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José Ramón Domı́nguez-Molina

Centro de Investigación en Matemáticas, A.C.
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Abstract

This work proposes the univariate and multivariate generalisations of the following
distributions: the Birnbaum-Saunders, the three parameter Birnbaum-Saunders and
the sinh-normal of spherical type. Similarly, when the stochastic representation of a
spherical random vector is assumed, we propose alternative definitions for the above-
mentioned distributions including the log-elliptical distribution. We emphasize that
all the distributions here derived belong to the family of the spherical distributions.

Key words: Birnbaum-Saunders distribution, life distributions, distributions,
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1 Introduction

Recently, the family of elliptical contour distributions have been a vertiginous
development in many areas of the statistics; the main topic to research goes
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(José Ramón Domı́nguez-Molina).



around the extension of the models and techniques of the statistical liter-
ature when the distributions are elliptical. The books of Gupta and Varga
(1993), Fang et al. (1990) and Fang and Zhang (1990) give an excellent
summary of that literature development. Topics in the context of distribu-
tion theory and sensibility analysis have been treated by Dı́az-Garćıa and
González-Faŕıas (2004) and Dı́az-Garćıa and González-Faŕıas (2005b), among
many others. Specifically, in statistical theory of reliability Dı́az-Garćıa and
Leiva-Sánchez (2005) generalise the Birnbaum-Saunders distribution under
the spherical case. More recently, Dı́az-Garćıa and Domı́nguez (2005) pro-
pose a family of distributions based on spherical distributions for a dependent
sample of life data. Another life distribution is the log-normal distribution,
see Nelson and Hann (1972), this was generalised by Fang et al. (1990, p. 55)
to the multivariate elliptical case.

In the present work: the multivariate generalisation of the Birnbaum-Saunders
distribution, under an elliptical distribution, is given in Section 3. In Section
4 we propose the univariate and multivariate generalisations of the three pa-
rameter Birnbaum-Saunders distribution (see Owen (2004)). In Section 5, the
univariate and multivariate sinh-spherical distributions are derived (they are
known as the generalised log-Birnbaum-Saunders distributions). Section 6 ex-
tends the results of Section 5 when the three parameter Birnbaum-Saunders
distribution is considered. In Section 7 we propose alternative definitions for
the Birnbaum-Saunders, the log-elliptical and the sinh-spherical multivariate
distributions, in particular, when the stochastic representation of a random
vector with spherical distribution is considered and noting that such repre-
sentation coincides with some algebraic factorizations of that vector; we em-
phasized that the new family of distributions continue belonging the family of
spherical distributions; the section ends with the extension of the new families
to the elliptical case. Finally, in order to check the parameter estimations of
the new families, we took some sets of data given in the literature for the
independent case, and we simulated a set of life data for the dependent case;
then the maximum likelihood estimators of the parameters under particular
distributions are obtained, see Section 8.

2 Preliminary considerations

In this section some preliminary results are given as a necessary background
for the development of the paper.
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Suppose that Z ∼ N (0, 1), and let α > 0 and β > 0. The random variable

S = β





α

2
Z +

√

(

α

2
Z
)2

+ 1





2

(1)

has a distribution known as the Birnbaum-Saunders distribution, which is
denoted by S ∼ BS(α, β). More over, its density function is given by

fS(s) =
s−3/2(s + β)

2α(2πβ)1/2
exp

{

− 1

2α2

(

s

β
+

β

s
− 2

)}

, s > 0

where α is the shape parameter and β is the scale parameter and the median
of the distribution, see Birnbaum and Saunders (1969a).

A generalisation of the Birnbaum-Saunders distribution was proposed by Owen
(2004); in that case, the inverse transformation of (1) is defined by

Z =
1

α





(

v

β

)λ

−
(

β

v

)λ


 , λ > 0 (2)

Note that when λ = 0.5 we get as a particular case the Birnbaum-Saunders
distribution.

The generalisation of the Birnbaum-Saunders distribution is termed the three
parameter Birnbaum-Saunders distribution and its density is given by

fV (v) =
λ

αv(2π)1/2





(

v

β

)λ

+

(

β

v

)λ


 exp







− 1

2α2





(

v

β

)2λ

+

(

β

v

)2λ

− 2











,

v > 0; and we shall denoted by V ∼ GB − S(α, β, λ).

A very close distribution to the Birnbaum-Saunders is the sinh-normal distri-
bution, and it plays an important role in the log-linear models for life data with
Birnbaum-Saunders distribution. The density of a sinh-normal distribution is
given by

fY (y) =
2

ασ
√

2π
cosh

(

y − γ

σ

)

exp
{

− 2

α2
sinh2

(

y − γ

σ

)}

, y ∈ <,

and it is denoted by Y ∼ SN (α, γ, σ), where γ ∈ < is a location parame-
ter, σ > 0 is the scale parameter and α > 0 is the shape parameter. This
distribution and some properties are studied in Rieck and Nedelman (1991).

By other side, we say that a p-dimensional random vector Y = (Y1, ..., Yp)
′ has

an elliptical distribution with position parameter µ : p×1 and scale parameter
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Σ : p × p, Σ > 0, if its density function is given by

fY(y) = c|Σ|−1/2h{(y − µ)′Σ−1(y − µ)}, y ∈ <p, (3)

where the function h : < → [0,∞) is termed the function generator and it
is such that

∫

∞

0 up−1h(u2)du < ∞ with c a proportionality constant, so that
fY(y) is a density. It shall be denoted by Y ∼ E lp(µ,Σ; h). When the vector Y

has finite moments, we have that E(Y ) = µ and Var(Y ) = chΣ, where ch is a
positive constant, see for example Fang and Zhang (1990) or Fang et al. (1990).
In the particular case when µ = 0 and Σ = Ip, we get the family of spherical
distributions, they shall denote by Y ∼ Ep(0, I; h). These distributions include
as particular cases the following distributions: the Normal, the t-Student, the
Pearson type VII, the Logistic, the Bessel y Kotz, among many others.

Let <p
+ be the positive part of <p and ln(W) = (ln(w1), . . . , ln(wp))

′. Suppose
that w ∈ <p

+ be a random vector such that log(W) ∼ E lp(µ,Σ; h); then we
say that the vector W has a multivariate log-elliptical distribution Type I if
its density function is given by

fW(W) = c|Σ|−1/2

( p
∏

i=1

w−1
i

)

h{(log(w) − µ)′Σ−1(log(w) − µ)}, w ∈ <p
+,

and it shall be denoted by W ∼ LE lIp(µ,Σ; h).

Now let us consider the transformation (1) when the normality is substituted
by a spherical law, this is, define

T = β





α

2
U +

√

(

α

2
U
)2

+ 1





2

by assuming that U ∼ E1(0, 1; h), then T the following density function

fT (t) =
c t−3/2(t + β)

2αβ1/2
h

{

1

α2

(

t

β
+

β

t
− 2

)}

, t > 0.

This is termed the generalised Birnbaum-Saunders distribution and it shall be
denoted by T ∼ GBS(α, β; h), Dı́az-Garćıa and Leiva-Sánchez (2005).

3 Birnbaum-Saunders distribution

In this section we give some generalisations of the Birnbaum-Saunders distri-
bution to the multivariate case.
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Theorem 1 Suppose that U ∼ En(0, I; h) and define the transformation

Ti = βi





1

2
αiUi +

√

(

1

2
αiUi

)2

+ 1





2

, αi > 0, βi > 0, i = 1, . . . , n;

the distribution of the vector T = (T1, . . . , Tn)′ is termed the multivariate
generalised Birnbaum-Saunders distribution type I, and its density function
is given by

fT(t) =
c

2n





n
∏

i=1

t
−3/2
i (ti + βi)

αi

√
βi



h

{

n
∑

i=1

1

α2
i

(

ti
βi

+
βi

ti
− 2

)}

, t ∈ <n
+, (4)

and it is denoted by T ∼ GBSI
n(α,β; h), with α = (α1, . . . , αn)′ and β =

(β1, . . . , βn)′.

Proof : Given that U ∼ En(0, I, ; h), the density of U is given by

fU(u) = c h
(

‖u‖2
)

.

The proof follows easily observing that:

ui =
1

αi





√

ti
βi

−
√

βi

ti



 i = 1, . . . , n,

∣

∣

∣

∣

∣

∂ui

∂ti

∣

∣

∣

∣

∣

=
1

2n

n
∏

i=1

t
−3/2
i (ti + βi)

αi

√
βi

‖u‖2 =
n
∑

i=1

1

α2
i

(

ti
βi

+
βi

ti
− 2

)

.

Remark 2 An interesting particular case of the distribution (4) appears when
α1 = · · · = αn = α and β1 = · · · = βn = β, which implies that α = α1 β = β1

with 1 = (1, . . . , 1)′; because if the random vector T denotes a random sam-
ple of a univariate population , then the density of (4) defines a likelihood
function when there is stochastic dependency in the random sample T . This
idea and other particular cases and the estimation of the multivariate gener-
alised Birnbaum-Saunders distribution type I can be found in Dı́az-Garćıa and
Domı́nguez (2005).

4 Three parameter Birnbaum-Saunders distribution

Now we propose the univariate and multivariate extensions of the three pa-
rameter Birnbaum-Saunders distribution under a spherical model.
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Theorem 3 Suppose that U ∼ E(0, 1; h) and consider the transformation

U =
1

α





(

v

β

)λ

−
(

β

v

)λ


 , λ > 0, β > 0, α > 0; (5)

the distribution of the random variable V is termed generalised three parame-
ter Birnbaum-Saunders distribution, and its density function is the following
expression:

fV (v) =
c λ

αv





(

v

β

)λ

+

(

β

v

)λ


h







1

α2





(

v

β

)2λ

+

(

β

v

)2λ

− 2











, v > 0;

this shall be denoted by V ∼ GGB − S(α, β, λ; h).

Proof : The demonstration follows by noting that

du =
λ

αv

(

v2λ + β2λ

(βv)λ

)

(6)

Also, observe that this distribution keeps the reciprocal property: V −1 ∼
GGB − S(α, 1/β, λ; h)

The generalisation of that distribution to the multivariate case is immediate:

Theorem 4 Suppose that U ∼ En(0, I; h), and consider the transformation
(5), for ui, and αi > 0, βi > 0 and λi > 0, i = 1, . . . , n; the density function
of the random vector V = (v1, . . . .vn)′ is given by

fV(v) = c
n
∏

i=1

λi

αivi





(

vi

βi

)λi

+

(

βi

vi

)λi



h







n
∑

i=1

1

α2
i





(

vi

βi

)2λi

+

(

βi

vi

)2λi

− 2











,

v ∈ <n
+. Writing α = (α1, . . . , αn)′, β = (β1, . . . , βn)′ and λ = (λ1, . . . , λn)′;

we shall call it the multivariate generalised three parameter Birnbaum-Saunders
distribution type I and it shall denote by V ∼ GGB − S I

n(α,β,λ; h).

Remark 5 An analogous observation to Remark 2 can be established for the
multivariate generalised three parameter Birnbaum-Saunders distribution type
I, seen its role as a likelihood function in the case of a dependent sample.
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5 Sinh-spherical distribution

Let GU(u) be denotes the distribution function of the random variable U ∼
E(0, 1; h). By analogy to the case of a sinh-normal distribution( see Rieck and
Nedelman (1991)), the distribution function FY (y), of the random variable Y
with sinh-spherical distribution, is given by

FY (y) = GU

(

2

α
sinh

(

y − γ

σ

))

;

where α > 0, σ > 0 and γ ∈ <. So, deriving with respect to y we obtain

fY (y) =
2 c

ασ
cosh

(

y − γ

σ

)

h
{

4

α2
sinh2

(

y − γ

σ

)}

, y ∈ <; (7)

this distribution shall termed the generalised sinh-spherical distribution and
it shall be denoted by Y ∼ SE(α, γ, σ).

As in the case of the sinh-normal distribution, the sinh-spherical distribution
is related with the generalised Birnbaum-Saunders distribution.

Theorem 6 Suppose that T ∼ GBS(α, β; h), then Y = σ
2

ln T has a sinh-
spherical distribution with shape, location and scale parameters given by α,
γ = σ

2
ln β and σ, respectively.

Next, we find the first version of a multivariate generalised sinh-spherical dis-
tribution.

Theorem 7 Consider T ∼ GBSn(α,β; h) and let Y = 1
2
Σ lnT, where Σ :

n×n is a non-random positive definite matrix. We say that Y has a multivari-
ate sinh-spherical distribution type I of parameters α ∈ <n

+, γ = 1
2
Σ ln β ∈ <n

and Σ > 0, and its density function is given by

fY(y) = 2nc
n
∏

i=1

[

e′

iΣ
−1ei

αi

cosh
(

e′

iΣ
−1(y − γ)

)

]

h

{

n
∑

i=1

4

α2
i

sinh2
(

e′

iΣ
−1(y − γ)

)

}

, (8)

with y ∈ <n, and ei is the i-th vector of the canonical base in <n. This fact
shall be written as Y ∼ SE I

n(α,γ,Σ; h).
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Proof : Define Σ such that

Σ−1 = (σ∗

ij) =















Σ∗
′

1

...

Σ∗
′

n















, Σ∗

i ∈ <n, i = 1, . . . , n

and noting that σ∗

ij = eiΣ
−1e′

j and Σ∗

i = Σ−1ei. Thus, if T = exp
{

2Σ−1Y
}

,

(dT) = 2n
p
∏

i=1

eiΣ
−1e′

i exp
{

2e′

iΣ
−1Y

}

(dY),

where (dT) =
∧p

i=1 dti denotes the exterior product of the differential elements
of the vector dT, see Muirhead (1982, pp. 52-53). The proof follows by making
the change of variable γ = 1

2
Σ ln β in the expression (4).

Interesting particular cases of the distribution (8) are obtained when:

(1) Σ = diag(σ1, . . . , σn), in this occasion
(a) Σ−1 = diag(σ−1

1 , . . . , σ−1
n )

(b) e′

iΣ
−1ei = σ−1

i

(c) e′

iΣ
−1(y − γ) =

yi − γi

σi
then

fY(y) = c 2n











n
∏

i=1

cosh
(

yi − γi

σi

)

σiαi











h

{

4
n
∑

i=1

1

α2
i

sinh2
(

yi − γi

σi

)

}

,

(2) Σ = σIn, γi = γ y αi = α for every i = 1, . . . , n, then
(a) Σ−1 = σ−1In

(b) e′

iΣ
−1ei = σ−1

(c) e′

iΣ
−1(y − γ) =

yi − γ

σ
thus

fY(y) =
2nc

σnαn

(

n
∏

i=1

cosh
(

yi − γ

σ

)

)

h

{

4

α2

n
∑

i=1

sinh2
(

yi − γ

σ

)

}

.

6 Sinh-spherical distribution under the three parameter Birnbaum-

Saunders distribution

Now we propose the univariate and multivariate versions of the sinh-spherical
distribution under the three parameter Birnbaum-Saunders distribution.
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Theorem 8 If V ∼ GGB − S(α, β, λ; h), then Y = σ
2

ln V has a generalised
sinh-spherical distribution with shape, location and scale parameters given by
α, γ = σ

2
ln β and σ, respectively, where the parameter λ > 0. Its density

function is the following:

fY (y) =
4 cλ

ασ
cosh

[

2λ
(

y − γ

σ

)]

h
{

4

α2
sinh2

[

2λ
(

y − γ

σ

)]}

, y ∈ <. (9)

This shall be denoted by Y ∼ GSE(α, γ, σ, λ; h).

Proof. This is straightforward from Theorem 3 and noting that dv = 2
σ

exp(2y/σ)dy.

Next we write the multivariate extension:

Theorem 9 Consider V ∼ GB − SI
n(α,β, ,λ; h) and let Y = 1

2
Σ lnV, where

Σ : n×n is a non-random positive definite matrix, then, we say Y has a multi-
variate generalised sinh-spherical distribution type I of parameters α, λ ∈ <n

+,
γ = 1

2
Σ ln β ∈ <n and Σ > 0; and its density function is given by

fY(y) = 22nc
n
∏

i=1

[

e′

iΣ
−1eiλi

αi

cosh
(

2λie
′

iΣ
−1(y − γ)

)

]

h

{

n
∑

i=1

4

α2
i

sinh2
(

2λie
′

iΣ
−1(y − γ)

)

}

, (10)

where y ∈ <n, and ei is the i-th vector of the canonical base in <n. Here we
write this fact by Y ∼ GSE I

n(α,γ,Σ,λ; h).

Once again we note that if λi = 0.5, for every i = 1, . . . , n, it is obtained the
multivariate sinh-spherical distribution type I, see Theorem 7.

7 Some extensions

Let A ∈ <m×m be a positive definite matrix with spectral decomposition
A = HDH′, where H is an orthogonal matrix, and D = diag(λ1, . . . , λm)
is a diagonal matrix such that λ1 > · · · > λm > 0; if f(x) is a differ-
entiable function of x and F(D) = diag(f(λ1), . . . , f(λm)); then we define
F(A) = HF(D)H′. For example, if f(x) =

√
x, then F(A) = A1/2 defines

the non-negative definite square root of A. Similarly, if f(x) = x−1, then
F(A) = A−1 defines the inverse of the matrix A, see Srivastava and Kha-
tri (1979, p. 39), Mathai (1997, pp. 95-96) and Dı́az-Garćıa and Gutiérrez-
Jáimez (2005). In function of the spectral decomposition and the singular
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value decomposition, SVD, this result was generalised by Dı́az-Garćıa and
Gutiérrez-Jáimez (2005) to semi-definite positive matrices and general rect-
angular matrices, respectively. With these generalisations we can define the
function of a random matrix in an alternative way: instead of the definition of
the logarithm of a matrix A = (aij) in the classical way ln(A) = (ln(aij)), we
can define it like ln(A) = H ln(D)H′. In particular, these results are applica-
ble to the case of a random vector. But, if X ∈ <m, the SVD of the vector
X is given simply by X = ρW, where W ∈ <m is ‖W‖2 = 1 and ρ = ‖X‖,
and here the vectorial cases for the SVD, the QR decomposition and the polar
decomposition coincide, see Dı́az-Garćıa and González-Faŕıas (2005a). More-
over, the decomposition X = ρW, for a random vector with spherical (or
elliptical) distribution, is known in the literature as the stochastic representa-
tion of the vector X, see Fang and Zhang (1990, Section 2.5.1) or Fang et al.
(1990, Theorem 2.3, p. 30). Also, it is known that (dX) = ρm−1dρ(W′dW),
see Dı́az-Garćıa and González-Faŕıas (2005a) or Muirhead (1982); then we
have the following result:

Theorem 10 Let X ∈ <m be a vector such that its SVD is given by X = ρW,
with ρ > 0 y W ∈ <m con ‖W‖2 = 1. Let f(x) be a differentiable function in
x and define F(X) = f(ρ)W. Then

(dF(X)) =

(

f(ρ)

ρ

)m−1 (
df(ρ)

dρ

)

(dX), (11)

where, as before, (dX) denotes the exterior product, see Muirhead (1982, pp.
52-53).

Proof : The demonstration is similar to that one given in Dı́az-Garćıa and
Gutiérrez-Jáimez (2005) for the general case.

As consequences of the present section we can establish the following results:

Corollary 11 Let U ∼ En(0, I; h) be such that U = F(T) = f(ρ)W, where
T = ρW is the SVD of the random vector T, with ρ > 0 , W ∈ <m and
‖W‖2 = 1; so f(ρ) is given by

f(ρ) =
1

α

[
√

ρ

β
−
√

β

ρ

]

, α > 0, β > 0.

The distribution of the vector T = (T1, . . . , Tn)′ shall be termed the multivari-
ate generalised Birnbaum-Saunders distribution type II, with density function:

gT(t) =
c (‖t‖ − β)n−1 (‖t‖ + β)

2(α
√

β)n‖t‖3n/2
h

{

(‖t‖ − β)2

α2β‖t‖

}

, (12)
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which shall be denoted by T ∼ GBSII
n (α1, β1; h), with 1 : n × 1 = (1, . . . , 1)′.

Similarly, for a generalised three parameter Birnbaum-Saunders distribution
we have the following result:

Corollary 12 Suppose that U ∼ En(0, I; h), and consider the transformation

f(ε) =
1

α





(

ε

β

)λ

−
(

β

ε

)λ


 , λ > 0, β > 0, α > 0,

with U = F(V) = f(ε)W, where V = εW is the SVD of the random vector
V, for ε > 0 and W ∈ <m with ‖W‖2 = 1. The density of the vector V is

gV(v) =
c λ

(α‖v‖)n





(

‖v‖
β

)λ

−
(

β

‖v‖

)λ




n−1 



(

‖v‖
β

)λ

+

(

β

‖v‖

)λ




h







1

α2





(

‖v‖
β

)2λ

+

(

β

‖v‖

)2λ

− 2











,

This shall be termed the multivariate generalised three parameter Birnbaum-
Saunders distribution type II and it shall be denoted by V ∼ GGBS II

n (α1, β1, λ1; h).

Next we give an extension of the multivariate sinh-spherical distribution:

Corollary 13 Suppose that T ∼ GBSII
n (α1, β1; h) and let T = F(Y) =

f(ε)P, with f(ε) = exp{2ε/σ}; where Y = εP is the SVD of Y , for ε > 0,
P ∈ <m and ‖P‖2 = 1. We say that Y has a multivariate sinh-spherical dis-
tribution type II of parameters α1, γ1 with β = exp{2γ/σ} and σI. Moreover,
its density function is given by

gY(y) =
2−nc

σnα‖y‖n−1

(

cosh2

(

‖y‖ − γ

σ

)

− 1

)(n−1)/2

cosh

(

‖y‖ − γ

σ

)

h

{

4

α2
sinh2

(

‖y‖ − γ

σ

)}

, (13)

with y ∈ <n. We write this fact like Y ∼ SE II
n (α1, γ1, σI; h).

Now, the result of Theorem 13 is extended to the generalised three parameter
Birnbaum-Saunders distribution.

Corollary 14 If V ∼ GGB − SII
n (α1, β1, λ1; h) and V = F(Y) = f(ε)N,

con f(ε) = exp{2ε/σ}; where Y = εN is the SVD of Y; ε > 0 and V ∈ <m

with ‖N‖2 = 1; then we say Y has a multivariate generalised sinh-spherical
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distribution type II of parameters α1, γ1 with β = exp{2γ/σ} and σI. And
its density function is given by

gY(y) =
21−ncλ

σαn‖y‖n−1

{

cosh2

[

2λ

(

‖y‖ − γ

σ

)]

− 1

}(n−1)/2

× cosh

[

2λ

(

‖y‖ − γ

σ

)]

h

{

4

α2
sinh2

[

2λ

(

‖y‖ − γ

σ

)]}

, (14)

with y ∈ <n. This fact shall be denoted by Y ∼ GSE II
n (α1, γ1, σI; h).

An alternative expression for a log-elliptical distribution is the following:

Corollary 15 Suppose that Y = ln(W) ∼ E ln(µ,Σ; h). Then we say W has
a multivariate log-elliptical distribution type II and its density function is
given by:

gW(W) =
c lnn−1(‖w‖)
|Σ|1/2‖w‖n

h{(log(w) − µ)′Σ−1(log(w) − µ)}, w ∈ <n
+(15)

with log(w) = ln(κ)M, and W = κM is the SVD of the vector W; where
κ > 0, M ∈ <m and ‖M‖2 = 1. This shall denote like W ∼ LE lII

p (µ,Σ; h).

Note that the results based on Lemma 10 (corollaries 11 - 14) can be gen-
eralised still more. For example, in Theorem 11, now suppose that U ∼
En(µ,Σ; h), µ ∈ <n and Σ ∈ <n×n with Σ > 0, then we obtain

gT(t) =
c ‖t‖−3n/2 (‖t‖ − β)n−1 (‖t‖ + β)

2(α
√

β)n|Σ|1/2
h
{

(F(t) − µ)′Σ−1(F(t) − µ)
}

(16)

with F(t) = f(ρ)W, where T = ρW is the SVD of the random vector T, for
ρ > 0, W ∈ <m and ‖W‖2 = 1. Here f(ρ) is given by

f(ρ) =
1

α

[
√

ρ

β
−
√

β

ρ

]

, α > 0, β > 0.

An interesting point to highlight comes from the fact that the families of
distributions derived in Corollaries 11- 14 keep being families of spherical dis-
tributions in <n and <n

+; then many of their properties: moments, marginals,
conditionals, etc. can be obtained as particular cases of the general results
derived for the families of spherical distributions, see Fang and Zhang (1990)
or Fang et al. (1990). Moreover, note that from those distributions could be
generate the corresponding families of elliptical distributions just by defining

12



T = Σ−1/2(X−µ), with Σ > 0 and µ ∈ <n. For example, the corresponding
elliptical expression for the density (12) is given by

gX(x) =
c
(

[

(x − µ)′Σ−1(x − µ)
]1/2 − β

)n−1 (
[

(x − µ)′Σ−1(x − µ)
]1/2

+ β
)

2(α
√

β)n|Σ|1/2
[

(x − µ)′Σ−1(x − µ)
]3n/4

× h











(

[

(x − µ)′Σ−1(x − µ)
]1/2 − β

)2

α2β
[

(x − µ)′Σ−1(x − µ)
]1/2











. (17)

We finish this section noting that for a sample of dependent life data X1, . . . , Xn,
the expressions of the densities given in Corollaries 11-15, can be consider with
their respective likelihood functions, according to the case.

8 Some applications

This sections starts showing some graphics of different densities like: the gen-
eralised three parameter Birnbaum-Saunders distribution (see Figure 1), the
log-elliptical distribution (see Figure 2) and the sinh-spherical distribution
(see Figure 3).

Next we explain, in an example, the way to estimate some of the distributions
derived in the preceding sections: we took the first set of independent data
given in Birnbaum and Saunders (1969b) and we simulated a set of dependent
data, for them the parameters are estimated and the corresponding criterion
of information of Shcwarz is calculated, see Schwarz (1978).

Distribution SIC LogVer NP µ s2 ν

Special Case 922.5638 -456.6668 2 4.882796 0.038613230

Laplace 923.0040 -456.8869 2 4.890352 0.016497691

Normal 923.4683 -457.1190 2 4.881763 0.028737664

Pearson VII 925.2058 -455.6802 3 4.886503 0.182448431 4.676901

T 925.2058 -455.6802 3 4.886503 0.021840419 8.353855

Cauchy 947.8048 -469.2873 2 4.897028 0.008428758

Table 1: Fit of the Log-Elliptical distributions for the independent case, or-
dered according to the SIC criterion from lowest to highest. NP denotes the
number of parameters considered in the optimisation.
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Fig. 1. Densities of generalised three parameter Birnbaum-Saunders distribution
type I

Distribution SIC LogVer NP µ s2 ν

Normal 867.20886 -428.99926 2 5.3069933 0.007658998

Laplace 867.90034 -429.34500 2 5.3069934 0.000076589

Special Case 870.26121 -430.52544 2 5.3069933 0.132657078

Cauchy 872.12753 -431.45859 2 5.3069934 0.007658263

T 872.77665 -429.48057 3 5.3069949 0.007658495 62.115737

Pearson VII 873.99107 -430.08778 3 5.3069934 0.100452931 56.557866

Table 2: Fit of the Log-Elliptical distributions for the dependent case, ordered
according to the SIC criterion from lowest to highest. NP denotes the number
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Fig. 2. Densities of generalised log-elliptical distribution type I

of parameters considered in the optimisation.

Distribution SIC LogVer NP α β ν

Special Case 922.30800 -456.53888 2 0.39571929 131.95014

Laplace 922.49944 -456.63460 2 0.26014664 133.00000

Normal 924.75657 -457.76316 2 0.34605813 131.67771

T 925.21941 -455.68702 3 0.29346658 132.49943 7.1484897

Pearson VII 925.21941 -455.68702 3 0.78461501 132.49952 4.0741357

Cauchy 946.59686 -468.68331 2 0.18426419 133.89997

Table 3: Fit of the generalised three parameters Birnbaum-Saunders distribu-
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Fig. 3. Densities of generalised sinh-spherical distribution type I

tions for the independent case, ordered according to the SIC criterion from
lowest to highest. NP denotes the number of parameters considered in the
optimisation.

Distribution SIC LogVer NP α β ν

Normal 867.42236 -429.10601 2 0.175886865 201.77284

Laplace 868.11384 -429.45175 2 0.017588691 201.77315

Special Case 870.47471 -430.63219 2 0.732003896 201.77314

Cauchy 872.34103 -431.56534 2 0.175881535 201.77315

T 872.99746 -429.59097 3 0.175886986 201.77314 61.390864

Pearson VII 874.25650 -430.22049 3 0.619121931 201.77314 56.195175
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Table 4: Fit of the generalised three parameters Birnbaum-Saunders distri-
butions for the dependent case, ordered according to the SIC criterion from
lowest to highest. NP denotes the number of parameters considered in the
optimisation.

Distribution SIC LogVer NP α γ ν

Special Case -383.10426 196.16725 2 0.080578881 1.5853847

Laplace -382.73764 195.98394 2 0.052799946 1.5872637

Normal -380.98375 195.10700 2 0.070163281 1.5848798

T -380.23087 197.03812 3 0.060009231 1.5862995 7.5079185

Pearson VII -380.23087 197.03812 3 0.164429417 1.5862995 4.2539823

Cauchy -358.54091 183.88558 2 0.037500503 1.5888055

Table 5: Fit of the sinh-spherical distribution under generalised three param-
eters Birnbaum-Saunders distributions for the independent case, ordered ac-
cording to the SIC criterion from lowest to highest. NP denotes the number
of parameters considered in the optimisation.

Distribution SIC LogVer NP α γ ν

Normal -528.44805 268.82920 2 0.032911007 1.6688907

Laplace -527.75657 268.48346 2 0.003291101 1.6688907

Special Case -525.39570 267.30302 2 0.136968769 1.6688907

Cauchy -523.52938 266.36986 2 0.032913891 1.6688907

T -522.88956 268.35253 3 0.032911013 1.6688907 63.054749

Pearson VII -521.72838 267.77194 3 0.123381789 1.6688907 57.027312

Table 6: Fit of the sinh-spherical distribution under generalised three parame-
ters Birnbaum-Saunders distributions for the dependent case, ordered accord-
ing to the SIC criterion from lowest to highest. NP denotes the number of
parameters considered in the optimisation.
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Dı́az-Garćıa, J. A. and Domı́nguez Molina, J. R. (2005). An indepen-

dent or dependent sample of life data: Distributions and Estimation.
Comunicacin Tcnica, No. I-05-02 (PE/CIMAT), Guanajuato, Mxico,
http://www.cimat.mx/biblioteca/RepTec/index.html?m=2.
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Dı́az-Garćıa, J. A. and González-Faŕıas, G. 2005a. Singular Random Matrix
Decompositions: Jacobians, J. of Multivariate Anal. 93/2, 296-312.
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