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Abstract

In�nite divisibility of some of the most important symmetric distributions skewed
by an additive component is investigated. We �nd in particular that the skew-normal
distribution of Azzalini (1985) and the multivariate skew-normal distribution of Azza-
lini and Dalla Valle (1996) are not in�nitely divisible.

1. Introduction

Skew-symmetric distributions have been developed as natural extensions of the skew-normal
distribution introduced by Azzalini (1985). The aim of this note is to determine the in�nite
divisibility of skew-symmetric distributions.
There are several ways of skewing a symmetric distribution; see Arnold and Beaver (2002).

Here we only consider those symmetric distributions skewed by an additive component.

De�nition 1. Let c � 0: A random variable Y is said to have skew-symmetric distribution
if there exist constants a and b 6= 0; and independent random variables X and Xc such that

Y
d
= aX + bXc; (1)

where X is symmetric and Xc is a copy of X truncated below at c: For the special case c = 0
is said that X0 has a half-distribution of X.
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We discuss the in�nite divisibility of a skew-symmetric distribution of the form (1) only
whenX is in�nitely divisible. This leads to the problem of determining the in�nite divisibility
of Xc:
First we put attention to the case c = 0.
The skew-normal distribution of Azzalini has representation (1), see Henze (1986), with

X standard normal, a = 1=
p
1 + �2, b = �=

p
1 + �2 and � is a real skewness parameter. It is

important to remark that it is not in�nitely divisible due to the half-normal distribution is
not in�nitely divisible as is noted in Steutel and Van Harn (2003, p. 126).
Immediate examples of in�nitely divisible skew-symmetric distributions are skew-Laplace

and skew-Cauchy, since the half-Laplace is the exponential distribution and the half-Cauchy
is in�nitely divisible as is shown in Steutel and Van Harn (2003, p. 411).

2. The case c > 0

The skew-t distribution with � degree of freedom and the skew-double Pareto are in�nitely
divisible since, in both cases, their corresponding Xc in (1) is in�nitely divisible by a log-
convexity argument.

Proposition 2. The skew-Student t with � degree of freedom is in�nitely divisible if c >
p
�.

Proof. We prove that Xc in (1) is in�nitely divisible by showing that its density is
log-convex, see Sato (1999, Th. 51.4). Let us consider the Student-t density f with � degree
of freedom truncated below at c

f (x) = K

�
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1

�
x2
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2

1[c;1)(x):

where K is the normalizing constant. Let x > c. Di¤erentiating twice, we have
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Thus ff 00 � (f 0)2 > 0 if x >
p
�. Hence f is log-convex.

In particular the skew-Cauchy distribution is in�nitely divisible if c > 1 since the Student-
t is Cauchy when � = 1: We are not able to give an answer in the truncation range (0; 1] for
Cauchy and [0;

p
�] for Student-t.

Proposition 3. Let c > 0. The skew-double Pareto distribution is in�nitely divisible.

Proof. We proceed similarly as the former proof. Consider the double-Pareto density
truncated below at c

f(x) = K
1

(1 + x)r
1[c;1)(x),

where r > 1 and K is the normalizing constant. We obtain [f 0f 00 � f 02] (x) = K2 r

(1+x)2(r+1)
>

0 for any x > c.

Using a tail behavior criterion for in�nite divisibility we show that skew-normal distrib-
ution is not in�nitely divisible.

Proposition 4. Let c > 0. The skew normal distribution is not in�nitely divisible.

Proof. Let us consider X in model (1) be a standard normal random variable. We prove
that Xc is not in�nitely divisible by proving that it does not ful�ll the necessary condition
� logP (Xc > x) � �x log x for some � > 0 and x su¢ ciently large, cf. Steutel (1979).
Consider the standard normal density truncated below at c

f (x) = K� (x) 1[c;1)(x),

where � is the standard normal density K is the normalizing constant. Let �(x) denote the
standard normal distribution. Observe that

lim
x!1

� logP (Xc > x)

x log x
= lim

x!1

� logK [1� �(x)]
x log x

and apply L�Hôpital Rule twice to lead the limit to

lim
x!1

�
x

1 + log x
+

1

x (1 + log x)2

�
=1:



We �nally conclude that the multivariate skew-normal distribution of Azzalini and Dalla
Valle (1996) is not in�nitely divisible.
Let Y = (Y1; :::; Yp)

T be a random vector with coordinates

Yi = aiXi + biX0; i = 1; :::; p; (2)

where (X1; :::; Xp)
T is a jointly normal vector independent of the half-normal random variable

X0. Any linear combination �TY is of the form

pX
i=1

�iaiXi +

 
pX
i=1

�ibi

!
X0;

which is not in�nitely divisible by Proposition 4 and hence Y so is not.
The representation of the skew-normal random vector in Section 2.1 of Azzalini and Dalla

Valle (1996) is a special case of the model (2).
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