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ABSTRACT

This work derives a procedure for testing the hypothesis about the equality among T
multivariate linear models. The results are extended to the case where the errors follow
an elliptical distribution

1 Introduction

The general multivariate linear model can be written as follows

yi = Xiβi + εi, i = 1, . . . , p (1)

where yi ∈ <ni×1, Xi ∈ <ni×qi , βi ∈ <qi×1 and under the normal theory, εi ∼ Nni(0, Σi). Several
particular cases of that model have been studied in the literature. For example, when ni = N and
Σi = Σ for every i = 1, . . . , p, it is known as seemingly unrelated regression model and it was treated
by Zellner (1962) (also see Press (1982, Section 8.5.1, p. 239)). Another special models concerned
in statistical literature were given by Zellner (1962) and they can be found when:

• β1 = β2 = · · · = βp and the matrices X1,X2, . . . ,Xp are unequal;

• β1 = β2 = · · · = βp and X1 = X2 = · · · = Xp.

Theory and applications of the last two models are exposed in Box and Tiao (1972, Chapter 9, p.
478).

The most well known particular model in the literature can be obtained from (1) by taking qi = q,
ni = n, Xi = X and Σi = Σ, with i = 1, . . . , p. Thus (1) becomes

Y = Xβ + ε (2)

1



where, Y = (y1 · · ·yp) ∈ <n×p, β = (β1 · · ·βp) ∈ <q×p, ε = (ε1 · · · εp) ∼ Nn×p(0, In ⊗Σ), and ⊗
denotes the Kronecker product. Besides, if q + p ≤ n, then the maximum likelihood estimators for
the parameters β and Σ are given by

β̃ = (X′X)−1X′Y = X−Y (3)

Σ̃ =
1
n

(Y −Xβ̃)′(Y −Xβ̃), (4)

respectively; where X− is the Moore-Penrose inverse of X; see Roy (1957), Morrison (1982), Press
(1982), Muirhead (1982), Seber (1984) and Rencher (1995), among many others. For different
situations, it becomes of interest verifying if the multivariate linear models are equal, when those
ones are proposed to model the same situation under different conditions. For example: Suppose p
dependent variables Y1, Y2, . . . , Yp, which are functions of q independent variables X1, X2, . . . , Xq,
will be measured in n individuals, and the model to follow has the form (2). Besides, let us suppose
that the above situation is presented in T different conditions (they could be T conditions, T different
places, T different temperatures, etc.), but, the remaining factors among the different conditions are
homogeneous. So, a question to solve talks about if the dependent variables Y1, Y2, . . . , Yp have
the same behaviour under the T different conditions and under different levels in the independent
variables X1, X2, . . . , Xq. Rigourously, this situation can expressed as follows: let

Yt = Xtβt + εt, t = 1, 2, . . . , T, (5)

be multivariate linear models, where Yt ∈ <nt×p, Xt ∈ <nt×q of rank q, βt ∈ <q×p and εt ∼
Nnt×p(0, Int ⊗Σ), Σ > 0. It is the objective to test the hypothesis

H0 : β1 = β2 = · · · = βT

vs.
Ha : at last one equality is an inequality

(6)

In the univariate case, p = 1, it was studied by Graybill (1976, Section 8.6.2, pp. 291-297) and
Draper and Smith (1981), among others. The present work proposes several statistics for testing
the hypothesis (6) under the conditions of the model (5), see Section 2. The paper ends showing an
example as application.

2 Test Statistic

By mixing the conditions of the models (1) and (2), in this section are derived several statistics for
testing the hypothesis which establishes that the T multivariate linear models are equal.

Theorem 1. Given the model (5), the likelihood ratio test of H0 : β1 = β2 = · · · = βT is given by

Λ =
|SE |

|SE + SH | (7)

which is termed Wilks’s Λ or it has also been termed Wilks’s U . Where

SE =
T∑

t=1

Y′
t(Int −XtX−

t )Yt ∈ <p×p (8)

SH =
T∑

t=1

Y′
t(XtX−

t )Yt −
(

T∑

i=1

Y′
iXi

)(
T∑

t=1

X′
tXt

)−1



T∑

j=1

X′
jYj


 ∈ <p×p. (9)
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We reject H0 if
Λ ≤ Λα,p,νH ,νE

,

where νH = (T − 1)q, νE = N − Tq, N =
T∑

t=1

nt. Exact critical values of Λα,p,νH ,νE for Wilks’s Λ

are found in Rencher (1995, Table A.9) or Kres (1983, Table 1).

Proof. If we write

Y =




Y1

Y2

...
YT


 , X =




X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · XT


 , B =




β1

β2
...

βT


 and E =




ε1

ε2

...
εT




with Y ∈ <N×p, X ∈ <N×Tq and B ∈ <Tq×p and noting that E ∼ NN×p(IN ⊗Σ), N =
T∑

t=1

nt;

then the T models (5) can be written as

Y = XB+ E, (10)

this is a general multivariate linear model of type (2). By noting that the hypothesis H0 : β1 =
β2 = · · · = βT can be expressed as CB = 0, with

C =




Iq −Iq 0 · · · 0 0
0 Iq −Iq · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · Iq −Iq


 ∈ <(T−1)q×Tq, (11)

of rank (T − 1)q; then, it is possible to extend the theory of the model (2) to the model (10). Like
this, by Rencher (1995, p. 161), Seber (1984, p. 412) or Muirhead (1982, sections 10.1 and 10.2),
among many others, likelihood ratio test is given by

Λ =
|SE |

|SE + SH | ,

where

SE = Y′(IN − XX−)Y

SH =
(
CB̂

)′ (
C(X′X)−1C′)−1

(
CB̂

)
,

besides, by (3), B̂ = X−Y = (X′X)−1X′Y. But, note that

B̂ =




β̂1

β̂2
...

β̂T




=




(X′X)−1
1 0 · · · 0

0 (X′X)−1
2 · · · 0

...
...

. . .
...

0 0 · · · (X′X)−1
T







X′
1Y1

X′
2Y2

...
X′

T YT




This is, β̂t = X−
t Yt = (X′

tX)−1
t X′

tYt, t = 1, 2, . . . , T . Thus β̂t is the same as if it was obtained
from the tth model Yt = Xtβt + εt. Now, by (4), and observing that

Y′Y =
T∑

t=1

Y′
tYt and B̂′X′Y =

T∑
t=1

β̂
′
tX

′
tYt =

T∑
t=1

Y′
tX

′
tX

−
t Yt,
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it is gotten

SE =
T∑

t=1

Y′
t(Int

−XtX−
t )Yt

Under the null hypothesis, the reduced model Y = X(1⊗η)+E is obtained, where η is the common
unknown parameter matrix, η = β1 = · · · = βT and 1 = (1, . . . , 1)′ ∈ <T . Taking in count that for
B (or η) its maximum likelihood estimator coincides with its minimum squared estimator, we can
proceed as follows. Let

Q = min
η

tr(E′E)

= min
η

tr

(
T∑

i=1

εε′tεεt

)

= min
η

tr

(
T∑

i=1

(Yt −Xtηη)′(Yt −Xtηη)

)

= min
η

tr

(
T∑

i=1

Y′
tYt − 2

(
T∑

i=1

Y′
tXt

)
ηη + ηη

(
T∑

i=1

XtXt

)
ηη

)

where tr(·) denote the trace. Thus

η̂η =

(
T∑

i=1

XtXt

)−1 (
T∑

i=1

X′
tYt

)

Then

SH = Y′Y− η̂′X′Y− SE

=
T∑

t=1

Y′
t(XtX−

t )Yt −
(

T∑

i=1

Y′
iXi

)(
T∑

t=1

X′
tXt

)−1



T∑

j=1

X′
tYj


 ,

and the desired result is obtained.
Alternatively we get:

Theorem 2. Given the model (5), the union-intersection test of H0 : β1 = β2 = · · · = βT is given
by

θ =
λ1

1 + λ1
(12)

which is termed Roy’s largest root test. Where λ1 is the maximum eigenvalue of
(
SHS−1

E

)
, where

SH and SE are given by (9) and (8), respectively. We reject H0 if θ ≥ θα,s,m,h. The parameters s,
m and h are defined as

s = min(p, νH), m = (|p− νH | − 1)/2, h = (νE − p− 1)/2.

As in Theorem 1, νH = (T − 1)q, νE = N −Tq and N =
T∑

t=1

nt. Exact critical values of θα,s,m,h are

found in Rencher (1995, Table A.10) or Kres (1983, Tables 2, 4 and 5).
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Proof. We proceed as in Theorem 1: by (10) and (11), the multivariate hypothesis can be
expressed as

H0 : CB = 0

which is true if and only if the univariate hypotheses

H0a : CBa = 0

hold for all non-null vectors a. The statistic for all the univariate hypothesis is given by

F (a) =

(N − Tq)
T∑

t=1

a′Y′
t(XtX−

t )Yta− a′
(

T∑

i=1

Y′
iXi

)(
T∑

t=1

X′
tXt

)−1



T∑

j=1

X′
jYj


a

(T − 1)q
T∑

t=1

a′Y′
t(Int

−XtX−
t )Yta

where N =
T∑

t=1

nt, see Graybill (1976, Theorem 8.6.4, p. 291). For an univariate test of confidence

level γ, H0a : CBa = 0 is accepted if

F (a) ≤ Fγ,(T−1)q,N−Tq

where Fγ,(T−1)q,N−Tq is the upper γ probability point of the central F -distribution with (T − 1)q
and N − Tq degrees freedom. So, proceeding as in Roy (1957, Section 12.7, pp. 82 -83) (also see
Morrison (1982, pp. 176-177)), we have for H0 =

⋂
a H0a, the critical region of size α(> γ) is given

by ⋂
a

[F (a) ≤ Fγ,(T−1)q,N−Tq]

which is equivalent to that defined by

max
a

F (a) ≤ Fγ,(T−1)q,N−Tq

over all non-null a. This way we reject H0 if

θ ≥ θα,s,m,h

with

s = min(p, (T − 1)q), m = (|p− (T − 1)q| − 1)/2, h = (N − Tq − p− 1)/2, N =
T∑

t=1

nt.

where θ = λ1/(1 + λ1), λ1 is the maximum eigenvalue of
(
SHS−1

E

)
and

SE =
T∑

t=1

Y′
t(Int −XtX−

t )Yt

SH =
T∑

t=1

Y′
t(XtX−

t )Yt −
(

T∑

i=1

Y′
iXi

)(
T∑

t=1

X′
tXt

)−1



T∑

j=1

X′
jYj


 .

also see Rencher (1995, Section 6.1.4, p. 164), among many others.
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A lot of different test statistics have been proposed for verifying hypothesis of the kind (6). Before
to show some of then, let us considerer the following notation: given s = min(p, νH), let λ1, . . . λs

be the eigenvalues of the matrix (SHS−1
E ) such that λ1 ≥ · · · ≥ λs > 0 and θ1, . . . θs the eigenvalues

of the matrix (SH(SE + SH)−1), with 1 ≥ θ1 ≥ · · · ≥ θs > 0. Observe that θi = λi/(1 + λi), and,
λi = θi/(1− θi), i = 1, . . . , s. Thus, the statistic Λ of Wilks can be written as:

Λ =
|SE |

|SE + SH | =
s∏

i=1

1
1 + λi

=
s∏

i=1

(1− θi)

from where it is followed that, the range of Λ is 0 ≤ Λ ≤ 1. Two of these additional test statistics
for the hypothesis H0 : β1 = β2 = · · · = βT are the following:

1. Pillai Test. The Pillai statistics is defined as

V (s) = tr[SH(SE + SH)−1] =
s∑

i=1

λi

1 + λi
=

s∑

i=1

θi (13)

This way we reject H0 if

V (s) ≥ V
(s)
α,s,m,h

with

s = min(p, (T − 1)q), m = (|p− (T − 1)q| − 1)/2, h = (N − Tq − p− 1)/2, N =
T∑

t=1

nt.

and where the exact critical values of V
(s)
α,s,m,h are found in Rencher (1995, Table A.11) or Kres

(1983, Table 7).

2. Lawley-Hotelling Test. The Lawley-Hotelling statistics is given by

U (s) = tr[SHS−1
E ] =

s∑

i=1

λi =
s∑

i=1

θi

1− θi
. (14)

We reject H0 if

U (s) ≥ U
(s)
α,s,m,h

with

s = min(p, (T − 1)q), m = (|p− (T − 1)q| − 1)/2, h = (N − Tq − p− 1)/2, N =
T∑

t=1

nt.

The upper percentage points, U
(s)
α,s,m,h, are given in Kres (1983, Table 6). A variant of this

statistics and its corresponding exact critical values are given in Rencher (1995, p. 167 and
Table A.12, respectively).

Finally, note that by the theorems 5.3.3 and 5.3.4 of Gupta and Varga (1993, pp. 185-186), the four
above-mentioned test statistics are invariant under the hole family of elliptical distributions, more
over, their distribution coincide under normality assumption.
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3 Example

The following example was taken from Graybill (1976, p. 295) and it have been modified by adding
a new depend variable Y2 by simulation.

A new food supplement (x unit) was fed to three different breeds of chickens for six weeks to
determine the effect on hardness Y1 and weight Y2(gr.) of eggs. A simple linear multivariate model
was assumed for each breed.

Yt = Xtβt + εt, t = 1, 2, 3

εt ∼ Nnt×2(0, Int
⊗Σ), Σ ∈ <2×2, Σ > 0, with n1 = 12, n2 = 8 and n3 = 9 and

βt =
(

β01t β02t

β11t β12t

)

The problem is to determine if the models are the same for all breeds, that is, to test the hypothesis

H0 :
(

β011 β021

β111 β121

)
=

(
β012 β022

β112 β122

)
=

(
β013 β023

β113 β123

)

The data are given next in Table 1.

Breed 1 Breed 2 Breed 3
X Y1 Y2 X Y1 Y2 X Y1 Y2

1 8.42 74.2 3 9.86 72.5 2 6.52 70.1
3 14.68 69.1 3 9.54 71.2 5 5.11 72.2
5 21.42 63.5 4 11.96 69.8 7 7.75 69.3
6 25.45 62.8 5 12.46 67.8 8 6.84 68.5
7 27.14 60.0 6 11.38 66.5 10 7.65 66.9
8 30.53 57.1 8 14.69 62.3 15 9.49 63.2
9 34.51 55.2 9 16.48 60.1 16 7.03 61.4
9 34.52 54.9 12 20.11 55.7 18 9.41 59.7

10 33.24 53.6 20 12.01 55.6
11 39.63 50.4
12 43.98 47.3
14 47.77 44.4

By (8) and (9), we have that

SE =
(

39326.040 39837.725
39837.725 19800.195

)
and SH =

(
4145.392 −8404.961

−8404.961 23839.162

)

then, the following results are obtained
It is clear that the four criterions reject the above-mentioned hypothesis.
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Table 1: Four criteria to proof the null hypothesis

Criteria Statistic α Critical value
Wilksa 5.856e-006 0.515922
Roy 0.99977 0.415
Pillai 1.97383 0.532
Lawley-Hotelling 11721.5216 2.16811b

aRemember that for this tests, the decision rule is: statistics ≤ critical value
bUsing an F approximation, see equation (6.30) in Rencher (1995, p. 167).
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