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Centro de Investigación en Matemáticas
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Abstract. In this paper we report some results on the expectation values
of a set of observales introduced for 3-dimensional Riemannian quantum grav-
ity with positive cosmological constant, that is, observables in the Turaev-Viro
model. Instead of giving a formal description of the obsevables, we just formu-
late the paper by examples. This means that we just show how an idea works
with particular cases and give a way to compute ’expectation values’ in general
by a topological procedure.

1 Introduction

The definition of good observables for quantum gravity is one of the most im-
potant problems. In this paper we introduce a set of observables in the Turaev-
Viro model of 3- dimensional quantum gravity with positive cosmological con-
stant. We also describe a very natural way to define their expectation values.
Instead of giving a very formal and rigourous description of these set of ob-
servables and of their expectation values we just show how an idea works for
some particular examples. The interesting thing is that their expectation value
is related to topological invariants of such observables. These observables are
thought as graphs, knots or links embedded in a 3-dimensional manifold. When
the manifold is S3, the examples show us a way to compute this topological
invariant for general cases.

We divide this paper as follows: In section 2 we briefly recall the Turaev-
Viro model as a spin foam model of 3-dimensional Riemannian quantum gravity

∗This paper is based on a part of the Ph.D thesis of the author at the University of
Nottingham, UK [1]. The work was motivated by a joint colaboration with John W.Barrett
[2].
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with positive cosmological constant. In section 3 we introduce the notion of
observables in this model as well as their expectation value. In section 4 we
apply the introduced concepts of section 3 in order to compute the expectation
value of some particular examples. In section 5 we formulate an idea of general
observables in the framework of chain-mail decompositions which leads us to
compute a topological invariant of knots. We refer to this topological invariant
as the chaim-mail expectation value of a knotted observable. Moreover, the
idea is considered for the prticular case of knots embedded in S3, We also
show its topological invariance as well as give a explicit value of the cahin-mail
expectation value of a general knot or link in S3. Finally in section 6 we give
the conclusion and a proposal of future work on the subject.

2 The Turaev-Viro model as a spin foam model

of quantum gravity

The Turaev-Viro partition fuction is an improved regularization of the Ponzano-
Regge model [4]. It is a spin foam model of Riemannian quantum gravity with
positive cosmological constant. Moreover, the Turaev-Viro sum gives topologi-
cal invariants of 3-dimensional manifolds M .

Let M be a closed, oriented three dimensional manifold(we can say it is our
three dimensional space-time). Take a triangulation 4 of M with n0 vertices,
n1 edges ei, n2 faces fj and n3 tetrahedra tk.

We construct a spin foam model for 3-dimensional Riemannian quantum
gravity with positive cosmological constant by using the dual complex J∆ to
our triangulation ∆ of the manifold. 1 This spin foam construction which uses
the dual complex can be found in [5].

In order to construct the model we label each face of the complex J∆ by
an irreducible representation of the quantum group SU(2)q. The model has an

integer parameter r ≥ 3, from which we define the root of unity q = A2 = e
iπ
r .

Since q is a root of unity the number of irreducible representations is finite. A
representation can be indexed by an non-negative half-integer j, the spin, from
the set L = {0, 1/2, 1, . . . , (r − 2)/2}.

We define a state as a map from the set of faces of the dual complex J∆, to
the set L. A state is called admissible if at each edge of the complex J∆, the
labels (i, j, k) of the three faces that are adjacent to the edge satisfy

0 ≤ i, j, k ≤ r − 2

2

1The description of the Turaev-Viro model by using the triangulation of the manifold is
an equivalent one and it is the one we will use for the description of our observables. The
triangulation description is found in [6].
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i ≤ j + k, j ≤ i+ k, k ≤ i+ j

i+ j + k ≡ mod 1

i+ j + k ≤ (r − 2)

The state sum model is then given by

Z(M) = N−n0

∑
S

∏

f

A(f)
∏
e

A(e)
∏
v

A(v) (1)

where the sum is carried over the set of all admissible states S andA(f), A(e), A(v)
are the face, edge, and vertex amplitudes respectively and N is a normalisation
factor which we describe below.

These amplitudes are given by the evaluation of spin networks such as

A(f) = ρ

A(e) =
1
ρ 1

ρ
 2

ρ
3

A(v) =

14
ρ

 13
 ρ

 12
ρ

34
ρ

24
ρ23 ρ

The evaluation of such spin networks is given by the Kauffman bracket of
the respective graph [5].

For instance, the amplitude given to the faces is given by the quantum
dimension of the representation, which is given by the formula dimq(j) =
(−1)2j[2j + 1]q, where [n]q is the quantum number

[n]q =
qn − q−n
q − q−1

The evaluation of the tetrahedron combined with the evaluation of theta sym-
bols gives the so called quantum 6j-symbol.

The normalisation factor is given by N =
∑

l∈L dimq(l)
2.
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The state sum model is independent from the triangulation of the given
manifold M . In terms of the dual complex we can pass from one dual complex
to another one by a finite sequence of moves known as Matveev-Piergallini [5].

However the triangulation transformations are simpler and Pachner shows in
[7] that any two triangulations of a given 3-dimensional manifold M are related
by a sequence of the moves of figure 1 and figure 2.

Figure 1: 1-4 Pachner move

Figure 2: 2-3 Pachner move

The partition function Z(M) is then invariant under the Pachner moves
being then an invariant of the 3-dimensional space-time manifold M . It is not
difficult to prove that the Turaev-Viro partition function is invariant under the
two Pachner moves. The second one follows easily from the Biedenharn-Elliot
identity, and the first one follows by a direct calculation.

3 Observables in the Turaev-Viro spin foam

model

We now introduce our observables, define its expectation value and compute
the expectation value of some particular examples. Our observables are related
to graphs contained in the triangulated 3-dimensional manifold M , but these
observables are part of the triangulation itself. This will give us invariants of
graphs in a 3-dimensional manifold.

A study of different observables for the Turaev-Viro model from ours can be
found in [8], [9], [10].
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We will consider the triangulation description of the Turaev-Viro model. 2

Let M be our triangulated 3-dimensional compact space-time manifold

Definition 1 We define our observables O to be any subset of interior edges
of our triangulated manifold M . We denote them by O = (e1, e2, ..., en). If
any of these edges ei for i = 1, 2, ..., n, intersects the boundary ∂(M), that is,
∂(M) ∩ ei 6= ∅, then ∂(M) ∩ ei = v for v a vertex of the triangulation.

Given our observable subset O, we label its edges by irreducible represen-
tations of our quantum group SU(2)q. If O = (e1, e2, ..., en) is our observable
with edges e1, e2, ..., en, we denote the labelling of its edges by j1, j2, ..., jn re-
spectively.

Consider now the same partition function of Turaev-Viro with the only dif-
ference that we sum over all admissible states for our triangulation 4 except
that now we keep the labelling of our observable edges fixed.

We denote this sum as

Z(M,4,O)[j1, j2, . . . , jn] =
∑

S|O

∏

f

A(f)
∏
e

A(e)
∏
v

A(v) (2)

It is clear that the function (2) is a function of the fixed variables j1, j2, . . . , jn, as
well as of the boundary fixed variables. We ignore the boundary fixed variables
and concentrate only on the observable fixed variables.

We have that,

∑
j1∈L

∑
j2∈L

. . .
∑
jn∈L

Z(M,4,O)[j1, j2, . . . , jn] = Z(M,4). (3)

We state the results in terms of a ‘vacuum expectation value’

W (M,4,O)[j1, j2, . . . , jn] =
Z(M,4,O)[j1, j2, . . . , jn]

Z(M,4)
(4)

This sums to 1. The W are of course only defined when Z 6= 0. The observable
expectation value depends only on the subset of edges and on the representations
fixed on its edges. This gives us a way to think of this expectation value as a
topological invariant of our graph observable O. Their physical interpretation
is shown with a particular example, and in section 4, a relation to some other
field theories such as conformal field theory is found.

Let us consider some examples and see how this idea works. These exam-
ples are called the one edge observable, the triangle observable and the square
observable.

We will show how the computation of the expectation value works with the
one edge observable and just give the final result for the other two cases.

2Now we describe our observables by using the triangulation of our 3-dimensional manifold
instead of the dual domplex. The idea works anyway in both contexts.
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3.1 Examples

The one edge observable

Let O consists of a single edge e which may intersect the boundary in a
single vertex only. That is, at least one vertex of e lies in the interior of M . For
this case we prove that

W (M,O)[j] =
1

N
dimq(j)

2 (5)

where N is the constant defined previously as N =
∑

i dimq(i)
2.

Note first that clearly these numbers sum to one when we vary j, and are
clearly positive. There is then a natural physical interpretation of the above
expectation value as the probability that a physical quantity takes the value j
[3].

Now, the link of our edge observable is a ball B3. Let us suppose first that
O is inside a tetrahedron, as in the figure 3.

j

i

k

l

a

b
c

d

e
f

Figure 3: Edge observable inside a tetrahedron

Now, cut this tetrahedron out of the 3-dimensional manifold and consider
it as a 3-dimensional manifold with boundary. Actually it is the B3 ball. Take
the partition function of this ball B3, keeping in mind that it will be a function
of the fixed labelled boundary, and of the fixed labelled one edge observable O.
Using the Turaev-Viro partition function with boundary we then have

Z(B3)[j] = N−3dimq(a)1/2 · · · dimq(f)1/2
∑

i,k,l

dimq(i)dimq(k)dimq(l)dimq(j)×

×
∣∣∣∣
a b c
j i l

∣∣∣∣
q

∣∣∣∣
f e a
i l k

∣∣∣∣
q

∣∣∣∣
d b f
l k j

∣∣∣∣
q

∣∣∣∣
c e d
k j i

∣∣∣∣
q

Note that j is being kept fixed.
Summing over k and using the Biedenharn-Elliot identity and the symme-

tries of the 6j symbol we have that3

3The Biedenharn-Elliot identity and the symmetries of the 6j-symbol can be found in [5]

6



∑

k

dimq(k)

∣∣∣∣
f e a
i l k

∣∣∣∣
q

∣∣∣∣
d b f
l k j

∣∣∣∣
q

∣∣∣∣
c e d
k j i

∣∣∣∣
q

=
∑

k

dimq(k)

∣∣∣∣
a f e
k i l

∣∣∣∣
q

∣∣∣∣
c e d
k j i

∣∣∣∣
q

∣∣∣∣
b d f
k l j

∣∣∣∣
q

=

∣∣∣∣
a c b
d f e

∣∣∣∣
q

∣∣∣∣
a c b
j l i

∣∣∣∣
q

=

∣∣∣∣
a b c
d e f

∣∣∣∣
q

∣∣∣∣
a b c
j i l

∣∣∣∣
q

So we can write now

Z(B3)[j] = N−3dimq(a)1/2 · · · dimq(f)1/2

∣∣∣∣
a b c
d e f

∣∣∣∣
q

×
∑

i,l

dimq(i)dimq(l)dimq(j)

∣∣∣∣
a b c
j i l

∣∣∣∣
2

q

Summing over l and using the orthogonality and symmetry propierties gives

∑

l

dimq(l)

∣∣∣∣
a b c
j i l

∣∣∣∣
q

∣∣∣∣
a b c
j i l

∣∣∣∣
q

=
∑

l

dimq(l)

∣∣∣∣
a i l
j b c

∣∣∣∣
q

∣∣∣∣
a i l
j b c

∣∣∣∣
q

=
1

dimq(c)

So that

Z(B3)[j] = N−3 dimq(a)1/2 · · · dimq(f)1/2

∣∣∣∣
a b c
d e f

∣∣∣∣
q

×
∑
i

δijc
dimq(c)

dimq(i)dimq(j)

where δijc = 1 if (i, j, c) are admissible and 0 otherwise.
Taking the sum over i

∑
i

δijcdimq(i) = dimq(c)dimq(j)

finally gives

Z(B3)[j] = N−3dimq(a)1/2 · · · dimq(f)1/2

∣∣∣∣
a b c
d e f

∣∣∣∣
q

dimq(j)
2

Now glue the ball B3 back into M , so that

Z(M,O)[j] = dimq(j)
2
∑

S,a,b,···f
dimq(a) · · · dimq(f)

∏

edges

dimq(i)

×
∣∣∣∣
a b c
d e f

∣∣∣∣
q

∏

tetrahedra

∣∣∣∣
a′ b′ c′

d′ e′ f ′

∣∣∣∣
q
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where we have a product of the 6j symbol assigned to the tetrahedron {{a, b, c}, {b, d, f},
{c, d, e}, {a, e, f}} with the 6j symbols assigned to all the remaining tetra-

hedra of the 3-manifold.
As we have that

W (M,O)[j] =
Z(M,O)[j]

Z(M)

and in our sum Z(M,O)[j] we have one less vertex than in Z(M), we have that

W (M,O)[j] =
1

N
dimq(j)

2

as desired.
It can be seen that the expectation value does not depend on how the edge

observable lives inside the triangulated manifold. In particular, the link of a
vertex can be given by a more complex polyhedron which is just a triangulated
3-ball.(see figure 4)

a

c

d

e

f

g

z

i

b

j

k

l

m

Figure 4: One edge observable inside a polyhedron
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The triangle observable

We now consider a triangle observable.4 Suppose the manifold M contains
a triangle(see figure 5), whose edges form O, labelled by i, j and c. Let Ni,j,c

be the dimension of the space of intertwiners, i.e. equal to 1 if the spins are
admissible and 0 otherwise. We have that

j

i

k

l

a

b
c

d

e
f

Figure 5: Triangle observable inside a tetrahedron

W (M,O)[i, j, c] =
1

N2
dimq(i) dimq(j) dimq(c)Ni,j,c (6)

4The computations can be found in [1]
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The square observable

Now suppose the manifold M contains a square observable O whose edges
are labelled by the representations i, j,m, n. Then we prove that

j

i

k

l

a

b
c

d

e
f

n

m

s

t

u

Figure 6: A square observable

W (M,O)[i, j,m, n] =
1

N3
dimq(i)dimq(j)dimq(m)dimq(n)Ni,j,cNm,n,c (7)

In this section we have shown by examples how to calculate the expectation
value of some our observables. This idea may be extended to more complicated
observables and the computational methods are similar. It is really easy to
compute the expectation values of observables given by trees, not knotted cycles
of any length, and any combination of these examples.

Moreover, we notice that the expectation value of these simple examples
do not depend on the manifold in which they are embedded but only in the
representations which label them. In general it is the same for trees and not
knotted cycles. But what happens if our observable is knotted, or it is link. We
think that the above triangulation methods cannot be applied and we requiere
of a more sophisticated method. This is done by the chaim-mail method [11].
In the next section we describe a way to deal with knotted observables in the
case in which the observable is embedded in S3.

4 Knotted observables in S3 and their chain-

mail expectation value

We now describe the idea of knotted observables in S3. Following the same
strategy of the paper, we just describe the idea a bit informally, but we work
on examples to see the way it works.

We define a way to compute their chain-mail expectation value by introduc-
ing this picture. The chain-mail expectation value that is described by using
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this chain-mail picture is analogous to the expectation value of our observables
of the previous chapter and it is restricted to knots and links living in S3. A
formal description of the relationship of the expectation value of the previous
section and of the chain-mail one will appear in [2].

In this section we restrict ourselves and only describe the way to obtain the
chain-mail picture of our observable knot or link. We describe how to compute
their chaim-mail expectation value and then we prove that it is a topological
invariant by proving that it remains invariant under the Reidemeister moves.
Finally, we give a general formula for the expectation value of any knot or link
observable.

Consider a knot or link

Consider a crossing of our knot observable as shown below,

Then to this crossing we assign a diagram as shown below

−→

The arrow just denotes this corresponding assignment. Similarly for the oppo-
site crossing. We can proceed with this for every crossing of the knot or link,
so that we will have a diagram corresponding to a knot.

For example consider the trefoil knot and take its chain-mail diagram as
described. Once all this has been done, we finally add one more circle around
each component of the link, so that for the trefoil example, this looks as in
figure 7.
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Figure 7:

We call these last circles special ones. This diagram can be thought as
a chain-mail diagram and in this way we can define a way to calculate its
expectation value.

Definition 2 . Chain-mail expectation value: Given the described chain-
mail representation of our link observable, we define the ”chain-mail expectation
value” of it as follows: attach ω = N−1/2

∑r−2
j ∆jφj to each strand circle. To

the special circles we attach a fixed representation i ∈ {0, ..., (r − 2)/2} of the
quantum group. We then evaluate the value CH(O) which is the chain mail
value associated to our observable link.5

This expectation value is a topological invariant of our observable. We then
prove its invariance under the Reidemeister moves. This tells us that we are in
fact dealing with a knot and link invariant.

4.1 Invariance under Reidemeister moves

We prove that the expectation value of our observables is invariant under the
Reidemeister moves. In order to prove the invariance under the first and second
moves, we simply draw the diagrams and use the known identities of killing
an omega, and two-strand fusion respectively. The killing an omega identity
tells us that when an ω circle goes around an ω strand component, then the
contribution is trivial. The two-strand fusion formula is just the special case

5∆i = dimqj, and φj can be thought as the strand component coloured with the j repre-
sentation (See the appendix, and also [11].
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of the three strand fusion formula explained in the appendix when one of the
three strand components that go through the ω circle is labelled by the trivial
representation.

Invariance under the first Reidemeister move:

−→
ω

ω

= = ←−

Invariance under the second Reidemeister move:

−→

ω

ω

ω

=
ω

= ω
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= ←−

Invariance under the third Reidemeister move cannot easily be computed by
the above procedures. To prove the invariance under this move requires the use
of the formulas which will be developed in the following section.

4.2 Computing the chain-mail expectation value

We have already studied the chain-mail diagram corresponding to our knot or
link observable in S3. Moreover, in the whole chain-mail diagram, we have
attached ω = N−1/2

∑r−2
j ∆jφj to all the components except to the special

circles that go around the chain-mail diagram.
Now, to compute what the expectation value might be for any knot or link

observable we use the following fusion strand formulas [1]:

a

a

b
b

c

c
d

d

ω
= N1/2

∑
i,j

∆i∆j

θabiθcdiθbcjθadj
a

b

c

d
ij a

d                       d

c

a

b                       b

c

i j
(8)

a

b
b

c
d

a
d

c

ω = N1/2
∑
i,j

∆i∆j

θabiθcdiθbcjθadj
a

b

c

d
ij a

d                       d

c

a

b                       b

c

i j
(9)

These formulas are useful to compute the chain-mail expectation value of any
observable. Let us prove the invariance under the third Reidemeister move.

Invariance under the third Reidemeister move:
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To prove invariance under this move, one associate to our diagram

the usual diagram

−→

ω ω

ω

We now apply equations (8) and (9) to the above diagram expanding it in a
sum and products of quantum dimensions, theta symbols, quantum 6j-symbols
and crossing diagrams. If that is done also for the diagram

we arrive at two formulas which are equal if
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a

b

c

d
e

f

g

i i

j

jk

k

=

d

a

b

c

g f

e

i i

j

jk

k

but the above diagram formula is just the equality of two shadow world dia-
grams. (For a shadow world introduction we refer to [5] chapter 11)

The third Reidemeister move follows.

4.3 Examples

It is now a matter of calculation to work out the chain-mail expectation value
of any knot observale by following the above technology. We present the result
of the computation two examples. The chain-mail expectation value of our first
example was computed step by step in [1]. The second one gives an interesting
result where we can see that there might be an interrelation with Conformal
Field Theory, as we will explain.

The examples we consider are the trefoil knot and the Hopf link.

The trefoil knot

Consider the trefoil knot

Apply then the above construction to it as follows
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α

ω

ω
ω

ω

ω

ω

ω

ω

then if we just apply the strand fusion formulas to this chain-mail construction
we show that for the trefoil knot

CH(S3, T refoil)[α] = N5/2
∑
i

Siα
Si0

< Trefoil >R (10)

where < Trefoil >R means the relativistic evaluation given by the coloured
Jones polynomial assigned to the trefoil knot times the coloured Jones polyno-
mial assigned to its mirror image [12].

A general formula: In fact it is easy to prove a simple formula which
states that given a knot K we have that its chain-mail expectation value is
given by

CH(S3, K)[α] = N (n/2)+1
∑
i

Siα
Si0

< K >R (11)

where n is the number of crossings of the knot, and < K >R is its relativistic
evaluation given by the coloured Jones polynomial times the coloured Jones
polynomial of its mirror image.

More generally, this formula extends to links as follows

CH(S3, L)[α, β, ..., ε] = N (#crossings/2)+1
∑

i,j,...k

Siα
Si0

Sjβ
Sj0

...
Skε
Sk0

< L(i, j, ...k) >R

(12)
This general formula follows easily by observing that our fusion formulas (8)
and (9) are given by a product of a crossing diagram times a shadow world
picture of the opposite crosing of the link. The coefficients which appear in
our fusion formulas will be given by the shadow world formula of the complete
diagram of our knot or link. We will finally have a product of the coloured
Jones polynomial of the knot or link times the coloured Jones polynomial of its
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mirror image. Finally, the special circles around each component of our knot or
link give rise to the S matrix factors.

The Hopf link

This particular example is of great curiosity as it resembles some very well
known formulas of conformal field theory. In particular it makes us think of
whether there is a relationship between the chain-mail expectation value of our
observables and conformal field theory.

We do not know why this relation appears and it is interesting to search
for an explanation which might be hidden in a formulation in terms of the BF
theory. Anyway, let us continue and consider the Hopf link

and its diagram

α
β

ω

ω

Then its evaluation gives

CH(S3,H)[α, β] =
∑
i,j

Sij
S00

Sij
S00

Siα
Si0

Sjβ
Sj0

Summing first over the index i we have the relation

CH(S3,H)[α, β] =
1

S2
00

∑
j

Sjβ
Sj0

∑
i

SijSijSiα
Si0

If in the spirit of the Verlinde formula, we introduce the abbreviation N j
αj for

the sum over i we obtain

18



CH(S3,H)[α, β] =
1

S2
00

∑
j

Sjβ
Sj0

N j
αj

=
1

S2
00

∑
j

Sjα
Sj0

N j
βj

If we had summed over the j index first, we would had got a similar formula.
Both formulas are the same and diagrammatically they may be written as

α

j

β

= j

β

α

(13)

This identity is an interesting example of an interrelationship between TQFT
and conformal field theory, as it is a general case of two well known formulas of
conformal field theory.

Let us say for instance that α or β is trivial, then we have that

CH(S3,H)[α] =
1

S2
00

∑
j

N j
αj

=
1

S2
00

∑
j

Sjα
Sj0

(14)

which diagrammatically can be expressed as

α

j
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This last formula is the dimension of the torus with one point charge of confor-
mal field theory. 6

Now, if both α and β are trivial, then we have

CH(S3,H) =
1

S2
00

∑
j

δjj =
1

S2
00

dimT (15)

which is the dimension of the torus with no point charges on its boundary, which
is another well known fact of conformal field theory.

5 Conclusions

In this paper we presented a set of observables for 3-dimensional Riemannian
quantum gravity with positive cosmological constant which also give topological
invariants of graphs embedded in 3-dimensional manifolds. For the case of
knots and links, we just dealt with the case of S3. Although the treatment of
the topological invariance of the knots and links observables embedded in any
3-dimensional manifold will appear in [2], a way to compute the expectation
values by following an analogue procedure to the one we gave will be interesting
to describe.

These observables have been described in the discrete version of quantum
gravity, and it is interesting to find a description of these observables in terms
of BF theory.

The treatment given here could shed some light in finding a set of observables
for more interesting and physically relevant spin foam models. We can mention
that at least for other topological field theories there is a generalisation; for
instance we can describe the same kind of observables for the Crane-Yetter
model.

6It is important to notice here that the dimension of the torus with one point charge,
and the dimension of the torus with no point charges are to be understood in the context of
conformal field theory, and not to be confused with its dimension as a Riemann surface.
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A Chain-Mail Invariants of 3-dimensional Man-

ifolds

In this appendix we introduce the chain-mail invariants of 3-dimensional man-
ifolds which were introduced by Roberts [11]. This picture is a description of
the 3-manifold as a special link formed by the attaching curves of the han-
dle decomposition of M . The relation to the Turaev-Viro model described in
the previous chapter will be developed. We consider again M to be a closed,
connected oriented 3-dimensional manifold as in the previous chapter.

Definition 3 Let D be a handle decomposition of M with d0, d1, d2, d3 handles
of the corresponding dimensions. Let H be the union of the 0- and 1- handles,
and H ′ be its handlebody complement, i.e. 2- and 3-handles. Drawing the
attaching curves of the 2-handles in ∂H and then pushing them slightly into H
then adding the meridians of the 1-handles linking them locally in H and finally
giving framings to all these curves, produces a kind of link which is called a
chain−mail link denoted as C(M,D) ⊆ H.

An example of how it would look appears in figure 8

Figure 8: Chain-Mail link

The next step is to embed our handle-body H is S3 so that we have a link.
If we write E for our embedding and C(M,D,E) for the image of C(M,D)
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on S3, we can now attach ω to all of its components, and not forgetting about
the framings, we obtain an element of C by applying the fusion rules to it as
before. Multiply now this element by N−d0−d3 and denote this last value as
CH(M,D,E).

In [11] it was shown that the value CH(M,D,E) is independent of the
embedding so we may just write CH(M,D) for the above value. Moreover, if
D1, D2 are two handle decompositions of M then CH(M,D1) = CH(M,D2).

Now we describe the relation between the chain-mail invariant and the
Turaev-Viro model described in the previous chapter.

Let T be a triangulation of our 3-dimensional manifold M , and consider
its dual complex which is formed by placing a vertex inside each tetrahedron,
and one edge intersecting each triangle as shown for a tetrahedron in the fig-
ure below. We use arrows just to distinguish it from the other edges of the
tetrahedron.

Figure 9: Dual complex

The next step, is to thicken the dual complex of our triangulation and add
curves δj corresponding to the face fj, and curves εi corresponding to the edges
ei, so that we end up with a chain mail D∗ which looks like figure B.3, for each
tetrahedron.

Figure 10: Chain-mail picture of a tetrahedron
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The relation between the Turaev-Viro partition fuction and the Chain-mail
picture is understood in the following theorem which is proved in [11].

Theorem 1 The chain-mail invariant of M CH(M,D∗) equals the Turaev-
Viro invariant Z(M).

The idea of the proof is to embed the chain-mail D∗ which we constructed from
the triangulation into S3 substituting ω along all the attaching 2-handles and
then use the 3-strand fusion formula defined by

i j k

Ω =
N1/2

θijk

i j k

i            j            k

along all the δ curves(which correspond to faces of the triangulation).
The result will be a sum over all labellings of the 2-handles, of a product

of ∆i coefficients associated to 2-handles, trihedron coefficients associated to 1-
handles, and tetrahedron coefficients associated to the 0-handles. This final sum
after some careful observation equals the Turaev-Viro state sum, obtaining then
the equality CH(M,T ) = Z(M), and showing that the Turaev-Viro partition
function is equivalent to the Chain-Mail invariant of a 3-dimensional manifold.

We are then in a position to use them interchangeably selecting the most
appropiate one to our needs.

23



References
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