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1 Introduction

In the last two decades, many of the statistical techniques, particulary in the
multivariate framework, have substituted the assumption of normality to an
assumption of elliptical distribution. These techniques have been grouped as
Generalized Multivariate Analysis, see Gupta & Varga (1993) and Fang and
Zhang (1990). Two of the most important impacts of this development are the
family of elliptic distribution which in some cases is well known for distribu-
tions such as normal distribution, Pearson Type II, t and Kotz distributions;
and the family of elliptic distributions, similar to the test statistic distribution
under the assumption of normality, many of the test statistics are consistent
throughout.

In the late part of the 90’s, special attention was devoted to the study of
the different versions of the family of skew-elliptic distributions. The case of
the univariate, its generalization and other extensions to the multivariate case
have been studied by many researchers, among many: see Aigner et al. (1977),
Azzalini and Dalla Valle, A. (1996), Sahu et al. (2003) and Genton (2004).

In the normal cases, these studies have created the family of multivariate skew-
normal, with different approaches, see Branco and Dey (2001), González-Faŕıas
et al. (2004), just to mention a few.

In parallel, studies issues have been addressed on the multivariate singu-
lar distributions (vector and matrix cases), see Uhlig (1994), Dı́az-Garćıa
and Gutiérrez-Jáimez (1997), Dı́az-Garćıa et al. (1997), Dı́az-Garćıa and
Gutiérrez-Jáimez (2004), Dı́az-Garćıa and González-Faŕıas (2004c) and Dı́az-
Garćıa and González-Faŕıas (2004b). Nevertheless, some of the problems had
been already studied for the normal case before, as we can see from Khatri
(1968) and Rao (1973).

An interesting issue for the statistical modelling can be formulated as follows,
given a vector (or a random matrix) X : n × 1, look for its distribution in a
linear application, i.e. the distribution of the Y = AX+b, where A : m×n and
b : m× 1 are not random. Its significance as we know, is in the general linear
model which is characterized by a form similar to linear applications. This
problem has been studied for the case of skew-normal distribution allowing
more general conditions on the rank of the matrix A, in González-Faŕıas et al.
(2004), that is, in the case of A being a non-singular matrix, X has a non sin-
gular distribution and the rank of A = m ≤ n. However, it is also interesting
to find the distribution of Y when X has a singular distribution, and for any
relation between m and n or when A is actually singular. As it is noted, the
residuals in a general linear model (multivariate or univariate) have a singular
distribution, moreover, they are obtained through a linear transformation of
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the model’s error distribution. This is critical in the sensitivity analysis of a
linear model and in general, all the test statistics utilized to detect the influen-
tial points when using the technique of eliminating one or several observations,
are a function of some of the residual classes. Consequently, the distribution of
those test statistics is a function of the distribution of the residuals, which is
singular, see Chatterjee and Hadi (1988) and Dı́az-Garćıa and González-Faŕıas
(2004a). It is then of relevance to know the singular distribution particularly
in the general multivariate linear model, at least when the variance-covariance
matrix is singular and therefore, the error matrix has also a singular distri-
bution. This issue has been studied in the case of normality in Khatri (1968)
from a classic approach, and in Dı́az-Garćıa and Gutiérrez-Jáimez (2004) from
a bayesian point of view.

The present work contains an expression for the density function of an el-
liptic singular random matrix, highlighting the fact that such density, for a
given elliptic distribution is not unique, see section 2. In section 3, there is
an expression for a singular extended skew-elliptical distribution (SESE) for
the vectorial case, whose result is extended to the matrix case in two versions.
Finally, section 4 includes a distribution of a linear general transformation of a
random vector with SESE distribution. The conclusion, determines the distri-
bution of the residuals in a multivariate general linear model, when assuming
the errors have a matrix distribution SESE.

2 Notation and preliminary results

Let Lm,N(q) be the linear space of all N × m real matrices of rank q ≤
min(N, m); L+

m,N(q) be the linear space of all N × m real matrices of rank
q ≤ min(N, m) with q distinct singular values. The set of matrices H1 ∈
Lm,N(m) such that HT

1 H1 = Im is the Stiefel manifold denoted by Vm,N . In
particular, Vm,m is the group of orthogonal matrices O(m).

Definition 1 (Matrix-variate Singular Elliptical Distribution) . Let Y ∈
L+

m,N(q), such that Y ∼ EN×m(µ, Θ ⊗ Ξ, h), with Ξ : m ×m of rank r < m
or Θ : N ×N of rank k < N . This distribution will be called a matrix-variate
singular elliptically contoured distribution and will be denoted by

Y ∼ Ek,r
N×m

(
µ, Θ⊗ Ξ, h

(N×m)
k,r

)

omitting the supra-index when r = m and k = N . In addition, its density
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function is given by

1
(

r∏

i=1

λ
k/2
i

) 


k∏

j=1

δ
r/2
j




h
(N×m)
k,r

(
tr Ξ−(Y − µ)T Θ−(Y − µ)

)
(1)

QT
2 (Y − µ)MT

1 = 0

QT
1 (Y − µ)MT

2 = 0

QT
2 (Y − µ)MT

2 = 0





a. s. (2)

for some function h
(N×m)
k,r , where the supra-index denotes the dimension of the

matrix Y and the index denotes the rank of the distribution. Also A− denotes
a symmetric generalized inverse, λi and δj are the nonzero eigenvalues of Ξ
and Θ respectively. Let Q = (Q1|Q2) ∈ O(N) and M = (MT

1 |MT
2 ) ∈ O(m)

be matrices associated with the spectral decomposition of matrices Ξ and Θ
respectively with Q1 ∈ Vk,N , Q2 ∈ VN−k,N , MT

1 ∈ Vr,m and MT
2 ∈ Vm−r,m,

see Dı́az-Garćıa and Gutiérrez-Jáimez (2003) and Dı́az-Garćıa and González-
Faŕıas (2004c).

Alternatively, this density can be written as (for the Normal distribution case,
see Khatri (1968))

dF
Y
(Y ) =

1
(

r∏

i=1

λ
k/2
i

) 


k∏

j=1

δ
r/2
j




h
(N×m)
k,r

(
tr Ξ−(Y − µ)T Θ−(Y − µ)

)
(dY ),(3)

where (dY ) is the Hausdorff measure, which coincides with that of Lebesgue
measure when it is defined on the subspace M given by the hyperplanes
(2), see Dı́az-Garćıa et al. (1997), Cramér (1999, p. 297) and Billingsley
(1986, p. 247). Observe that M is an affine subspace. If q = min(r, k), explicit
expressions of (dY ) can be given as function of QR, Polar, SV and QR modified
decompositions, see Dı́az-Garćıa and González-Faŕıas (2004b).

Remark 2 It is important to note that the density function (3) is not unique,
because Ξ− and Θ− are not unique and the explicit form of (dY ) is not unique
either, see Khatri (1968) and Dı́az-Garćıa and González-Faŕıas (2004c). How-
ever, once the density expression is found (3), the results do not depend on
the selected density, see Rao (1973).
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3 Singular skew-elliptical distribution

In this section an expression for singular skew-elliptical density in the vectorial
case is proposed, and based on that we obtain, two alternatives for a matrix-
variate singular skew-elliptical distribution.

Assuming that

E =




E1

E2


 ∼ Er+k

p+q







0

0


 ,




Σ 0

0 ∆


 , h

(p+q)
r+k




where E1 : p × 1, Σ ≥ 0 of rank r ≤ p, E2 : q × 1, ∆ ≥ 0 with rank k ≤ q,
Cov(E1,E2) = 0 : p × q, noting E1 and E2 are not independent, like in the
case of a normal.

Let U = AE + ρ be defined as

U =




Ip 0

D Iq







E1

E2


 +




µ

−ν


 =




µ + E1

−ν + DE1 + E2


 =




W

−Z


 (4)

where D : q × p is an arbitrary matrix of constants, µ : p × 1 and ν : q × 1,
are vectors of constants. Then

U =




W

Z


 ∼ Er+k1

p+q







µ

−ν


 ,




Σ ΣDT

DΣ ∆ + DΣDT


 , h

(p+q)
r+k1


 ,

k1 is the rank of ∆+DΣDT where, if G(·), is the distribution function of g(·)

dGW|{Z≥0}(w|Z ≥ 0) =
dGW(w)

P (Z ≥ 0)
P (Z ≥ 0|W = w) (5)

with

W ∼ Er
p

(
µ, Σ, h(p)

r

)
and Z ∼ Ek1

q

(
−ν, ∆ + DΣDT , h

(q)
k1

)
,

whose density for a random vector s-dimensional, will be generically denoted
by, g

(s)
V

(
v; r, µ, Σ, h(s)

r

)
o dG

(s)
V

(
v; r, µ, Σ, h(s)

r

)
, being r the rank of the distri-

bution ( which is defined as the rank of the matrix Σ, see Cramér (1999, p.
297)). Then, given Σ = ΣΣ−Σ, there is

Z|W = w ∼ Ek
q

(
−ν + DΣΣ−(w − µ), ∆, h

(q)
δ(w), k1

)
,

with δ(w) = (w − µ)T Σ−(w − µ), see Theorem 2.6.4, pp. 62-65 in Gupta &
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Varga (1993); where

h
(q)
δ(w), k1

(τ) =
Γ(k1/2)

πk1/2

h(δ(w) + τ, p + q)
∫

R+

vk1/2−1 h(α + v, p + q)dv

, α > 0

with h(·, ·) a decreasing function, h : R+ → R+, such that

∫

R+

h(a, b)ab/2−1da < ∞.

Then,
P (Z ≥ 0) = F

(q)
Z

(
0; k1, ν, ∆ + DΣDT , h

(q)
k1

)

and

P (Z ≥ 0|W = w) = F
(q)
{Z≥0}|W=w

(
DΣΣ−(w − µ); k, ν, ∆, h

(q)
δ(w), k

)

This way, the density (5) can be expressed as

dGW|{Z≥0}(w|Z ≥ 0) =

F
(q)
Z≥0|W=w

(
DΣΣ−(y − µ); k, ν, ∆, h

(q)
δ(w), k

)

F
(q)
Z

(
0; k1, ν, ∆ + DΣDT , h

(q)
k1

) dG
(p)
W

(
w; r, µ, Σ, h(p)

r

)
,

in conclusion,

Definition 3 (Singular extended skew-elliptical distribution) A random
vector Y has a singular extended skew-elliptical distribution p-dimensional,
with rank r and parameters q, k1, µ, Σ, k, D, ν, ∆, as defined, if its density
function is given by

dG
(p)
Y

(
y; r, q, k1, µ, Σ, k,D, ν, ∆, h(p)

r

)
=

F
(q)
Y

(
DΣΣ−(y − µ); k, ν, ∆, h

(q)
δ(w), k

)

F
(q)
Y

(
0; k1, ν, ∆ + DΣDT , h

(q)
k1

) dG
(p)
Y

(
y; r, µ, Σ, h(p)

r

)
(6)

indicating this by

Y ∼ SESE (p)
r

(
q, k1, µ, Σ, k, D, ν, ∆, h(p)

r

)
.

Specific cases of this family are present when: a). ∆ > 0, then k = q = k1

where the parameters k and k1 are excluded in the density (6), b). Si Σ > 0,
then r = p and the parameter r is excluded in the definition 3, c). if ∆ > 0
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and Σ > 0 is obtained the non-singular extended skew-elliptical distribution,
in such case the parameters r, k, k1 in the definition 3 are excluded, see
González-Faŕıas et al. (2004). Finally, observe that as a consequence of the
non uniqueness of the elliptic singular distribution, the distribution SESE is
not unique either, see Remark 2.

4 Matrix-variate singular skew-elliptical distribution

In this section we study, the singular skew-elliptical distribution for the ma-
trix case. As it will be noted, the matrix distribution will be obtained as an
extension of the vector distribution described in section 3. This section ends
up with a proposal to utilize the extension as a generalization for the matrix
version.

First of all, we know that Y ∼ EN×m(µ, Θ⊗Ξ, h) is be equivalent to vec Y ∼
ENm(vec µ, Θ⊗ Ξ, h), see Muirhead (1982, p. 79) and Gupta & Varga (1993,
pp. 26-27). Then assuming




vec E1

vec E2


 ∼ ErΣrΘr∆rΞ

pmqn







0

0







Θ⊗ Σ 0

0 Ξ⊗∆


 , h(pmqn)

rΣrΘr∆rΞ


 (7)

where E1 : p×m and E2 : q×n are matrices; Σ : p× p of rank rΣ ≤ p, Σ ≥ 0;
Θ : m × m of rank rΘ ≤ m, Θ ≥ 0; ∆ : q × q of rank r∆ ≤ q, ∆ ≥ 0 and
Ξ : n× n of rank rΞ ≤ n, Ξ ≥ 0. Then the matrix version of the model (4) is
given by

vec U =




I 0

(DT
2 ⊗D1) I







vec E1

vec E2


 +




vec µ

− vec ν


 (8)

where D1 : q × p; D2 : m × n; µ : p ×m and ν : q × n are arbitrary matrices
of constants. Explicitly, there is

vec U =




vec W

vec Z


 =




vec µ + vec E1

− vec ν + (DT
2 ⊗D1) vec E1 + vec E2


 .

Doing a parallel development to the one presented in section 3 after the model
(4), there is the following:

Definition 4 (Matrix-variate singular extended skew-elliptical) It is said
that a random matrix Y has a matrix-variate singular extended skew-elliptical
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distribution p ×m- dimensional, of rank rΣrΘ and parameters q, n, k1, µ,
Σ, Θ, k = r∆rΞ, D1, D2, ν, ∆, Ξ, defined, if its density function is given by

dG
(pm)
vec Y

(
vec Y ; rΣrΘ, q, n, k1, vec µ, Θ⊗ Σ, k, DT

2 ⊗D1, vec ν, Ξ⊗∆, h(pm)
rΣrΘ

)
=

F
(qn)
vec Y

(
DT

2 ΘΘ− ⊗D1ΣΣ− vec(Y − µ); k, vec ν, Ξ⊗∆, h
(qn)
δ(W ), k

)

F
(qn)
vec Y

(
0; k1, vec ν, Ξ⊗∆ + DT

2 ΘD2 ⊗D1ΣDT
1 , h

(qn)
k1

)

dG
(pm)
vec Y

(
vec Y ; rΣrΘ, vec µ, Θ⊗ Σ, h(pm)

rΣrΘ

)

where δ(W ) = vecT (W − µ)(Θ⊗ Σ)− vec(W − µ). Under matrix notation,

dG
(p×m)
Y

(
Y ; rΣrΘ, q, n, k1, µ, Θ⊗ Σ, k, DT

2 ⊗D1, ν, Ξ⊗∆, h(pm)
rΣrΘ

)
=

F
(q×n)
Y

(
D1ΣΣ−(Y − µ)Θ−ΘD2; k, ν, Ξ⊗∆, h

(q×n)
δ(W ), k

)

F
(q×n)
Y

(
0; k1, ν, Ξ⊗∆ + DT

2 ΘD2 ⊗D1ΣDT
1 , h

(q×n)
k1

)

dG
(p×m)
Y

(
Y ; rΣrΘ, µ, Θ⊗ Σ, h(p×m)

rΣrΘ

)

where δ(W ) = tr Σ−(W −µ)T Θ−(W −µ); k1 is the rank of (Ξ⊗∆+DT
2 ΘD2⊗

D1ΣDT
1 ). And this fact will be indicated by

Y ∼ SESE (p×m)
rΣrΘ

(
q, n, k1, µ, Θ⊗ Σ, k,DT

2 ⊗D1, ν, Ξ⊗∆, h(p×m)
rΣrΘ

)

Now, the structure of the covariance matrix, of the matrix E1 (as example)
through the Kronecker product, is a consequence of the linear transformations
over a matrix. For example, by the same context of the definition 4, if

V ∼ ErΣ×rΘ

(
0, IrΘ

⊗ IrΣ
, h(rΣ×rΘ)

)
,

where 0 is a matrix of zeros of order rΣ × rΘ. Then E1 = MV N , with Σ =
MMT and Θ = NT N is such that

E1 ∼ ErΣrΘ
p×m

(
0, Θ⊗ Σ, h(N×m)

rΣrΘ

)

The disadvantage of this approach - that make the transformations over a
matrix - is that the elements of the covariances matrix, Θ ⊗ Σ, have certain
restrictions. From a Bayesian point of view this is of the utmost importance,
because to propose an apriori distribution of this parameter, the restrictions
have to be taken into account, and this increases the difficulty in the estima-
tion. see Press (1982, p. 253).

An alternative approach is to make the linear transformation over the vector-
ization of the matrix without considering a structure in the linear transforma-
tion as function of the Kronecker product. For the example, we have to start
from the fact that:

vec V ∼ ErΣ×rΘ

(
vec 0, IrΘ

⊗ IrΣ
, h(rΣ×rΘ)

)
≡ ErΣ×rΘ

(
vec 0, IrΘrΣ

, h(rΣ×rΘ)
)
.
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Then define vec E1 = A vec V , with A : pm× rΣrΘ such that Λ = AA′, then

vec E1 ∼ ErΣrΘ
pm

(
vec 0, Λ, h(N×m)

rΣrΘ

)
.

Taking into consideration this observation, alternatively to (7) we have




vec E1

vec E2


 ∼ ErΛrΩ

pmqn







0

0







Λ 0

0 Ω


 , h(pmqn)

rΛrΩ


 ,

where Λ : pm× pm of rank rΛ ≤ pm, Λ ≥ 0 and Ω : qn× qn of rank rΩ ≤ qn,
Ω ≥ 0. An alternative model (8) is defined as

vec U =




I 0

D I







vec E1

vec E2


 +




vec µ

− vec ν




where D : nq×mp ; µ : p×m and ν : q×n are arbitrary matrices of constants.
Explicitly

vec U =




vec W

vec Z


 =




vec µ + vec E1

− vec ν +D vec E1 + vec E2


 .

Consequently, we obtained the following general definition 4

Definition 5 (Matrix variate singular extended skew-elliptical II) A
random matrix Y has a matrix variate singular extended skew-elliptical distri-
bution pm- dimensional, with rank rΛ and parameters q, n, k1, µ, Λ, k, D,
ν, Ω, defined, if its density function is given by

dG
(pm)
vec Y

(
vec Y ; rΛ, q, k1, µ, Λ, k,D, ν, Ω, h(pm)

rΛ

)
=

F
(qn)
vec Y

(
DΛΛ− vec(Y − µ); k, vec ν, Ω, h

(qn)
δ(vec W ), k

)

F
(qn)
vec Y

(
0; k1, vec ν, Ω +DΛDT , h

(qn)
k1

)

dG
(pm)
vec Y

(
vec Y ; rΛ, vec µ, Λ, h(pm)

rΛ

)

where k1 is the rank of Ω+DΛDT and δ(vec W ) = vecT (W−µ)Λ− vec(W−µ).
Indicating this by

Y ∼ SESE2(pm)
rΛ

(
q, k1, vec µ, Λ, k,D, vec ν, ∆, h(pm)

rΛ

)
.
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5 General linear transformation

Now, our goal is to find the distribution of the general linear transforma-
tion, AY + b when Y ∼ SESE (p)

r

(
q, k1, µ, Σ, k,D, ν, ∆, h(p)

r

)
, in which b is a

constant vector and A is any constant matrix, and from this illustrate its ap-
plication deriving the distribution of the residuals in the case of a multivariate
linear model.

Theorem 6 Assuming that Y ∼ SESE (p)
r

(
q, k1, µ, Σ, k,D, ν, ∆, h(p)

r

)
and let

A be a matrix of constants s×p of rank s1 ≤ min(s, p) and b a constant vector
s × 1, then if aj ∈ Im(AΣAT ) for all j = 1, . . . , q, where aj are the columns
of the matrix AΣDT and Im(N) denote the image of the matrix N , we get,

AY + b ∼ SESE (s)
s2

(
q, k1,Aµ + b, ΣA, k2, DA, ν, ∆A, h(s)

s2

)

where

ΣA = AΣAT

DA = DΣAT Σ−
A

∆A = ∆ + D(Σ− ΣAT Σ−
AAΣ)DT

s2 is the rank of (AΣAT )

k1 is the rank of (∆A + DAΣADT
A)(= to rank of (∆ + DΣDT ))

k2 is the rank of ∆A

Proof. Define V = AU + b1, with

B =




A 0

0 I


 , U =




W

Z


 , and b1 =




b

0


 ,

where

E(V) =




Aµ + b

−ν


 and Cov(V) = B Cov(V)BT =




AΣAT AΣDT

DΣAT ∆ + DΣDT


 .

Then

V =




AW + b

Z


 ∼ Es2+k1

s+q







Aµ + b

−ν


 ,




AΣAT AΣDT

DΣAT ∆ + DΣDT


 , h

(s+q)
s2+k1


 ,
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where s2 is the rank of (AΣAT ), and as before, k1 is the rank of (∆+DΣDT ).
But observe that




AΣAT AΣDT

DΣAT ∆ + DΣDT


 =




ΣA ΣADT
A

DAΣA ∆A + DAΣADT
A


 .

Where ΣA = AΣAT and DA = DΣAT Σ−
A, of which

ΣADT
A = ΣAΣ−

AAΣDT = AΣDT

The last equation is valid when aj ∈ Im(AΣAT ) for all j = 1, . . . , q, where aj

indicates the columns of the matrix AΣDT , noting that ΣAΣ−
A is the projector

of the image of ΣA. Now, observing that if ∆A = ∆ + D(Σ−ΣAT Σ−
AAΣ)DT ,

then
DAΣADT

A = DΣAT Σ−
AΣAΣ−

AAΣDT = DΣAT Σ−
AAΣDT .

From here we get ∆A + DAΣADT
A = ∆ + DΣDT . Finally Y

d
= W|{Z ≥ 0},

then AY + b
d
= AW + b|{Z ≥ 0}, where

d
= indicates equal in distribution.

Proceeding in a parallel form to (5) the expected result is obtained.

Observe that if Σ > 0, ∆ > 0 and s1 = s ≤ p, then s2 = s, k1 = q and k2 = q,
then in the notation of González-Faŕıas et al. (2004)

AY + b ∼ ESEs, q (Aµ + b, ΣA, DA, ν, ∆A, h) .

Similar results to those presented in theorem 6 can be shown for the matrix
case, based on the definitions 4 and 5.

Corollary 7 Consider the general multivariate linear model Y = Xβ + ξ
where Y : N ×m, X : N × l, of rank τ ≤ l ≤ N , β : l ×m and

ξ ∼ SESE (N×m)
rΣN

(
q, n, k1, 0, IN ⊗ Σ, k, DT

2 ⊗D1, ν, Ξ⊗∆, h
(N×m)
rΣN

)
.

If R : N ×m denotes the residual matrix. Then

R ∼ SESE (N×m)
s2N

(
q, n, k1, 0, (IN ⊗ Σ)A, k, (DT

2 ⊗D1)A, ν, (Ξ⊗∆)A, h
(N×m)
s2N

)
,

where A = (I ⊗P ), P = (I −XX+) with C+ is the Moore-Penrose inverse of
the matrix C, and

(IN ⊗ Σ)A = (IN ⊗ PΣP ),

s2 is the rank of (IN ⊗ Σ)A,

(DT
2 ⊗D1)A = (DT

2 ⊗D1ΣP (PΣP )−) and

(Ξ⊗∆)A = Ξ⊗∆ + (DT
2 ⊗D1)(IN ⊗ Σ− IN ⊗ ΣP (PΣP )−PΣ)(D2 ⊗DT

1 ).

11



Proof. Keeping in mind that R = Y − Ŷ = Y − Xβ̂ = Y − XX+Y =
(I−XX+)Y = PY , where P = (I−XX+) and β̂ is any solution of the system
of normal matrix equations (XT X)β̂ = XT Y , see Rao (1973) or Muirhead
(1982). Now the model Y = Xβ + ξ is a linear transformation of the matrix ξ,
by the Theorem 6, considering the vectorization of the linear model vec Y =
(I ⊗X) vec β + vec ξ, there is

Y ∼ SESE (N×m)
rΣN

(
q, n, k1, Xβ, IN ⊗ Σ, k, DT

2 ⊗D1, ν, Ξ⊗∆, h
(N×m)
rΣN

)
.

To conclude, observe that now R = PY is a linear transformation of the matrix
Y , then applying the Theorem 6, observing that vec R = (I ⊗ P ) vec Y , the
expected result is obtained.

Many interesting applications maybe generated from this particular result es-
pecially in the sensitivity analysis as we mentioned before. Also it is clear from
(6) that now we are free to use any linear transformation (no rank restrictions),
and still be able to complete established its distribution providing a very gen-
eral characterization for the family of matrix-variate extended skew-elliptical
distributions.

Other important consequence comes from the fact that if the estimator for β is
given as a linear applications, for example β̂ = RY , we are able to established
the distribution for β̂ even when the matrix R is singular or Y follows a
matrix-variate singular extended skew-elliptical distribution.
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II, Comunicación Técnica No. I-03-01 (PE/CIMAT) (2003),
http://www.cimat.mx/biblioteca/RepTec.
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