A NOTE ON THE INFINITE DIVISIBILITY OF SKEW-SYMMETRIC DISTRIBUTIONS

J. Armando Domínguez-Molina and Alfonso Rocha-Arteaga

Comunicación Técnica No I-04-07/17-08-2004
(PE/CIMAT)

A Note on the Infinite Divisibility of Skew-Symmetric Distributions

J. Armando Domínguez-Molina
Universidad de Guanajuato, México
Alfonso Rocha-Arteaga
Escuela de Ciencias Físico-Matemáticas
Universidad Autónoma de Sinaloa, México

Abstract

Infinite divisibility of some of the most important symmetric distributions skewed by an additive component is investigated. We find in particular that the skew-normal distribution of Azzalini (1985) and the multivariate skew-normal distribution of Azzalini and Dalla Valle (1996) are not infinitely divisible.

1. Introduction

Skew-symmetric distributions have been developed as natural extensions of the skew-normal distribution introduced by Azzalini (1985). The aim of this note is to determine the infinite divisibility of skew-symmetric distributions.

There are several ways of skewing a symmetric distribution; see Arnold and Beaver (2002). Here we only consider those symmetric distributions skewed by an additive component.

Definition 1. Let $c \geq 0$. A random variable Y is said to have skew-symmetric distribution if there exist constants a and $b \neq 0$; and independent random variables X and X_{c} such that

$$
\begin{equation*}
Y \stackrel{d}{=} a X+b X_{c}, \tag{1}
\end{equation*}
$$

where X is symmetric and X_{c} is a copy of X truncated below at c. For the special case $c=0$ is said that X_{0} has a half-distribution of X.

We discuss the infinite divisibility of a skew-symmetric distribution of the form (1) only when X is infinitely divisible. This leads to the problem of determining the infinite divisibility of X_{c}.

First we put attention to the case $c=0$.
The skew-normal distribution of Azzalini has representation (1), see Henze (1986), with X standard normal, $a=1 / \sqrt{1+\delta^{2}}, b=\delta / \sqrt{1+\delta^{2}}$ and δ is a real skewness parameter. It is important to remark that it is not infinitely divisible due to the half-normal distribution is not infinitely divisible as is noted in Steutel and Van Harn (2003, p. 126).

Immediate examples of infinitely divisible skew-symmetric distributions are skew-Laplace and skew-Cauchy, since the half-Laplace is the exponential distribution and the half-Cauchy is infinitely divisible as is shown in Steutel and Van Harn (2003, p. 411).

2. The case $c>0$

The skew- t distribution with ν degree of freedom and the skew-double Pareto are infinitely divisible since, in both cases, their corresponding X_{c} in (1) is infinitely divisible by a logconvexity argument.

Proposition 2. The skew-Student t with ν degree of freedom is infinitely divisible if $c>\sqrt{\nu}$.
Proof. We prove that X_{c} in (1) is infinitely divisible by showing that its density is log-convex, see Sato (1999, Th. 51.4). Let us consider the Student- t density f with ν degree of freedom truncated below at c

$$
f(x)=K\left(1+\frac{1}{\nu} x^{2}\right)^{-\frac{\nu+1}{2}} 1_{[c, \infty)}(x)
$$

where K is the normalizing constant. Let $x>c$. Differentiating twice, we have

$$
\begin{gathered}
f^{\prime}(x)=-K \frac{1+\nu}{\nu} x\left(1+\frac{1}{\nu} x^{2}\right)^{-\frac{1}{2} \nu-\frac{3}{2}} \\
f^{\prime \prime}(x)=-K \frac{1+\nu}{\nu}\left(\frac{x^{2}}{\nu}+1\right)^{-\frac{1}{2} \nu-\frac{3}{2}}+K \frac{3+4 \nu+\nu^{2}}{\nu^{2}} x^{2}\left(\frac{x^{2}}{\nu}+1\right)^{-\frac{1}{2} \nu-\frac{5}{2}}
\end{gathered}
$$

and

$$
\left[f^{\prime} f^{\prime \prime}-f^{\prime 2}\right](x)=K^{2} \frac{(\nu+1)}{\nu^{2}}\left(x^{2}-\nu\right)\left(1+\frac{1}{\nu} x^{2}\right)^{-3-\nu}
$$

Thus $f f^{\prime \prime}-\left(f^{\prime}\right)^{2}>0$ if $x>\sqrt{\nu}$. Hence f is log-convex.
In particular the skew-Cauchy distribution is infinitely divisible if $c>1$ since the Studentt is Cauchy when $\nu=1$. We are not able to give an answer in the truncation range $(0,1]$ for Cauchy and $[0, \sqrt{\nu}]$ for Student- t.

Proposition 3. Let $c>0$. The skew-double Pareto distribution is infinitely divisible.
Proof. We proceed similarly as the former proof. Consider the double-Pareto density truncated below at c

$$
f(x)=K \frac{1}{(1+x)^{r}} 1_{[c, \infty)}(x),
$$

where $r>1$ and K is the normalizing constant. We obtain $\left[f^{\prime} f^{\prime \prime}-f^{2}\right](x)=K^{2} \frac{r}{(1+x)^{2(r+1)}}>$ 0 for any $x>c$.

Using a tail behavior criterion for infinite divisibility we show that skew-normal distribution is not infinitely divisible.

Proposition 4. Let $c>0$. The skew normal distribution is not infinitely divisible.
Proof. Let us consider X in model (1) be a standard normal random variable. We prove that X_{c} is not infinitely divisible by proving that it does not fulfill the necessary condition $-\log P\left(X_{c}>x\right) \leq \alpha x \log x$ for some $\alpha>0$ and x sufficiently large, cf. Steutel (1979). Consider the standard normal density truncated below at c

$$
f(x)=K \phi(x) 1_{[c, \infty)}(x),
$$

where ϕ is the standard normal density K is the normalizing constant. Let $\Phi(x)$ denote the standard normal distribution. Observe that

$$
\lim _{x \rightarrow \infty} \frac{-\log P\left(X_{c}>x\right)}{x \log x}=\lim _{x \rightarrow \infty} \frac{-\log K[1-\Phi(x)]}{x \log x}
$$

and apply L'Hôpital Rule twice to lead the limit to

$$
\lim _{x \rightarrow \infty}\left[\frac{x}{1+\log x}+\frac{1}{x(1+\log x)^{2}}\right]=\infty
$$

We finally conclude that the multivariate skew-normal distribution of Azzalini and Dalla Valle (1996) is not infinitely divisible.

Let $Y=\left(Y_{1}, \ldots, Y_{p}\right)^{T}$ be a random vector with coordinates

$$
\begin{equation*}
Y_{i}=a_{i} X_{i}+b_{i} X_{0}, \quad i=1, \ldots, p \tag{2}
\end{equation*}
$$

where $\left(X_{1}, \ldots, X_{p}\right)^{T}$ is a jointly normal vector independent of the half-normal random variable X_{0}. Any linear combination $\alpha^{T} Y$ is of the form

$$
\sum_{i=1}^{p} \alpha_{i} a_{i} X_{i}+\left(\sum_{i=1}^{p} \alpha_{i} b_{i}\right) X_{0}
$$

which is not infinitely divisible by Proposition 4 and hence Y so is not.
The representation of the skew-normal random vector in Section 2.1 of Azzalini and Dalla Valle (1996) is a special case of the model (2).

References

[1] Arnold, B. C. and Beaver, R.J. (2002). Skewed multivariate models related to hidden truncation and/or selecting reporting. Test Vol. 11, No. 1, pp.7-54.
[2] Azzalini, A. (1985). A class of distributions which includes the normal ones. Scand. J. of Statist., 12, 171-178.
[3] Azzalini, A. and Dalla Valle, A. (1996). The multivariate skew-normal distribution. Biometrika, 83, 715-726.
[4] Henze, N. (1986). A probabilistic representation of the 'skew-normal' distribution. Scand. J. f Statist., 13, 271-275.
[5] Sato, K. (1999) Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press.
[6] Steutel, F. W. (1979) Infinite Divisibility in Theory and Practice, Scand J Statist, 6, 57-64.
[7] Steutel, F. W. and Van Harn, K. (2003) Infinite Divisibility of Probability Distributions on the Real Line, Marcel Dekker.

