xn) does not
converge.
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3.4. Proof of Theorem A.

Proposition 18. Given a convex and superlinear Lagrangian L : TN → R and k ∈ R
there is a Lagrangian L0, convex and quadratic at infinity such that L0(x, v) = L(x, v)
for every (x, v) such that EL(x, v) ≤ k + 1.

Proof. Without loss of generality we may assume that L ≥ 0.
Choose R > 0 such that

EL(x, v) ≤ k + 1 implies |v|x ≤ R.

Define ψ : R→ R by
ψ(s) = max

x,|v|=1
L(x, sv).

Let ϕ1 : R → R be an even smooth strictly convex function such that ϕ1(2R) =
ϕ1(−2R) = 0 and such that ϕ1(s) > ψ(s) for |s| > R1 where R1 is a sufficiently large
positive number bigger than 2R. Define L1(x, v) := ϕ1(|v|x) and L2 := max{L,L1}.
Then L2 coincides with L for those (x, v) with |v|x ≤ 2R and coincides with L1 for those
(x, v) with |v|x > R1. The Lagrangian L2 is strictly convex and may be approximated
by a smooth strictly convex Lagrangian L3 such that L3 coincides with L for those (x, v)
with |v|x ≤ R and coincides with L1 for those (x, v) with |v|x > R1. We briefly explain
how to achieve this approximation given a strictly convex function f : Rn → R. This
approximation can be done on each tangent space TxN . The idea is to smooth out

f using a convolution. Let η ∈ C∞(Rn) be the function that equals C exp
(

1
|x|2−1

)
if

|x| < 1 and 0 if |x| ≥ 1. The constant C is selected so that
∫
Rn
η dx = 1. For each ε > 0

set

ηε(x) :=
1

εn
η
(x
ε

)
.

The functions ηε are C∞, their integrals equal one and their support is inside the ball
of radius ε around the origin. The function η is called the standard mollifier. We define
the mollification of f by f ε := ηε ∗ f . That is,

f ε(x) =

∫
Rn

ηε(y − x)f(y) dy =

∫
Rn

ηε(y)f(x+ y) dy.

It is straightforward to verify that if f is strictly convex then f ε is also strictly convex.
Moreover f ε is C∞ and approximates f as ε → 0 uniformly on compact subsets [12,
Appendix C]. It follows that the Hessian of f ε is positive definite.

Suppose in addition that f is C∞ in some open set U of the form,

U = {x ∈ Rn : |x| < a+ δ and |x| > b− δ},
with 0 < a < b and δ very small. Now let r1 and r2 be positive numbers such that
r1 < a < b < r2. Choose a smooth function α : Rn → R such that

1. 0 ≤ α(x) ≤ 1 for all x ∈ Rn;
2. α(x) = 0 for a < |x| < b;
3. α(x) = 1 for |x| < r1 and |x| > r2.

Now let hε := (1− α)f ε + αf = f ε + α(f − f ε). We have:
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1. hε is C∞;
2. hε coincides with f for |x| < r1 and |x| > r2;
3. for any ε sufficiently small the function hε is strictly convex since the derivatives

of f ε approximate the derivatives of f uniformly on the set r1 ≤ |x| ≤ a and
b ≤ |x| ≤ r2 as ε→ 0.

Then hε gives the desired approximation of f .
Let us complete now the proof of the proposition. Let ϕ2 : R → R be a smooth

strictly convex function such that

• ϕ2(s) = ϕ1(s) for |s| ≤ R1 + 1;
• ϕ2(s) = s2 for |s| > R2,

where R2 is a sufficiently large positive number bigger than R1 +1. Finally let L0 be the
Lagrangian which coincides with L3 for those (x, v) with |v|x ≤ R1 and coincides with
ϕ2(|v|x) for those (x, v) with |v|x ≥ R1. Then, L0 is smooth, strictly convex, quadratic
at infinity and coincides with L for those (x, v) with |v|x ≤ R.

Lemma 19. Assume that L and L0 agree on the set of those (x, v) satisfying EL(x, v) ≤
c(L) + 1. Then c(L0) = c(L).

Proof. We use the following characterization of the critical value taken from [9]

c(L) = inf
u∈C∞(M,R)

sup
x∈M

H(x, dxu),(6)

where H : T ∗M → R is the Hamiltonian associated to L. Let 0 < ε < 1. Observe that
H(x, p) < c(L) + ε implies H0(x, p) = H(x, p) < c(L) + ε, where H0 is the Hamiltonian
associated to L0. By (6) there is u ∈ C∞(M,R) such that H(x, dxu) < c(L) + ε and
hence H0(x, dxu) = H(x, dxu) < c(L) + ε. Since ε is arbitrary, we obtain c(L0) ≤ c(L).
Changing the roles of H0, H, c(L0), c(L) we obtain c(L) ≤ c(L0), concluding the proof.

Corollary 20. Given a convex superlinear Lagrangian L : TM → R and k ≥ c(L) there
is a Lagrangian L0 convex and quadratic at infinity, such that L and L0 agree on the set
of those (x, v) satisfying EL(x, v) ≤ k + 1 and c(L0) = c(L).

Proof. It follows from Proposition 18 and Lemma 19.

Let us prove Theorem A. Take L0 such that c(L0) = c(L) according to the preceding
corollary. Since L0 and L agree on a neighbourhood of E−1(c(L)), then L and L0 have the
same static set since the latter must be contained in E−1(c(L)). Now if k > c(L0) = c(L),
the barrier hk of L0 is +∞, and then AL0+k satisfies the Palais-Smale condition by
Theorem B. This means that E−1

L (k) is a Palais-Smale level. On the other hand, since

the static set Σ̂(L) is not empty, hc < +∞, and then Theorem C completes the proof.
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4. Proof of Theorem D

The statement k > cu(L) ⇒ (H) was proved in [7] and could also be obtained using
the corollary of Theorem A in [9]: we reparametrize the energy level in the universal
covering to obtain a complete Finsler metric to which we apply Morse theory which is
known to hold for Finsler geometry.

Now we prove that (H) =⇒ k ≥ cu(L). Let L be the lift of L to TÑ . Recall that
the Hamiltonian H associated to L is given by

H(x, p) = sup {p(v)− L(x, v) | v ∈ TxÑ },(7)

and the supremum is achieved at v such that p = Lv(x, v). Thus H(x, Lv(x, v)) =
E(x, v).

Given q̃ ∈ Ñ , let (bq, xq) be the unique critical point of AL+k in R+ × Ω(q̃0, q̃). Write

yq̃(t) := xq(t/bq̃) and define f : Ñ → R by f(q̃) = AL+k(bq̃, xq̃) = SL+k(yq̃). The
uniqueness of yq̃ implies that f is of class C1 because it is a composition of the action

functional with an analogue of the exponential map expq̃ on E−1
L (k). Let α : (−ε, ε)→ Ñ

be a smooth curve such that α(0) = q̃ and α̇(0) = w ∈ Tq̃Ñ . If we differentiate f(α(s))
at s = 0 using the first variation given by Lemma 4 and integration by parts we obtain:

dq̃f(w) = Lv(q̃, ẏq̃(bq̃)) · w.
This implies that

H(q̃, dq̃f) = E(q̃, ẏq̃(bq̃))) = k.

In [9] we showed that

cu(L) = inff∈C∞(Ñ,R) supx∈Ñ H(x, dxf) .

However the same proof in [9] shows that one can replace in the above equality C∞(Ñ ,R)
by Ck(Ñ ,R) for any k ≥ 1 and we obtain the same critical value. We see right away

that k ≥ cu(L̃).

5. Some results on Morse theory

In this section we recall some results on Morse theory (cf. [29, 31]) that we shall use
in the next section.

Let X be an open set in a Hilbert manifold and f : X → R is a C2 map. The following
version of the minimax principle (Proposition 21 below) is a modification of that of [20]
(see also [32]). The only (minor) difference with the usual minimax principle is that our
manifold X is not necessarily complete, but instead each set [f ≤ b] ⊆ X is complete.

Observe that if the vector field Y = −∇f is not globally Lipschitz, the gradient flow
ψt of −f is a priori only a local flow. Given p ∈ X, t > 0 define

α(p) := sup{ a > 0 | s 7→ ψs(p) is defined on s ∈ [0, a] }.
We say that a function τ : X → [0,+∞) is an admisible time if τ is differentiable and
0 ≤ τ(x) < α(x) for all x ∈ X. Given and admisible time τ , and a subset F ⊂ X. define

Fτ := {ψτ(p)(p) | p ∈ F }.
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Let F be a family of subsets F ⊂ X. We say that F is forward invariant if Fτ ∈ F
for all F ∈ F and any admisible time τ . Define

c(f,F) = inf
F∈F

sup
p∈F

f(p).

Proposition 21. Let f be a C1 function satisfying the Palais-Smale condition. Assume
also that F is forward invariant under the gradient flow of −f . Suppose that there is b
such that −∞ < c(f,F) < b < +∞ and such that the subset [f ≤ b] ⊆ X is complete.
Then c(f,F) is a critical value of f .

Proof. We borrow the following lemma from [31],

Lemma 22. Suppose that f : X → R is C1, ψt is the gradient flow of −f and the subset
[a ≤ f ≤ b] ⊂ X is complete. Then the flow ψt is relatively complete on [a ≤ f ≤ b],
that is, if a ≤ f(p) ≤ b, then either α(p) = +∞ or f(ψβ(p)) ≤ a for some 0 ≤ β < α(p).

Proof. Let ψt be the flow of Y = −∇f . Then

f(ψt1(p))− f(ψt2(p)) = −
∫ t2

t1

∇f(ψs(p)) · Y (ψs(p)) ds =

∫ t2

t1

‖Y (ψs(p))‖2 ds.(8)

Moreover, using the Cauchy-Schwartz inequality, we have that

d(ψt1(p), ψt2(p))2 ≤
[ ∫ t2

t1

‖Y (ψs(p))‖ ds
]2

≤ |t2 − t1|
∫ t2

t1

‖Y (ψs(p))‖2 ds.

Thus

d(ψt1(p), ψt2(p))2 ≤ |t2 − t1| | f(ψt1(p))− f(ψt2(p)) |.(9)

Let I = [0, α[ a maximal interval of definition of t 7→ ψt(p). Suppose that a ≤ f(ψt(p)) ≤
b for 0 ≤ t < α <∞. Let tn ↑ α. By inequality (9), n 7→ ψtn(p) is a Cauchy sequence on
[a ≤ f ≤ b]. Since [a ≤ f ≤ b] is complete, it has a limit q = limn ψtn(p) = ψα(p). Since
f is C1, we can extend the solution t 7→ ψt(p) at t = α. This contradicts the definition
of α.

Write c = c(f,F). We shall prove that for all ε > 0 there is a critical value cε such
that c− ε < cε < c+ ε. Then, using ε = 1

n
, the Palais-Smale condition implies that c is

a critical value.
Suppose that there are no critical points on A(ε) := [c− ε ≤ f ≤ c + ε]. The Palais-

Smale condition implies that there is δ > 0 such that ‖∇f(p)‖ > δ for all p ∈ A(ε).
If f(p) ≤ c+ ε, let

τ(p) := inf{ t > 0 | s 7→ ψs(p) is defined on [0, t] and f(ψt(p)) ≤ c− ε }.

Since s 7→ f(ψs(p)) is decreasing, by Lemma 22, either τ(p) = +∞ or τ(p) < α(p) and
f(ψτ(p)(p)) = c− ε. Since ‖∇f‖ > δ on A(ε), by equation (8),

c− ε ≤ f(ψt(p)) ≤ f(p)− t δ2 ≤ c+ ε− t δ2 for 0 ≤ t ≤ τ(p).
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Thus τ(p) ≤ 2ε/δ2 for all p ∈ A(ε); in particular this shows that τ(p) cannot be +∞.
Observe that the implicit function theorem applied to the function F (x, t) = f(ψt(x))
implies that p 7→ τ(p) is differentiable because ∂

∂t
F (x, t) = ∇f ·X = −‖∇f‖ < −δ.

By the definition of c(f,F) there exists F ∈ F such that

sup
x∈F

f(x) ≤ c+ ε.

Then
sup
x∈Fτ

f(x) = sup
x∈F

f(ψτ(p)(p)) ≤ c− ε.

Since τ is an admisible time, this contradicts the definition of c(f,F).

From Proposition 21 we derive, taking F to be the family of sets of the form {p} with
p ∈ X, the following

Corollary 23. Let f : X → R be a C2 function for which [f ≤ b] is complete for every
b. Suppose that f is bounded from below and satisfies the Palais-Smale condition. Then
f has a global minimum.

It is convenient to obtain a further refinement of the corollary above which will be
useful in the next section.

Corollary 24. Let X be a connected manifold. Let f : X → R be a C2 function for
which [f ≤ b] is complete for every b, satisfying the Palais-Smale condition. Suppose that
p1 is a relative minimizer of f and suppose that f admits a second relative minimizer
p2 6= p1. Then,

1. either there exists a critical point p of f which is not a relative minimum or
2. p1 and p2 can be connected in any neighborhood of the set of relative minimizers p

of f with f(p) = f(p1). Necessarily then f(p1) = f(p2).

Proof. A detailed proof can be found in [32, Theorem 10.3]. The idea is to apply again
the minimax principle; this time F is the family of subsets of the form x([0, 1]) where x
is a curve joining p1 to p2.

We conclude this section with the following suggestive remark. Let F be the family of
all subsets F of T ∗M of the form F = {(x, dxu) : x ∈M} where u ∈ C∞(M,R). Then

c(H,F) = inf
F∈F

sup
(x,p)∈F

H(x, p)

= inf
u∈C∞(M,R)

sup
x∈M

H(x, dxu)

= c(L),

where the last equality is proved in [9]. Hence Mañé’s critical value resembles a critical
value of H as a smooth function even though in general it is not a critical value of H
as a smooth function. This resemblance shows that the name “critical value” for c(L)
is appropriate and explains the (intentional) similarities in our notation.
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6. Applications to the reduced action functional

6.1. Periodic Orbits. In this subsection we show the existence of periodic orbits in
every nontrivial free homotopy class and every energy level above cu(L), where L : TN →
R is a convex Lagrangian quadratic at infinity and the manifold N is compact. Let σ
be a nontrivial free homotopy class of closed loops in a compact manifold N . As before,
define Ωσ as the set of elements of R+ ×H1(Rk) of the form (b, x) where x([0, 1]) ⊂ N ,
x(0) = x(1) and x ∈ σ. Let L : TN → R be a convex and superlinear Lagrangian.

The action AL : R+ × Ωσ → R is defined by

AL(b, x) =

∫ 1

0

b(L(x(t), ẋ(t)/b)) dt.

The previous discussion about the Palais-Smale condition translates to the case of free
loops in a non trivial free homotopy class with only minor changes. In particular if L is
quadratic at infinity and k > cu(L), then AL+k satisfies the Palais-Smale condition on
R

+ × Ωσ. However one has to use the compactness of N in the following lemma.

Lemma 25. Let k > cu(L) and (bn, xn) ∈ R+ × Ωσ such that AL+k(bn, xn) is bounded.
Then {(bn, xn)} has a converging subsequence in the C0 topology.

Let us prove first:

Lemma 26. If k ≥ cu(L), then

inf
R+×Ωσ

AL+k > −∞.

Proof. Fix x0 ∈ σ and let R be twice the diameter of N . Take C > 0 such that

SL+k(z) ≤ C

for all curves z : [0, R] → N such that |ż| ≤ 1. Let (b, x) be an arbitrary element of
R

+×Ωσ. Let x1(t) := x(t/b). Then there is a curve z, parametrized by arc length, with
length not greater than R such that γ = x−1

0 ∗ z ∗ x1 ∗ z−1 is homotopic to zero.
Since γ lifts as a closed curve we have

SL+k(γ) ≥ 0.

Then

SL+k(x1) ≥ −SL+k(x0)− 2C.

Since SL+k(x1) = AL+k(x), we are done.

Proof of Lemma 25. Observe that if k > c := cu(L) then,

AL+k(bn, xn) = AL+c(bn, xn) + (k − c)bn,
hence if AL+k(bn, xn) is bounded it follows that {bn} is also bounded. Since the manifold
N is compact by the same arguments in the proof of Tonelli’s Theorem in Ωσ and by
the Arzela-Ascoli Theorem there is a convergent subsequence of xn in the C0 topology
(cf. [8, 6, 25]) and hence Lemma 25 follows.
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Using Corollary 23 of the previous section we can obtain right away the following
theorem:

Theorem 27. Let N be a closed manifold and let L : TN → R be a convex Lagrangian
quadratic at infinity. Then for every k > cu(L) and every nontrivial free homotopy class
σ there is a periodic orbit of L in σ having energy k that minimizes the action of AL+k

on R+ × Ωσ.

We conclude this subsection by showing:

Proposition 28. Let cu(L) < k < ca(L). Then there is a periodic orbit γ of L which is
homologically trivial and also has SL+k(γ) < 0.

Proof. Since k < ca(L) there is a closed curve α such that

SL+k(α) < 0.

Such a curve cannot be homotopically trivial, otherwise, we lift it to the universal
covering as a closed curve having negative action, contradicting the condition cu(L) < k.
Let σ be the (non trivial) homotopy class of α.

By the previous theorem

AL+k : R+ × Ωσ → R

has a global minimum (b, x) which is a periodic orbit with energy k. If we set y(t) :=
x(t/b), then

AL+k(b, x) = SL+k(y) ≤ SL+k(α) < 0,

as desired.

6.2. Periodic orbits of Anosov energy levels. In this last subsection we show the
following theorem. It was proved for geodesic flows by W. Klingenberg [21].

Theorem 29. Let N be a closed manifold and let L : TN → R be a convex superlinear
Lagrangian. Suppose that the Euler-Lagrange flow of L restricted to the regular energy
level E−1(k) is Anosov. Then in any non-trivial free homotopy class there is a unique
closed orbit of L with energy k.

Proof. We proved in [9] that if the Euler-Lagrange flow of L restricted to the regular
energy level E−1(k) is Anosov then k > cu(L). Let σ be a non-trivial free homotopy
class. Without loss of generality we can assume that L is quadratic at infinity and hence
AL+k satisfies the Palais-Smale condition on R+ × Ωσ. By Theorem 27 we know that
there exists a closed orbit of L with energy k that minimizes AL+k on R+ × Ωσ. The
next lemma shows in fact that every closed orbit with energy k in the homotopy class σ
has this minimizing property. We will postpone its proof until we complete the proof of
the theorem.

Lemma 30. Every closed orbit of L with energy k in the homotopy class σ is a minimum
of AL+k on R+ × Ωσ.



THE PALAIS-SMALE CONDITION 23

Now suppose that we have two geometrically different closed orbits γ1 and γ2 of L
with energy k in the free homotopy class σ. By Lemma 30 all the critical points of AL+k

on R+×Ωσ are minimizers and hence in Corollary 24 the second alternative holds. This
contradicts that γ1 (or γ2) is hyperbolic.

Proof of Lemma 30. Let γ be a closed orbit of L with energy k in the free homotopy
class σ. Let W s(γ) be the weak stable leaf of γ for the corresponding Hamiltonian

flow and let W̃ s(γ) be its lift to the universal covering. We proved in [9] that W̃ s(γ)

is the graph of an exact 1-form. This means that there exists u : Ñ → R such that

W̃ s(γ) = {(x, dxu) : x ∈ Ñ} and since W̃ s(γ) is contained in the energy level k we have

that H(x, dxu) = k for all x ∈ Ñ . By the relation between H and L we have

L(x, v)− dxu(v) + k ≥ 0,(10)

and equality holds if and only if Lv(x, v) = dxu, i.e. when (x, v) belongs to the inverse

image of W̃ s(γ) under the Legendre transform which is the same as the lift of the weak
stable leaf for the Euler-Lagrange flow on TN .

Let D ⊂ Ñ be a fundamental domain for the action of π1(N). Let γ̃ be a lift of the

closed curve γ : [0, T ]→ N to Ñ with initial point in D. Let η : [0, T1]→ N be a closed

curve in the free homotopy class σ and let η̃ be a lift to Ñ with initial point in D. Let

a : [0, 1] → Ñ be a curve such that a(0) = γ̃(0) and a(1) = η̃(0). Let ϕ : Ñ → Ñ be

the covering transformation that takes γ̃(0) to γ̃(T ). Let bn : [0, 1] → Ñ be the curve
ϕna−1. Using (10) we get:∫

a∗η̃∗···∗ϕn−1η̃∗bn
L− du+ k ≥ 0 =

∫
γ̃∗···∗ϕn−1γ̃

L− du+ k.

Observe that the curves a ∗ η̃ ∗ · · · ∗ ϕn−1η̃ ∗ bn and γ̃ ∗ · · · ∗ ϕn−1γ̃ have the same end
points, hence ∫

a

(L+ k) +

∫
bn

(L+ k) + n

∫
η̃

(L+ k) ≥ n

∫
γ̃

(L+ k)

Since
∫
bn

(L+ k) is independent of n, diving by n and letting n→∞ we obtain:

SL+k(η) ≥ SL+k(γ).

7. Appendix: an example of a Lagrangian with hc = +∞.

Let L : TR2 → R be L(x, v) = 1
2
|v|2 + ψ(x), where | · | is the euclidean metric on

R
2 and ψ(x) is a smooth function with ψ(x) = 1

|x| for |x| ≥ 2, ψ > 0 and ψ(x) = 2 for

0 ≤ |x| ≤ 1.
Then

c(L) = − inf ψ = 0,
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because if γn : [0, Tn] → R
2 is a smooth closed curve with length `(γn) = 1, |γn(t)| ≥ n

for t ∈ [0, Tn] and energy E(γn) = 1
2
|γ̇n|2 − ψ(γn) ≡ 0, then

c(L) ≥ − inf
n>0

AL(γn) ≥ −
∫ Tn

0

1
2
|γ̇n|2 + ψ(γn)

= −
∫ Tn

0

|γ̇n|2 ≥ −
√

2
n
−→ 0.

On the other hand,

c(L) = − inf {AL(γ) | γ closed } ≤ 0,

because L > 0.
Observe that since L > 0 and on compact subsets of R2, L > a > 0, then we have

that

dc(x, y) = Φc(x, y) > 0 for all x, y ∈ R2 with x 6= y.

Hence Σ̂(L) = ø.
Suppose that hc(0, 0) < +∞. For every x ∈ R2 there exists a vector v ∈ TxR2 such that

the solution of the Euler-Lagrange equation with initial conditions (x, v) is semistatic in
forward time [9]. Let v be such a vector in T0R

2 and write xv(t) = (r(t), θ(t)) in polar
coordinates about the origin 0 ∈ R2. Then lim inft→+∞ r(t) = +∞ because otherwise the

orbit of v would lie on a compact subset of E−1(0) and then ø 6= ω− limit(v) ⊆ Σ̂(L) = ø
(see [8] for a proof of the fact that the ω − limit set of a forward semistatic orbit is
contained in the static set). Note that for any t with r(t) ≥ 2 we have:

|ẋv(t)| =
√

2
r(t)

and

L(φt v) = |ẋv(t)|2 =
√

2
r(t)
|ẋv(t)|.

Let Tn → +∞ be such that r(Tn) → +∞. Hence there is n0 such that for all n ≥ n0,
r(Tn) ≥ 2. Since L+ c = L > 0, then

hc(0, 0) ≥
∫ +∞

0

(L(φt(v)) + c) dt

≥ lim sup
Tn

∫ Tn

Tn0

√
2
r(t)
|ẋv(t)| dt

≥ lim sup
Tn

∫ Tn

Tn0

√
2
r(t)
|ṙ| dt

≥ lim sup
Tn

∫ Tn

Tn0

√
2
r
ṙ dt

= lim sup
n

∫ r(Tn)

Tn0

√
2
r
dr = +∞.
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