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ABSTRACT

We consider the problem of finding a generalised natural conjugate prior den-
sity for the parameters (β, Σ) in the context of the singular multivariate linear
model, Y = Xβ + ε, Y ∈ IRN×p, X ∈ IRN×q, r(X) = q (full rank), β ∈ IRq×p

and ε ∼ NN,r
N×p(0, Σ, IN), matrix-variate singular normal distribution, that is

r(Σ) = r < p (singular model). We also provide the posterior distribution of

∗This article was written while the first author was a Visiting Professor at the Centro de
Investigación en Matemáticas, Guanajuato, Gto., México.
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(β, Σ), as well as the corresponding marginal posterior distributions for β and
Σ.

1. INTRODUCTION

In the classical approach of statistics, the multivariate linear model under dif-
ferent kinds of singularities, has been studied by a number of authors, see for
example, Khatri (1968) and Srivastava and Khatri [pp. 174-175] (1979). In the
area of Bayesian inference, the nonsingular multivariate linear model has been
considered using both noninformative and informative priors, by, among oth-
ers, Box and Tiao [Chapter 8] (1979) and Press[Section 8.6] (1982). However,
due to the inherent difficulties when dealing with probability distributions of
singular random matrices, the multivariate linear model had not been studied
from a bayesian point of view when there are singularities in its parameters.
Recently, Dı́az-Garćıa et al (2003a) have approached the subject of Bayesian in-
ference for the singular multivariate linear model using noninformative priors,
also they have treated informative priors for inference on covariance matrices,
see Dı́az-Garćıa et al (2003b).
Following the ideas presented in Press (1982), we extend in this paper the
study of generalised natural conjugate prior distributions to the singular mul-
tivariate linear model with errors distributed as matrix-variate singular normal
distribution. Conjugate prior distributions is a class of prior distributions with
the property that the posterior falls within the same family as the prior, this
property is particularly useful in the singular case to avoid computational
difficulties. The structure of the paper is as follows. In section 2 we intro-
duce necessary notation and give explicit expressions for the densities of the
matrix-variate singular normal and generalised inverse Wishart distributions.
The generalised natural conjugate prior for the parameters (β, Σ) in the sin-
gular multivariate linear model is obtained in Section 3. We summarize this
result in Theorem 1 together with the expressions for the joint posterior and
the corresponding marginal distributions. We point out in passing, that the
marginal posterior distribution for Σ, as obtained by Press (1982) is incorrect,
the corrected version can be obtained from Theorem 1 (iii) as a particular
case.

2. NOTATION AND PRELIMINARY RESULTS

Let L+
p,N(s) be the linear space of all N×p real matrices of rank s ≤ min(N, p)

with s distinct singular values. The set of matrices H1 ∈ Lp,N such that
H ′

1H1 = Ip is a manifold denoted Vp,N , called Stiefel manifold. In particular,
Vp,p is the group of orthogonal matrices O(p). Denote by Sp, the homogeneous
space of p×p positive definite symmetric matrices; S+

p (s), the (ps−s(s−1)/2)-
dimensional manifold of rank s positive semidefinite p× p symmetric matrices
with s distinct positive eigenvalues. Finally, A− and A+ denote the generalised
and Moore-Penrose inverse of matrix A, respectively.
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Definition 1. [ Matrix-variate Singular Normal Distribution ] Let X ∈
L+

p,N(s), such that X ∼ NN×p(µ, Σ, Ξ), with Σ p × p, r(Σ) = r < p or Ξ
N × N , r(Ξ) = k < N and s = min(r, k). This distribution will be called a
matrix-variate singular normal distribution and will be denoted as

X ∼ N k,r
N×p(µ, Σ, Ξ)

omitting the supra-index when r = p and k = N . In addition, its density
function is given by

1

(2π)rk/2
(∏r

i=1 λ
k/2
i

) (∏k
j=1 δ

r/2
j

) etr
(−1

2
Σ−(X − µ)′Ξ−(X − µ)

)
(1)

H ′
2XP ′

1 = H ′
2µP ′

1

H ′
1XP ′

2 = H ′
1µP ′

2

H ′
2XP ′

2 = H ′
2µP ′
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 a. s. (2)

where A− is a symmetric generalised inverse, λi and δj are the nonzero eigen-
values of Σ and Ξ respectively, and H = (H1|H2) ∈ O(N) and P = (P ′

1|P ′
2) ∈

O(p) are the matrices associated with the spectral decomposition of matrices Σ
and Ξ respectively with H1 ∈ Vk,N , H2 ∈ VN−k,N , P ′

1 ∈ Vr,p and P ′
2 ∈ Vp−r,p,

see Dı́az-Garćıa et al (1997).
Alternatively, this density can be written as

dFX (X) =
1

(2π)rk/2
(∏r

i=1 λ
k/2
i

) (∏k
j=1 δ

r/2
j

) etr
(−1

2Σ−(X − µ)′Ξ−(X − µ)
)
(dX),

(3)
where (dX) is the Hausdorff measure, which coincides with that of Lebesgue

when it is defined on the subspace M given by the hyperplane (2), see Dı́az-
Garćıa et al (1997), Cramér [p. 297, 1999] and Billingsley [p. 247, 1979]. An
explicit form of (dX) would be given by

(dX) = 2−s

s∏
i=1

νN+p−2s
i

s∏
i<j

(ν2
i − ν2

j )

(
s∧

i=1

dνi

)
(R′

1dR1)(Q
′
1dQ1)

where X = R1DνQ
′
1 is the nonsingular part of the singular value decomposi-

tion, with R1 ∈ Vs,N , Q1 ∈ Vs,p and Dν = diag(ν1, . . . , νs), ν1 > · · · > νs > 0,
see Dı́az-Garćıa et al (1997).

Definition 1. [ Generalised Inverse Wishart and Pseudo-Wishart Distribu-
tions ] Let U ∈ S+

p (s) be a random matrix. U is said to have a central gener-
alised inverse Wishart or Pseudo-Wishart distribution of rank s, with n degrees
of freedom and scale matrix G, this fact being denoted by U ∼ W+

p (s, n, G) and
by U ∼ PW+

p (s, n, G) respectively, if the density function is given by

dF
U
(U) =

π(n−p−1)(s−r)/2
(∏r

i=1 δ
(n−p−1)/2
i

)

2(n−p−1)r/2Γs

[
1
2
(n− p− 1)

] ∏s
i=1 α

(n+2p−2s)/2
i

etr
(−1

2
GU+

)
(dU)

(4)
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where U = H1DαH1 is the nonsingular part of the spectral decomposition of U ,
with Dα = diag(α1, . . . , αs), α1 > · · · > αs > 0, H1 ∈ Vs,p; G = R1DδR

′
1 is the

nonsingular part of the spectral decomposition of G, with Dδ = diag(δ1, . . . , δr)
δ1 > · · · > δr > 0, R1 ∈ Vr,p, and where the measure (dU) is explicitly given by

(dU) = 2−p

s∏
i=1

αp−s
i

∏
i<j

(αi − αj)(H
′
1dH1) ∧

s∧
i=1

dαi,

see Uhlig (1994), Dı́az-Garćıa and Gutiérrez (1997) and Dı́az-Garćıa et al
(2003a).

3. GENERALISED NATURAL CONJUGATE PRIOR DISTRIBUTION

In this section, we consider Bayesian inference for the parameters β and Σ in
the linear model of the singular multivariate full rank model defined by:

Y
N×p

= X
N×q

β
q×p

+ ε
N×p

, (5)

where p(ε|β, Σ) ≡ NN,r
N×p(0, Σ, IN) with Σ ≥ 0, r(Σ) = r < p < N and r(X) =

q.
Let S(β) be the symmetric matrix

S(β) = (Y −Xβ)′(Y −Xβ)

= (Y − β̂)′(Y − β̂) + (β − β̂)′X ′X(β − β̂)

= V + (β − β̂)′X ′X(β − β̂)

with V = (Y − β̂)′(Y − β̂) y β̂ = X+Y = (X ′X)−1X ′Y is the least squares es-
timator of β. From these observations, and from expression (3), the likelihood
function can be written as

L(β, Σ|Y ) ∝ dP (ε|β, Σ)(dβ)(dΣ)

∝ ∏r
i=1 λ

−N/2
i etr

(−1
2
Σ+S(β)

)
(dβ)(dΣ)

∝ etr
(−1

2
V Σ+

)
∏r

i=1 λ
N/2
i

exp
(
−1

2
vec′(β − β̂)[Σ+ ⊗ (X ′X)] vec(β − β̂)

)

(6)
where λi, i = 1, 2, . . . , r, are the non-null eigenvalues of Σ. Thus, it can be
seen, following Press [p.252-253] (1982), that the natural enriched parametric
prior densities are given by

p(Σ) = W+
p (r,m,G) and p(β|Σ) = N q,r

q×p(φ.Σ, B) (7)

where φ,B, G and m are arbitrary parameters that potentially would give
flexibility for choosing the appropiate priors. However, as pointed out in Press
(1982), even under arbitrary parameters, the resulting priors turn out to be
constrained so that we can not freely choose the prior that better reflects our
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prior beliefs. Therefore, we opt for constructing a generlised natural prior
distribution following the procedure outlined in Press [p. 253-254] (1982).

Assuming a fixed Σ we have that

dP (β) ∝ etr
(
−1

2
Σ+(β − β̂)′X ′X(β − β̂)

)
(dβ). (8)

or, alternatively, considering the vectorization of β, we have

dP (vec β) ∝ exp
(
−1

2
vec′(β − β̂)(Σ⊗ (X ′X)−1)+ vec(β − β̂)

)
(d vec β). (9)

from here, with an appropiate normalizing constant and leaving φ and F ∈
Sqp

+ (qr) as arbitrary parameters, we have

p(vec β) = N qr
qp (vec φ, F ) (10)

Similarly, assuming a fixed β, we see that the density for Σ is of the form

dP (Σ) ∝
r∏

i=1

λ
−m/2
i etr

(−1
2
Σ+G

)
(dΣ) (11)

where m and G are arbitrary. Now, considering the appropiate normalizing
constant and letting m be a positive integer and G ∈ S+

p (r), we have

p(Σ) = W+
p (r,m, G). (12)

Finally, we arrive at the joint generalised natural conjugate prior by taking
the product of (10) and (12)

dP (β,Σ) = N qr
qp (vecφ, F )W+

p (r,m,G)(dβ)(dΣ)

∝ exp
[−1

2 (trΣ+G + vec′(β − φ)F− vec(β − φ))
]

∏r
i=1 λ

m/2
i

(dβ)(dΣ). (13)

By analogy with the nonsingular case, distribution (13) will be called Singu-
lar Normal-Generalised inverse Wishart. This distribution, used as prior, no
longer has the constraints associated with the ordinary natural conjugate prior
distribution.
Now, if we multiply (6) by (13) we obtain, except for a normalizing constant,
the joint posterior distribution for (β, Σ)

dP (β, Σ|Y ) ∝ exp
(−1

2 tr Σ+ (G + S(β))− 1
2 vec′(β − φ)F− vec(β − φ)

)
∏r

i=1 λ
(N+m)/2
i

(dβ)(dΣ),

(14)
which is seen to be again Normal-Generalised inverse Wishart distribution

(see equation (18)).
All Bayesian inferences will be drawn from the marginal posteriors for β and
Σ; we now proceed to their computation. The marginal posterior for β is
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obtained by integrating (14) with respect to Σ. Using the fact that (4) is a
density, we get

dP (β|Y ) =

∫

Σ∈S+
p (r)

p(β, Σ|Y )(dΣ)(dβ)

∝ exp
(−1

2
vec′(β − φ)F− vec(β − φ)

)
∏r

i=1 α
(N+m−3p+2r−1)/2
i

(dβ), (15)

where αi, i = 1, . . . , r are the non-null eigenvalues of the matrix

(G + V + (β − β̂)′X ′X(β − β̂)). (16)

If (16) is positive definite, we see that (15) can be written as

dP (β|Y ) ∝ exp
(−1

2
vec′(β − φ)F− vec(β − φ)

)

|G + V + (β − β̂)′X ′X(β − β̂)|(N+m−3p+2r−1)/2
(dβ) (17)

Now, to determine the marginal posterior distribution for Σ, we rewrite (14)
as

dP (β, Σ|Y ) ∝ exp
(−1

2
tr Σ+ (G + V )

)
∏r

i=1 λ
(N+m)/2
i

exp
(
−1

2
vec′(β − β̂)(Σ⊗ (X ′X)−1)+ vec(β − β̂)

)

exp
(−1

2
vec′(β − φ)F− vec(β − φ)

)
(dβ)(dΣ).

Now, using algebra to expand terms in the second exponential and assuming
that (F− vec φ + (Σ+ ⊗X ′X) vec β̂) ∈ R(F− + (Σ+ ⊗X ′X)+ (where R(A) is
the image or range of A) we have that

vec′(β − β̂)(Σ⊗ (X ′X)−1)+ vec(β − β̂) + vec′(β − φ)F− vec(β − φ)
= vec′(β − β̄)M vec(β − β̄)− vec′ β̄M vec β̄ + vec′ β̂(Σ⊗ (X ′X)−1)+ vec β̂

+ vec′ φF− vec φ.

Where M = F− + (Σ+ ⊗ X ′X) and β̄ = M+[F− vec φ + (Σ+ ⊗ X ′X) vec β̂].
Now, by observing that vec′ β̂(Σ⊗ (X ′X)−1)+ vec β̂ = tr Σ+β̂′X ′Xβ̂ and that
vec′ φF− vec φ is constant with respect to β and that it does not depend on Σ,

dP (β, Σ|Y ) ∝
exp

[
−1

2
tr Σ+

(
G + V + β̂′X ′Xβ̂

)
− 1

2
vec′ β̄M vec β̄

]

∏r
i=1 λ

(N+m)/2
i

exp
(−1

2
vec′(β − β̄)M vec(β − β̄)

)
(dβ)(dΣ). (18)

From here, using (3), we integrate with respect to β to get the marginal pos-
terior distribution for Σ,

dP (Σ|Y ) =
∫

β∈L+
p,q(r)

p(β, Σ|Y )(dβ)(dΣ)

∝
exp

[
−1

2 trΣ+
(
G + V + β̂′X ′Xβ̂

)
− 1

2 vec′ β̄M vec β̄
]

∏r
i=1 λ

(N+m)/2
i

∏rq
j=1 τ

1/2
j

(dΣ) (19)
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where τj, j = 1, . . . , r are the non-null eigenvalues of F + Σ⊗ (X ′X)−1.

Remark 1. The equivalent result on the marginal posterior for Σ obtained by
Press [eq.8.6.23 p. 256](1982) for the non-singular case is incorrect, because
after completing the square with respect to β, there are two omitted terms in
the exponent, which, indeed are constant with respect to β but depend on Σ
and therefore can not be left out. As a consequence, the asymptotic result on
Theorem 8.6.5 in Press [p.256](1982) is also incorrect. The correct results for
the marginal posterior for Σ can be obtained from the following Theorem as a
particular case.

In summary, we have the following result.

Theorem 1. Given the general multivariate linear model (5), and assum-
ing an informative prior joint distribution for the parameters (β, Σ), the joint
generalised natural conjugate prior density is

dP (β, Σ) ∝
r∏

i=1

λ
−m/2
i exp

[−1
2

(
tr Σ+G + vec′(β − φ)F− vec(β − φ)

)]
(dβ)(dΣ),

where F− is a symmetric generalised inverse. F ∈ S+
qp(qr), G ∈ S+

p (r),
φ ∈ L+

q,p(r), m positive integer are arbitrary parameters and λj, j = 1, 2, . . . , r,
are the non-null eigenvalues of Σ. Also we have.
(i) The joint posterior density function of (β, Σ) is given by

dP (β, Σ|Y ) ∝ exp
(−1

2 tr Σ+ (G + S(β))− 1
2 vec′(β − φ)F− vec(β − φ)

)
∏r

i=1 λ
−(N+m)/2
i

(dβ)(dΣ),

(ii) The marginal posterior density of β is

dP (β|Y ) ∝ exp
(−1

2
vec′(β − φ)F− vec(β − φ)

)
∏r

i=1 α
(N+m−3p+2r−1)/2
i

(dβ)

where αi, i = 1, . . . , r are the no-null eigenvalues of (G+V +(β− β̂)′X ′X(β−
β̂)). Or by

dP (β|Y ) ∝ exp
(−1

2
vec′(β − φ)F− vec(β − φ)

)

|V + G + (β − β̂)′X ′X(β − β̂)|(N+m−3p+2r−1)/2
(dβ),

when (V + G + (β − β̂)′X ′X(β − β̂) ∈ Sm.
(iii) And the marginal posterior density of Σ is

dP (Σ|Y ) ∝
exp

(
−1

2
tr Σ+

(
V + G + β̂′X ′Xβ̂

)
− 1

2
vec′ β̄M vec β̄

)

∏r
i=1 λ

−(N+m)/2
i

∏rq
j=1 τ

1/2
j

(dΣ)

where τj are the nonzero eigenvalues of (F + (Σ ⊗ (X ′X)−1)), M = (F− +

(Σ+ ⊗ (X ′X)) and β̄ = M+(F− vec φ + vec X ′Xβ̂Σ+).
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Remark 2. Except for the case of the marginal posterior for Σ which we
commented in Remark 1, if we make r = p in Theorem 1, we obtain the same
results as Press [Section 8.6.2](1982), for the nonsingular multivariate linear
model.
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[5] J. A. Dı́az-Garćıa and J. R. Gutiérrez, Proof of the conjectures of H. Uhlig
on the singular multivariate beta and the jacobian of a certain matrix
transformation, Ann. Statist. 25 (1977), 2018-2023.
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