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Abstract

A new sequential phase demodulator based on a Regularized Quadra-
ture and Phase Tracking system (RQPT) is applied to demodulate
two-dimensional fringe patterns. This RQPT system tracks the fringe
pattern’s quadrature and phase in a sequential way following the path
of the fringes. To make the RQPT system more robust to noise the
modulating phase around a small neighborhood is modeled as a plane
and the quadrature of the signal is estimated simultaneously with the
fringe’s modulating phase. By sequentially calculating the quadrature
of the fringe pattern one obtains a more robust sequential demodula-
tor than it was previously possible. This system may be applied to
the demodulation of a single interferogram having closed-fringes.



1 Introduction

Most experimental data obtained using full field optical metrology are en-
coded as a wavefront (phase) which modulates the fringes of an interfero-
metric image [1]. The aim of fringe analysis is to estimate the modulating
two-dimensional phase of these fringe patterns. When a linear spatial phase
with a large slope (a carrier) is added to the wavefront under analysis one ob-
tains a spatial carrier frequency interferogram. When the interesting phase is
smooth and a linear carrier is added, the fringe pattern can be easily demod-
ulated using well understood and widely used spatial carrier interferometry
techniques [2].

On the other hand, if the experiment at hand permits one to obtain several
interferograms over a period of time, one may introduce a temporal carrier
to the modulating phase [3]. In this case one varies the modulating phase
using a linear temporal carrier so every interferogram will have a predefined
piston phase difference. Then, using several phase stepped interferograms,
one may easily obtain the modulating phase.

Sometimes, however, the very nature of the experimental set-up may not
allow one to take one or several interferometric images having spatial and/or
temporal carrier [4]. These cases frequently arise in the analysis of fast tran-
sient phenomena, where it is difficult or impossible to introduce spatial or
temporal carrier. In these cases we have no other choice but to deal with a
single or a series of interferograms without carrier, possibly containing closed
fringes, where the phase variation is not a monotonic function of space or
time. In this situation it is impossible separate the interesting information
using a linear filter. However there are still some possible ways to deal with
these non-monotonic modulating phase interferograms. One recent method
was proposed by Larkin et.al [5] and more recently, another closely related
to that one by Servin et. al. [6]. In these two cases the phase estimation
problem is factored into two operators. One is an isotropic two-dimensional
2-D Hilbert transform and the other one is the orientation 2π of the fringes.
The orientation of the fringes is the most difficult step and must be done in a
sequential way [7]. The Regularized Quadrature and Phase Tracker (RQPT)
system presented herein uses instead a single system which is capable of de-
modulating in a robust way a single interferogram containing closed fringes.

The Regularized Quadrature and Phase Tracker (RQPT) presented in this
work may be considered as a significant improvement to a previously pub-
lished phase demodulation system called the Regularized Phase Tracker or
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RPT [8]. The improvement resides on the sequential quadrature estimation
of the interferogram’s fringes by the RQPT. Although the main objective of
any fringe pattern demodulation technique is to find the modulating phase,
it is interesting to note (as we will see) that the sequential calculation of
the interferogram’s quadrature highly improves the robustness of the RPT
system presented in past publications. So this new RQPT sequentially calcu-
lates the quadrature of the fringe pattern as a by-product to obtain a phase
tracking scheme that is more robust than the previous RPT demodulation
algorithm.

The presentation plan for the paper is the following: in section 2.1 we
review the Phase Locked Loop (PLL) [9] which is the first one-dimensional
(1D) sequential phase demodulator used to analyze two-dimensional (2D)
interferograms because an important idea which is used in the RQPT is
drawn directly from the PLL system. The motivation for a non-regularized
Quadrature and Phase Tracker QPT demodulation system in 1D is presented
in section 2.2. In section 3 this 1D non-regularized (QPT) system is gener-
alized to 2D. In section 4 we regularize the QPT to obtain the searched 2D
Regularized-QPT or RQPT. We continue to section 5 where we demodu-
late an experimentally obtained Electronic Speckle Interferogram and then
a complicated, noisy, computer-generated fringe pattern. In section 6 some
conclusions of the main results of the paper are given.

2 Sequential phase demodulating systems

In this section we present the motivation for a 1D non-regularized Quadrature
and Phase Tracker (QPT) demodulation system. In section 3 this 1D non-
regularized QPT system is generalized to 2D. And finally in section four we
regularize the QPT to obtain the searched RQPT. We begin by describing
the standard model for a two dimensional fringe pattern as obtained by an
optical interferometer,

I(r) = a(r) + b(r)cos[φ(r)] (1)

where r = (x, y) represents a point in the two dimensional space. The smooth
function a(r) is a low frequency signal and represents the background illu-
mination. The function b(r) is also a low frequency signal which represents
the two dimensional contrast variation of the fringe pattern. The signal φ(r)
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is the information to be recovered which is related with the physical mag-
nitude under measurement. Throughout this work we will assume that the
modulating phase φ(r) is continuous and smooth.

Let us start by analyzing the Phase Locked Loop (PLL), which was the
first phase tracking system that was applied to fringe pattern demodulation
[9]. A brief reviewing of the PLL is convenient because the herein presented
QPT uses a fundamental idea which is drawn directly from the PLL system.
Afterwards we show why the PLL system is not suitable for demodulating a
single closed-fringe interferogram. We continue our presentation by analyzing
another phase tracking system which is now suitable for demodulating wide
band low frequency signals, therefore overcoming the main limitation faced
by the PLL to demodulate fringe patterns modulated by a non-monotonic
phase φ(r). Near the final part of the paper we propose a regularization
technique for the QPT system to obtain the new Regularized Sequential
Quadrature and Phase (RQPT) estimator.

2.1 The Phase Locked Loop (PLL) System

As we will see, both the PLL and the RQPT systems are capable of demod-
ulating only open fringe patterns if no attention is paid to the 2D sequential
scanning strategy. Let us start with an analysis of a one dimensional carrier
frequency signal and how the PLL and the RQPT system presented in this
work demodulate it. The standard mathematical model for a one dimensional
fringe pattern with linear carrier is the following,

I1(x) = a(x) + b(x) cos[ω0x + φ(x)] (2)

the carrier frequency ω0 must be greater than the maximum frequency con-
tent of the modulating phase φ(x) or ω0 > |∂φ(x)/∂x| for all x. The PLL
(as well as the RQPT) work best when the background signal is removed or
it is highly attenuated. Then using a high pass filter one is able to rewrite
Eq.2 as

I(x) = b(x) cos[ω0x + φ(x)] (3)

the continuous first order Phase Locked Loop system is usually described by
the following nonlinear dynamic system:

dφ̂(x)

dx
= τI(x) sin[ω0x + φ̂(x)] (4)
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where φ̂(x) denotes the estimated modulating phase, and τ is a constant
related to the band pass of the PLL. To understand the basic functioning of
this system, let us rewrite the last equation in integral form as:

φ̂(x) = τ
∫ x

−∞
cos[ω0ξ + φ(x)] sin[ω0ξ + φ̂(ξ)] dξ (5)

where we have assumed that we have b(x) ≈ 1.0. This equation may be
rewritten as:

φ̂(x) = τ
∫ x

−∞

(
sin[φ(ξ)− φ̂(ξ)] + sin[2ω0ξ + φ̂(ξ) + φ(ξ)]

)
dξ (6)

as we can see from this equation there are two terms; the first one varies
slowly because the modulating phase φ(x) is a continuous smooth function,
while the second one varies twice as fast as the original fringes. Because the
integral is a first order low pass filter, the fast varying term is highly reduced
and may be neglected. Therefore one may rewrite, for analysis purposes, a
simplified version for the PLL dynamic system as:

dφ̂(x)

dx
= τ sin[φ(x)− φ̂(x)] (7)

when the PLL is operating in lock, the estimated phase φ̂(x) follows the
modulating phase φ(x) very closely so the difference φ(x) − φ̂(x) is small
and the sine function may be approximated by its argument. Doing this we
finally arrive to

dφ̂(x)

dx
= τ [φ(x)− φ̂(x)] (8)

this last approximation enables one to understand why the demodulated
phase φ̂(x) obtained by using a first order PLL follows closely the modulating
phase of the fringes φ(x)

Finally let us write the spatially discretized (or digital) version of the PLL
system which is obtained by discretizing the spatial coordinate x. Using first
order differences to approximate the continuous phase derivative one obtains
a digital first order PLL as,

φ̂(x + 1) = φ̂(x) + τI(x) sin[ω0x + φ̂(x)] (9)

With this equation one sees that the currently evaluated phase φ̂(x + 1) at
the site x+1 uses the previously estimated phase φ̂(x) as a predictor with an
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update given by τI(x) sin[ωx + φ̂(x)] which corrects the preceding estimate
by a small amount. Finally, let us mention that the phase estimated by
the PLL is already unwrapped, so that no additional unwrapping system is
required to obtain the searched smooth modulating phase.

We have seen that the PLL system is capable of demodulating a carrier
frequency signal whenever we have an estimate of the carrier frequency ω0,
and the two terms in Eq.6 are well separated in the frequency space. If
the spectral distance between these two terms is not enough, they overlap
and the higher frequency carrier will appear as an artifact in the estimated
phase. This situation arises if a low frequency carrier is modulated by a
wide-band phase and in this case it is not possible to use the PLL system
to demodulate these fringes. We will see in the next section the new phase
tracking demodulator (the QPT) which overcomes these difficulties.

2.2 The Quadrature and Phase Tracker (QPT) estima-
tor system

Let us start by intuitively motivating how one can arrive to another phase
tracking scheme which overcomes the PLL system limitations. In this case in-
stead of starting with a dynamic system and then explaining why does it work
as in the case of the PLL, we will proceed by postulating a cost functional
operating over the estimated phase space φ̂(x), hoping that the solution φ̂(x)
which render this functional minimum is the expected demodulated phase.

For this let us naively postulate a very simple quadratic cost functional
that we know the searched solution will render minimum. This cost func-
tional is,

U = [I(x)− cos(φ̂(x))]2 (10)

where we have simplified our one dimensional fringe pattern model assuming
that a(x) ≈ 0 and b(x) ≈ 1. The optimum function is obtained by the signal,

φ̂(x) = arccos[I(x)] (11)

such a phase is illustrated in Fig.1(a), and it is clear that this is not what we
were looking for. Then, let us continue working over the same idea by intro-
ducing another term to our cost functional that imposes an additional con-
straint on φ̂(x) by requiring that one also approximates the quadrature of the
fringes. The quadrature of I(x) = cos[φ(x)] is sin[φ(x)] = −Ix(x)/φx(x) =
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−Ix(x)/ω(x), where ω(x) is the local frequency. With this addition our new
cost functional now reads,

U = [I(x)− cos(φ̂(x))]2 + [Ix(x) + ω̂(x) sin(φ̂(x))]2 (12)

where the new unknown function ω̂(x) is the derivative of φ̂(x) with respect
to x, and Ix(x) is approximated by first order differences as I(x)− I(x− 1)
in our discrete one-dimensional space. Now the optimum for ω̂(x) and φ̂(x)
is obtained and the solution looks as Fig.1(b). This solution was found
iteratively and following the gradient of U with respect to the optimizing
variables. That is,

φ̂(x)k+1 = φ̂(x)k − µ
∂U

∂φ̂(x)
(13)

ω̂(x)k+1 = ω̂(x)k − µ
∂U

∂ω̂(x)
(14)

where µ is a fixed step size. If one uses ”natural” (given that we do not know
anything about φ(x) or ω̂(x)) zero initial conditions

φ̂(x)0 = 0 , ω̂(x)0 = 0 (15)

one obtains the estimated phase and local frequency shown in Fig.1(b); it is
apparent that we have made no progress towards the desired solution: we
just found what we already knew from our first attempt. The reason for this
is that although we have added another datum which is Ix(x) we also have
added a new unknown which is ω̂(x) so we have returned at our starting
point.

If we could have a rough estimate for the newly created unknown ω̂(x),
however, introducing this value into our last cost functional, one would be
closer to knowing the quadrature of the fringes at site x. One way to obtain
this rough estimate, is by using the same PLL trick, namely, to use the
previously found estimate (in this case for ω̂(x)) at the already visited site
x−1 as our initial guess. Using as initial estimate ω̂(x)0 = ω̂(x−1)∞ in Eq.14,
one gets a better estimate for the searched φ̂(x) that was previously possible.
Once a better φ̂(x) is found we then use it to improve our estimate for the
actual ω̂(x), which in turn is used to improve our φ̂(x). We may continue
this iterative process until we find both unknowns within a certain predefined
error. By doing this one obtains the searched (wrapped) demodulated phase.
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Of course the very first site being demodulated within the fringe pattern will
not have a ”previously found estimation”; for that unique ”seed” site the
initial conditions for φ̂(x) and ω̂(x) may be set to zero.

Another alternative explanation that supports the use of the stable esti-
mated ω̂(x − 1)∞ as initial condition for ω̂(x)0 may be found by observing
the unwanted behavior that the local frequency ω̂(x) has when zero initial
conditions are chosen for Eq.14 (Fig.1-b). The desired estimated frequency
ω̂(x) should be a constant and not a square function. The discontinuities of
ω̂(x) are due to the fact that the driving term ∂U/∂ω̂(x) (in Eq.14) has a
very low value on the neighborhood of the extrema of the fringe pattern. In
these places only the driving term for φ̂(x) which is ∂U/∂φ̂(x) has a signif-
icant value and pulls down the estimated phase in the absence of a driving
”force” for the instantaneous frequency ω̂(x). So ω̂(x) does not have any
other choice but to ”follow” the changes commanded by the estimated phase
φ̂(x), which finally switches ω̂(x) to a constant negative value. To get out
from this situation one should use as initial condition for ω̂(x)0 (in Eq.14)
the stable value for ω̂(x− 1)∞ found at the previously visited site x− 1. In
this way instead of having a negligible value for ω̂(x) it will have as initial
estimate the value ω̂(x − 1)∞ which is a significant positive value. In that
case the natural solution for the estimated phase at x is to continue its mono-
tonically increasing behavior (see Fig.1c). Once this critical point has been
”jumped” by this trick the driving term ∂U/∂ω̂(x) will have again a high and
well determined value, forcing the frequency ω̂(x) to remain positive until the
next critical point of the fringe pattern appears.

We may also use the previous estimation at φ̂(x − 1) as initial guess for
φ̂(x) as is done in the PLL. This process of using the two previously found
estimates for φ̂(x) and ω̂(x) enables us not only to find the searched phase
and frequency at x but also to unwrap the phase being demodulated as in
the PLL case. In summary the sequential Quadrature and Phase Tracking
(QPT) system is still given by Eqs.13-14 but now the initial conditions to be
used are:

φ̂(x)0 = φ̂(x− 1)∞ , ω̂(x)0 = ω̂(x− 1)∞ (16)

where ω̂(x−1)∞ and φ̂(x−1)∞ denote the stable point (φ̂, ω̂) of the previously
demodulated site at x−1. Using these initial conditions one now obtains the
expected continuous phase. Summarizing the QPT system has two important
advantages over the PLL: one is that no carrier frequency estimate is needed,
and second, one does not have to worry about the risk of having overlapping
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spectra as was the case for the PLL system.

3 Demodulation of 2D closed fringe patterns

using the sequential Quadrature and Phase

Tracker(QPT) estimator

Before further discussion, let us generalize our 1D-QPT to two dimensions.
This generalization is straight forward and is obtained by minimization of
the following cost functional,

U = [I − cos(φ̂)]2 + [Ix + ω̂x sin(φ̂)]2 + [Iy + ω̂y sin(φ̂)]2 (17)

where the spatial position dependence r = (x, y) of Ix, Iy, φ̂, ω̂x, ω̂y was
omitted for clarity purposes. Now we need to optimize for three functions
namely φ̂, ω̂x, ω̂y. The optimizing system at the site ri has a similar form
to that of the 1D-QPT system, in this case we have,

φ̂(ri)
k+1 = φ̂(ri)

k − µ
∂U

∂φ̂(ri)
(18)

ω̂x(ri)
k+1 = ω̂x(ri)

k − µ
∂U

∂ω̂x(ri)
(19)

ω̂y(ri)
k+1 = ω̂y(ri)

k − µ
∂U

∂ω̂y(ri)
(20)

with initial conditions given by,

φ̂(ri)
0 = φ̂(ri−1)

∞ , ω̂x(ri)
0 = ω̂x(ri−1)

∞ , ω̂y(ri)
0 = ω̂y(ri−1)

∞ (21)

where ri is the current i site under optimization, and ri−1 is the previous one.
In the 2D-QPT case the two dimensional fringe signal can be demodulated
whenever

‖ω̂(r)‖ =
[
ω̂2

x(r) + ω̂2
y(r)

]1/2
> 0 (22)

according to the last equation the 2D-PT system will successfully demodulate
open low frequency fringes regardless of their two-dimensional orientation.

We have seen that the QPT system can demodulate carrier frequency
fringe patterns without the need of an explicit linear carrier. As we have
also seen this has the advantage of demodulating very low frequency fringes
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without worrying of higher frequency cross-tacking signals as in the PLL
case. But how can this 2D-QPT system be used to demodulate closed fringe
interferograms where the spatial phase variation is non-monotonic, since the
2D-QPT only demodulates monotonically increasing phase ? the answer is:
following the path of the fringes. That is, not in a row by row scanning
strategy (as in a television set), but following the path traced by the fringes
themselves. One way of achieving this is using an algorithm published in
[10] which uses the concept of signal ”quality”. This scanning strategy was
originally used to sequentially unwrap noisy phase maps. This algorithm first
classifies regions of the image according to how good the signal to noise ratio
is around a given neighborhood. In that case [10] one starts the sequential
unwrapping algorithm by first unwrapping the best data (less noisy), and
afterwards the noisier image regions.

In our 2D-QPT case we are not classifying our data as function of its
signal to noise ratio. We simply assign in an arbitrary way that our data will
have two qualities which are:

if I(x) > 0 ; good data (23)

if I(x) ≤ 0 ; bad data (24)

this is shown, for example in Fig.3a and Fig.3b. Using this arbitrary classi-
fication (actually the negative of the above statement could also have been
used) coupled with the ”quality” following scanning strategy [10] one is able
to follow preferably a scanning path defined by the fringes [8]. The main
and essential advantage of following the fringes is to avoid crossing straight
through the critical points of the modulating phase. The reason is that the
2D-QPT system does not estimate the local curvature of the modulating
phase (only its value and gradient), so the 2D-QPT does not know how to
handle the variety of critical points (minima, maxima or saddles). In con-
trast, if the 2D-QPT system continually follows the fringe path it always
”sees” open fringes all over the two-dimensional interferogram. In other
words, scanning the interferogram along the fringe paths behaves roughly
like a coordinate transformation where closed fringes are transformed into
open fringes. Therefore whenever the 2D-QPT system encircles these critical
points the 2D-QPT system will never ”know” that it was actually demod-
ulating a closed fringe interferogram. Eventually, after demodulating the
neighborhood (at a small distance) of these critical points, the 2D-QPT will
finally have to deal with them. In those critical regions the local gradient
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‖ω̂(r)‖ is almost zero so the only remaining term in the functional is the
first one. However delicate, in this final step of the demodulation process
the problem is much less severe given that we have already demodulated the
phase surrounding these critical points and the solution will grow towards
the remaining un-demodulated region in a robust way.

This fringe following 2D-QPT algorithm makes use of the local geometry
of the phase being recovered by modeling the local phase φ̂(r) by a small
one-pixel-plane determined by the triad φ̂, ω̂x, ω̂y. Additionally, the fringe
following 2D-QPT also has global information of the phase at its disposal
and uses it by scanning the interferogram following its fringes.

Figure 2 shows some snap shots on the QPT demodulating process. We
can see how the 2D fringe pattern is being phase demodulated following the
fringe scanning strategy. As also can be seen, the critical points are not
processed until its surrounding phase is already demodulated. In this case
we have obtained the path-following data (Fig.2b) by splitting the fringe’s
gray-level range into four regions instead of just two as in Eqs.23-24

4 Regularizing the Quadrature and Phase Tracker

(RQPT) estimator

In the previous section we have shown how the sequential Quadrature and
Phase Tracker (QPT) may be used to demodulate closed fringe interferograms
modulated by a smooth continuous function. However the QPT system just
presented is not at all robust with respect to noise. To improve the QPT
robustness we need to regularize the cost functional. In classical regulariza-
tion one normally introduces a smoothing term in the cost functional. The
smoothing term is normally built using integrals of derivative operators ap-
plied to the field that one wants to recover [11]. This is the standard way of
regularizing an inverse linear problem when the transforming linear operator
is not invertible or is ill-conditioned. Another characteristic of classical reg-
ularization algorithms is that the functional used to find the inverse field is
optimized globally at each iteration. That is, one updates all the sites within
the region Ω where one wants to recover the inverse field at each global iter-
ation. In contrast, in the QPT case one is finding the modulating phase and
the fringe’s quadrature sequentially. So one cannot use differential operators
to regularize the QPT functional. Fortunately one can find a way to regular-
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ize this functional by assuming that within a neighborhood (ε, η) around the
point (x, y) one may model the modulating phase as a plane. So one takes
as a parametric model for the local phase in the neighborhood of (x, y) the
plane given by,

p(ε, η) = φ̂(x, y) + ω̂x(x, y)(x− ε) + ω̂y(x, y)(y − η) (25)

using this plane model the local functional looks like,

U =
∑

(ε,η)∈Nx,y

{
[I − cos(p)]2 + [Ix + ω̂x sin(p)]2 + [Iy + ω̂y sin(p)]2

}
(26)

where we have omitted the (x, y, ε, η) dependance for clarity purposes. Now
the optimization proceeds not just taking into account only the current site
(x, y) but a two-dimensional neighborhood Nx,y around it. The size of the
neighborhood normally used varies from a 3X3 up to an 11X11 pixel window
or more depending on the signal to noise ratio of the interferogram. The
larger the size of the fitting plane p(x, y) the better noise rejection is ob-
tained. Of course the size of the fitting plane is limited by how reasonable is
to consider the interferogram’s phase within the neighborhood (ε, η) ∈ Nx,y

as a plane. Finally, one may still increase a little bit more the RQPT noise
robustness by adding another term which measures the distance between
the regularizing plane p(x, y) and previously estimated values of demodu-
lated phase φ̂(ε, η) within Nx,y. With this last addition the non-linear cost
functional is,

U =
∑

(ε,η)∈Nx,y

{
[I − cos(p)]2 + [Ix + ω̂x sin(p)]2 + [Iy + ω̂y sin(p)]2 + λ(φ̂− p)2m

}

(27)
where the function m(ε, η) is an indicator function which has value of 1
when the site at (ε, η) has already been estimated and of 0 otherwise. The
parameter λ is a regularization parameter which controls, along with the size
of the regularizing plane, the highest frequency content of the demodulated
signal φ̂(x, y). The value of the λ parameter is not very critical; for example
all numerical experiments that we have made use λ = 5 with good results.

5 Experimental and simulation results

We show in Fig.3 the application of the RQPT system for demodulating
an experimentally obtained speckle fringe pattern. Again we show in this
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figure some snap-shots in the demodulating process, to see how the sequential
strategy along the fringes is performed. Although the noise in this fringe
pattern is moderately high, the fringe pattern is not ”too complicated”. That
is, it does not contain many fringes nor many critical points. So in this case a
large 13X13 neighborhood pixel may be used. This large fitting plane filters
out efficiently the noise of the estimated phase.

No fringe analysis system is ”noise immune”; sooner or later a noise energy
is reached such that the fringe demodulation system breaks down and gives a
useless estimated phase. Of course the RQPT system is not an exception. So,
in the next example (Figure 4) we have simulated a more complicated noisy
fringe pattern with a non constant modulation b(x, y) and zero background
a(x, y) = 0. The aim of this simulation is to stretch the RQPT robustness to
the limit in terms of noise and fringe complication. As occurs with any other
fringe pattern demodulation system the RQPT may demodulate very noisy
fringe patterns whenever the fringes are ”not so complicated”, i.e. it may
have high noise but few fringes and few critical points. On the contrary a
fringe pattern cannot be ”too noisy” when a more complicated fringe pattern
containing many fringes and many critical points (minima, maxima or saddle)
is analyzed such as the one shown in figure 4a. Also in Fig.4 we show some
other signals involved in the phase estimation process. Figure 4b shows the
path along the fringes that the RQPT will follow preferentially. Figure 4c
shows the quadrature signal obtained by this sequential system. If the noise
and/or the fringe pattern is more complicated that the one shown in Fig.4
it is advised to use as a first step in the demodulation process a robust two-
dimensional filtering and normalizing algorithm before making use of the
RQPT.

6 Comparison between the RPT and the RQPT

systems

We have analyzed the RQPT system and we have seen how it can be used to
demodulate closed-fringe interferograms. In this section the RQPT system
is compared to the RPT [8] system and explicitly point out the advantages
of the RQPT. In the case of demodulating a computer-generated noise-free
fringe pattern both systems give the expected continuous and smooth modu-
lating phase even for a small regularizing neighborhood Nx,y. The advantage
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of the RQPT system becomes clearer when a noisy interferogram is analyzed.
In this section we show experimentally how the RQPT system is more ro-
bust to noise and to fluctuations in the fringe contrast b(x, y) than the RPT
system. The reason is that the RQPT system has the additional constraint
term related with the quadrature of the data signal.

Let us begin by displaying the local cost functionals for both sequential
demodulating systems. For the RPT the local cost functional is:

URPT =
∑

(ε,η)∈Nx,y

{
[I − cos p]2 + λ(φ̂− p)2m

}
(28)

and the one corresponding to the RQPT system is:

URQPT =
∑

(ε,η)∈Nx,y

{
[I − cos p]2 + [Ix + ω̂x sin p]2 + [Iy + ω̂y sin p]2 + λ(φ̂− p)2m

}

(29)
where in both cases the regularizing plane is given by

p(ε, η) = φ̂(x) + ω̂x(x, y)(x− ε) + ω̂x(x, y)(y − η) (30)

One can see that the difference between these cost functionals is the quadra-
ture related term which is UQ = [Ix− ω̂x sin(p)]2 +[Iy− ω̂y sin(p)]2. Although
it may look as a minor addition, it has nevertheless important consequences
in terms of robustness to noise and rejection of undesired solutions.

As mentioned, the problem of estimating the modulating phase of a single
interferogram containing closed fringes is ill-possed, because this problem
has infinitely many solutions compatible with the observations. However,
the fact that in the minimizing algorithms (RPT or RQPT) one uses the
final state of a neighborhood pixel as the initial condition of the pixel being
demodulated, shrinks the solution space to the set of continuous functions.
As a consequence the two main competing continuous solutions which render
both local functionals to low values are:

φ̂1(x) ≈ φ(x, y), (31)

φ̂2(x) ≈ cos−1[I(x, y)], (32)

where cos−1(·) is the inverse of cos(·) and takes values in the closed interval
[0, π]. These two solutions are continuous functions compatible with the
observed data. Of course the solution given by φ̂1(x) (Fig.1c) is smoother
than φ̂2(x) (Fig.1a) so the regularizing plane biases the RPT/RQPT systems
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towards φ̂1(x). However, in noisy situations, the noisy estimate of φ̂1 may fall
too close to φ̂2 and the RPT system may fail to recover the desired solution
φ̂1(x). On the other hand the RQPT system has two additional constraint
terms which adds robustness to the system and gives the expected minimum
φ̂1 in many cases where the RPT fails.

One example of the higher robustness of the RQPT over the RPT system
may be seen in a contrast miss-match situation between the fringe model
and the fringe data. In Figure 5a we show the following simple noise-free
computer-generated fringe pattern:

I(x, y) = 0.8 cos(ω0x) (33)

In this case the RPT system finds the competing solution φ̂2 because the
RPT fails to reach near the phase values of 0 or π which would allow it
to ”jump” between adjacent Riemann surfaces corresponding to cos−1(·) to
obtain ω0x instead of obtaining φ̂ = cos−1[I(x, y)] (Fig.5b) as a solution.
So in this case the RPT remains on a single branch of the Riemann surface
regardless of the size of the neighborhood Nx,y. On the other hand the
RQPT finds the desired solution ω0x (Fig.5c) because this system implicitly
calculates the quadrature of the fringes. In this numerical experiment (Fig.5)
we have used a neighborhood Nx,y = 5 and the parameter λ = 5 for both
the RPT and the RQPT systems. Note that, if the amplitude’s fringe model
and the actual fringe amplitude diverge even further in this direction, i.e.
I(x, y) = 0.5 cos(ω0x), maintaining a normalized fringe model, both systems
fail to recover the desired function ω0x.

In the next example we consider the noisy interferogram:

I(x, y) = cos[ω0x + n(x, y)] (34)

Here we have a perfect match between the data and the fringe model’s con-
trast. However, in this case we have added some phase noise n(x, y). This
noise is uniformly distributed in the range [−1, 1] radians. Fig.6a shows the
fringe pattern, and Figs.6b and 6c, the demodulated phase obtained by the
RPT and the RQPT systems respectively. As one can see, the RQPT obtains
a good approximation of the desired phase ω0x, while the RPT obtains again
the wrong solution cos−1[cos(ω0x)]. In this numerical experiment we have
used a neighborhood Nx,y = 9 and the parameter λ = 5 for both the RPT
and the RQPT systems.
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It should be noted that in [8], it was proposed to introduce an additional
term to the RPT cost functional, in order to increase the robustness with
respect to noise, the resulting cost functional is:

URPT =
∑

(ε,η)∈Nx,y

{
[I − cos p]2 + [I − cos(p + α)]2 + λ(φ̂− p)2m

}
(35)

where α is a piston phase shift (usually α = π/4) introduced to the fringe
model. This is a rather awkward constraint that forces the phase shifted
model also to resemble the original fringe data. Although this trick may per-
mit one to obtain a solution in the correct branch of the Reimann surface in
noisy interferograms, it nevertheless distorts the resulting phase estimation.
That is because the 2 terms cannot be made equal to zero simultaneously.
So a compromise between them is taken and this compromise is the expected
demodulated signal slightly distorted. In the RPT paper [8] it is advised
that after the distorted phase is obtained, this distortion may be removed by
minimizing the ”unshifted” functional (28) taking as initial condition the op-
timum φ̂(x) obtained from the ”phase shifted” functional (35). This heuristic
trick is not necessary in the RQPT system presented in this work.

7 Conclusions

We have shown that the estimation of the local phase of the fringe pattern
may be made more robust and stable if the quadrature of the fringe pattern
— which depends on its gradient and local frequency — is estimated at the
same time. This estimation process is effective only if the phase variation is
locally monotonic, i.e., if the fringes are (locally) open. It is possible how-
ever, to use this scheme to estimate the phase of patterns with closed fringes
as well, provided one scans the image in such a way that the demodulator
always ”sees” an open fringe pattern, and has a good initial estimate of its
phase and local frequency. This will not be the case, of course, of critical
points (maxima, minima, saddles) of the phase surface, but if these difficult
spots are demodulated after the phase has been estimated at all their sur-
rounding pixels, the QPT operator will obtain a correct value there as well.
We have also shown that the QPT estimator may be made robust to noise by
estimating the parameters of a linear (planar) approximation to the phase
surface in a neighborhood, instead of the phase and frequency values at the
point, obtaining in this case the RQPT. The robustness with respect to noise
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improves if the size of this neighborhood is increased, but its maximum size
is limited by the smoothness of the underlying phase surface, i.e. the size of
the larger window where a linear approximation to the phase remains valid.

The RQPT system may have difficulties in demodulating even noise free
fringe patterns having some of their critical points near or at the boundary of
the fringe pattern. That is because at these places there are no closed paths
around the critical points and the main strategy of surrounding the critical
points by following the fringes may fail.

Finally we have made a detailed comparison between the herein presented
RQPT system with the previously published RPT [8] demodulator. We have
stressed their similarities and differences, and made it clear that the RQPT
is the next logical step for the improvement of the RPT.
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Figure 1: Phase demodulation of a sinusoidal signal. (a) Estimated phase
given by φ̂ = cos−1(φ) which is the minimum of U in Eq.10.(b) Minimizing
function of Eq.12 along with zero initial conditions (Eq.15). (c) The function
which minimizes Eq.12 but now using as initial conditions the previously
found estimates ( Eq.16, QPT)
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Figure 2: Demodulation of a two-dimensional fringe pattern using the non-
regularized Quadrature and Phase (QPT) estimator. (a) The given noiseless
computer generated fringe pattern. (b) The path followed by the sequential
demodulating system. Whiter paths are preferably followed as being the sites
with ”higher quality”. (c)(d)(e) Path demodulation progress of the QPT
system. (f) Demodulated phase. Although the QPT demodulator finds the
phase unwrapped, the phase was re-wrapped to compared it with panel (a).
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Figure 3: Phase demodulation of an experimentally obtained speckle inter-
ferometric pattern. (a) The speckle pattern. (b) The traced path that the
Regularized-QPT (RQPT) demodulating system follows. Whiter zones are
preferably first demodulated. (c) and (d) two ”moments” on the path fol-
lowed by the RQPT demodulating system. (e) The quadrature of the original
fringe pattern. (f) The demodulated phase shown re-wrapped.
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Figure 4: Phase demodulation of a noisy computer generated fringe pat-
tern. (a) The noisy fringe pattern.(b) The traced path that the sequential
RQPT demodulating system will follow. Whiter zones are preferably first
demodulated. (c) The quadrature of the original fringe pattern. (d) The
demodulated phase shown re-wrapped.
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Figure 5: Phase demodulation of a fringe pattern with less than expected
fringe contrast of 1.0. (a) The fringe pattern data, I(x) = 0.8 cos(ω0x). (b)
Wrong demodulated phase found by the RPT Eq.28 which is close to φ̂(x) =
cos−1[I(x)]. (c) Correctly demodulated phase using the RQPT system.
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Figure 6: Phase demodulation of a noisy fringe pattern with the right
(expected) contrast equal to 1.0. (a) The noisy fringe pattern I(x) =
cos[φ(x) + noise(x)]. (b) Wrong demodulated phase using the RPT sys-
tem given by Eq.28 which is close to φ̂(x) = cos−1[I(x)]. (c) The correctly
demodulated phase obtained by the RQPT system.
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