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Abstract

A formula for complex zonal polynomials of second order is derived by solving a
particular partial differential equation.
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1 Introduction

Recently Dı́az-Garćıa and Caro (2005) computed the zonal polynomials of pos-
itive definite hermitian matrix by the use of the Laplace-Beltrami operator. In
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the same way as the real case, the zonal polynomials of positive definite and
a semi-definite positive symmetric matrices were calculated by James (1968)
and Dı́az-Garćıa and Caro (2004), respectively. It is known that general for-
mulas for complex and real zonal polynomials are not available, and solutions
for the general partial differential equations for both polynomials are also un-
solved. However, the differential equation for the zonal polynomials of positive
definite symmetric matrix argument of the second order was solved by James
(1968).

In this paper we reduce the partial differential equation for zonal polynomials
of positive definite hermitian matrix of second order to a Hypergeometric
differential equation type, which is analogous to the results obtained by James
(1968) in the real case. By solving the ordinary differential equation, we get
an explicit formula for the corresponding zonal polynomials, see Section 2.

2 Complex Zonal Polynomials of Second Order.

Let the partition κ = (k1, . . . , km) of k be a decreasing sequence of nonneg-
ative integers. In Dı́az-Garćıa and Caro (2005) it was proved that the zonal
polynomials C̃κ(Y ) of an m ×m positive definite hermitian matrix Y satisfy
the partial differential equation
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C̃κ(Y ) =

[ρ̃κ + k(2m− 1)]C̃κ(Y ), (1)

where

ρ̃κ =
m∑

i=1

ki(ki − 2i),

y1, . . . , ym are the eigenvalues of the matrix Y and κ = (k1, . . . , km) is a par-
tition of k.

When m = 2 in (1) we get the partial differential equation
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where we denote C̃κ(Y ) as C̃.
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Let us replace u = y1 + y2 and v = y1y2 in (2), then we find
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2
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It is easy to see that the last equation is homogeneous in t. Thus by taking

C̃ = tkf(z),

the next ordinary differential equation results

(1− z2)
d2f

dz2
− 3z

df

dz
+ [(k1 − k2)(k1 − k2 + 2)]f = 0.

Taking w = (1 − z)/2 as the independent variable, the differential equation
becomes

w(1− w)
d2f

dw2
+

3

2
(1− 2w)

df

dw
+ ρ(ρ + 2)f = 0, (3)

with ρ = k1 − k2, a non negative integer, according to the definition of the
partition κ.

Comparing with the general hypergeometric equation

w(1− w)
d2f

dw2
+ [c− (a + b + 1)w]

df

dw
− abf = 0, (4)

we see that the complex zonal polynomials are involved in the solution of an
hypergeometric differential equation of parameters a = −ρ, b = ρ + 2 and
c = 3/2.

Following Erdélyi et al. (1981), we know that a solution of (4) which is regular
at w = 0 is given by

f(w) =
∞∑

n=0

(a)n(b)n

(c)nn!
wn = 2F1(a, b; c; w),

where 2 F1(a, b; c; w) is the classical hypergeometric function, which we will
now denote as F (a, b; c; w).
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Thus a solution of (3) is

f(z) = F
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3

2
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2

)
,

Let us refined the above solution by applying properties of the hypergeometric
functions. From Erdélyi et al. (1981, Section 2.11, p.111), equation (2), we see
that
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By Erdélyi et al. (1981, Section 2.10, p.108), equation (1),

F (a, b; c; t) = A1F (a, b; a + b− c + 1; 1− t)

+ A2(1− t)c−a−bF (c− a, c− b; c− a− b + 1; 1− t),

where
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.

Then (5) can be written as follows
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If ρ = k1−k2 = 2n, n = 0, 1, 2, . . ., and using the fact that Γ(1
2
+ z)Γ(1

2
− z) =

π sec(zπ) and Γ(z)Γ(1− z) = π csc(zπ) which implies A1 = (−1)n

2n+1
and A2 = 0,

respectively, then the even complex zonal polynomials of second order are
given by

C̃(k1,k2)(Y )/C̃(k1,k2)(I2) = (y1y2)
k
2

(−1)n

2n + 1
F
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2
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2
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)

If ρ = k1 − k2 = 2n + 1, n = 0, 1, 2, . . . and using the same properties for
the simplification of A’s, then we find the odd complex zonal polynomials of
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second order

C̃(k1,k2)(Y )/C̃(k1,k2)(I2) = (y1y2)
k
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√

y1y2

F

(
n + 2,−n;

3

2
;
(y1 + y2)

2

4y1y2

)
,

where |z2| < 1 and

C̃(k1,k2)(I2) = k!
(k1 − k2 + 1)2

(k1 + 1)!(k2)!
,

see Khatri (1970).

These formulas agree with the expressions found for the complex zonal poly-
nomials in Dı́az-Garćıa and Caro (2005) until the 10th degree and the general
conjectures established there.
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