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Department of Statistics and Computation
Universidad Autónoma Agraria Antonio Narro

25350 Buenavista, Saltillo, Coahuila
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ABSTRACT

In this study we intend to clarify the differences between the densities and the Jaco-
bians of the transforms of singular random matrices. Some comments on the results
proposed by Srivastava (2003) are presented. Different definitions of the measure
with respect to which a singular random matrix possesses a density are proposed
and, under any of these measures, various Jacobians of different transforms are
found. An alternative proof of Uhlig’s first conjecture, Uhlig (1994), is proposed.
Furthermore, we propose various extensions to this conjecture under different sin-
gularities. Finally, some applications of the theory of singular distributions are
discussed.

1. INTRODUCTION

Several studies have recently been published concerning singular random matrices, their
densities and transforms see Khatri (1968), Uhlig (1994), Dı́az-Garćıa et al. (1997), Dı́az-
Garćıa and Gutiérrez-Jáimez (1997) and Srivastava (2003), among others. In the present
study, we examine the reason for the differences between the densities and the Jacobians
of transforms of the same singular random matrix; we also highlight the care that must

∗This article was written while the author was a Visiting Professor at the Centro de Investigación en
Matemáticas, Guanajuato, Gto. México.
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be taken in using such results. Indeed, in his introduction, Srivastava (2003) explains the
difference between his expression for the Wishart singular density and that proposed by
Uhlig (1994). Srivastava (2003) concludes that this difference is due to the fact that the
measures with respect to which the densities are calculated are different; furthermore, he
claims that the measure, according to his definition (dX) = (dXI), in his notation, is the
Lebesgue measure. This is the first qualification that should be made of Srivastava’s results.
Formally, the measure as defined by Srivastava is not the Lebesgue measure. To see this,
note that given a full rank random matrix, X : N × m, this has density with respect to
the Lebesgue measure defined in RNm. However, if X : N × m is of non-full rank, say
q < min(N, m), X, then X has no density with respect to the Lebesgue measure in RNm;
indeed, X has a zero measure with respect to Lebesgue measure in RNm, see p. 172 in
Billingley (1986). Note, moreover, that the Lebesgue measure has the characteristic that
it is invariant under rotations, see Theorem 12.2, p. 172 in Billingley (1986); however,
according to Theorem 2.2 in Srivastava (2003), Lebesgue’s measure (dX) = (dXI), as
defined, is not invariant under rotations or a reflections.

We now see, perhaps, that the densities of singular random matrices given in the litera-
ture (see Khatri (1968), Uhlig (1994), Dı́az-Garćıa et al. (1997), Dı́az-Garćıa and Gutiérrez-
Jáimez (1997)) and which are used by Srivastava (2003) in applying his results, do not exist
with respect to the measure (dX) = (dXI) that he proposes. For proof of this, note the
following example:

Assume that X ∼ NN×m(0,Σ, IN ), with r(Σ) = q < min(N,m). Let now H : N × N
be an orthogonal matrix and let us define Y = HX; then X and Y have the same density,
explicitly,

dFY (Y ) =
1

(2π)Nq/2

i=1∏
q

λN/2

etr
(−1

2Σ−Y ′Y
)
(dY ) (1)

where λi are the non-null eigenvalues of Σ.
Now, applying Theorem 2.2 in Srivastava (2003), we have

(dY ) = (dYI) = |H11|m−q(dXI) = |H11|m−q(dX)

where H =
(

H11 H12

H21 H22

)
, H11 : q × q. Then

dFY (Y ) = fX(H ′Y )J(X → Y )(dY )

=
1

(2π)Nq/2

i=1∏
q

λN/2

etr
(−1

2Σ−Y ′Y
) |H11|−(m−q)(dY ) (2)

the result of which contradicts (1). This contradiction means that the density (1) does not
exist with respect to the measure (dY ) defined in Srivastava (2003) as (dYI). To obtain
the correct result, we must determine density (1) with respect to the measure (dYI), or
otherwise find the explicit form or forms of the measure (dY ) (see Khatri (1968)), with
respect to which (1) is a density.
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We can now establish a second qualification concerning the reasoning behind Srivas-
tava’s study (2003). He argued the need to evaluate the volume (dS), with S = Y ′Y
(and therefore the volume (dY )) in order to perform practical applications. Basically, for
such an effect, this action is not necessary. Furthermore, it is not even necessary to know
the explicit forms of the measures (dY ) and (dS), as is shown by Rao (1973) and Khatri
(1968), among others. Specifically, given an independent random sample, X1, · · · , XN , of
a normal m-dimensional singular population, i.e., Xi ∼ Nm(µ,Σ), for all i, i = 1, . . . , m,
with r(Σ) = r < m, p. 532 in Rao (1973), finds the maximum-likelihood estimators of
the parameters µ and Σ. Similarly, Khatri (1968) studied the linear model of multivariate
regression - maximum-likelihood estimators of the parameters, the proof of the hypothesis
and simultaneous confidence intervals - assuming there exists a linear dependence between
the elements of the sample and between the regression variables, but without any need to
know the explicit value of the volumes (dY ) and (dS). Where it is, in fact, essential to know
the explicit form of the measures (dY ) and (dS) is when we wish to calculate the Jacobian
of the transforms on the matrices X and S, and naturally, in determining the corresponding
densities of X and S or any transform of the latter, as is made clear in Srivastava (2003)
and in contradiction (2).

The above considerations are intended to reinforce the fact established by Khatri (1968),
i.e. that (1) exists with respect to the measure (dY ), which is not unique, but which cannot
be just any measure, either.

In the present article, we propose alternative ways of defining the measure (dY ), which,
as will be established, is the Hausdorff measure, with its corresponding invariance with
respect to rotations (and/or reflections), see Section 2. Some results presented in Srivastava
(2003) are studied under these new measures, see Theorems 3.1 - 3.3. We also include an
alternative proof to that given by Dı́az-Garćıa and Gutiérrez-Jáimez (1997) concerning
Uhlig’s first conjecture, Uhlig(1994), see Theorem 3.4. An extension of this latter result is
studied under other singularities, see Theorem 3.6. Two Jacobians that include the Moore-
Penrose inverse are proposed in Theorems 3.5 and 3.7. The study concludes by applying
some of the Jacobians studied in Section 3 to the theory of singular distributions.

2. NOTATION AND MEASURES

In the following, we establish alternative ways of defining the measure (dY ). First, however,
some notation should be established.

Let Lm,N (q) be the linear space of all N ×m real matrices of rank q ≤ min(N,m) and
L+

m,N (q) be the linear space of all N×m real matrices of rank q ≤ min(N, m)with q distinct
singular values. The set of matrices H1 ∈ Lm,N such that H ′

1H1 = Im is a manifold denoted
Vm,N , called Stiefel manifold. In particular, Vm,m is the group of orthogonal matrices O(m).
Denote by Sm, the homogeneous space of m×m positive definite symmetric matrices; S+

m(q),
the (mq−q(q−1)/2)-dimensional manifold of rank q positive semidefinite m×m symmetric
matrices with q distinct positive eigenvalues. T +

m is the group of m ×m upper triangular
matrices with positive diagonal elements; T +

m,N the set of N × m upper quasi-triangular
matrices such that T = (T1|T2) ∈ T +

m,N , with T1 ∈ T +
N and T2 ∈ Lm−N,N (N)

Note that in Srivastava (2003) for Y ∈ L+
m,N (q) the subspace on which the measure
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(dYI) is defined can be defined by the axes identified by the elements in the submatrices
Y11, Y12, Y21, or a related subspace, in which

Y =
(

Y11 Y12

Y21 Y22

)
(3)

where Y11 : q × q of rank q. Therefore (dYI) is defined as

(dY ) = (dYI) =
q∧

i=1

m∧

j=1

dyij ∧
N∧

i=q+1

q∧

j=1

dyij = (dY11) ∧ (dY12) ∧ (dY21). (4)

The idea underlying the definition of the measure (dY ) is to propose a base and its corre-
sponding coordinate system for the subspace in which the mass of the density is concen-
trated. For the case of Srivastava’s definition, Srivastava (2003), it is no simple matter to
propose a matrix expression for the base and the coordinate system. However, if we begin
with the vectorisation of Y by blocks, vecY = (vecY ′

11, vecY ′
21, vecY ′

12, vecY ′
22)

′, we see that

vecY = M vecYI . (5)

In other words, the elements in the matrices Y11, Y12, Y21 define the coordinates and M ∈
RNm×q(mN+m−q) is the base. This base is constituted as M = (M ′

1M
′
2)
′, where M1 is the

usual base for Rq(N+m−q) (perhaps with its rows permuted) and M2 is a linear combination
of M1, such that vecY22 = M2 vecYI . For example, let us assume that Y ∈ R2, with
r(Cov(Y )) = 1, following Srivastava (2003), (dX) = (dXI) = dx1 (or = dx2). With no loss
of generality, let (dX) = (dXI) = dx1, then

X =
(

1
a

)
x1

with constant a, such that x2 = ax1. In matrix form, (5) defines a factorisation of Y and
the explicit form of (dY ) defines a factorisation of the measure (dY ). Note, however, that
(5) is not the only possible factorisation of Y . For example, we might consider the QR
factorisation of Y . Y = H1T where H1 ∈ Vq,N and T ∈ T +

m,q, in which the elements of
T denote the rectangular coordinates. Now observe that, because the measure (H ′

1dH ′
1) is

invariant under orthogonal transforms, see p. 69 Muirhead (1982), then

(dX) = (QdY ) = (dY ) (6)

for Q ∈ O(N). Note that X = QY = QH1T = R1T , with R1 = QH1 and J(Y → X) =
J(dY → dX). In other words, the measure (dY ) defined under the QR factorisation is the
Hausdorff measure, which, like Lebesgue’s measure, must be invariant under rotations, see
Theorem 19.2, p. 252 in Billingley (1986). Explicitly, the factorisation of the measure (dY )
is given by:

(dY ) =
q∏

i=1

tN−i
ii (H ′

1dH1)(dT ) (7)
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see Dı́az-Garćıa and González-Faŕıas (1999) and/or Dı́az-Garćıa and González-Faŕıas (2002a).
The Jacobian of the QR factorisation is given by Srivastava (2003), Theorem 2.1 and Corol-
lary 2.2, the expression of which does not coincide with that given in (7), because in Srivas-
tava (2003) this Jacobian is determined with respect to the measure (dYI). However, note
that the equivalence between the two results can be obtained, observing that in our case
(H ′dY ) = (dY ), while in Srivastava (2003), (H ′dY ) = |H ′

11|m−q(dY ), when H ∈ O(N).
This situation is similar to that occurring between Theorem 2.3 in Srivastava (2003) and
Theorem 2 in Uhlig (1994).

In general, note that it is possible to propose alternative definitions to those given in (7)
for the measure (dY ), with the additional condition that such measures should be invariant
under leftward rotations, and even that some should be invariant under rightward rotations.
Thus, among other possibilities for such a factorisation, including QR factorisation, we have
the following:

Y =





H1T QR factorisation
Q1R Polar factorisation
P1DW ′

1 Singular value factorisation
V1ΛT1 Modified QR factorisation
LU LU factorisation

(8)

where Q1, P1 and V1 ∈ Vq,N , W1 ∈ Vq,m, R ∈ S+
m(q), D and Λ are diagonal matrices,

with different elements, U ∈ T +
m,q and L′ ∈ T +

N,q. Under all these decompositions, the
explicit form of the measure (dY ) has been studied in Dı́az-Garćıa and González-Faŕıas G.
(1999) and Dı́az-Garćıa and González-Faŕıas (2002a) and some application to the theory of
distributions in Dı́az-Garćıa and González-Faŕıas (2002b).

Taking all the above into account, we seek to establish that the two approaches, that
of this article and the one given by Srivastava (2003), are correct. However, when they are
applied, it is necessary to be careful because both the Jacobian and the density in which
we will apply these results must be expressed in terms of the same measure. Observe, also,
that in general not all problems can easily be resolved by both approaches. For example,
see the problem of finding the Pseudo-Wishart non-central singular density, see Theorem
5.1 in Srivastava (2003) and the last section in Dı́az-Garćıa and González-Faŕıas (2002b).

3. JACOBIANS

In this section we examine the version of Theorems 2.2. and 2.5 in Srivastava (2003) under
our approach, and their extension to more general cases.

Given X ∈ L+
m,N (q), and constant A ∈ L+

N,p(r), and Y ∈ L+
m,p(q) with r ≥ q. We wish

to determine the Jacobian of the transform Y = AX. Let us first consider the following
case:

Theorem 3.1. Let X ∈ L+
m,N (N), with A ∈ L+

N,p(N) constant and Y ∈ L+
m,p(N). If

Y = AX, then

(dY ) =
N∏

i=1

σi(A)m(dX) =
N∏

i=1

chi(AA′)m/2(dX) (9)
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where chi(M) and σi(M) are the i-th non-null eigenvalue and singular value of M , respec-
tively.

Proof. Let A = H1DAQ′ be the non-singular part of the SVD of A, where H1 ∈ VN,p,
DA = diag(σ1(A), · · · , σN (A)), with σi(A) the i-th singular value of A and Q ∈ O(N).
Furthermore, note that r(Y ) = r(AX) = N . By differentiating Y = AX, we obtain

dY = AdX

= H1DAQ′dX.

Now, let H2 (a function of H1) be such that H = (H1
... H2) ∈ O(N), then

H ′dY =
(

H ′
1

H ′
2

)
H1DAQ′dX

=
(

H ′
1H1DAQ′dX

H ′
2H1DAQ′dX

)

=
(

DAQ′dX
0

)

as H ′
2H1 = 0. From (6), we have (H ′dY ) = (dY ) and that (Q′dX) = (dX), then

(dY ) = |DA|m(dX)

=
N∏

i=1

σi(A)m(dX)

=
N∏

i=1

chi(AA′)m/2(dX)

Remark 3.1. Note that, we can consider the QR decomposition instead of SVD of
matrix A in Theorem 3.1. That is A = H1T , where H1 ∈ VN,p and T ∈ T +

N . Alternatively
to (9) we have that

(dY ) =
N∏

i=1

tmii (dX). (10)

The proof is parallel to that given in Theorem 3.1. Additionally note that, when N = p,
(9) and (10) they agree.

Theorem 3.2. Let X ∈ L+
m,N (q), with A ∈ L+

N,p(r) constant, and Y ∈ L+
m,p(q), with

min(p,N) ≥ r ≥ q. If Y = AX, then

(dY ) =

q∏

i=1

chi(ACC ′A′)m/2

q∏

i=1

chi(CC ′)m/2

(dX) (11)

where C ∈ L+
q,N (q).
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Proof. Let C ∈ L+
q,N (q) such that X = CZ where Z ∈ L+

m,q(q) and let us denote
R = AC. Then

Y = AX

= ACZ

= RZ.

Observing that r(Y ) = r(RZ) = r(Z) = q, from Theorem 3.1 we have

(dY ) =
q∏

i=1

chi(RR′)m/2(dZ)

=
q∏

i=1

chi(ACC ′A′)m/2(dZ). (12)

Now, X = BZ, again applying Theorem 3.1, we obtain

(dX) =
q∏

i=1

chi(CC ′)m/2(dZ)

from which, substituting (dZ) =
∏q

i=1 chi(CC ′)−m/2(dX) in (12), we obtain the desired
result.

Remark 3.2. Note that, when N = p = r in Theorem 3.2, we obtain a result analogous
to Theorem 2.2 in Srivastava (2003). Under Theorem 3.2, note that if A ∈ O(N) and
Y = AX, it is confirmed that (dX) = (dY ) and in consequence the result in (1) is obtained
without the contradiction given in (2).

We now generalize the result from Theorem 3.2 to the case in which Y = AXB.

Theorem 3.3. Let X ∈ L+
m,N (q), with constant A ∈ L+

N,p(rA) and B ∈ L+
n,m(rB ) also

constant, and let Y ∈ L+
n,p(q), with r ≥ q, such that rA ≥ q and rB ≥ q. If Y = AXB, then

(dY ) =

r
C∏

i=1

chi(ACC ′A′)r
E

/2

r
E∏

j=1

chj(B′E′EB)r
C

/2

r
C∏

i=1

chi(CC ′)r
E

/2

r
E∏

j=1

chj(E′E)r
C

/2

(dX) (13)

where C ∈ L+
r
C

,N (rC ), E ∈ L+
m,r

CE
(rE ) such that X = CZE with Z ∈ L+

r
E

,r
C
(q), q =

min(rC , rE ).

We now establish an alternative proof to that given by Dı́az-Garćıa and Gutiérrez (1997)
for Uhlig’s first conjecture, see Theorem 4 Uhlig (1994). For this, consider the following
preliminary results.
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Lemma 3.1. Let Z ∈ L+
m,N (N), such that Z = V DW ′

1 with W1 ∈ VN,m, V ∈ O(N) and
D = diag(d1, · · · , dN ), d1 > · · · > dN > 0. Then

(dZ) = 2−N |D|m−N
N∏

i<j

(d2
i − d2

j )(dD)(V ′dV )(W ′
1dW1) (14)

where (dD) ≡
N∧

i=1

dDii, and

(W ′
1dW1) ≡

N∧

i=1

m∧

j=i+1

w′jdwi and (V ′dV ) ≡
N∧

i=1

N∧

j=i+1

v′jdvi

define an invariant measure on VN,m and on O(m), respectively, see Uhlig (1994) and/or
James (1954).

Lemma 3.2. Under the assumptions of Lemma 3.1, define S = Z ′Z = W ′
1LW1 ∈ S+

m(N),
where L = diag(l1, · · · , lN ), l1 > · · · > lN > 0. Then

1. (dS) = 2−N |L|m−N
N∏

i<j

(li − lj)(dL)(W ′
1dW1)

2. (dZ) = 2−N |L|(N−m−1)/2(dS)(V ′dV ).

The proof follows from Lemma 3.1 and from Theorem 2 in Uhlig (1994).

Theorem 3.4 (First Uhlig’s conjecture). Let X,Y ∈ S+
m(N), such that X =

B′Y B, with B ∈ L+
m,m(m) fixed. Additionally, let X = G1KG′

1 and Y = H1LH ′
1 with

G1,H1 ∈ VN,m and K = diag(k1, · · · , kN ), k1 > · · · > kN > 0, L = diag(l1, · · · , lN ),
l1 > · · · > lN > 0. Then

(dX) = |G′
1BH1|m+1−N |B|N (dY )

= |H ′
1B

′G1|m+1−N |B|N (dY )
= |K|(m+1−N)/2|L|−(m+1−N)/2|B|N (dY ) (15)

Proof. Let Z ∈ L+
N,m(N), such that Y = Z ′Z. Then

X = B′Y B = B′Z ′ZB = Λ′Λ, with Λ = ZB (16)

from Lemma 3.2
(dX) = 2N |K|−(N−m−1)/2(V ′dV )−1(dΛ). (17)

In which Λ = V DG′
1, with V ∈ O(N) and D2 = K. Note that dΛ = dZB, and so

(dΛ) = |B|N (dZ), from which, substituting in (17), we obtain

(dX) = 2N |K|−(N−m−1)/2(V ′dV )−1|B|N (dZ). (18)
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Now Y = Z ′Z, from 3.2

(dZ) = 2−N |L|(N−m−1)/2(dY )(V ′
zdVz) (19)

where Z = VzDzH
′
1, where D2

z = L and Vz ∈ O(N). Moreover, note that, due to the
uniqueness of Haar’s measure, (V ′dV ) = (V ′

zdVz), see James (1954). Thus, substituting
(19) in (18), we obtain

(dX) = |L|(N−m−1)/2|K|−(N−m−1)/2|B|N (dY )
= |K|(m−N+1)/2|L|−(m−N+1)/2|B|N (dY ).

Finally, note that

|K| = |G′
1XG1| = |G′

1B
′Y BG1| = |G′

1B
′H1LH ′

1BG1| = |G′
1B

′H1||L||H ′
1BG1|

from which, taking into account that |A| = |A′|, we obtain the other expressions for (dX).

Remark 3.3. Under the premises of Theorem 3.4, note that if X ∼ S+
m(N) and X ∼

Wm(N,Σ), then X can be written as X = U ′U , with U ∼ NN×m(0,Σ, IN ), where U =
HuDuG1, is the SVD of U , where Hu ∈ O(N). Then X = G1LG′

1, with L = D2
u, see Uhlig

(1994) and Srivastava (2003). However, note that this is not the only way in which the
matrix X can be defined. Assume now that U1 ∼ Nn×m(0,Σ, IN ), with U1 ∈ L+

m,n(N),
such that U1 = Hu1Du1G1 is the non-singular part of the SVD of U1. Then we also
obtain X1 = G1LG′

1, with L = D2
u1

. Due to the uniqueness of the measure of (G′
1dG1),

(dX) = (dX1), but this is not so for the corresponding measures (dU) and (dU1), which
are defined by Lemmas 3.1 and 3.4, respectively. When this situation is known, it must be
taken into account when Theorem 3.4 is applied, otherwise the result obtained would be
the following:

Consider the assumptions made under Theorem 3.4. Let Z ∈ L+
n,m(N), such that

Y = Z ′Z, then
X = B′Y B = B′Z ′ZB = Λ′Λ, with Λ = ZB

from Lemma 3.4
(dX) = 2N |K|−(n−m−1)/2(V ′

1dV1)−1(dΛ).

in which Λ = V1DG′
1, with V1 ∈ VN,n and D2 = K. Note that dΛ = dZB, and so, from

Theorem 3.3

(dΛ) =

N∏

i=1

chi(B′C ′CB)n/2

N∏

i=1

chi(C ′C)n/2

(dZ)

where Z = UC, con U ∈ L+
N,n(N) and C ∈ L+

m,N (N) is fixed. Therefore

(dX) = 2N |K|−(N−m−1)/2(V ′dV )−1

N∏

i=1

chi(B′C ′CB)n/2

N∏

i=1

chi(C ′C)n/2

(dZ).
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Now Y = Z ′Z, from Lemma 3.4

(dZ) = 2−N |L|(n−m−1)/2(dY )(V ′
zdVz)

where Z = VzDzH
′
1, with D2

z = L and Vz ∈ VN,n. Additionally note that, due to the
uniqueness, (V 1′dV1) = (V ′

zdVz), see James (1954). Thus, finally, we obtain

(dX) = |K|(m−N+1)/2|L|−(m−N+1)/2

N∏

i=1

chi(B′C ′CB)n/2

N∏

i=1

chi(C ′C)n/2

(dY ). (20)

Finally, note that the result in Theorem 3.4 is obtained from (20) taking n = N , in
which case U = Z and C = I in the proof.

Now, let us assume that A and B have a non-singular Wishart distribution; the matrix
R = A−1/2BA′−1/2 then has a multivariate F (or beta type II) distribution, in which A1/2 is
a root of matrix A, such that A = A1/2A′1/2, see p. 92 in Srivastava and Khatri (1979) and
p. 190 in Gupta and Nagar (2000), among others. An alternative definition, proposed by
various authors, is given by the expression R1 = B1/2A−1B′1/2, see James (1964), p. 449 in
Muirhead (1982) and p. 192 in Gupta and Nagar (2000), among others. A similar situation
occurs in the case of the beta type I distribution, Srivastava (1968) and Dı́az-Garćıa and
Gutiérrez (2001).We now present various results that enable us to extend the densities of R
and R1 to the case in which both B and A are singular random matrices. First, however,
consider the following lemma, the proof of which is given in Dı́az-Garćıa et al. (2003).

Lemma 3.3. Assume that X ∈ S+
m(N) and let Y = X+ (the inverse of Moore-Penrose

of X, see Campbell and Meyer (1979)). Entonces,

(dY ) = |K|−2m+N−1(dX)

with X = G1KG′
1, K = diag(k1, · · · , kN ), k1 > · · · > kN > 0.

Theorem 3.5. Let X, Y ∈ S+
m(N), such that X = B′Y +B, with B ∈ L+

m,m(m) fixed.
Moreover, let X = G1KG′

1 and Y = H1LH ′
1 with G1,H1 ∈ VN,m y K = diag(k1, · · · , kN ),

k1 > · · · > kN > 0, L = diag(l1, · · · , lN ), l1 > · · · > lN > 0. Then

(dX) = |K|(m+1−N)/2|L|−(5m+3−3N)/2|B|N (dY ) (21)

Proof. Denote Z = Y +, then from Theorem 3.4

(dX) = |K|(m−N+1)/2|L|−(m−N+1)/2|B|N (dZ).

The result follows from Lemma 3.3, observing that (dZ) = |L|−2m+N−1(dX).

Remark 3.4. An alternative version of Theorem 3.5 is obtained under the same idea as
in Remark 3.3.
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We now generalize the results from Theorems 3.4 and 3.5 to the case in which B is a
singular fixed matrix, such that r(B) ≥ N . First, however, by analogy with Lemmas 3.1
and 3.2, we obtain the following result:

Lemma 3.4. Let Z ∈ L+
m,N (q), such that Z = V1DW ′

1 with W1 ∈ Vq,m, V1 ∈ Vq,N y
D = diag(d1, · · · , dq), d1 > · · · > dq > 0. Then

1. (dZ) = 2−N |D|N+m−2q
∏N

i<j(d
2
i − d2

j )(dD)(V ′
1dV1)(W ′

1dW1)

2. If S = Z ′Z = W1LW ′
1 where L = diag(l1, · · · , lN ), l1 > · · · > lN > 0. We then obtain

(dZ) = 2−q|L|(N−m−1)/2(dS)(V ′
1dV1)

The proof can be found in Dı́az-Garćıa et al. (1997).

Theorem 3.6. Let X, Y ∈ S+
m(q), such that X = B′Y B, with B ∈ L+

m,m(r) fixed,
such that r ≥ q. Moreover, let X = G1KG′

1 and Y = H1LH ′
1 with G1,H1 ∈ Vq,m and

K = diag(k1, · · · , kq), k1 > · · · > kq > 0, L = diag(l1, · · · , lq), l1 > · · · > lq > 0. Then

(dX) = |G′
1BH1|m+1−n




q∏

i=1

chi(B′Q′QB)n/2

q∏

i=1

chi(Q′Q)n/2




(dY )

= |H ′
1B

′G1|m+1−n




q∏

i=1

chi(B′Q′QB)n/2

q∏

i=1

chi(Q′Q)n/2




(dY )

= |K|(m+1−n)/2|L|−(m+1−n)/2




q∏

i=1

chi(B′Q′QB)n/2

q∏

i=1

chi(Q′Q)n/2




(dY )

where n is such that, Y = Q′U ′UQ, with U ∈ L+
q,n(q) and Q ∈ L+

m,q(q).

Proof.The proof is parallel to that given in Theorem 3.4, simply applying Theorem
3.4 when (dΛ) is determined.

Theorem 3.7. In the Theorem 3.6, assume that X = B′Y +B. Then

(dX) = |K|(m+1−n)/2|L|(n−5m−3+2q)/2




q∏

i=1

chi(B′Q′QB)n/2

q∏

i=1

chi(Q′Q)n/2




(dY )
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Proof. The proof is immediate from Theorem 3.6 and Lemma 3.3.

Remark 3.5. Once again, note that alternative results to those of Theorems 3.6 and 3.7
may be obtained under Remark 3.3. These new versions are derived by taking n = N = q
in Theorems 3.6 and 3.7.

4. SOME APPLICATIONS

Finally, in this section we present some applications of some of the results obtained in
Section 3.

Assuming that X ∼ NN×m(µ,Σ, Θ), Σ ∈ S+
m(r), r ≤ m and Θ ∈ S+

N (k), k ≤ N ,
using the characteristic function technique, we know that, Y ∼ Np×s(AµB,B′ΣB, AΘA′),
if Y = AXB, with A ∈ L+

N,p(rA), rA ≥ k and B ∈ L+
s,m(rB ), rB ≥ r. We now see the proof,

using the variable change theorem.
First, note that X ∼ NN×m(µ,Σ,Θ) if and only if X = CZE + µ, where Z ∼

Nk×r(0, Ir, Ik), B ∈ L+
k,N (k) and E ∈ L+

m,r(r). Moreover, Σ = E′E y Θ = CC ′. Then, from
Khatri (1968) or Dı́az-Garćıa et al. (1997), the density of X is given by

dFX(X) =
1

(2π)kr/2

r∏

i=1

chi(Σ)k/2

k∏

j=1

chj(Θ)r/2

etr
(−1

2Σ−(X − µ)′Θ−(X − µ)
)
(dX) (22)

where M− is a symmetric generalized inverse of M , MM−M = M and ch(M)l are the
non-null eigenvalues of M . Then

dFY (Y ) = fX(A+Y B+)|J(X → Y )|(dY ).

Thus, from Theorem 3.3 we obtain

(dX) =

r
C∏

i=1

chi(CC ′)r
E

/2

r
E∏

j=1

chj(E′E)r
C

/2

r
C∏

i=1

chi(ACC ′A′)r
E

/2

r
E∏

j=1

chj(B′E′EB)r
C

/2

(dY ) =

k∏

i=1

chi(Θ)r/2

r∏

j=1

chj(Σ)k/2

k∏

i=1

chi(AΘA′)r/2

r∏

j=1

chj(B′ΣB)k/2

(dY ).

from which, substituting in (22), and denoting µy = AµB, we have

dFY (Y ) =
1

(2π)kr/2

k∏

i=1

chi(AΘA′)r/2

r∏

j=1

chj(B′ΣB)k/2

etr
(−1

2Σ−B′+(Y − µy)′A′+Θ−A+(Y − µy)B+
)
(dY ).

Finally, therefore

dFY (Y ) =
1

(2π)kr/2

k∏

i=1

chi(AΘA′)r/2

r∏

j=1

chj(B′ΣB)k/2
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etr
(−1

2(B′ΣB)−(Y − µy)′(AΘA′)−(Y − µy)
)
(dY ).

Once again, note that this result cannot be obtained by applying Theorem 2.2 in Sri-
vastava (2003) directly in (22), for the reasons given in the Introduction.

Let us now assume that S ∈ S+
m(rS ) has a singular Wishart or Pseudo-Wishart distribu-

tion, that is, S ∼ Wm(n,Σ) with S ∼ Wm(n,Σ). Additionally, assume that A ∈ S+
m(rA) is

fixed, such that r(A) ≥ r(Σ) and r(A′ΣA) = r(Σ). Then V = A′SA ∼ Wm(n,A′ΣA), with
r(V ) = rV = r(S). This result is well known and can be obtained from the characteristic
function technique. Now the proof is obtained by applying the Jacobians found in Section
3.

From Dı́az-Garćıa et al. (1997), the function of S is given by

dGS(S) =
πn(r

S
−r

Σ)/2|L|(n−m−1)/2

2nr
Σ

/2Γr
S

[
1
2n

] r
Σ∏

i=1

chi(Σ)n/2

etr
(

1
2Σ−S

)
(dS)

where S = G1LG′
1 is the non-singular part of the spectral decomposition of S, with G1 ∈

Vr
S

,m and L = diag(l1, · · · , lr
S
), l1 > · · · > lr

S
> 0. Let Σ = Q′Q, then from Theorem 3.6,

(dS) = |K|−(m+1−n)/2|L|(m+1−n)/2




r
Σ∏

i=1

chi(Σ)n/2

r
Σ∏

i=1

chi(B′ΣB)n/2




(dV )

With K = diag(k1, · · · , kr
V

), k1 > · · · > kr
V

> 0 such that, V = W1KW ′
1 is the non-

singular part of the spectral decomposition of V , W1 ∈ Vr
V

,m. Then

dGV (V ) = gS (A′+V A+)|J(S → V )|(dV )

=
πn(r

V
−r

Σ)/2|K|(n−m−1)/2

2nr
Σ

/2Γr
V

[
1
2n

] r
Σ∏

i=1

chi(A′ΣA)n/2

etr
(

1
2(A′ΣA)−V

)
(dV )
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