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1 Introduction

The classical Burgers equation

∂

∂t
u(t, x) = ν∆u(t, x)− λ∇u2(t, x)

was proposed by Burgers [3] as a particular case of the Navier-Stokes equation, and has been

used extensively to study turbulence and other physical phenomena (see e.g. [9],[6],[12],

[16]). Burgers equation involving fractional powers ∆α := −(−∆)α/2, α ∈ (0, 2], of the

Laplacian in its linear part has also been studied in connection with models of several hy-

drodynamical phenomena (see e.g. [17], [5], [4] and the references therein for applications).

In [4] Biller, Funaki and Woyczynski studied existence, uniqueness, regularity and

asymptotic behavior of solutions of the multidimensional fractal Burgers-type equation

∂

∂t
u(t, x) = ν∆αu(t, x)− a∇ur(t, x), (1.1)

where x ∈ Rd, d ≥ 1, α ∈ (0, 2], r ≥ 1, and a ∈ Rd is a fixed vector. For α > 3/2 and

d = 1 they prove existence of a unique regular weak solution of (1.1) with initial conditions

in H1(R).

In [10] it is proved existence of a weak solution of the one-dimensional stochastic Burgers

equation perturbed by a white noise term with a non-Lipschitz coefficient

∂

∂t
u(t, x) = ∆u(t, x) + λ∇u2(t, x) + γ

√
u(t, x)(1− u(t, x))

∂2

∂t∂x
W (t, x),

u(t, 0) = u(t, 1) = 0,

u(0, x) = f(x), x ∈ [0, 1], (1.2)
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where f : [0, 1] → [0, 1] is continuous and ∂2

∂t∂xW (t, x) is the space-time white noise. The

method of proof in [10] consists in approximating (1.2) by finite systems of stochastic

differential equations possessing a unique strong solution. Using bounds for the fundamental

solution of the discrete Laplacian, it is shown tightness of the approximating systems, and

that each weak limit is a weak solution of (1.2).

In this paper we consider the one-dimensional fractal Burgers equation given by

∂

∂t
u(t, x) = ∆αu(t, x) + λ∇u2(t, x) + γ

√
u(t, x)(1− u(t, x))

∂2

∂t∂x
W (t, x),

u(t, 0) = u(t, 1) = 0, x ∈ [0, 1], (1.3)

where the random positive initial condition u(0, x) is bounded by 1.

Due to the presence of non-Lipschitz coefficients, existence and uniqueness of a weak

solution of (1.3) cannot be achieved by classical results. Following the method of proof of

[10], in this paper we consider a discrete version of (1.3) and obtain, similarly as in [10],

existence of a strong solution of the corresponding finite system of SDEs. The principal

difficulty we are dealing with in this paper, which is originated by the presence of the

fractional power of the discrete Laplacian, consists in proving tightness of the approximating

systems. This is solved by using Fourier analysis methods developed by D. Blount in [1]

and [2], where he applies such approach to systems of SDEs related to diffusion limits of

population models.

2 Notations and basic results

We recall some notations from [1]. Let S = [0, 1) and let T denote the quotient space

obtained from [0, 1] by identifying 0 and 1. We put ϕ0(x) = 1 for x ∈ [0, 1], and

ϕn(x) =
√

2 cos(πnx), ψn(x) =
√

2 sin(πnx), x ∈ [0, 1], n = 2, 4, . . . .

This system of functions, which we also denote by em, m = 0, 1, 2, ..., is the usual orthonor-

mal basis in L2([0, 1]). Moreover, for all n, ∆en = −π2n2en. For any β ∈ R we define Hβ

as the Hilbert space obtained from L2(S) by completion with respect to the norm

|f |β =
(∑

〈f, em〉2(1 + π2m2)β
)1/2

,
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where 〈·, ·〉 denotes the usual inner product in L2(S).

For any integer N ≥ 1, let H(N) denote the set of functions f : [0, 1] → R that are

constant on [ k
N ,

k+1
N ) for k = 0, 1, 2, ..., N − 1. Clearly we have H(N) ⊂ L2([0, 1]).

Let PN : L2(T) → H(N) be the orthogonal projection of L2(T) onto H(N), which is

given by

PNf(r) = N

∫ k+1
N

k
N

f(s) ds, r =
k

N
, k = 0, 1, 2, ..., N − 1.

For N odd and 0 ≤ m ≤ N − 1 we define êm = PNem

|PNem|0 . Then {êm} is an orthonormal

basis of H(N) as a subspace of L2([0, 1]), and ∆N êm = −β̂mêm, where β̂m ∈ [4m2, π2m2].

Writing |.|0 for the usual norm in L2([0, 1]), it follows that limN→∞ |em − êm|0 = 0.

For f ∈ H(N) and any β we define

|f |β,N =
(∑

〈f, êm〉2(1 + β̂m)β
)−1/2

.

The next result follows from [1] (Lemma 3.1): For f ∈ H(N) and β > 0, we have |f |0,N =

|f |0 and

2−1/2|f |−β ≤ |f |−β,N ≤ (π/2)β+1|f |−β . (2.4)

We define Pn : Hβ →
⋂

γ Hγ as the projection

Pn(f) =
∑
m≤n

〈f, em〉em,

and put P⊥n := I − Pn, where I is the identity operator. Similarly, for f ∈ H(N), let

Pn,N (f) =
∑
m≤n

〈f, êm〉êm,

and P⊥n,N := I − Pn,N . Without loss of generality we assume that λ = γ = 1. Let N be a

fixed positive integer. Similarly as in [10], let us consider the discretized version of (1.3),

namely

∂

∂t
XN (t, r) = ∆N,αX

N (t, r) +∇NX
N (t, r)2 +

√
XN (t, r)(1−XN (t, r)) dBN (t, r),

XN (0, r) = X(0, r), r = 0,
1
N
, ...,

N − 1
N

, t ≥ 0, (2.5)
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where ∆N,α is the fractional power of the discrete Laplacian, and {N−1/2BN (t, r)}r is a

sequence of independent Brownian motions. Now we state our results.

Theorem 2.1. a) For any positive initial random condition XN (0) bounded by 1, there

exists a unique strong solution XN (t) of (2.5) in C([0,∞), L2([0, 1]).

b) The distributions of {XN} are relatively compact on C((0,∞) : Hβ) if β ≤ 0, α >

β + 3/2, and on C([0,∞) : Hβ) for α > β + 3/2, β < −1/2.

c) For any α > 3/2, equation (1.3) has a weak solution in C((0,∞), L2([0, 1])).

Remark 2.1. Theorem 2.1 is consistent with results obtained in [4] for the case γ = 0.

In our case, we were not able to prove uniqueness of weak solutions of (1.3); this remains

to be investigated.

Theorem 2.2. The solution X(t) has a modification which is Holder continuous in

time: it satisfies

P

(
sup

0<s0≤s<t≤T

|X(t)−X(s)|β
|t− s|δ

<∞

)
= 1

for each 0 < δ < [(2α− 2β − 3)/(2α)] ∧ 1/2, 3/2 < α ≤ 2, and β < (2α− 3)/2.

Remark 2.2. In particular, when α = 2 and 0 ≤ β < 1/2, we can take 0 < δ < 1−2β
4 ,

and obtain

P (X ∈ C((0,∞) : Hβ)) = 1,

thus X(t) is smoother than an L2([0, 1]) function for t > 0.

3 Proofs

Let us write xN
r (t) = XN (t, r). The system (2.5) then can be written in the more compact

form

dxN
i (t) =

 N∑
j=1

aN
ijx

N
j (t) + bNijx

N
j (t)2

 dt+
√
xN

i (t)
(
1− xN

i (t)
)
dBi(t) (3.1)

where

bNij =


N if j = i+ 1,

−N if j = i,

0 otherwise,
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and aij are the coefficients of ∆N,α.

Proof of Theorem 2.1.a The proof is similar to that of Theorem 2.1 in [10]. First we

show existence of a weak solution using the Skorokhod’s existence theorem [16, 8]. Pathwise

uniqueness of weak solutions follows from the classical method of Ikeda and Watanabe, using

the local time techniques of Le Gall (e.g. [14], Chapter V, §43). By a classical theorem of

Yamada and Watanabe [18], this is sufficient for existence of a unique strong solution of

(3.1). The proof is developed thoroughly for the case α = 2 in [10]. 2

Since XN (t, ·) is defined on a discrete system of points {r = k/N, k = 0, 1, ..., N − 1},
by assigning to XN (t, ·) the constant value XN (t, k/N) in the interval [k/N, (k + 1)/N),

k = 0, 1, ..., N − 1, we can view the function XN (t) as an element of the space H(N). By

variation of constants, we can write (2.5) in the equivalent form

XN (t) = TN,α(t)XN (0) +
∫ t

0
TN,α(t− s)[∇NX

N (s)2] ds

+
∫ t

0
TN,α(t− s)

√
XN (t)(1−XN (t)) dBN (s, r)

:= TN,α(t)XN (0) + VN (t) +MN (t), (3.2)

where TN,α(t) is the semigroup on H(N) generated by ∆N,α.

Let YN (t) =
∫ t
0

√
XN (s)(1−XN (s) dBN (s).

Lemma 3.1. (i) For β < −1/2, {YN} is relatively compact in C([0,∞) : Hβ).

(ii) For any fixed n, and any β, {PnX
N} is relatively compact in C([0,∞) : Hβ).

Proof. (i) For β < −1/2 and 0 ≤ t ≤ t+ s ≤ T, we have

E[|YN (t+ s)− YN (t)|2β|σ(Xr), r ≤ t]

= E[
∞∑

m=1

∫ t+s

t
〈XN (r)(1−XN (r)), (PNem)2〉dr(1 + βm)β |σ(Xr), r ≤ t],

hence from a well-known criterion (see e.g. [7]), {YN} is relatively compact in C([0,∞ : Hβ),

which proves (i).

Let consider the equality

PnX
N (t) = PnX

N (0) +
∫ t

0
Pn∆N,αX

N (s) ds+
∫ t

0
Pn∇NX

N (s)2 ds
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+
∫ t

0
Pn

√
XN (s)(1−XN (s)) dWN (s).

For fixed n, using the fact that ∆N is self-adjoint on HN and XN (t) is bounded, we obtain

from Ascoli’s theorem and (i) that the distributions of Pn[XN (t) − YN (t)] are relatively

compact. 2

Lemma 3.2. For any ε > 0 and T > 0,

(i) limn→∞ supN P (sup0≤t≤T |P⊥n,NM
N (t)|β,N ≥ ε) = 0 for any β < 1/2.

(ii) limn→∞ supN P (sups≤t≤T |P⊥n,NX
N (t)|β,N ≥ ε) = 0 for s > 0 and α > β + 3/2, or

s = 0 and α > β + 3/2, β < −1/2.

(iii) limn→∞ supN P (sups≤t≤T |P⊥n,NX
N (t)|β ≥ ε) = 0 for s > 0 and α > β+3/2, β ≤ 0,

or s = 0 and α > β + 3/2, β < −1/2.

Proof. From the equality

〈MN (t), êm〉 =
∫ t

0
exp[−β̂m(t− s)]〈XN (t)(1−XN (t)), (êm)2〉dB(s)

and [1] (Lemma 1.1), we obtain

P

(
sup
t≤T

〈MN (t), êm〉2 ≥ a2

)
≤ π2m2T [exp(Cm2a2)− 1]−1, (3.3)

where C > 0 is a constant. For β < 1/2, let δ be such that 0 < δ < 1, β − δ < −1/2. Then,

for given ε > 0, there exists n0 > 0 such that for all n ≥ n0 there holds
∑

m≥nm
2(β−δ) < ε

and

P

(
sup

0≤t≤T
|P⊥n,NM

N (t)|β,N ≥ ε

)
≤ P

sup
t≤T

∑
m≥n

〈MN (t), êm2〉m2β ≥
∑
m≥n

m2(β−δ)


≤

∑
m≥n

P

(
sup
t≤T

〈MN (t), êm2〉 ≥ m−2δ

)
≤

∑
m≥n

π2m2T [exp(Cm2(1−δ))− 1]−1,

where we used (3.3) to obtain the last inequality. Letting n→∞ yields (i).

Let denote by TN (t) the semigroup generated by ∆N . By definition we have

TN,α(t)(x) =
∫ ∞

0
ft,α(s)TN (s)x ds,
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where ft,α(s) := 1
2πi

∫ σ+i∞
σ−i∞ ezs−tzα/2

dz for s ≥ 0. Since for m = 0, 1, 2..., N − 1, we have

TN (s)êm = e−sβ̂m êm, by Proposition 1, p.260 in [19],

TN,α(t)(êm) =
∫ ∞

0
ft,α(s)e−sβ̂m ds êm

= e−tβ̂m
α/2

êm.

Hence |〈TN,α(t)XN (0), êm〉| < exp(−β̂mt) and for all natural N and β < −1/2, we have

sup
0≤t≤T

|TN,α(t)XN (0)|2β,N ≤ C1

N−1∑
m=0

m2β <∞, (3.4)

and for s > 0 and α > β + 1/2, we obtain

sup
s≤t≤T

|TN,α(t)XN (0)|2β,N ≤
N−1∑
m=0

m2β−2α <∞. (3.5)

Using the selfadjointness of the operators TN,α(t) and ∇N on H(N), it follows that

〈VN (t), êm〉 = 〈
∫ t

0
TN,α(t− s)[∇NX

N (s)2] ds, êm〉

= 〈
∫ t

0
TN,α(t− s)êm,∇NX

N (s)2〉 ds

=
∫ t

0
−e−(t−s)β̂m

α/2

〈∇N êm, X
2
N (s)〉 ds. (3.6)

Since 4m2 ≤ β̂m ≤ π2m2 and supx |∇N êm(x)| ≤ cm for some constant c > 0 independent

of N , (see [1]), we obtain from (3.6), for all natural N, s ≥ 0 and α > 3/2 + β,

sup
s≤t≤T

|VN (t)|2β,N = sup
s≤t≤T

N−1∑
m=0

〈VN (t), êm〉2(1 + π2m2)β ≤ C1

N−1∑
m=0

m2(1−α)m2β <∞, (3.7)

where C1 = C1(T ) is a constant non depending on N .

Part (ii) of the result then follows from (3.4), (3.5), (3.6) and (3.7).

Finally, (iii) follows from (ii) and (2.4). 2

Proof of Theorem 2.1.b). Let consider Pn,NX
N = PnX

N + (Pn,N − Pn)XN . Since

for fixed n, we have supt≤T |(Pn,N − Pn)XN (t)|0 → 0 in probability as N →∞, by Lemma
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3.1 (ii) we obtain relative compactness for Pn,NX
N . Now from XN = Pn,NX

N + P⊥n,NX
N

and Lemma 3.2(iii) we obtain relative compactness for XN . 2

Proof of Theorem 2.1.c).

From Theorem 2.1b) we know that there exist a process X and a subsequence XNk of

XN such that XNk ⇒ X in C([0,∞), L2([0, 1]). We will denote XNk by XN .

Applying Skorohod’s representation theorem, we can construct a sequence XN ′
and a

random element X ′ on some probability space (Ω,F , {Ft}, P ) such that {XN} D= {X ′} and

XN → X in C([0,∞), L2([0, 1])) with probability 1 (hence with probability 1 XN (t) →
X(t)). Let us denote

KN (t) := XN (t)−XN (0)−
∫ t

0
∆N,αX

N (s) ds−
∫ t

0
∇NX

N (s)2 ds.

Then by (2.5), KN (t) is an H(N)-valued martingale with 〈KN 〉t =
∫ t
0 X

N (t)(1−XN (t)) ds

and it is straightforward to see that KN → K in L2([0, 1]) where

K(t) := X(t)−X(0)−
∫ t

0
∆αX(s) ds−

∫ t

0
∇X(s)2 ds.

Moreover, since KN (t) is uniformly integrable (supN E(|KN (t)|0) <∞ uniformly for t ≤ T ),

K(t) is a L2([0, 1])-martingale with 〈K〉t =
∫ t
0 X(s)(1 − X(s)) ds. Now as in [11] we can

construct on a extended probability space a space-time white noise W (ds, dx) such that

K(t) =
∫ 1
0

∫ t
0

√
X(t)(1−X(t)W (ds, dx) and hence X(t) is a weak solution of (1.3). 2

Proof of Theorem 2.2.

Let consider the equality

X(t) = Tα(t)X(0) +
∫ t

0
Tα(t− s)[∇X(s)2] ds

+
∫ t

0
Tα(t− s)

√
X(t)(1−X(t)) dB(s)

:= Tα(t)X(0) + V (t) +M(t). (3.8)

As in the proof of Theorem 1.2 and Corollary 1.1 in [2] we obtain

P

(
sup

0<≤s<t≤T

|M(t)−M(s)|β
|t− s|δ

<∞

)
= 1
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for each 0 < δ < [(α− 2β − 1)/(2α)] ∧ 1/2, 3/2 < α ≤ 2, and β < α−1
2 . The condition that

must hold in order to give the result is

∞∑
m=1

mα(δ−1)(1 +m2)β <∞.

Now consider the second term in (3.8) and define Vm(t) = 〈V (t), em〉. From (3.6) we have

Vm(t) = m

∫ t

0
e−mα(t−s)hm(s) ds

for some bounded hm. From

Vm(t)− Vm(s) = (e−mα(t−s) − 1)gVm(s) +m

∫ t

s
(e−mα(t−u)h(u) du,

we obtain for 0 ≤ s < t and a constant c,

|Vm(t)− Vm(s)| ≤ cm
1− e−mα(t−s)

mα
≤ cmα(δ−1)+1|t− s|δ, (3.9)

where in (3.9) we used

(1− e−a|t−s|)/a ≤ min{|t− s|, aδ−1|t− s|δ}

for a > 0 and 0 < δ ≤ 1.

Hence,

|Vm(t)− Vm(s)|2β =
∑
m

([Vm(t)− Vm(s)]2(1 +m2)β

≤ c
∞∑

m=1

m2α(δ−1)+2+2β |t− s|2δ.

Thus for 0 < δ < [(2α− 2β − 3)/(2α)] ∧ 1/2, 3/2 < α ≤ 2 and β < (2α− 3)/2 we obtain

P

(
sup

0<≤s<t≤∞

|V (t)− V (s)|β
|t− s|δ

<∞
)

= 1

(note that the equality holds also without the probability sign since the estimates are

deterministic).
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Finally, for the first term in (3.8) we have

|(T (t)− T (s))X(0)|2β ≤ C(s0, β, α)|t− s|2

in the same way as in the proof of Corollary 1.1 in [2]. The proof is complete. 2
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