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ABSTRACT

One of the biggest problems in reliability analysis is determining an appropriate distri-
bution of life data. Therefore, this paper develops the estimation aspect of a family of
life distributions obtained from spherical distributions. Additionally, a new family of life
distributions is proposed for dependent life data, together with an optimization algorithm
based on the simulated annealing method. This algorithm is very efficient for optimiza-
tion purposes and does not require any manipulation of the log-likelihood functions for
the distributions proposed in this study.

1. INTRODUCTION

A very important area in the analysis of parametric survival and reliability is the study of
probability distributions in order to model the faults in a product and/or the lifetime of a product or
entity. Below, we provide a brief historical overview of the evolution of the study, application and use
of a wide variety of distributions that have been proposed for the modelling of life data, in the context
of the theory of reliability, based on Barlow and Proschan (1965/1996) and Leitch (1995). One of the
first areas of reliability analysis to be addressed with a certain degree of mathematical rigor was that
of machine maintenance (Khintchine (1932) and Palm (1947)). The techniques used in the latter
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studies were inspired by others used previously by Erlang and Palm in problems of establishing
dimensions for telephone switchboards. Initially, attempts to justify the Poisson distribution as
being applicable to the number of calls to a switchboard were based on exponential distribution,
as the distribution of times between the occurrences of an event. However, Erlang and Palm only
put forward heuristic arguments to justify the Poisson distribution as the limit distribution of the
number of calls to a switchboard. Ossoscov (1956) and subsequently Khintchine (1960) finally
proved and established the necessary and sufficient conditions for this approach. The application
of the Renewal Theory to problems of equipment replacement was discussed by Lotka (1939) and
Campbell (1941), although it is Feller (1941) who is attributed with having developed the Renewal
Theory as a mathematical discipline. The fatigue of materials is an issue related to the theory
of extreme values, and has been studied by Weibull (1939), Gumbel (1935) and Epstein (1948),
among others. In the early 1950s, some areas of reliability, such as life tests on electrical equipment
within missiles and aircraft, were examined closely by engineers and statisticians working in the
arms and aeronautics industries. This research was strongly supported by the Group on Reliability
of Electronic Equipment (US Air Force). The popularity of exponential distribution in reliability
analysis is largely due to the work of Davis (1952) and Epstein and Sobel (1953). However, after 1955,
and thanks to the studies by Kao (1956, 1958) and Zelen-Dannemiller (1959), alternative lifetime
models began to be seriously considered, for example Weibull’s model. One reason for this was that
many of the procedures adopted in life tests based on exponential distribution were shown to lack
robustness. The reliability of systems with electromagnetic relays was the focus of work by Moore
and Shannon (1956), who, encouraged by von Neumann’s attempt, studied the reliability of certain
operations of the human brain within complex biological organisms. In 1956, Weiss introduced
the use of semi-Markovian processes to solve maintenance problems. The introduction of structure
functions of coherent systems was inspired by the work of Birnbaum, Esary and Saunders (1961),
which in turn was a generalization of the prior work of Moore and Shannon. Seeking to address
the problem of vibrations arising from the construction of strips in commercial aircraft, Birnbaum-
Saunders (1958) introduced a statistical model of lifetimes for structures under dynamic overload.
This model made it possible to establish lifetimes in terms of the load, and proposed the use of the
gamma distribution in some cases. The Birnbaum-Saunders distribution was derived from a model
showing that faults are caused by the development and growth of a dominant crack (see Birnbaum
and Saunders (1969a). Although this distribution is known as Birnbaum-Saunders, it was studied
previously by Freudenthal and Shinozuka (1961).

In the 1970s and 1980s, special attention was paid to reliability problems associated with the se-
curity of nuclear reactors, among other problems of industrial security, and in resolving problems of
networks of computers; research efforts were led by the Advanced Research Projects Agency (ARPA),
the forerunner of the Internet and the World Wide Web. During this period, other probability dis-
tributions were also proposed for lifetime distributions, including lognormal, inverse gaussian and
logistic distributions, see Nelson and Hahn (1972), Chhikara and Folks (1973) and Kalbfleish and
Prentice (1980). In an alternative approach, other density functions, including log-gamma, extreme
or Gumbel-values distributions and the truncated normal distribution (see Barlow and Proschan
(1965/1996)) began to be used as life distributions, although these were not the focus of research
in lifetime tests. During the 1990s, Mendel, inspired by physics and making use of differential
geometry, outlined new directions in reliability research. Recently, the Birnbaum-Saunders distribu-
tion has been studied and generalized in different directions. Owen and Padgett (1999) proposed a
generalisation of the Birnbaum-Saunders distribution from two to three parameters. Subsequently
Dı́az-Garćıa and Leiva-Sánchez (2005) suggested obtaining the Birnbaum-Saunders distribution from
one of elliptical contours, rather than from the normal distribution, thus creating a whole family of
lifetime distributions, in which there are multimodal distributions, those without moments, those
with heavier or lighter tails, etc. (see Section 2). Most probabilistic models intended to describe
lifetime data are chosen for one or more of the following reasons, Tobias (2004):
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• There exists a physical or statistical argument that, theoretically, corresponds to the fault
mechanism.

• A particular model has been used previously and successfully for an identical or very similar
fault mechanism.

• The model is convenient, as it provides an empirically adequate fit to the lifetime data.

Whatever the method that is used to choose it, the model must be logical and must pass visual
tests of fitness as well as statistical criteria. A common problem when few data are possessed is that
many statistical models are so flexible that they seem to fit them very well, which is why arguments
must exist to justify the use of a given distribution. For example, it has been reported that the
extreme value-type argument justifies the use of the Weibull distribution, while the multiplicative
degradation argument justifies the lognormal distribution and the fatigue argument justifies the
use of the Birnbaum-Saunders distribution Tobias (2004). An additional problem in choosing a
distribution is that, in general, the lifetime data in the sample are assumed to be independent. This
assumption is not always justified, for example in an aquarium containing tropical fish, the lifetime
of one fish is not independent of the lifetimes of the others in the aquarium. It is well known that
when there is less competition for space and food, the lifetime of a fish is extended. Thus, when
one fish dies, the others in the aquarium will undoubtedly live longer (under stable conditions). In
this case, it is no longer possible to define the likelihood function as the product of the marginal
conditions; it is now necessary to directly propose the joint density function of the sample. Another
problem occurs, not only in estimating the parameters of lifetime distributions but in many other
cases, such as non-linear regression and the estimation of variance components. This problem is
the need to manipulate the log-likelihood function (algebraically or by reparametrizing) in order to
resolve the likelihood equations, see Birnbaum and Saunders (1969b). With these methodologies,
what is normally required is the algebraic or numerical calculation (depending on the case) of
the first and second derivatives of the log-likelihood function. Additionally, we must analyse the
log-likelihood function in greater detail when it is multimodal. These and other problems can be
avoided or overcome by the application of alternative methods of optimization. Heuristic methods
have recently played an important role in optimizing all kinds of functions arising in many areas of
knowledge, especially that of statistical methodology. Among the methods of heuristic optimization,
simulated annealing (SA) stands out for its simplicity and high efficiency Azencott (1992). The
present paper includes the maximum likelihood estimators belonging to the generalized Birnbaum-
Saunders family of distributions, see Dı́az-Garćıa and Leiva-Sánchez (2005) It also proposes a new
family of distributions for the case in which the lifetime data in the sample are not independent.
The maximum likelihood estimators of its parameters are also found for this family. In both cases,
to maximize the log-likelihood, we propose a procedure based on heuristic optimization and its
combination with the quasi-Newton method. In carrying out this optimization, special attention
is paid when discrete or continuous parameters exist. The results are applied to a data set that is
available in the literature.

2. PRELIMINARY CONSIDERATIONS

We now present some basic, preliminary results for the development of the present paper.
Let us define the random variable:

S = β

[

α

2
Z +

√

(α

2
Z
)2

+ 1

]2

(1)

3



where Z ∼ N (0, 1) , α > 0 and β > 0. The random variable S is said to have a Birnbaum-Saunders
distribution, with the notation S ∼ BS (α, β). Furthermore, its density function is given by

fS (s) =
1

(2π)
1/2

exp

[

− 1

2α2

(

s

β
+

β

s
− 2

)](

s−3/2 (s + β)

2αβ1/2

)

, S > 0

where α is the shape parameter and β is the scale parameter and the median of the distribution,
Birnbaum and Saunders (1969a).

The p-dimensional random vector Y = (Y1, ..., Yp)
′ is said to have an elliptical distribution of

parameters µ : p × 1 (localization vector) and a dispersion matrix Σ : p × p, Σ > 0, if its density
function is given by

fY(y) = c|Σ|−1/2h[(y − µ)′Σ−1(y − µ)], y ∈ R
p, (2)

where the function g : R → [0,∞) is termed the generator function, and is such that
∫∞

0
up−1h(u2)du <

∞ and c is such that fY(y) is a density. This circumstance is denoted by Y ∼ E lp(µ,Σ; g). When
the vector Y has finite moments, then E(Y ) = µ and Var(Y) = chΣ, where ch is a positive constant,
see for example Fang and Zhang (1990) or Fang et al. (1990). In the particular case in which µ = 0
and Σ = Ip, we have the family of spherical distributions, denoted as Y ∼ Ep(0, I;h). These classes
of distributions include, as particular cases, the Normal, t-Student, Pearson type VII, Logistic and
Kotz distributions, among many others.

Now, by rewriting (1) as

T = β

[

α

2
U +

√

(α

2
U
)2

+ 1

]2

and assuming that U ∼ E1(0, 1;h), then T has the density function

fT (t) = c h

(

1

α2

(

t

β
+

β

t
− 2

))(

t−3/2 (t + β)

2αβ1/2

)

, t > 0.

This is known as the generalized Birnbaum-Saunders distribution, denoted as T ∼ GBS(α, β;h),
Dı́az-Garćıa and Leiva-Sánchez (2005).

3. A NEW FAMILY OF DISTRIBUTIONS

In this section, we present an extension of the generalized Birnbaum-Saunders distribution to
the multivariate case.

Theorem 1. Assume that U ∼ En(0, I;h) and define the transform

Ti = β





1

2
αUi +

√

(

1

2
αUi

)2

+ 1





2

, i = 1, . . . , n, α > 0, β > 0.

Then, the distribution of T = (T1, . . . , Tn)′ is given by

fT(t) = c

n
∏

i=1

t
−3/2
i (ti + β)

(2α)
n

(β)
n/2

h

(

1

α2

n
∑

i=1

(

ti
β

+
β

ti
− 2

)

)

, (3)

this being written as T ∼ BSGn(α, β;h).
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Proof : Given that U ∼ En(0, I, ;h) the density of U is given by

fU(u) = c h
(

‖u‖2
)

Hence, observe that if

ti = β





1

2
αui +

√

(

1

2
αui

)2

+ 1





2

i = 1, . . . , n,

we have

ui =
1

α

(

√

ti
β
−
√

β

ti

)

i = 1, . . . , n,

from which the Jacobian of the transform is given by

∣

∣

∣

∣

∂ui

∂ti

∣

∣

∣

∣

=
1

(2αβ1/2)n

n
∏

i=1

t
−3/2
i (ti + β)

Furthermore, observe that

‖u‖2
=

1

α2

n
∑

i=1

(

ti
β

+
β

ti
− 2

)

from which we obtain the result we are seeking.
Given an n-dimensional random vector, it is well known that in the family of spherical multivari-

ate distributions the only distribution in which the elements of the random vector are independent
is the special case of the multivariate normal, see Fang and Zhang (1990, p. 72). Thus, if we are
sure there is no independence in the sample, we must not use the generalized Birnbaum-Saunders
distribution, based on the normal. This provides a guideline to enable us to take the density as the
likelihood function (3) when we believe the lifetime data for the sample may not be independent.
Explicit expressions for various classes of particular elliptical distributions are given in Appendix A.

Remark 1. It is important to note that in the present paper we are proposing a distributional
model and not a functional structure for the sample T′ = (t1, . . . , tn), see Bunke and Bunke (1986,
Subsection 1.3.1). Thus, the stochastic dependence between the variables t1, . . . , tn is taken into
account in the model by the proposition of a joint distribution for the sample (likelihood function)
in which there is a stochastic dependence between the ti elements of its arguments. It would be a
different question if we were attempting to propose a functional model or structure (see Bunke and
Bunke (1986, Subsection 1.3.1)) that sought to explain this stochastic dependence, either with just
the t1, . . . , tn lifetime variables or considering also covariables, see Rieck and Nedelman (1991).

4. OPTIMIZATION ALGORITHM

The technique known as Simulated Annealing was proposed as a means of maximizing the like-
lihood function, due to its simplicity and the fact that it does not require us to the manipulate the
likelihood function or to calculate its derivatives. Further advantages are derived from its global
optimization approach. This method was developed by Kirkpatrick, et al. (1983), who relied funda-
mentally on physical analogies for their theoretical results. Its simplicity has led to this technique
being widely used, and different implementations have been studied. We present below a general
SA algorithm, see Azencott (1992) and Siarry et al. (1997) among others.

A general algorithm for the implementation of SA:
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• Step 0. Let x0 ∈ R
n be a given start point, where n is the number of parameters to be

estimated, and where y0 = x0 and k = 0.

• Step 1. Choose a random point yk+1 = yk + ∆U [−1, 1], where U denotes the uniform distri-
bution and ∆ is the magnitude of the step to the instant k.

• Step 2. Obtain a uniform random number p ∈ [0, 1] and determine that

xk+1 =







yk+1 si p ≤ exp

(

f(xk) − f(yk+1)

tk

)

xk otherwise

where tk is the temperature parameter in iteration k.

• Step 3. Repeat steps 1 and 2 N times.

• Step 4. Update tk+1 = ρtk, where 0 < ρ < 1 is a cooling parameter and ∆.

• Step 5. Check the convergence and stopping criteria; if they are not met, take k = k + 1 and
return to Step 1.

Some considerations to bear in mind when applying the SA method to maximize the log-likelihood
function are listed below:

• Initial temperature. To establish the initial temperature, we recommend that the function
should be evaluated at 100 randomly-generated points.

• Restriction of parameters. The algorithm enables us to introduce upper and lower bound
restrictions for the parameters, accepting infinite values.

• Discrete and continuous optimization. With this algorithm, it is possible to combine optimiza-
tion with discrete parameters (such as degrees of freedom) and with those on a continuous
scale (for example, α, β).

• Maximum and minimum cooling factors of 0.9 and 0.1., respectively, are recommended.

Our implementation of the SA method takes into account whether the parameters to be estimated
are discrete or continuous, addressing the question simultaneously when necessary. Finally, the SA
algorithm is combined with the quasi-Newton method implemented in the S-plus statistical package.
Basically, there are two main reasons for combining a heuristic method with another:

• Accelerating convergence: In general, heuristic methods are highly efficient at quickly
locating a reasonably small area in which the global optimum is located. The idea is to let the
heuristic method work until it obtains an initial point that is fairly close to the global optimum
and then for this to be used as the initial one by another, faster convergence method.

• Increasing precision: As mentioned in the previous paragraph, heuristic methods quickly
approach the global optimum, but usually require a lot of computing time to further increase
precision. An alternative is to combine heuristics with another method, for example one
making use of derivatives, and then increased precision is achieved much more quickly.

The algorithm implemented in SPLUS 2000 can be found at http://www.cimat.mx/∼jrdguez/.
It can be used, simply and easily, to adjust all the distribution models described in Appendix A,
using the above-described techniques.
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5. MODEL SELECTION

One criterion that is widely used for determining which model is most appropriate is the Schwart
information criterion (SIC, see Spieglhaiter et al. (2002)), which is defined as

SIC = −2 log [P (Y |X,Model,parameters)] + log (n) (# of parameters of the model) (4)

This method, like many others of its type, is based on the fact that the likelihood logarithm can
be associated to a method to fit the model to the data. The second summand in (4) is related to
the number of parameters in the model, and the fact that the latter can be seen as a measure of
its complexity. According to this criterion, the best model (i.e. the one that best fits the data) is
the one obtaining the lowest SIC value. Vuong’s test can be used to determine whether there is a
significant difference between one model and another; this test is given by:

H0 : E0



ln





f
(

y|θ̂
)

g (y|γ̂)







 = 0

which means that the two models are equivalent. The alternative hypotheses are

Hf : E0



ln





f
(

y|θ̂
)

g (y|γ̂)







 > 0 and Hg : E0



ln





f
(

y|θ̂
)

g (y|γ̂)







 < 0

which would imply that the f model is better than the g model or that the g model is better than
the f model, respectively.

Vuong proved, under very general conditions, that

1

n
LRn

(

θ̂, γ̂
)

a.s→ E0



ln





f
(

y|θ̂
)

g (y|γ̂)









and that

under H0 :
LRn

(

θ̂, γ̂
)

√
nω̂

D→ N (0, 1)

under Hf :
LRn

(

θ̂, γ̂
)

√
nω̂

D→ +∞

under Hg :
LRn

(

θ̂, γ̂
)

√
nω̂

D→ −∞

where
LRn

(

θ̂, γ̂
)

≡ log
[

Lf

(

θ̂|y
)]

− log [Lg (γ̂|y)]

and

ω̂2 ≡ 1

n

n
∑

i=1



ln





f
(

yi|θ̂
)

g (yi|γ̂)









2

−





1

n

n
∑

i=1

ln





f
(

yi|θ̂
)

g (yi|γ̂)









2

Finally, Vuong proposes a correction factor for the number of parameters in models f and g,

LR̃n

(

θ̂, γ̂
)

≡ log
[

Lf

(

θ̂|y
)]

− log [Lg (γ̂|y)] −
[(p

2

)

−
(q

2

)]

ln (n)
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6. EXAMPLE

To illustrate the methodology described in this paper, we estimated the parameters and the
corresponding SIC for each of the distributions described in the previous section. The following
data were taken from the original article in which Birnbaum and Saunders (1969) described a
technique to estimate the parameters of their new distribution.

70 114 130 138 151 212
90 114 130 138 152
96 116 131 139 155
97 119 131 139 156
99 120 131 141 157
100 120 131 141 157
103 120 131 142 157
104 121 132 142 157
104 121 132 142 158
105 123 132 142 159
107 124 133 142 162
108 124 134 142 163
108 124 134 144 163
108 124 134 144 164
109 124 134 145 166
109 128 134 146 166
112 128 136 148 168
112 129 136 148 170
113 139 137 149 174
114 130 138 151 196

Table 1: Number of cycles required to induce the breakup of a material subjected to a force of 31,000
psi.

Distribution SIC LogVer NP α β q r s

Special Case 922.649689 -456.709724 2 0.196856 132.001682
Laplace 923.114023 -456.941891 2 0.129013 133.999998
Normal 923.998994 -457.384377 2 0.170451 131.915372

Pearson VII 925.434953 -455.794796 3 0.417363 132.624838 4.500533 1 (fixed)
t 925.434959 -455.794799 3 0.147533 132.620640 8

Bessel 925.600607 -455.877623 3 0.076453 132.911693 2 1 (fixed)
Kotz 930.020891 -455.780205 4 0.184326 132.956198 1 1 (fixed) 0.691985

Logistic 933.294842 -462.032301 2 0.196606 130.542667
Cauchy 947.601182 -469.185470 2 0.091718 134.286169

Table 2: Fit of the distributions for the independent case, ordered according to the SIC criterion
from lowest to highest. NP denotes the number of parameters considered in the optimization. In
the Kotz distribution, it is assumed that q ≥ 1.
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Figure 1: Density graphs of a generalized Birnbaum-Saunders life distribution, independent case.

Distribution SIC LogVer NP α β q r s

Logistic 923.998994 -457.384377 2 0.241054 131.915061
Kotz 924.366168 -457.567964 2 0.077178 131.915101 1 1 0.691985
Bessel 924.676080 -457.722920 2 0.016715 131.915031 2 1

Laplace 924.690491 -457.730125 2 0.016961 131.915066
Pearson VII 926.536084 -458.652921 2 0.511384 131.915013 55.000533 1

t 926.649424 -458.709591 2 0.170451 131.915276 8
Special Case 927.061042 -458.915400 2 0.711149 131.915017

Cauchy 928.927552 -459.848656 2 0.170451 131.915276

Table 3: Fit of the distributions for the dependent case, ordered according to the SIC criterion
from lowest to highest. NP denotes the number of parameters considered in the optimization. In
the Kotz distribution, it is assumed that q ≥ 1. The q, r and s parameters are assumed to be fixed
in all the distributions in which they appear.

It is important to note that we are not attempting to compare the different fits achieved for
situations of dependence and independence among the lifetime data of the sample. Of course, in
an application, the procedure would be to use the SIC or Vuong’s test to choose the most suitable
distributional model from among those considering dependence or independence, as appropriate.
Thus, for example, if we assume there is independence in the sample of lifetime data in our example,
the following conclusions are reached: under the SIC the generalized Birnbaum-Saunders (GBS)
distribution based on the Special Case distribution best fits the data. When Vuong’s test is used,
we find that the value in the case of the GBS based on the Special Case, compared to the GBS
distribution based on the normal distribution, is 0.257. Comparison of this value with a standard
normal distribution produces a p-value of 0.797, and so we cannot reject the null hypothesis that
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Figure 2: Density graphs of a generalized Birnbaum-Saunders life distribution, dependent case.

50 100 150 200 250
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Figure 3: Density graphs of a generalized Birnbaum-Saunders life distribution, dependent case.
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these two models are equivalent in fitting the data. In order to observe the capacity to discriminate
between Vuong’s-criterion models, we compared the GBS distribution based on the Special Case
distribution and that based on the Cauchy distribution, obtaining a value of 2.914 for Vuong’s
criterion. As before, this value was compared with that of a standard, normal distribution and a
p-value of 0.0035 was obtained. In this case, therefore, we reject the null hypothesis that the two
models are equivalent as regards fitting the data. As a further example, if we now assume that
there is dependence in the sample of lifetime data for the sample, then under the SIC the GBS
distribution based on logistic distribution best fits the data. When Vuong’s test is applied, there
is no significant difference between the above model and the others. Figure 1 shows the densities
obtained under the assumption of independence in the sample of lifetime data. It can be seen that
the density that best fits the data is the GBS distribution based on the Special Case distribution,
which is asymmetric. Figures 2 and 3 show the densities under the assumption, now, that there is
dependence among the lifetime data. Figure 2 shows all the values of the different contributions,
while in Figure 3 the densities with a very large mode value have been removed, to better show
the densities that best describe the data. Note again that the density best fitting the data is an
asymmetric distribution, in this case the GBS distribution based on a logistic distribution.

Note that, as mentioned in the Introduction, it is very important to consider the conditions of
the process being studied. Assume, for example, that it has been empirically established that the
distributional model that best describes the behaviour of the lifetime data is the GBS distribution
based on the Cauchy distribution. Then, to decide between using this distribution or the one based
on the normal one, apart from other possible considerations, it must be taken into account that the
GBS distribution based on the Cauchy distribution does not have moments; this could have very
important implications in the process being studied.

Remark 2. Finally, note that the population being studied is a univariate one. From this population,
we extract a sample with a size of n, t′ = (t1, . . . , tn); this has an n-variate distribution (likelihood
function) given by:

L(α, β; t1, . . . , tn) =











n
∏

i=1

fTi
(ti;α, β), independent case

fT(t;α, β), dependent case.

Such densities are two alternative means of obtaining the estimators of the parameters, fundamentally
α and β, assuming independence or dependence, respectively, in the sample.
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APPENDIX A.
GENERALIZED BIRNBAUM-SAUNDERS DISTRIBUTIONS

In the following, we derive explicit expressions for the density generated on the basis of certain
distributions belonging to the family of spherical distributions. For cases presenting problems of
parameter-identifiability, we determined which parameters should remain fixed for the optimization
algorithm to have a suitable degree of convergence.

A1. Pearson type VII distribution

• Independent case.Let U ∼ E(0, 1;h)

fU (u) =
Γ (q)

(rπ)
1/2

Γ (q − 1/2)

(

1 +
u2

r

)−q

r > 0, q > 1/2. Then T ∼ GBS (α, β; g) ,

fT (t) =
Γ (q)

(rπ)
1/2

Γ (q − 1/2)

(

1 +
1

rα2

[

t

β
+

β

t
− 2

])−q (
t−3/2 (t + β)

2αβ1/2

)

with α, β, r > 0 and q > 1/2. We find that the r parameters are not identifiable,

fT (t) =
Γ (q)

(rα2π)
1/2

Γ (q − 1/2)

(

1 +
1

rα2

[

t

β
+

β

t
− 2

])−q (
t−3/2 (t + β)

2β1/2

)

and so it is useful to set the r parameter. Likelihood

L (t;α, β, q, r) =
Γ (q)

n

(rα2π)
n/2

Γ (q − 1/2)
n

2nβn/2

n
∏

i=1

{

(ti + β)

t
3/2
i

(

1 +
1

rα2

[

ti
β

+
β

ti
− 2

])−q
}

Log-likelihood

l (t;α, β, q, r) = n [log (Γ (q)) − log (2) − log (Γ (q − 1/2))] − n

2

[

log
(

rα2
)

+ log (π) + log (β)
]

− 3

2

n
∑

i=1

log (ti) +
n
∑

i=1

log (ti + β) − q
n
∑

i=1

log

(

1 +
1

rα2

[

ti
β

+
β

ti
− 2

])

• Dependent case Let U ∼ En(0, In;h)

fU(u) =
Γ (q)

(rπ)
n/2

Γ (q − n/2)

(

1 +
‖u‖2

r

)−q

r > 0, q > n/2. Then T ∼ GBSn(α, β;h),

fT(t) =
Γ (q)

(rπ)
n/2

Γ (q − n/2)

(

1 +
1

rα2

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

)−q (

1

(2α)
n

βn/2

n
∏

i=1

(ti + β)

t
3/2
i

)
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with α, β, r > 0 and q > n/2. The rα2 parameters are not identifiable,

fT(t) =
Γ (q)

(rα2π)
n/2

Γ (q − n/2)

(

1 +
1

rα2

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

)−q (

1

2nβn/2

n
∏

i=1

t
−3/2
i (ti + β)

)

and so it is useful to set the r parameter. Likelihood

L(t;α, β, q, r) =
Γ (q)

(rα2π)
n/2

Γ (q − n/2)

(

1 +
1

rα2

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

)−q (

1

2nβn/2

n
∏

i=1

t
−3/2
i (ti + β)

)

Log-likelihood

l(t;α, β, q, r) = log (Γ (q)) − log (Γ (q − n/2)) − n log (2) − n

2

[

log
(

rα2
)

+ log (π) + log (β)
]

− 3

2

n
∑

i=1

log (ti) +
n
∑

i=1

log (ti + β) − q log

(

1 +
1

rα2

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

)

A2. T Distribution

• Independent case. Let U ∼ E(0, 1;h)

fU (u) =
Γ((v + 1)/2)

(vπ)
1/2

Γ(v/2)

(

1 +
u2

v

)−(v+1)/2

then T ∼ GBS (α, β; g) ,

fT (t) =
Γ((v + 1)/2)

(vπ)
1/2

Γ(v/2)

(

1 +
1

vα2

[

t

β
+

β

t
− 2

])−(v+1)/2(
t−3/2 (t + β)

2αβ1/2

)

with α, β, v > 0. Likelihood

L (t;α, β, v) =
Γ((v + 1)/2)n

(vπ)
n/2

Γ(v/2)n2nαnβn/2

n
∏

i=1

(

t
−3/2
i (ti + β)

)

(

1 +
1

vα2

[

ti
β

+
β

ti
− 2

])−(v+1)/2

Log-likelihood

l (t;α, β, v) = n log Γ((v + 1)/2) − log (Γ(v/2) − log (2) − log (α))

− n

2
(log (v) + log (π) + log (β)) − 3

2

n
∑

i=1

log (ti) +

n
∑

i=1

log (ti + β)

− v + 1

2

n
∑

i=1

log

(

1 +
1

vα2

[

ti
β

+
β

ti
− 2

])

14



• Dependent case.Let U ∼ En(0, In;h)

fU(u) =
Γ((n + v)/2)

(vπ)
n/2

Γ(v/2)

(

1 +
‖u‖2

v

)−(n+v)/2

then T ∼ GBSn(α, β;h),

fT(t) =
Γ((n + v)/2)

(vπ)
n/2

Γ(v/2)

(

1 +
1

vα2

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

)−(n+v)/2(

1

(2α)
n

βn/2

n
∏

i=1

t
−3/2
i (ti + β)

)

with α, β, v > 0. Likelihood

L(t;α, β, v) =
Γ((n + v)/2)

(vπ)
n/2

Γ(v/2)2nαnβn/2

(

1 +
n
∑

i=1

1

vα2

[

ti
β

+
β

ti
− 2

]

)−(n+v)/2 n
∏

i=1

(

t
−3/2
i (ti + β)

)

Log-likelihood

l(t;α, β, v) = log Γ((n + v)/2)) − log Γ(v/2) − n (log (α) + log (2))

− n

2
(log (v) + log (π) + log (β)) − 3

2

n
∑

i=1

log (ti) +

n
∑

i=1

log (ti + β)

− n + v

2
log

(

1 +
1

vα2

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

)

A3. Cauchy Distribution

• Independent case. Let U ∼ E(0, 1;h)

fU (u) =
1

π

(

1 + u2
)−1

then T ∼ GBS (α, β; g) ,

fT (t) =
1

π

(

1 +
1

α2

[

t

β
+

β

t
− 2

])−1(
t−3/2 (t + β)

2αβ1/2

)

with α, β, v > 0. Likelihood

L (t;α, β) =
1

πn2nαnβn/2

n
∏

i=1

(

t
−3/2
i (ti + β)

)

(

1 +
1

α2

[

ti
β

+
β

ti
− 2

])−1

Log-likelihood

l (t;α, β) = −n

[

log (π) + log (2) + log (α) +
1

2
log (β)

]

− 3

2

n
∑

i=1

log (ti) +

n
∑

i=1

log (ti + β)

−
n
∑

i=1

log

(

1 +
1

α2

[

ti
β

+
β

ti
− 2

])
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• Dependent case. LetU ∼ En(0, In;h)

fU(u) =
Γ((n + 1)/2)

π(n+1)/2

(

1 + ‖u‖2
)−(n+1)/2

then T ∼ GBSn(α, β;h),

fT(t) =
Γ((n + 1)/2)

π(n+1)/2

(

1 +
1

α2

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

)−(n+1)/2(

1

(2α)
n

βn/2

n
∏

i=1

t
−3/2
i (ti + β)

)

with α, β, v > 0. Likelihood

L(t;α, β) =
Γ((n + 1)/2)

π(n+1)/2

(

1 +
1

α2

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

)−(n+1)/2(

1

(2α)
n

βn/2

n
∏

i=1

t
−3/2
i (ti + β)

)

Log-likelihood

l(t;α, β) = log Γ((n + 1)/2) − n + 1

2
log(π) − n

[

log (2) + log (α) +
1

2
log (β)

]

− 3

2

n
∑

i=1

log (ti) +

n
∑

i=1

log (ti + β) − n + 1

2
log

(

1 +
1

α2

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

)

A4. Kotz Distribution

• Independent case. Let U ∼ E(0, 1;h)

fT (t) =
sr(2q−1)/2s

Γ((2q − 1)/2s)
u2(q−1) exp

{

−ru2s
}

then T ∼ GBS (α, β; g) ,

fT (t) =
sr(2q−1)/2s

Γ((2q − 1)/2s)

1

α2(q−1)

[

t

β
+

β

t
− 2

]q−1

exp

{

− r

α2s

[

t

β
+

β

t
− 2

]s}(
t−3/2 (t + β)

2αβ1/2

)

with α, β, r, s > 0 and 2q + n > 2. For a fixed s fijo we find that r/α2s is not identifiable,

fT (t) =
s

Γ((2q − 1)/2s)

[ r

α2s

](2q−1)/2s
[

t

β
+

β

t
− 2

]q−1

exp

{

− r

α2s

[

t

β
+

β

t
− 2

]s}(
t−3/2 (t + β)

2αβ1/2

)

and so it is useful to set the r parameter. Likelihood

L (t;α, β, q, r, s) =
sn

Γ((2q − 1)/2s)n2nβn/2

[ r

α2s

]n(2q−1)/2s

×
n
∏

i=1

(

[

ti
β

+
β

ti
− 2

]q−1

exp

{

− r

α2s

[

ti
β

+
β

ti
− 2

]s}
(

t
−3/2
i (ti + βi)

)

)
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Log-likelihood

l (t;α, β, q, r, s) = n

[

log (s) +

(

2q − 1

2s

)

log
( r

α2s

)

− log Γ((2q − 1)/2s) − log(2) − 1

2
log (β)

]

− 3

2

n
∑

i=1

log (ti) +

n
∑

i=1

log (ti + β) + (q − 1)

n
∑

i=1

log

(

ti
β

+
β

ti
− 2

)

− r

α2s

n
∑

i=1

[

ti
β

+
β

ti
− 2

]s

• Dependent case. Let U ∼ En(0, In;h)

fU(u) =
sr(2q+n−2)/2sΓ(n/2)

πn/2Γ((2q + n − 2)/2s)
‖u‖2(q−1)

exp
{

−r ‖u‖2s
}

then T ∼ GBSn(α, β;h),

fT(t) =
sr(2q+n−2)/2sΓ(n/2)

πn/2Γ((2q + n − 2)/2s)

1

α2(q−1)

(

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

)q−1

× exp

{

− r

α2s

(

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

)s}(

1

(2α)
n

βn/2

n
∏

i=1

t
−3/2
i (ti + β)

)

with α, β, r, s > 0 and 2q + n > 2. For a fixed s we find that r is not identifiable,

fT(t) =
sr(2q+n−2)/2sΓ(n/2)

πn/2Γ((2q + n − 2)/2s)

( r

α2s

)(2q+n−2)/2s
(

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

)q−1

× exp

{

− r

α2s

(

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

)s}(

1

(2α)
n

βn/2

n
∏

i=1

t
−3/2
i (ti + β)

)

and so it is useful to set the r parameter.

L(t;α, β, q, r, s) =
sΓ(n/2)

πn/2Γ((2q + n − 2)/2s)

( r

α2s

)(2q+n−2)/2s
(

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

)q−1

× exp

{

− r

α2s

(

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

)s}(

1

2nβn/2

n
∏

i=1

t
−3/2
i (ti + β)

)

l(t;α, β, q, r, s) = log (s) + log Γ(n/2) +
2q + n − 2

2s
log
( r

α2s

)

− log Γ((2q + n − 2)/2s)

− n

[

log (2) +
1

2
log (π) +

1

2
log (β)

]

− 3

2

n
∑

i=1

log (ti) +

n
∑

i=1

log (ti + β)

+ (q − 1) log

(

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

)

− r

α2s

(

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

)s
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A5. Normal Distribution

• Independent case. Let U ∼ E(0, 1;h)

fT (t) =
1√
2π

exp

(

−1

2
u2

)

then T ∼ GBS (α, β; g) ,

fT (t) =
1√
2π

exp

(

− 1

2α2

[

t

β
+

β

t
− 2

])(

t−3/2 (t + β)

2αβ1/2

)

with α, β > 0. Likelihood

L (t;α, β) =
1

πn/223n/2αnβn/2
exp

(

− 1

2α2

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

)

n
∏

i=1

(

t
−3/2
i (ti + β)

)

Log-likelihood

l (t;α, β) = −n

(

3

2
log (2) + log (α) +

1

2
log (β) +

1

2
log (π)

)

− 3

2

n
∑

i=1

log (ti) +

n
∑

i=1

log (ti + β)

− 1

2α2

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

• Dependent case. Let U ∼ En(0, In;h)

fU(u) =
1

(2π)
n/2

exp

{

−1

2
‖u‖2

}

then T ∼ GBSn(α, β;h),

fT(t) =
1

(2π)
n/2

exp

(

− 1

2α2

[

t

β
+

β

t
− 2

])

1

2nαnβn/2

n
∏

i=1

(

t
−3/2
i (ti + β)

)

with α, β > 0.with α, β > 0. Likelihood

L(t;α, β) =
1

πn/223n/2αnβn/2
exp

(

− 1

2α2

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

)

n
∏

i=1

(

t
−3/2
i (ti + β)

)

Log-likelihood

l(t;α, β) = −n

(

3

2
log (2) + log (α) +

1

2
log (β) +

1

2
log (π)

)

− 3

2

n
∑

i=1

log (ti) +

n
∑

i=1

log (ti + β)

− 1

2α2

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

Note that in the two cases the likelihood expressions are the same, as is to be expected given
that this is one of the properties of the normal distribution.

18



A6. Laplace Distribution

• Independent case. Let U ∼ E(0, 1;h)

fu (u) =
1

2
exp (− |u|)

then T ∼ GBS (α, β; g) ,

fT (t) =
1

2
exp

(

− 1

α

([

t

β
+

β

t
− 2

])1/2
)

t−3/2 (t + β)

2αβ1/2

with α, β > 0. Likelihood

L (t;α, β) =
1

2n
exp

(

− 1

α

n
∑

i=1

[

ti
β

+
β

ti
− 2

]1/2
)

1

2nαnβn/2

n
∏

i=1

(

t
−3/2
i (ti + β)

)

=
1

22nαnβn/2
exp

{

− 1

α

n
∑

i=1

[

ti
β

+
β

ti
− 2

]1/2
}

n
∏

i=1

(

t
−3/2
i (ti + β)

)

Log-likelihood

l (t;α, β) = −n

(

2 log (2) + log (α) +
1

2
log (β)

)

− 3

2

n
∑

i=1

log (ti) +

n
∑

i=1

log (ti + β)

− 1

α

n
∑

i=1

[

ti
β

+
β

ti
− 2

]1/2

• Dependent case. Let U ∼ En(0, In;h)

fU(u) =
Γ
(

1
2n
)

2πn/2Γ (n)
exp (−‖u‖)

then T ∼ GBSn(α, β;h),

fT(t) =
Γ
(

1
2n
)

2πn/2Γ (n)
exp



− 1

α

[

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

]1/2




1

2nαnβn/2

n
∏

i=1

(

t
−3/2
i (ti + β)

)

with α, β > 0. Likelihood

L(t;α, β) =
Γ
(

1
2n
)

πn/2Γ (n) 2n+1αnβn/2
exp



− 1

α

[

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

]1/2




n
∏

i=1

(

t
−3/2
i (ti + β)

)

Log-likelihood

l(t;α, β) = log

(

Γ

(

1

2
n

))

− log (Γ (n)) − (n + 1) log (2) − n

(

log (α) +
1

2
log (π) +

1

2
log (β)

)

− 3

2

n
∑

i=1

log (ti) +

n
∑

i=1

log (ti + β) − 1

α

[

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

]1/2
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A7. Special Case Distribution

• Independent case. Let U ∼ E(0, 1;h)

fu (u) =

√
2

π

(

1 + u4
)−1

then T ∼ GBS (α, β; g) ,

fT (t) =

√
2

π

(

1 +
1

α4

[

t

β
+

β

t
− 2

]2
)−1

t−3/2 (t + β)

2αβ1/2

=
1

21/2παβ1/2

(

1 +
1

α4

[

t

β
+

β

t
− 2

]2
)−1

t−3/2 (t + β)

with α, β > 0. Likelihood

L (t;α, β) =
1

2n/2πnαnβn/2

n
∏

i=1

(

1 +
1

α4

[

ti
β

+
β

ti
− 2

]2
)−1

t
−3/2
i (ti + β)

Log-likelihood

l (t;α, β) = −n

(

log (π) + log (α) +
1

2
log (2) +

1

2
log (β)

)

− 3

2

n
∑

i=1

log (ti) +

n
∑

i=1

log (ti + β)

−
n
∑

i=1

log

(

1 +
1

α4

[

ti
β

+
β

ti
− 2

]2
)

• Dependent case. Let U ∼ En(0, In;h)

fU(u) =
2Γ(n/2)Γ((n + 3)/4)

πn/2Γ(n/4)Γ(3/4)

(

1 + ‖u‖4
)−(n+3)/4

then T ∼ GBSn(α, β;h),

fT(t) =
2Γ(n/2)Γ((n + 3)/4)

πn/2Γ(n/4)Γ(3/4)



1 +
1

α4

(

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

)2




−(n+3)/4
n
∏

i=1

(

t
−3/2
i (ti + β)

)

2nαnβn/2

with α, β > 0. Likelihood

L(t;α, β) =

Γ(n/2)Γ((n + 3)/4)
n
∏

i=1

(

t
−3/2
i (ti + β)

)

2n−1πn/2Γ(n/4)Γ(3/4)αnβn/2



1 +
1

α4

(

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

)2




−(n+3)/4

20



Log-likelihood

l(t;α, β) = log Γ(n/2) + log Γ((n + 3)/4) −
(n

2

)

log(π) − n

(

log(α) +
1

2
log(β)

)

− (n − 1) log(2) − log Γ(n/4) − log Γ(3/4) − 3

2

n
∑

i=1

log (ti) +

n
∑

i=1

log (ti + β)

−
(

n + 3

4

)

log



1 +
1

α4

(

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

)2




Remark 3. It is important to note that the Special Case Distribution (independent case) is not
a normal density and the process by which it is obtained is unexplained, Gupta and Varga (1993,
p. 70). For the same reason, it is not possible to follow a procedure to obtain the corresponding
multivariate density, on which the dependent case is based. Therefore, what is proposed is the actual
density for the dependent case, simply observing that when n = 1 the univariate density is obtained.
However, note that this is not the only mltivariate density that can be proposed. If we make the
exponent of (1+ ||U ||4) equal to (n+1)/2 or to (3n+1)/4 and calculate the corresponding constant,
such densities, too, for the case in which n = 1, produce the univariate Special Case density, although
this does not guarantee that such a density corresponds to the multivariate density of the univariate
Special Case.

A8. Logistic Distribution

• Independent case. Let U ∼ E(0, 1;h)

fu (u) =
1

I(z)

exp
(

−u2
)

[1 + exp (−u2)]
2 , I(z) =

∫ ∞

0

z−1/2 exp (−z)

[1 + exp (−z)]
2 dz

then T ∼ GBS (α, β; g) ,

fT (t) =
1

I(z)

exp
(

− 1
α2

(

t
β + β

t − 2
))

[

1 + exp
(

− 1
α2

(

t
β + β

t − 2
))]2

t−3/2 (t + β)

2αβ1/2

with α, β > 0. Likelihood

L (t;α, β) =
1

(I(z))
n

2nαnβn/2

n
∏

i=1

exp
(

− 1
α2

(

ti

β + β
ti
− 2
))

[

1 + exp
(

− 1
α2

(

ti

β + β
ti
− 2
))]2 t

−3/2
i (ti + β)

Log-likelihood

l (t;α, β) = −n

(

log (I(z)) + log (2) + log (α) +
1

2
log (β)

)

− 3

2

n
∑

i=1

log (ti) +

n
∑

i=1

log (ti + β) − 1

α2

n
∑

i=1

(

ti
β

+
β

ti
− 2

)

− 2

n
∑

i=1

log

(

1 + exp

(

− 1

α2

(

ti
β

+
β

ti
− 2

)))
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• Dependent case.Let U ∼ En(0, In;h)

fU(u) =
Γ (n/2)

πn/2In(z)

exp
(

−‖u‖2
)

[

1 + exp
(

−‖u‖2
)]2 , In(z) =

∫ ∞

0

z
n
2
−1 exp(−z)

(1 + exp(−z))
2 dz

then T ∼ GBSn(α, β;h),

fT(t) =
Γ (n/2)

πn/2In(z)

exp
(

− 1
α2

∑n
i=1

[

ti

β + β
ti
− 2
])

[

1 + exp
(

− 1
α2

∑n
i=1

[

ti

β + β
ti
− 2
])]2

n
∏

i=1

(

t
−3/2
i (ti + β)

)

2nαnβn/2

with α, β > 0. Likelihood

L(t;α, β) =

Γ (n/2)
n
∏

i=1

(

t
−3/2
i (ti + β)

)

πn/22nαnβn/2In(z)

exp
(

− 1
α2

∑n
i=1

[

ti

β + β
ti
− 2
])

[

1 + exp
(

− 1
α2

∑n
i=1

[

ti

β + β
ti
− 2
])]2

Log-likelihood

l(t;α, β) = log (Γ (n/2)) − log (In(z))

− n

(

log (2) + log (α) +
1

2
log (π) +

1

2
log (β)

)

− 3

2

n
∑

i=1

log (ti) +

n
∑

i=1

log (ti + β) − 1

α2

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

− 2 log

(

1 + exp

(

− 1

α2

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

))

A9. Bessel Distribution

• Independent case. Let U ∼ E(0, 1;h)

fu (u) =

(

u2
)q/2

2qrq+1π1/2Γ
(

q + 1
2

)Kq

{

−1

r
u

}

Where

Kq(z) =
π

2

I−q(z) − Iq(z)

sin(qπ)
, | arg(z)| < π,

with q an integer, is the modified Bessel function of the third kind and

Iq(z) =

∞
∑

k=0

1

k!Γ(k + q + 1)

(z

2

)q+2k

, |z| < ∞, | arg(z)| < π.

Then T ∼ GBS (α, β; g) ,

fT (t) =

(

1
α2

[

t
β + β

t − 2
])q/2

2qrq+1π1/2Γ
(

q + 1
2

) Kq

{

1

rα

[

t

β
+

β

t
− 2

]1/2
}

t−3/2 (t + β)

2αβ1/2
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with α, β, r > 0 and q > −1/2. The rα parameters are not identifiable,

fT (t) =

1
(rα)q+1

([

t
β + β

t − 2
])q/2

2qπ1/2Γ
(

q + 1
2

) Kq

{

1

rα

[

t

β
+

β

t
− 2

]1/2
}

t−3/2 (t + β)

2β1/2

and so it is useful to set the r parameter. Likelihood

L (t;α, β, r, q) =

n
∏

i=1

(

1
α2

[

ti

β + β
ti
− 2
])q/2

2qrq+1π1/2Γ
(

q + 1
2

) Kq

{

− 1

rα

[

ti
β

+
β

ti
− 2

]1/2
}

1

2αβ1/2
t
−3/2
i (ti + β)

=
1

2n(q+1) (αr)
n(q+1)

πn/2Γ
(

q + 1
2

)n
βn/2

×
n
∏

i=1

[

ti
β

+
β

ti
− 2

]q/2

Kq

{

1

rα

[

ti
β

+
β

ti
− 2

]1/2
}

t
−3/2
i (ti + β)

Log-likelihood

l (t;α, β, r, q) = −n

(

(q + 1) log (2) + (q + 1) log (rα) + log

(

Γ

(

q +
1

2

))

+
1

2
log (π) +

1

2
log (β)

)

− 3

2

n
∑

i=1

log (ti) +
n
∑

i=1

log (ti + β) +
q

2

n
∑

i=1

log

(

ti
β

+
β

ti
− 2

)

+

n
∑

i=1

log

(

Kq

{

1

rα

[

ti
β

+
β

ti
− 2

]1/2
})

• Dependent case. Let U ∼ En(0, In;h)

fU(u) =

(

‖u‖
r

)q

2q+n−1πn/2rnΓ
(

q + n
2

)

[

Kq

(‖u‖
r

)]

then T ∼ GBSn(α, β;h),

fT(t) =

(

1
r2α2

∑n
i=1

[

ti

β + β
ti
− 2
])q/2

2q+n−1πn/2rnΓ
(

q + n
2

)



Kq





1

rα

(

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

)1/2








×

n
∏

i=1

(

t
−3/2
i (ti + β)

)

2nαnβn/2

=

(

∑n
i=1

[

ti

β + β
ti
− 2
])q/2

2q+2n−1πn/2 (rα)
n+q

βn/2Γ
(

q + n
2

)



Kq





1

rα

(

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

)1/2








×
n
∏

i=1

(

t
−3/2
i (ti + β)

)
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with α, β, r > 0 and q > −n/2. The rα parameters are not identifiable,

fT(t) =

(

∑n
i=1

[

ti

β + β
ti
− 2
])q/2

2q+2n−1πn/2 (rα)
n+q

βn/2Γ
(

q + n
2

)



Kq





1

rα

(

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

)1/2








×
n
∏

i=1

(

t
−3/2
i (ti + β)

)

and so it is useful to set the r parameter. Likelihood

L(t;α, β, r, q) =
1

2q+2n−1πn/2 (rα)
n+q

βn/2Γ
(

q + n
2

)

×
(

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

)q/2


Kq





1

rα

(

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

)1/2








n
∏

i=1

(

t
−3/2
i (ti + β)

)

Log-likelihood

l(t;α, β, r, q) = − log
(

Γ
(

q +
n

2

))

− (q + 2n − 1) log (2) − (n + q) log (rα) − n

2
(log (π) + log (β))

− 3

2

n
∑

i=1

log (ti) +

n
∑

i=1

log (ti + β) +
q

2
log

(

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

)

+ log



Kq







1

rα

(

n
∑

i=1

[

ti
β

+
β

ti
− 2

]

)1/2









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