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Abstract

Based on a multivariate linear regression model, we propose several generalizations to the
multivariate classical and modified Cook’s distances in order to detect one or more of influential
observations including the case of linear transformations of the estimated regression parameter.
For those distances, we derived the exact distributions and point out a method to extend the
calculation of exact distributions for several other metrics available in the literature, for the
univariate and multivariate cases. The results are extended to elliptical families not under the
assumption of normality. An application is described in order to exemplify the methodology.
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1 Introduction

Sensitivity analysis in linear models, under normality assumptions has been deeply stud-
ied in the statistical literature since the seminal work of Cook (1977) and many more
like Belsey et al. (1980), Cook and Weisberg (1982), and Chatterjee and Hadi (1988),
among others. The research in this area has been extended to deal with several particular



regression models, like in Galea et al. (1997), Diaz-Garcia et al. (2003) or Diaz-Garcia
and Gonzélez- Farfas (2004) but one common factor for most of the techniques deal-
ing with detection of influential observation in linear regression models, is the so called
Cook’s distance. The work of Muller and Mok (1997) and Jensen and Ramirez (1997)
have derived the exact distribution for the Cook’s distance on univariate linear models
either with fixed or random coeflicients. For the multivariate case, there exists a pro-
posed expression for the exact distribution of the Cook’s distance, see Diaz-Garcia et al.
(2003).

In many instances when we are dealing with a regression model, it is not only of
interest to study the sensitivity of the parameters 3, but some particular transformations
that reflect hypothesis of interest for the researchers. Most of these transformations are
basically expressed as linear transformations of the parameters of the form NGM, where
N and M are constant matrices of the appropriate orders, see Caroni (1987) and Diaz-
Garcia and Gonzélez- Farfas (2004). It would be beneficial to study the sensitivity of
transformation of a most general kind, for example, linear applications of the form NBGM.
One particular case would be if we consider the effect of outliers for the kr-th element of
B from 3. However, the most common cases we found on the literature are comparisons
among the rows of 3, of the form IN3; that is, we are interested on comparing the effects
of the proposed model with each characteristic or linear applications in the form BM;
for which we are making comparison among the columns of 3, and therefore comparison
of the same effect for all the characteristics under the study.

In this paper we propose some generalizations in the multivariate context for the
classical and the modified Cook’s distances when we eliminate one or several observations,
deriving the exact distributions. In the same way, we study the effect of eliminating one
or several observations on the estimation of linear functions of the parameter regression
matrix. In such case, we propose an extension of the classical and modified Cook’s
distance (Diaz-Garcia et al., 2003), as well as, the modified distances given in Diaz-Garcia
and Gonzdlez- Farfas (2004). For all the cases we derived the exact distribution. We also
extend all those results when the normality assumption is dropped considering instead,
the family of elliptical distributions. We applied these results to a diet problem discussed
in Srivastava and Carter (1983), and illustrate some of the linear transformations of the
form GM.

2  Multivariate Elliptical Linear Regression Model

As we can see in the statistical literature, the elliptical family of distributions has received
a lot of attention during the last 20 years, given the fact that many properties that belong
to the multivariate normal distribution are either invariant or can be extended, in a very
natural way, to the elliptical family. Some references in this line are Fang and Anderson
(1990), Fang and Zhang (1990), Gupta and Varga (1993), Diaz-Garcia et al. (2002),
among many others.

In this section we provide some basic notation and results in the context of linear
models that allow us to derive the corresponding distances and their distributions for
sections 3 and 4.

We say that an n x p random matrix Y = (Y1, ..., Y,) has an elliptical distribution
with parameters p € R"*P the location matrix and 3 ® ® € R™P*"P the scala matrix,
3 >0and ® > 0, with ¥ € RP*P and & € R"*", if its density function is given by

Fy(Y) = 372 (@ 77 2g {ur (1Y — )@ (Y — )}, (1)



where the function g : ® — [0,00) is such that fooo u™/?"g(u)du < oo and ® denotes
the usual Kronecker product. The function g is called the density generator and write
Y ~ Elpup(p, 2R P; g). When it exists, we have that E(Y) = p and Var(Y) = ¢, X0 P,
where ¢, is a constant positive. In the case where p = 0 and ¥ ® ® = I,,;,, we obtain
the spherical family of densities. These class of distributions include Normal, t-Student,
Contaminated Normal, Bessel and Kotz, among other distributions.

Consider the multivariate linear regression model,

Y=XB8+¢ (2)

where Y € R"*P is the observed matrix, X € R"*? the regression matrix of rank
q, B € RI*P the parameter regression matrix and € € R"*P the error matrix with
distribution given by El,,x,(1t, X ® I,,;g), where X > 0 is the scale matrix of dimension
p x p and the density of Y is given in (1), with g = X3. If g is a continuing and
decreasing function the maximum likelihood estimators of 3 and X are given by,

= (X'X)X'Y=X"Y (3)
= u(Y - XB) (Y - XB) (4)

M) @)

where A~ is the Moore-Penrose inverse of A and uo maximize the function h(u) =
u=""/2g(p/u), u > 0. More over, by Gupta and Varga (1993, Theorem 2.1.2 p. 20) we

have,

B~ Elypy(B. @ (X'X) 1 g). (5)

Finally, if we defined S = 3/(uo(n — q)), we get E(S) = X.

3 Detecting an Influential Observation

We will establish all the results under the assumption that € has a matrix normal distri-
bution, noticing that, ug = 1/n. At the end of the section we will extend the result for
the elliptical case.

3.1 Classical Cook’s distance

Consider the general multivariate linear model which is obtained from (2) by deleting the
i-th row of Y, X and e. That is, by deleting i-th observation and getting the matrices
Y i), X(;) and €, respectively.

For the modified model, the maximum likelihood estimators for 3 and X are given
by,

i) B = (X, X)X, X
.. 1
ii) ;) = (Y — X Bm) (Y — X@Bu)

Diaz-Garcia et al. (2003) proposed a multivariate version for the Cook distance to
study the sensitivity of the regression parameters given by,

Y(z) = )Y(z) and

~

D, = évec’ ((ﬁ ﬁ(z))) Cov (vec(ﬁ)) B vec ((B - B(ﬁ)) . (6)

Note that Cov (vec(,@')) =3 ® (X'X)"! and given that

tr(BX'CXD) = vec'(X)(B'D’ @ C) vec(X) (7)



for matrices of appropriate orders, (6) can be written as

Lo(3-3.)Y xx)(3-3.)s
D, — atr (,3 _ ﬂ(i)) (X'X) (ﬂ - ,3(1')) s—! (8)
but !
L X'X)" X,
BB - (ﬁihs (9)

where X; is the i-th row of the matrix X, h;; = X}(X'X)"!X; is the i-th diagonal ele-
ment of the orthogonal projector H = XX~ = X(X'X) !X’ (also called the prediction
matrix), € = (Y—-X3) = (I-H)Y and &, = €/ (Y —X3) = H,Y, with e being the i-th
canonical vector from ", see Chatterjee and Hadi (1988) and Diaz-Garcia and Gonzalez-
Farfas (2004). Therefore, substituting (9) in (8) and applying some trace properties

1

D; = mggs_lgixﬂxlx)_lxi (10)
h..

N T 11

q(1 — hi;) "

where R? = €.S71€;/(1 — hy;) is the square norm of the multivariate internal studentized

residual. Now, since it is known (see Caroni (1987)) that R?/(n—q) ~ B(q/2, (n—q—p)/2)

where 8(¢/2, (n — ¢ — p)/2) denote a central Beta distribution with parameters ¢/2 and
(n —q—p)/2 it follows that,

q(1 — hii)D; R?

= ——~B(p/2,(n—q—p)/2 12

han—aq) g OB mR) -

or, Dj ~ CiB(p/2, (n — q — p)/2), where
Ci = hii(n —q)/(q(1 = his)) (13)

The distribution of D;, in the univariate case has been studied by Muller and Mok (1997).
More over, following the suggestion from Chatterjee and Hadi (1988, p. 124) and Diaz-
Garcia and Gonzélez- Farfas (2004), that is, if instead of S we use S;), obtain after
eliminating the i-th observation and we denote D; by D}, then,

1 a1
DS e S0 EXXXTX, )
R
= 72 15
q(1 — hi) "

where T7? = E’Z-S&)l’éi /(1= hy;) is the squared norm of the multivariate externally studen-
tized residual, with
(n—q—p)T7
p(n—q—1)
where F,, (;,_q—p) denote a central F distribution with parameters p and (n —q —p), see
(see Caroni, 1987). Therefore, D; ~ E;F, where

~ fp,(n*qu)'

(n—q—p)>
hiip(n —q —1)
q(1 = his)(n — g —=p)
The same result but only for the univariate case, can be found in Jensen and Ramirez

(1997), although their proof follows a rather different approach.
We summarize the above results in the following theorem.

E; =

(16)



Theorem 1. Consider the general multivariate model (2) and definitions D; and D}
gwen in (11) and (15), respectively. Suppose that € ~ N, (0,2 ®1,,), then,

i
) Di ~ CiB(p/2,(n —q—p)/2), (17)
where B(p/2, (n — q — p)/2) denote a central beta distribution with parameters p/2
and (n —q—p)/2 and C; as given in (13).
ii)
Di ~ EiFp (n—q-p)» (18)

where E; defined in (16) and F(p,n — q — p) denote a central F distribution with p and
(n — g — p) degrees of freedom.

Note that all the multivariate Cook’s distances defined here can be easily extended to
study the sensitivity of linear functions of the parameters NGM, in the following way.
Let

D, = %Vec' (N(B — B@)M) Cov <vec(N,[§M)> o vec (N(B — ,@(i))M) (19)

where N € R/%7 and M € RP**, are non random matrices (matrices of constants) of
rank [ and s, respectively. Observe that

Cov (vec (N(B)M)) L MST'M” @ NTX/XNC,

and
vec (N (B - B(n) M) = (M’ ® N) vec (B - B(z’)) )

and following the same type of arguments than before, (see equation (10)),

1 o~ o~
Di = 3 tr MM~ S™'MM ™ (8 — B,)) N NX'XN N(8 - 3(;)) (20)
h, )
— i1 2 1
11— hi,;)RZ (21)

where A%, = X/ (X/X)"IN-N(X'X)N-N(X'X)"1X;, and

P2 { €iS1&/(L—ha), Sy = MM ST'MM~ € R of rank 5 < p;
! g;k S_lgj/<1 — h“‘), with /E\;k = MM_Ei.

Theses alternative expressions for R? allows us to establish the exact distribution under
either one of the following assumptions, S; has a singular central Wishart distribution or
; follows a singular multivariate normal distribution, see Eaton (1983) or Dfaz-Garcia
and Gutiérrez-Jaimez (1997).

In this context we also may substitute, S by S(;), and redefine D;. So, we get the
following result.

Theorem 2. Consider the general multivariate linear model (2) and definitions D; and
Df. Suppose that € ~ N, xp(0,2®1,), and given the parametric linear functions NBM
we have,
i)

D; ~CiB(s/2,(n—1—135)/2), (22)

where B(s/2,(n — 1 — s)/2) denote a central beta distribution with parameters s/2
and (n —1—158)/2 and C; = hl;(n —1)/(I(1 — hy)).



if)

D; ~ Ei]:s,(nflfs)a (23)
where E; = shf(n —1—1)/(I(1 = hy;)(n —1 — s)) as defined in (16) and F(s,n —1 —s)
denote a central F distributions with p and (n — l — s) degrees of freedom.

3.2 Modified Cook’s distance

The modified Cook’s distance for sensitivity analysis of the matrix estimator of pa-
rameters 3, has been deeply studied in Diaz-Garcia and Gonzélez- Farfas (2004). The
objective of this section is to extend those results for sensitivity analysis of linear func-
tions of the form NBM. So, we first propose a similar modification to that given in
Diaz-Garcia and Gonzélez- Farfas (2004), called AC;and define it as,

AC; = vec' (N(B — By )M)Cov (vec(N(B — B;))M))  vee(N(B — B, )M). (24)

In order to obtain an explicit expression for AC;, just note that
Cov (vee(N(B ~ B, )M)) = (M & N)Cov (vee(B — By)) ) (M & N')

Besides, and using similar arguments as those given in Diaz-Garcia and Gonzéalez-
Farfas (2004)

(I, ® (X'X)"'X;Hj)
1—hy
S ® (X'X)~1X, X, (X'X) !

Cov (vec(B - Byyy)) = T h) 7 (26)

vec(8 — B(i))

vec(Y), (25)

where H, = e’ (I — H) is the i-th row of the matrix (I — H) and e being the i-th
vector for a canonical base in ”. Then,

(M’ © N(X'X)"'X,H})

vec(N(B — B, )M) = T vee(Y), (27)
and — ~ = M'SM ® N(X'X) 11X, X,(X'X) "IN’
Cov (vec(N(ﬁ - ﬁ(i))M)) - o L (28)
Now, let us denote v; = N(X'X)™'X;, v; € R!, then
— ~ ~ - M/SM (%) Vz'V;- -
- 1*7%‘((1\/1’31\4)*1 ® vivh).
[[vill
Therefore the modified Cook’s distance, AC;, can be written as,
AC; = ved (N(B = B;))M) (Cov (vec(N(B — B, )M)) ) veo(N(B — B, )M)
(M’ & viH) "(1= hi) (M'SM) ™! @ viv)
(M e vl
<—(M1 QE ;ZHZ) vec(Y))
= (1 —hu) tved (Y)(M(M'SM)™'M’ @ H;H}) vec(Y). (29)



Given (7), AC; may be written as
AC; = (1 — hy) ttr(M(M'SM)'M'Y'H;H',Y).
But, &, = e (Y — X3) = P,Y, then,

AC; = (1 —hy) Mtr(M(M'SM)'M'g;€)
= (1—hy) "(M'E) (M'SM)" ' (M'g;).

As for the classical Cook’s distance case, it is also possible to replace the estimator S of
3 by the estimator S;), obtained from the reduced sample, and get a modified Cook’s
distance that will denote as AC;.

The exact distributions for AC; and AC, are given on the following result.

Theorem 3. Consider the general linear multivariate | model (2) and the definitions of
AC; and AC;. Suppose that, € ~ Npxp(0, £ ®1,,) and given the matrices N € R4 and
M € RP*S | of rank | and s respectively, we have
i)
AC;
n—q

NB(5/2a(n_q_5>/2)a (30)

where B(s/2,(n — q — s)/2) denote a central beta distribution with parameters s/2
and (n —q—s)/2.
ii)
(n—q—s)AC;

s(n—q—l) Nf(sanqus)v (31)

where F(s,n —q — s) denote a central F distribution with s and (n — q — s) degrees of
freedom.

Proof. 1t follows immediately from Caroni (1987) and Diaz-Garcia and Gonzalez- Farfas
(2004). -

4 Detecting a set of influential observations

Let I = {iy,i9,...,ix} a set of size k of {1,2,..n}, such that (n — k) > ¢q. Now, with
respect to the model (2) denote Xy, Y7y and €7y the regression, data and error ma-
trices respectively, after deleting the corresponding observations in accordance with the
subindexes given in I. Let By and Xy be the corresponding maximum likelihood esti-
mators for the general multivariate linear model after eliminating the set of observation
in [.

As for the other case, it can be verified, see Chatterjee and Hadi (1988) and Diaz-
Garcia and Gonzalez- Farfas (2004), that

B— By = (X'X)"' X (I — Hy) 'g;. (32)

where H; = X/ (X'X) !X, with X as the regression matrix , and €; = U7(I - H)Y,
with Uy = (e}, e, ...,e}).



4.1 Classical Cook’s distance

In this case, a generalization of the classical Cook’s distance for a multivariate linear
model can be written as

Dr = %VGC/ ((B - B(z))) Cov (VeC(B))_l vec ((B - B(I))) ‘ (33)

Given (32) and applying properties for the trace operator vec can be re-expressed (33)
as

| TN _ _
D[:EU‘E]S IE/I(kaHI) 1H1(Ik7H[) 1 (34)

Again, (34), S may be substitute by S(;), calculated from the reduce sample, to get
the modified Cook’s distance that it is denoted by D7.

Assuming that k < p (this will be enough since the distributions when &k > p, can be
derived from the case k < p, see Muirhead (1982, p. 455)), of Diaz-Garcia and Gonzélez-
Farfas (2004) it is known that,

B = (I —H;) ’&((n—¢)S) eIy —Hy)~/?
F = (Ik—H[)_1/2g1<(n—q—k)S([))_lé\g(Ik—H[)_1/2

has a matric variate type Beta and matric variate F distributions respectively; also called
matrix variate beta type I and matrix variate beta type II distribution, respectively, see
Gupta and Nagar (2000, pp. 165-166). Let A1/2 = H}/*(I,, — H;)~!/2 then the matrices

Al/gBA/l/Q
A1/2FA/1/2

have a generalized matrix variate beta type I and a generalized matrix variate beta type
IT distribution, respectively, see Gupta and Nagar (2000, p. 175). Then,

k Dr

k D*
e tr AY2BA’Y?  and L

ST~ r AVPFA?
(n—gq (n—q—k)

We have summarized those results in Theorem 4.
Theorem 4. Consider the general multivariate linear model (2) and definitions Dy and
Dj. Suppose that € ~ Npyp(0, X ®1L,), then,
k D k D3
L and 1t
(n—q) (n—q—Fk)
have the distribution of the trace of a generalized matrix variate beta type I and a gener-
alized matriz variate beta type II distribution, respectively. That is, they have the distri-

butions of the Pillai and Lawley-Hotelling statistics base on the generalized versions of
the betas type I and II, respectively.

Unfortunately, distributions given in Theorem 4 have not yet been tabulated.

One way to circumvent this fact and give a solution to our problem, is proposing an
alternative metric for (34), similar to those given in Dfaz-Garcia and Gonzalez- Farias
(2004, see Table 1). In such a way that the distributions of D; and Dj can be expressed
as functions of the distribution for the matrices B and F.



Let us delete the denominator k and consider the metric base on determinants instead
of traces in (34), we get the following variant of the Cook distance

-1

|HI| 1 —1x/ —1=
D S I, -H
M= g oS ST HTE
|H;| L
= ———— § — criterion. 35
|Ik . HI‘ ( )

Where the S-criterion is due to Ch. L. Olson, see Kres (1983, p. 8).
Similarly, deleting the denominator k, taking as a metric the inverse of the determi-
nant in (34) considering Sy, we get this other variant for the Cook distance

* ‘Ik — HI| 1 —1x/ —1=
D S I,-—H
I, — Hy| .
= ———— U — criterion. 36
|H| (36)

The U-criterion has been credited to Gnanadesikan in Kres (1983, p. 8) and Olson
(1974), perhaps because it was thought to have been introduced in Roy et al. (1971, p.
72). However this statistic is none other than the U-statistic of Wilks given in Wilks
(1932) and in Hsu (1940). Hsu even gives the distribution of the latter for p = 2.
Unfortunately, in Kres (1983, p. 6), the expression for the U-statistic of Wilks as a
function of the eigenvalues was given incorrectly, and perhaps this explains why it was
not clear that this statistic and the one of Gnanadesikan, (presented also in Kres (1983,
p. 8)), are in fact the same. Here we provide the correct representation for the U-statistic
of Wilks and show that it is equivalent to the U-criterion of Gnanadesikan.

Consider the expression for the A of Wilks statistic and the U-criterion as functions
of the eigenvalues like given in Seber (1984, pp. 412 and 413, respectively)

w

A=JJ(1-6:) and U:ﬁ@i,

i=1 i=1

where H and E are the sum of squared and product matrices for the hypothesis and
the error respectively, w being the rank and ® = (04,...,6,,)" the no-zero eigenvalues
of the matrix H(H + E)~!, such that 1 > 6; > --- > 6, > 0. Denote the density of ©
by p(®,w, mq, ms), where my and mso are functions of n,p, ¢, defined in Section 2, see
Muirhead (1982, pp. 451 and 454-455) or Diaz-Garcia and Gutiérrez-Jdimez (1997).

Now, it is known that A ~ Wilks’s A. If @* = ((1—6),...,(1 —0y)) = (6%,...,0%),
the distribution of ®*is the same as that of @, interchanging m; and ms. Then,

AN = H 07 ~ Wilks’s A, with m; and ms interchanged
i=1
but note that A* = U. Therefore,
U ~ Wilks’s A, with m; and ms interchanged

In summary, the critical value for the U-criterion, can be obtained from the tables
for the statistics A of Wilks interchanging m; and ms.
Theorem 6 summarizes the above results.



Theorem 5. Consider the general multivariate linear model (2) and definitions DM
and DM7. Suppose that € ~ Nypxp(0, X ®1,),

L, — Hy|
|H;|

|H|

DM and ————
! Ly — Hy|

DM,

have the S-criterion distribution and U -criterion distribution respectively.

For the linear application case, NBM the distances DM and DM7 are obtained
simply making the following changes

H — H =X;XX) N NXX)N NXX) !X,
s7! - Sy =MM S ‘MM~

and their corresponding distributions, change the parameters
q—1 and p—s

to obtain the correct percentile.

4.2 The modified Cook’s distance

The modified Cook distance for several influential observations for the estimated regres-
sion parameter matrix 8 was also studied in Diaz-Garcia and Gonzalez- Farias (2004).
Here again, we present the direct extension for linear transformations of the form NGM.
Denote the modified Cook’s distance as AC; and define it in the following way,

ACr = vec' (N(B — B;)M)Cov (vec(N(,B - BU))M)) " vee(N(B - B))M), (37)

whereN € RX9 and M € RP**, with rank [ and s, respectively. Working in the same
way as before and following Diaz-Garcia and Gonzilez- Farias (2004) we get that ACy
can be written as

ACr = ved (B — B(y) (M((M'SM))™'M’ @ N'(NRN')"N) vec(8 — B(,)).

where R = (X'X) "X (I, — H;) ' X} (X'X) L.
Due to (7), AC; we get

Acr = u(M'SM) ! (N(B - B(,))M)' (NRN')™ (N(3 - B;,)M) . (38)
But N(8 — B(;,)M = N(X'X) "' X (I;, — H;)~'&; M, therefore
~ ~ / ~ ~
(N(,B - 5(1))M> (NRN')~ (N(ﬂ - 5(1))M>
=M'e (I, - Hy) "X, X, (I, - H)X; X (I — Hy) 'e/M.
Note that if N € %9, of rank I and
(X'X)"IN'N'" (X'X) = (N'*(X’X))_ (N’*(X’X)) -y

then,

(1\I(Z\3 - B([))M)/ (NRN/)_ (N(I/@\ — B([))M) — M/EII(Ik . HI)_lng.

10



and AC; can be finally written as
ACr = tr((M/SM)*M'g} (I, — H;) 'e;M. (39)

Of course we can replace S, the estimator of 3, by S(;), obtain from the reduced
sample after deleting the k observations. In that case we denote the modified Cook’s
distance as AC7.

For the case of multiple observations, the exact distributions of AC; and AC7, are
given in the following result.

Theorem 6. Consider the general multivariate linear model (2) and the definitions AC
and AC;. Suppose that € ~ Nyxp(0,£®1,) and considering the matrices N € R4 and
M € RP*5 of rank | and s, respectively, we have
i)

ACr

n—q

~ P(w, m, h), (40)

where P(w,m, h) denote the central distribution for the Pillai’s statistics, with pa-
rameters w, m, and h, see Seber (1984) or Rencher (1995).

ACT
~ h 41
p——— LH(w,m,h), (41)
whereLH(w, m, h) denote the central distribution of the Lawley-Hotelling’s statistic
with parameters w, m, and h, see see Seber (1984) or Rencher (1995).

In both cases the parameters are defined as w = min(s, k), m = (|]s — k| — 1)/2 and
h=Mn—-qg—s—1)/2.
Proof. 1t follows directly from Diaz-Garcia and Gonzélez- Farfas (2004). L]
A very important observation here is that if we look at several of the metrics that have
been proposed in the study of sensitivity of the parameter estimates of the linear model
B or X, such as: the Cook’s distance, Welsh’s distance, methods based on volumes, and
methods based on the likelihood function, among many others, (see Chatterjee and Hadi
(1988)), those can be written as a function of the internally studentized residual or ex-
ternally studentized residual, either in the univariate or the multivariate case. Moreover,
we can write all those statistics as

Metric = GR

where R denote the squared norm of some of those type of the residuals and G is a
constant. Then Metric/G has the same distribution as R. Therefore all the distributions
of the metrics, in general, coincide with some of the distributions for the metrics given
in Diaz-Garcia and Gonzélez- Farfas (2004). Which means that, we are able to establish
the exact distribution, for the univariate as well as for the multivariate case, of all those
metrics.

If we now assume that € ~ El,x,(0,% ® I,,;9) as an immediate consequence of
Theorem 5.3.1 in Gupta and Varga (1993, p. 182) the distributions associated with
each of the distances defined in Theorem 1 through 8, are invariant under the family
of elliptical distributions. Therefore, the extension of the sensitivity analysis of linear
applications of the form NBM and 3 follow the general multivariate linear model with
elliptical errors.

Now, if we look at the exact distribution and the proposed metrics for the modified
Cook’s distance, we note that neither one depend on the matrix N, not even any of
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its properties like its rank or its dimensions. The researchers should be aware that the
distances proposed to study the effect of the estimation of those linear applications (
NBM), are not taking into account the effect of N. Therefore, those distances are in
principle measuring the sensitivity for the estimation of linear applications of the form
BM.

The same comments extend to the classical Cook distance since even when the metrics
depend on N through de h}; or Hj, for the case of one or several influential observations,
when we calculate their exact distributions, such effect vanishes so at the end it is only
possible to detect effects for the sensitivity of liner applications of the form BM. We
illustrate this type of linear transformation in the following section.

5 Application

Consider the quantity of the food ingested by 32 rats, previously assigned into groups
of 4, for about 12 days. The diet consists of a treatment containing different levels of
phosphate, see Srivastava and Carter (1983) or Srivastava (2002).

The model to consider is

Yi = Boi + 1w + Poiar® + Baix® + Puw +e; i=1,..,12

where z represents the quantity of phosphate given and w is the covariable initial weight
of the rats.
In matrix notation,
Y = X0 +e¢,

where Y € R32%12i5 the response matrix, with n = 32 and y;; = the quantity of food
consumed by the rat ¢ on the day j; X € R7*5 is the matrix of covariables, the first
column is formed by corresponding intercepts, columns 2, 3 and 4 correspond to z, z2
and z3, respectively and the last column corresponds to w; and finally, B € R5*12,

Bor Boz - Boi2
Bii Bz - Pz

5;11 5212 54'12

is the matrix of parameters with vectors corresponding to the intercepts, z, 2, z3 and

w respectively.
Suppose you are interested in the following linear applications,

Bor — (Bosz + Poa) Poz — Poa Loz — Pos

B11 — (B3 + P1a) Pr2—Pia Pz — Pis

(B2 + B24) P22 — P2a B2z — Bos s (42)
( )

( )

B21 —
B31 — (B33 + B34) [z2— Pza B33 — B35
Bar — (Baz + Baa) Baz — Paa Paz — Pas

Where, for example, for column 1, we have the following interpretation: in the first
function one is interested in contrasting the quantity of food consumed in day 1 and
the total food consumed in days 3 and 4; the second function establishes the effect in
the quantity of phosphate in day 1, being the same as the sum for the linear effect on
days 3 and 4; the third function establishes that the quadratic effect of the amount of
phosphate in day 1 is the same as the quadratic effect of days 3 and 4, the fourth function
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establishes the the cubic effect of the amount of phosphate on day one is the same as the
sum of the cubic effects on days 3 and 4; and finally the fifth linear function establishes
the effect of the initial weight on day one as being the same as the sum of the effects of
the initial weight of days 3 and 4. Columns 2 and 3 in (42) are interpreted in a similar

fashion.
Note that (42)can be expressed SM, with

1 0 -1 -1 0 0 0 00O 0 O0O0
M=]0 1 0 -1 00 0 0 0 O0O0O0].
0 0 1 0 -1 0 0 0 0 0 0 O

Then, it would be of interest to see if any individual or group of observations is influential
on the estimator of the linear functions given in (42).

The figure 1 show the distances AC; and AC;, which are useful in detecting the
influence of the i-th observation in the linear combination EM The results of the tests
allow us to identify the observations 16, 17, 20 and 26 with as having a strong individual
influence over BM.

a)Outlier Distance: AC Distance

04

0.3

Critical Value = 0.273 form a Beta(0.95,3/2,24/2)

Distance
0.2

N ‘ ‘
_II.|.| | |||I|.||

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30 32

0.0

Observation Number

b) Outlier Distance: AC* Distance

‘
i6 18 20 22

24 26 28 30 32

Critical Value = 3.009 from a F(0.95,3,24)

Distance

2 14

C,.II.|.|||I
)

1 2 3 4 5 6 7 8 9 10

Observation Number

Figure 1: Identification of influential observations, based on a) the distance AC; and b) the distance AC; .

Now, it is necessary to evaluate if the observations 16, 17, 20 and 26, as a group,
have influence in the parametric functions SM. Then, using the metrics proposed in the
theorem 6 we obtained the results described in Table 1.

In the four cases the test statistics are greater than the corresponding critical value
@, consequently, both tests can identify the observations 16, 17, 20 and 26 as jointly
influential in the linear combination GM.
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Table 1: Four metrics to detect an influential set of observations in linear combinations BM .

Metric Statistic® « Critical value
ACr = 1.2532 4.8430 ° 1.8737

ACT = 2.5209 49718 ¢ 1.8912

LBl DM, = 33.8781 33.8781 not available
Tt DMG = 0.0477 0.0477 0.000587¢

%Observe that for four tests, the decision rule is: statistics > critical value

bUsing an approximate F-statistics, see equation (6.20) in Rencher (1995, p.185, 1995)
“Using an F approximation, see equation (6.24) in Rencher (1995, p.185, 1995)

4In our example, p — s then mq = (|s — k| — 1)/2 and my = (n — g — s — 1) /2.
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