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Abstract

Skewness is an intrinsic characteristic in Stochastic Frontier Analysis (SFA), where it is
used as a measure of technical inefficiency. We discuss the use of skew normality in SFA.
We consider stochastic frontier analysis in the common setting Normal + Truncated
Normal with uncorrelated errors, as well as the case with correlated errors. In this last
case we show the connection between the SFA model and the Closed Skew Normal as
discussed in González-Faŕıas, et al (2003). We end with the proposal of a model for
stochastic frontier analysis with elliptical errors.

1 Introduction

A problem of interest to econometricians is the specification and estimation of a frontier
production function. The original formulation of the stochastic frontier model is due to
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Aigner, Lovell and Schmidt (1977) and Meeusen and van den Broeck (1977):

y = f (x; β) + e

where the error term e = v−u, is composed by a symmetric component, v, representing
measurement error, and by the nonnegative technical inefficiency component u. The
stochastic frontier f (x; β) + v allows for firms with same inputs, x, to have different
frontiers due to unobservable shocks; so, the model y = f (x; β) + v − u, models indeed
the inefficiency of a company to attain its production frontier. See Parsons (2002) for a
treatment of Stochastic Frontier Analysis in marketing science.

Some issues of interest in stochastic frontier analysis are the estimation of the common
frontier f (x; β), the estimation of the technical efficiency (typically related to τ 2

u =
var(u)), and the estimation of the measurement error σ2 = var(v). Before we discuss
these objectives, we take a closer look at the structure of the disturbance term e, and
its relation to Azzalini’s proposal (1985) of a skewed distribution. The distributional
properties of y will be inherited from those of e by a translation of the location parameter
via f (x; β).

Aigner, et al (1977) discuss the model where u has a positive half normal distribution and
is independent of v which is assumed normally distributed. Stevenson (1980) generalizes
this model by considering u to have a normal distribution with mean µ and variance σ2

truncated below at zero. That is, when µ = 0 we have the half normal distribution. From
Aigner, et al (1977) we have that the density of e = v−u, with u and v independent and
v ∼ N (0, σ2) and u ∼ N0 (0, τ 2), (that is, the distribution of u is positive half normal)
is given by:

g (e) = 2
1

α
φ

( e

α

)
Φ

(
−λ

α
e

)
, (1)

where α =
√

τ 2 + σ2, λ = τ/σ, φ (·) and Φ (·) denote the density function and the
distribution function of a standard normal random variable, respectively.
Comparing this function with the skew normal density introduced by Azzalini (1985):

g (x) = 2φ (x) Φ (δx) , δ ∈ <. (2)

we see that the density of the disturbance e is just the density of a scaled skew normal
distribution; that is e = αx where x is a skew normal with δ = −λ.

Densities related to Azzalini’s can be traced back to the work of Birnbaum (1950).
For a historical note see Remark 2.2 in Arnold and Beaver (2002a). Azzalini’s work,
however, was the first to fully study its properties and to give it its name (Skew Normal
Distribution). Azzalini’s work of 1985 was followed by several developments related to
the skew normal, we can mention Henze (1986) which shows how to obtain it as the sum
of two random variables, one of them sign free, and the other a positive one. Azzalini
(1985) also generalizes the skew normal density as:

g (x) = Φ−1
(
ν/
√

1 + δ2
)

φ (x) Φ (δx + ν) . (3)
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Arnold and Beaver (2000, 2002a, 2002b) describe several procedures that lead to skew
densities, all of them cover the skew normal as a special case. One of these procedures
considers the distribution of random variables of the form:

y = u + δv(c)

where u and v can have arbitrary distributions and v (c) = vI (v; c), where I (v; c) = 1
if v ≥ c and zero otherwise; they give expressions for the cases u and v arbitrary, u and
v symmetric, u and v non independent.

The usual setting in Stochastic Frontier Analysis is when we consider models for optimal
production functions, thus the construct for the disturbance is e = v − u; if the setting
under consideration involves minimal cost frontiers, then the usual device is to switch
the sign of u: e = v + u. One direct generalization (of no use for the moment, but will
be useful in the next section) is to consider

e = v + δu,

where δ is fixed, u is a random variable truncated below at a positive constant c. The
parameter δ would indicate the direction of asymmetry. The corresponding density is
given by:

g (e) =

∫ ∞

−∞
f (e− δu) h (u) du,

if v ∼ N (µ, σ2) and u ∼ N c (ν, τ 2) ( the notation N c (ν, τ 2) indicates that u has a
N (ν, τ 2) distribution truncated below at c, c ∈ <.) then the density is:

g (e) =
Φ−1

(
ν−c
τ

)
√

σ2 + δ2τ 2
φ

(
e− µ− δν√

σ2 + δ2τ 2

)
(4)

× Φ

[
δτ (e− µ− δν)

σ
√

σ2 + δ2τ 2
+

(ν − c)
√

δ2τ 2 + σ2

στ

]
.

where α =
√

τ 2 + σ2 (see Example in Appendix).

If e? = u − v, u ∼ N (0, σ2) , v ∼ N0 (ν, τ 2) , u independent of v, then using (4) with
µ = c = 0, and δ = −1:

g (e?) =
Φ−1

(
ν
τ

)

α
φ

(
e + ν

α

)
Φ

[−τ (e + ν)

σα
+

να

στ

]
.

which is the same as in Kumbhakar and Lovell (2000, eq. 3.2.46) after simplification,
i.e.,

g (e?) =
1

α
φ

(
e + ν

α

)
Φ

(
ν

αλ
− eλ

α

)
/Φ

(ν

σ

)
.

where λ = τ/σ.
Also, observe that if we define the random variable w = e−µ−δν√

σ2+δ2τ2 and δ] = δτ/σ,

ν] = (ν−c)
√

δ2τ2+σ2

στ
then the density of w is the same as (3).

The error structure, e = v + δu, has been examined under several distributional as-
sumptions for v and u. See Arnold and Beaver (2002a, 2002b), Kumbhakar and Lovell
(2000).
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2 Estimation

Let us assume a data structure of cross sectional type, composed of independent obser-
vations on n firms: We have their output production levels and the corresponding values
of exogenous variables collected at a fixed period of time. We will assume a model of
the form

yi = f (xi; β) + ei where ei = vi + δiui, δi ∈ <, i = 1, · · · , n.

In the next subsection we will state a series of distributional assumptions on the error
vector e = (e1, · · · , en)′. However, the estimation problems are as before: We are
interested in the estimation of the production technology parameter β in f (x; β), and
also in the prediction of the technical efficiency of each firm, this last problem implies
that we need to separate the statistical noise from the technical inefficiency.

2.1 Model Assumptions

A standard set of assumptions in Stochastic Frontier Analysis would include: Measure-
ment error, vi, are independent random shocks N(0, σ2), ui are i.i.d. N c(ν; τ 2) i.e.,
ν = c = 0 is the nonnegative half normal distribution; also an independence condi-
tion such as ui and vj independent for all i and j; inputs, xi are known non stochastic
variables.

In this work we propose a general model that contains submodels of the stochastic
frontier model with Normal Errors + Truncated Normal, this is:

y = f (X; β) + v + Du, (5)

where v = (v1, ..., vn)′ ∼ Nn (0, Σ) , u = (u1, ..., um)′ ∼ Nc
m (ν, Λ), m ≥ n, see Section 4.1

for the definition of Nc
m (ν, Λ). D(m×n) is a full row rank matrix. v independent of u,

f (x; β) = (f (x1; β) , ..., f (xn; β))′, X = (x1, · · · ,xn)′ a know matrix of covariables and
β is unknown.

The matrix D gives flexibility to the model, if we leave it unspecified, we can estimate
it and use this estimate to help validate the model assumptions, on the other hand, we
can set it D = In or D = −In for efficiencies or inefficiencies, respectively. Finally, we
can induce particular correlation structures in the errors by letting non-zero off-diagonal
parameters.

From Theorem 1 we have that the density of e = v + Du is:

g (e) = Φ−1
m (0; c− ν, Λ) φn (e; Dν, Σ + DΛD′) (6)

× Φm

[
ΛD′ (Σ + DΛD′)−1

(e−Dν) ; c− ν,

(
D′Σ−1D + Λ−1

)−1
]
,
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where φp (· ; µ, Σ) and Φp (· ; µ, Σ) denote the p.d.f. and the c.d.f. of a p-dimensional
normal distribution with mean µ and covariance matrix Σ, respectively.
Thus e has a closed skew normal distribution, i.e.,

e ∼ CSNn,m (µ?, Σ?, D?,ν?, ∆?)

where µ? = Dν, Σ? = Σ + DΛD′, D? = ΛD′ (Σ + DΛD′)−1 , ν? = c− ν. See equation
(11) and González-Faŕıas, et al (2003a,b) and Domı́nguez-Molina, et al (2003).

This model includes the following cases as submodels

Model I: homoscedastic and uncorrelated errors.
If we set in the model (5) D = δIn, Σ = σ2In, Λ = τ 2In, where In is the n × n
identity matrix, we would have the case of homoscedastic and uncorrelated observa-
tions: var (yi) = constant, i = 1, 2, · · · , n and cov (yi, yj) = cov (ei, ej) = 0, i 6= j,
i, j = 1, 2, · · · , n.

Model II: heteroscedastic and uncorrelated errors.
If the matrices D, Σ and Λ are diagonal and if any of them is of the form

D = diag (δ1, ..., δn) , Σ = diag
(
σ2

1, ..., σ
2
n

)
, Λ = diag

(
τ 2
1 , ..., τ 2

n

)
,

then we would have the case of heteroscedastic but uncorrelated observations: var (yi) =
ki, i = 1, 2, · · · , n and ki 6= kj for some i 6= j, and cov (yi, yj) = cov (ei, ej) = 0, i 6= j,
i, j = 1, 2, · · · , n.

Model III: correlated errors.
If any of the matrices D, Σ or Λ are non-diagonal we would have the case of correlated
errors cov (yi, yj) = cov (ei, ej) 6= 0 for some i 6= j. That is cov (e) = Ω, could be
non-diagonal. If in this submodel we have:

Σ > 0, D = diag (δ1, ..., δn) , Λ = diag
(
τ 2
1 , ..., τ 2

n

)
,

then the errors are correlated and the marginal distribution of the errors would easily
computable, because in this case vi ∼ N (0, σ2

i ) and ui ∼ N c (νi; τ
2
i ) and independent

and we can use (4) in order to evaluate the marginal distributions of the errors.

For our general model (5) using Remark 1 of González-Faŕıas, et al (2003a), we have
that the marginal distribution of the errors is:

ei ∼ CSN1,m

(
0, Σ?

ai
, D?

ai
,ν, ∆?

ai

)
,

where:

Σ?
ai

= a′iΣ
?ai

D?
ai

= D?Σ?aiΣ
?−1
ai

∆?
ai

= ∆? + D?Σ?D?′ −D?Σ?aia
′
iΣ

?D?′Σ?−1
ai

,

and ai is the i-th unit vector in <n.
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2.2 Likelihood

Given a data structure of a vector of observations y = (y1, ..., yn)′ and the corresponding
set of inputs X = (x1, · · · ,xn)′, then under the assumptions of model (5) we can write
the likelihood function and base our inferences on it.

From (6) and (5) we have that the likelihood function of the parameters β, Σ, D, ν, c, Λ
is:

L (β, Σ, D, ν, c, Λ)

= Φ−1
m (0; c− ν, Λ) φn (y − f (x; β) ; Dν, Σ + DΛD′)

× Φm

{
ΛD′ (Σ + DΛD′)−1

[y − f (x; β)−Dν] ;

c− ν,
(
D′Σ−1D + Λ−1

)−1
}

.

For the non-correlated case Σ = diag (σ2
1, ..., σ

2
n) , D = diag (δ1, ..., δn) , Λ = diag (τ 2

1 , ..., τ 2
n)

the likelihood reduces to:

L (β, Σ, D, ν, c, Λ)

=
n∏

i=1

{
Φ−1

(
vi − ci

τi

)
φ

(
yi − f (xi; β) ; δiνi, σ

2
i + δ2

i τ
2
i

)

× Φ
[
τ 2
i δi

(
σ2

i + δ2
i τ

2
i

)−1
(yi − f (xi; β)− δiνi) ;

ci − νi, τ
2
i − τ 4

i δ2
i

(
σ2

i + δ2
i τ

2
i

)−1
]}

=
n∏

i=1





Φ−1
(

v−c
τi

)
√

σ2
i + δ2

i τ
2
i

φ

(
yi − f (xi; β)− δiνi√

σ2
i + δ2

i τ
2
i

)

× Φ

(
τiδi (yi − f (xi; β)− δiνi)

σi

√
σ2

i + δ2
i τ

2
i

; (ci − νi)

√
σ2

i +δ2
i τ2

i

τiσi

)}
.

2.3 Estimation of inefficiencies/efficiencies

In the univariate model of SFA the error is of the form e = v + δu. The main interest in
SFA is to estimate inefficiencies δu (δ < 0) or efficiencies δu (δ > 0) for each x.
After the estimation of β by maximum likelihood we can evaluate the residuals:

êi = yi − f
(
xi; β̂

)
.

The most common proposals for calculating the inefficiencies are by means of the mean
or the mode of the random variable u|e, that is:

efficiency (β, σ, δ, ν, τ, c, e;x) = δE (u|e) , or
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efficiency (β, σ, δ, ν, τ, c, e;x) = δM (u|e) ,

where M (·) is the mode. Thus we estimate the efficiency of firm i by:

efficiency∗i
(
β̂, σ̂, δ̂, ν̂, τ̂ , ĉ, êi;xi

)
.

For our model (5) we proceed in a similar way. Let us assume v ∼ Nn (0, Σ) and
u ∼ N c

m (ν, Λ) , v and u independent, then if

e = v + Du,

then the joint density of u and e is given by:

g (u, e) = Φ−1
m (−c;−ν, Λ) φn (e−Du;0, Σ) φm (u;ν, Λ) .

which, after some manipulations and the help of eq. A.2.4f of Mardia (1972, p458), it
can be reduced to,

g (u, e) = φm

[
u; ν +

(
D′Σ−1D + Λ−1

)−1
D′Σ−1 (e−Dν) ,

(
D′Σ−1D + Λ−1

)−1
]
φn (e; Dν, Σ + D′ΛD) . (7)

From (10) and (6) we have that:

g (u|e) = g (u, e) /g (e)

= Kφm

[
u; ν +

(
D′Σ−1D + Λ−1

)−1
D′Σ−1 (e−Dν) ,

(
D′Σ−1D + Λ−1

)−1
]
,

where:

K−1 = Φm

[
ν +

(
D′Σ−1D + Λ−1

)−1
D′Σ−1 (e−Dν) ; c,

(
D′Σ−1D + Λ−1

)−1
]
,

that is:

u|e ∼ Nc
m

[
ν +

(
D′Σ−1D + Λ−1

)−1
D′Σ−1 (e−Dν) ,

(
D′Σ−1D + Λ−1

)−1
]
.

Domı́nguez-Molina, et al (2003) illustrate the procedure to obtain the mean of a Closed
Skew Normal distribution, which can be useful to obtain the mean of u|e (E(u|e)) then
we can obtain an estimation of the inefficiencies/efficiencies in our model, substituting
the corresponding estimates in:

efficiency (β, Σ, D, ν, Λ, c, e;x) = DE (u|e) .

See also Kotz, et al (2000), section 45.10.
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3 SFA with skew elliptical components

Definition. A p-vector w has a spherical distribution if and only if for its characteristic
function ψ (t) there exist a function ϕ (·) of scalar variable such that ϕ (t) = ψ (t′t) .
The function ψ (·) is called the characteristic generator.
Definition. A p × 1 random vector v is said to have an elliptical distribution ( or
elliptically symmetric distribution) with parameters µ ∈ <p and Σ (p× p) if:

v = µ + A′w,

where w has spherical distribution with characteristic generator ψ. Where A (k × p) ,
A′A = Σ with rank(Σ) = k. We will write v ∼ ECp (µ, Σ; ψ) .

A random vector v ∼ ECp (µ, Σ; ψ), in general, does not necessarily possess a density.
It is however possible to show that the density of v, if it exists, must be of the form
h (v′v) for some nonnegative function h (·) of a scalar variable such that:

∫ ∞

0

y
p
2
−1h (y) dy < ∞.

In this case we will write v ∼ ECp (µ, Σ; h). See Fang, et al (1990, p35).

Consider the stochastic frontier model:

y = f (X; β) + v + Du,

where v = (v1, ..., vn)′ ∼ ECn (0, Σ; h1), u = (u1, ..., um)′ ∼ ECc
m (ν, Λ; h2), m ≥ n, see

(9), v independent of u, D is a full row rank matrix, f (X; β) = (f (x1; β) , ..., f (xn; β))′,
and X= (x1, ...,xn)′ , xi is a known vector of <d1 , d1 a positive integer, i = 1, 2, ..., n. and
the unknown. β ∈ <d2 , d2 a positive integer.
The density function of e is of the form:

g (e) = K

∫ ∞

c1

· · ·
∫ ∞

cn

h1

[
(e−Du)′ (e−Du)

]
h2 (u) du,

where K is a normalizing constant. This expression, in general, is difficult to evaluate.
If the moment generating functions of u and v are available, then the m.g.f. of e is of
the form:

Me (t) = Mv (t) Mu (D′t) , (8)

This expression could be useful to get the density function of e or, alternatively, we
could use it to obtain the moments of e and use a method of moments to estimate the
parameters of the model.

Acknowledgements

This work was supported by the research project 39017-E of CONACYT- México and
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4 Appendix

4.1 Linear combination of a normal random vector and a trun-
cated normal random vector

Let w = (w1, ..., wp)
′ , we consider truncation of the type w ≥ c, where w ≥ c means

wj ≥ cj, j = 1, ..., p, that is, values of wj less than cj are excluded. (see Kotz, et al,
2000, Section 45.10).
For arbitrary vector c ∈<p define the function:

I (x; c) =

{
x if x ≥ c,
0 if otherwise.

Let w a random vector, we denote by w (c) a random vector with truncation of the type
w ≥ c, for c ∈<p then w (c) can be written as:

w (c) = wI (w; c) , (9)

thus, if w has density f, the density function of w (c) is given by:

g (w) =
f (w)

Pr (w ≥ c)
I (w; c) .

If w ∼ ECp (µ, Σ; h) and u
D
= w (c) , where

D
= means equality in distribution, then the

density function of u is:

g (u) =
f (u; µ, Σ)

Pr (u ≥ c)
I (u; c)

=
f (u; µ, Σ)

Pr (−u ≤ −c)
I (u; c)

=
f (u; µ, Σ)

F (−c;− µ, Σ)
I (u; c) ,

where f and F are the density and the distribution function of w, respectively.

If w ∼ ECp (µ, Σ; h) , h (w) = e−w/2, that is w ∼ Np (µ, Σ) , and u
D
= w (c) thus:

g (u) = [Pr (x ≥ c)]−1 φp (u;µ, Σ) I (u; c)

= [Pr (−x ≤ −c)]−1 φp (u;µ, Σ) I (u; c)

= Φ−1
p (−c;−µ, Σ) φp (u;µ, Σ) I (u; c) .

We will denote by u ∼ ECc
p (µ, Σ; h) if u

D
= w (c) and w ∼ ECp (µ, Σ; h) , similarly

u ∼ Nc
p (µ, Σ) if u

D
= w (c) and w ∼ Np (µ, Σ) .

Theorem 1 If v ∼ Np (µ, Σ) and u ∼ N c
q (ν, Λ) , and v is independent of u and:

e = v + Du,
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where D is a full row rank matrix, then

e ∼ CSNp,q

(
µ†, Σ†, D†,ν†, ∆†)

where µ† = µ + Dν, Σ† = Σ + DΛD′, D† = ΛD′ (Σ + DΛD′)−1 , ν† = c − ν, ∆† =
(D′Σ−1D + Λ−1)

−1
.

That is, the density function of e is:

g (e) = Φ−1
p (0; c− ν, Λ) φp (e; µ + Dν, Σ + DΛD′) (10)

× Φp

[
ΛD′ (Σ + DΛD′)−1

(e− µ + Dν) ; c− ν,

(
D′Σ−1D + Λ−1

)−1
]
.

Before proving Theorem 1 we will define the closed skew normal (CSN) distribution.
González-Faŕıas, et al (2003b) defines a random vector, y, to have the CSN distribution
if its density function is given by:

gp,q (y) = Cφp (y; µ, Σ) Φq [D (y − µ) ; ν, ∆] , y ∈ <p, (11)

where:

C−1 = Φq (0; ν, ∆ + DΣD′) , (12)

where φp (· ; µ, Σ) and Φp (· ; µ, Σ) denote the p.d.f. and the c.d.f. of a p-dimensional
normal distribution with mean µ and covariance matrix Σ, respectively. We denote this
as:

y ∼ CSNp,q (µ, Σ, D, ν, ∆) .

The moment generating function of y is:

My (t) =
Φq (DΣt; ν, ∆ + DΣD′)

Φq (0; ν, ∆ + DΣD′)
et′�+ 1

2
t′Σt, t ∈ <p. (13)

Lemma 2 If w ∼ Nq (ν, Λ) then the moment generating function of u = w (c) is given
by:

Mu (t) = Φ−1
q (0; c− ν, Λ) et′�+ 1

2
t′ΛtΦq (Λt; c− ν, Λ) .

Proof.

Mu (t) = Eet′u

= Φ−1
q (−c;−ν, Λ)

×
∫ ∞

c1

· · ·
∫ ∞

cq

et′uφq (u; ν, Λ) dw1 · · · dwq

given that:
et′uφp (u; ν, Λ) = et′�+ 1

2
t′Λtφp (u; ν + Λt, Λ) ,
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we get:

Mu (t) = Φ−1
q (−c;−ν, Λ) et′�+ 1

2
t′Λt

×
∫ ∞

c1

· · ·
∫ ∞

cq

φq (u; ν + Λt, Λ) dw1 · · · dwq

= Φ−1
q (−c;−ν, Λ) et′�+ 1

2
t′ΛtΦq (−c;−ν − Λt, Λ) .

¥

Proof of Theorem 1. From Lemma 2 and the fact that MDu (t) = Mu (D′t) we obtain:

MDu (t) = Φ−1
q (0; c− ν, Λ) et′D�+ 1

2
t′DΛD′tΦq (ΛD′t; c− ν, Λ)

and given that w ∼ Np (µ, Σ) the m.g.f. of w is given by:

Mw (t) = et′�+ 1
2
t′Σt.

By independence of v and u the m.g.f. of v + Du is:

Me (t) = Mv+Du (t)

= Mv (t) Mu (D′t)

= Φ−1
q (0; c− ν, Λ) Φq (ΛD′t; c− ν, Λ) et′(�+D�)+ 1

2
t′(Σ+DΛD′)t

= Φ−1
q (0; c− ν, Λ)

× Φq

[
ΛD′ (Σ + DΛD′)−1

(Σ + DΛD′) t; c− ν, Λ
]

× et′(�+D�)+ 1
2
t′(Σ+DΛD′)t.

Comparing with the CSN m.g.f. (13) we get that the density function of e is:

gp,q (e) = Cφp

(
e; µ†, Σ†) Φq

[
D† (e− µ†) ; ν†, ∆†] , e ∈ <p,

where µ†, Σ†, D†,ν† and ∆† are given in the statement of Theorem 1 This density could
have been obtained by integrating (7) with respect to u.

Example: (The stochastic frontier error model). If v ∼ N (µ, σ2) and w ∼ N c (ν, τ 2) ,
v and w are independent. Then the density function of:

e = v + δw,

is given by:

g (e) = Φ−1

(
ν − c

τ

)
φ

(
e; µ + δν, σ2 + δ2τ 2

)

× Φ

[
δτ 2 (e− µ− δν)

στ
√

σ2 + δ2τ 2
+

(ν − c)
√

δ2τ 2 + σ2

στ

]
.
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Proof. From Theorem 1 with Σ = σ2, D = δ, Λ = τ 2 and the identities:

µ† = µ + δν, Σ† = σ2 + δ2τ 2,

D† = ΛD′ (Σ + DΛD′)−1
= δτ 2

(
σ2 + δ2τ 2

)−1
, ν† = c− ν

and: (
D′Σ−1D + Λ−1

)−1
=

(
δ2σ−2 + τ−2

)−1
=

σ2τ 2

δ2τ 2 + σ2

we obtain that the density function of e is:

g (e) = Φ−1

(
ν − c

τ

)
φ

(
e; µ + δν, σ2 + δ2τ 2

)

× Φ

[
δτ 2

(
σ2 + δ2τ 2

)−1
(e− µ− δν) ; c− ν,

σ2τ 2

δ2τ 2 + σ2

]
,

simplifying the former expression we get the stated density.

References

[1] Aigner, D., Lovell, C.A.K. and Schmidt, P. (1977). Formulation of stochastic frontier
production function model. Journal of Econometrics, 6, 21-37.

[2] Arnold, B.C. and Beaver, R.J. (2000). Some skewed multivariate distributions.
American Journal of Mathematical and Management Sciences, 20, pp.27-38.

[3] Arnold, B.C., Beaver, R.J. (2002a). Skew multivariate models related to hidden
truncation and/or selective reporting. Test. Sociedad de Estad́ıstica e Investigación
Operativa. Vol. 11, No. 1, pp. 7-54.

[4] Arnold, B.C. and Beaver, R.J. (2002b). Alternative construction of skewed multi-
variate distributions. Technical Report 270, Department of Statistics, University of
California, Riverside.

[5] Azzalini, A. (1985). A class of distributions which includes the normal ones. Scand.
J. Statist. 12, 171-178.

[6] Birnbaum, Z.W. (1950). Effect of linear truncation on a multinormal population.
The Annals of Mathematical Statistics, 21, 272-279.
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