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Introduction

The execution of even simple cognitive tasks is characterized by the coop-
eration of different neural networks that are distributed across the brain, and
whose synchronized activity generates oscillations of specific frequencies in the
EEG [Kirschfeld, 2005]. Thus, in response to specific stimulae, one may ob-
serve not only “evoked” activity (exactly time locked to the stimulus), but also
“induced” activities [Pfurtscheller and Lopes da Silva, 1999] which cannot be
extracted by simple averaging, but which represent events that are localized not
only spatially, but also in specific regions of the Time-Frequency (TF) plane.
These events may be correlated with relative changes in power with respect of
to the pre-stimulus condition (possibly due to changes in the synchronization of
the underlying local neural populations [Pfurtscheller, 1977, 1992]), and there-
fore, may be characterized by specific activation patterns, which are located in
particular regions of the TF plane, and which may be associated with specific
cognitive sub-processes [Marroquin et.al., 2004; Harmony et al., 2001].
There is, however, another important characteristic of these events, which

cannot be measured directly by relative power changes: the formation of dy-
namic global assemblies, which according to the definition by Varela et al.
(2001), are “distributed local networks of neurons transiently linked by recip-
rocal dynamic (possibly long range) connections”. It is generally accepted that
these connections are correlated with the synchronization of the corresponding
EEG signals in particular regions of the TF plane [Varela et al., 2001; Lopes da
Silva, 1991; Singer, 1993]. Also, simulations performed with neural mass mod-
els show that a bidirectional coupling of two remote cortical areas is reflected
as phase synchronization of MEG/EEG oscillations [David and Friston, 2003],
which supports the idea that EEG synchrony is highly related to physiological
connectivity in the cortex and thus can be used as a measure for long-range
interaction.
For these reasons, there have been a number of studies of long range syn-

chronization of EEG signals [Bressler et al., 1995; Friston et al., 1997; Lachaux
et al., 1999, 2000; Rodriguez et al., 1999]. Most of these studies, however, have
some limitations: one one hand, the high dimensionality of the synchrony data
implies a visualization problem. Most works on the field avoid this problem
by averaging across a large time window [Quian Quiroga et. al, 2002; David
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and Friston, 2004; Mizuhara et. al, in press] and/or by limiting the analysis to
specific frequency bands [Lachaux et. al, 1999; Rodriguez et. al, 1999]. This is
far from ideal since many synchronization patterns appear only in small regions
of the TF plane and one cannot obtain, from these results, a complete overall
picture of the synchronization dynamics across different frequencies, which may
correspond to specific cognitive sub-processes. A second problem is related to
inaccuracies in the determinadion of long-range phase synchronization. These
are due to two causes: The first is the volume conductor effect, which smears the
effect of cortical current soures, as a result of which spurious synchronization
(especially between neighboring electrodes) may appear. It has been proposed
to compute the surface Laplacian of the potentials and use these signals instead
of the crude potential data to estimate phase synchronization. However, as we
show later, this transformation is not the most appropiate since it makes phase
estimations more vulnerable to noise. The second cause is related to the local
phase estimation for low frequencies using quadature filter banks (ie.- Gabor
wavelets or windowed Fourier transforms): if the frequency response of a par-
ticular filter straddles the origin, the corresponding local phase will be distorted.
A final problem is related to the way in which significant synchronization

changes (with respect to the pre-stimulus condition) are detected. These sig-
nificant changes must be characterized by a persistent relative phase locking
(or phase scattering) between the signals that correspond to each pair of elec-
trode locations; in other words, to estimate the degree of EEG synchronization
one must determine the significance of a phase-locking measure and its consis-
tency across a given time window. The most widely used synchrony measures,
such as statistical coherence and the single trial phase-locking statistic (STPLS)
which is based on the circular variance of the phase difference [Lachaux et al.,
2000], attempt to measure this indirectly, by computing the dispersion change
of the corresponding phase difference over a given time window. The prob-
lem with this approach is that, as will be shown later, this measure is strongly
affected by local phase dispersion changes occurring in either one of the 2 sig-
nals, which seriously interferes with the detection of true synchronization or
de-synchronization events.
The purpose of this work is to present a methodology that overcomes these

limitations; the main idea is to treat persistence and phase locking separately:
persistence is handled via Bayesian estimation of a hidden Markov random field
(MRF) that models a label field in TF space that classifies the interactions be-
tween signal pairs as significantly higher, lower or equal to the corresponding
pre-stimulus average value. We also present a visualization method that per-
mits one to perform, based on this classification, an interactive segmentation
of the TF plane in terms of persistent, global Synchronization Patterns (SP’s),
which may be correlated with concurrent cognitive processes whose expression
is multiplexed at different frequencies. Finally, the inaccuracies in the determi-
nation of the local phase are reduced by using a cortical projection method that
mostly eliminates the volume conductor effect, and by carefully designing the
filter bank that performs the time-frequency decomposition of the transformed
data. The effectiveness of these techniques is illustrated with the analysis of
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SP’s associated with a figure classification task.

Materials and methods

We have tested our procedure on data from a figure classification experiment
[Harmony et al., 2001] where white-line figures on a black background were
presented to each subject. The subjects were instructed to press a button if the
figure corresponded to an animal whose name started with a consonant, and
another button if the figure did not correspond to an animal and the name of
the figure started with a consonant. If the name started with a vowel, the subject
was instructed not to respond. The subjects were 18 normal children (8 to 10
years old, 9 females), all right handed with normal neurological examination.
The EEG signals were recorded with reference to linked ears from the sites Fp1,
Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz, Pz, and
Oz of the 10/20 system. Sampling was done every 5 ms during a time segment
from 1280 ms before the stimulus and 1500 ms after its onset. Each trial was
visually edited and only those corresponding to correct responses and with no
artifacts were analyzed.

Methodolody

In general, measuring EEG synchrony involves the following steps: pre-
processing the raw EEG signals to handle volume conduction and reference
electrode issues, estimating a time-frequency decomposition of the preprocessed
signals, estimating a synchronization measure from the filtered signals for all
or some electrode pairs, and visualizing the results. Particularly, we follow the
following procedure:

1. Estimate virtual source (VS) signals from EEG potentials to reduce vol-
ume conduction effects.

2. Run the VS signals through a bank of bandpass quadrature filters and
extract phase information (TF phase analysis).

3. Calculate the instantaneous phase-lock from the filtered VS signals.

4. Estimate the likelihoods and prior distributions for the MRF model using
the instantaneous phase-lock values.

5. Use Bayesian estimation to find significant synchronization patterns that
are persistent.

6. Display synchronization patterns as multitoposcopic graphs and time-
frequency-topography (TFT) maps that can be interactively segmented.

We will now describe these steps in detail.

Virtual source estimation
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EEG signals are given as a set of discrete voltage signals Vj,e(t), where j is
the trial number and e represents an electrode site. These voltages are measured
with respect to a reference electrode which is placed in the subject’s body as far
as possible from any sources of electrical activity; some common choices are the
chin, or linked ears. However, electric activity in the reference electrode is not
null and affects all EEG measures. On the other hand, we have the issue of the
volume conductor [Nunez, 1995] which smears the potentials across the surface.
These two problems may lead to unreliable results, especially when measuring
synchrony.
To correct for the reference effect, one possible solution is to substract the

“average electrode” signal, computed as the average of all lead signals for each
time [Hagemann et al., 2001; Hoechstetter et al., 2004]. This effectively removes
the reference, but introduces a new bias V̄ = (1/Ne)

∑

e Ve (where Ve are the
true reference-free signals). In the case of event-induced synchrony analysis,
this new bias ay have a stronger distorting effect because, unlike R(t), it may
be correlated among trials, and it may also be correlated with the stimulus
presentation, as is clearly the case with evoked potentials.
We have analyzed this effect using synthetic signals, and found that in fact

the bias introduced by V̄ may have a strong effect in the detection of event-
induced synchrony, introducing spurious synchronization patterns and masking
significant synchrony events, whereas R does not produce these effects (provided
that its magnitude is relatively small). The synthetic reference-free signals Ve
are given by

Ve(t) = αe cos(ωt+ φ1) + (1− αe) cos(ωt+ φ2) + ηe(t), ηe(t) ∼ N (0, ση), (1)

for each recording site e. These signals are based on a population model de-
scribed later in this paper. Careful choice of the σe parameters allows one to
model amplitude and synchronization changes (provided that φ1 �= φ2 - see
Figure 12). We may model a global decrease in phase-lock (between all elec-
trode pairs) by increasing the variance of the αe’s with respect to the baseline.
Furthermore, the observed signals V ∗ may be modeled as

V ∗
e (t) = Ve(t) +R(t), (2)

where R(t) is the reference effect signal. For this example, R(t) was modeled as
low-frequency noise by passing white (uniform) noise through a bandpass Gabor
filter centered at 2 Hz with a bandwidth of 2 Hz. The amplitue of R is about
one tenth of the amplitude of Ve.
We performed our synchrony analysis (described below) using the reference-

free signals V , the observed signals V ∗, and the average reference (AR) signals
V ∗ − V̄ ∗. The results using both the reference-free and observed signals show,
as expected, a decrease of synchrony for each electrode pair. The AR signals,
however, show significative phase-lock increments in some regions, possibly in-
troduced by the bias described above. For this reason, we do not use the average
reference in our method.
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Figure 1: Distribution of equivalent radial dipole groups (virtual sources) lo-
cated near the brain surface.

On the other hand there is the issue of volume conduction. Different tech-
niques have been used to avoid this problem and increase the EEG spatial
resolution. Two of them are solving the inverse problem [David et al., 2001],
and estimating the surface Laplacian of the potential (known in the literature as
current source density or CSD). When performing amplitude or spectral anal-
ysis, the latter method is preferred since the current source density (CSD) is
not sensitive to the reference potential and effectively diminishes the volume
conductor effects [Pascual-Marqui et al., 1988; Perrin et al., 1989]. Moreover,
recent works have already used CSD instead of potentials to measure long-range
synchronization based on phase-lock measurings [Mizuhara et al., 2005]; how-
ever, our tests have shown that this is not the best choice. The complex surface
Laplacian may be approximated by the resultant of the vectors that represent
the quadrature filter outputs in the complex plane: since the measured poten-
tials are in fact very smooth functions of the spatial position, partly because
of volume conduction effects, the surface Laplacian of the complex output of a
quadrature filter at any time point will have very small magnitude, which makes
the estimated phase (i.e.- the angle of the vector representing this number in the
complex plane) very sensitive to noise and to the precise interpolation method
used. For this reason, we propose to use instead the phase of virtual current
sources, which we assume are located in the cortex, directly below the actual
electrodes. To compute these signals, one has to solve the corresponding in-
verse problem; to make this problem well-posed, we make the assumption that
below each electrode site there is a population of radial sources whose strength
decreases exponentially with the distance to the electrode (see Figure 1). It is
worth noting that a similar approach has been proposed in [Hoechstetter et al.,
2004] where virtual sources (dipoles) are placed in cortical regions of interest
(which can be obtained from averaged evoked data) and in regions of possible
background activity.
From the quasi-static approximation of Maxwell’s equations in linear isotropic
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media, the relationship between the potential recordings and the sources is given
by Φ = KJ [Malmivuo and Plonsey, 1995], where Φ is a n-vector of instanta-
neous electrical recordings, J is a vector of dipole components, and K is the
lead field matrix.
We group equivalent dipoles in n sets formed by p radial dipoles, {α1js1 , . . . ,

αpjsp}, with ||jsr || = 1 and 0 < αr ≤ 1, so that we can express J = (w1J
t
1, . . . ,

wnJ
t
n), where ws is a scalar factor and Js = (α1j

t
s1 , . . . , αpj

t
sp)
t. Note that

weights α1, . . . , αp have the same values in each group (assuming all electrodes
to be equally sensitive), thus each factor ws represents the strength of the s-th
dipole group. If K = [K1, . . . ,Kn], with Ks the lead field matrix associated to
the s-th group, then

Φ = KJ =

n
∑

s= 1

(KsJs)ws = Gw (3)

where G is the n× n matrix [K1J1, . . . ,KnJn], and w = (w1, . . . , wn)
t.

The lead field matrix K is computed using a three-concentric-spheres in-
homogeneous head model [Zhang, 1995], and the resulting matrix G is well-
conditioned. Therefore, given the potentials Φ we may obtain the strengths w
by

w = G−1Φ. (4)

The virtual source strengths we(t) provide better spatial localization than
potentials but with a magnitude large enough to yield reliable phase estimations.
Figure 2 shows the resulting synchrony patterns obtained with our procedure
(described below) for synthetic signals using raw potentials (left graph) and the
estimated VS signals (right graph). The signals were obtained by placing one
dipole near F3 and another between P4 and T6 of the 10/20 system. Noise was
added to all electrode readings. The dipoles are unsynchronized (out of phase)
in the pre-stimulus segment (not shown) and in perfect synchrony in the post-
stimulus. The graphs show significant increment (red) or decrement (green) in
synchrony for all electrode pairs.

Time-Frequency Phase Analysis

To obtain a time-frequency decomposition of the EEG signals, it is common
to resort to the short-time FFT or quadrature bandpass filters. We have chosen
to work with quadrature filters, which are easy to implement and may be tuned
to any frequency (not only Fourier discrete frequencies). A quadrature filter can
be defined as one whose frequency response is zero for negative frequencies. One
common example of quadrature filters are Gabor filters, which have a Gaussian
frequency response, but when implemented digitally the response is truncated
to a certain range (4σ around the center frequency is a common choice). When
these filters ae tuned at low frequencies, however, they present the problem of
having a large response at negative frequencies, which severly distorts the phase
estimates (see Figure 3).
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Figure 2: Synchrony patterns obtained from synthetic data using raw potentials
(left image) and the estimated virtual source signals (right image).

Figure 3: True phase and estimated phase (using Gabor and spherical quadra-
ture filters) for a 1 Hz sinusoidal signal.
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Figure 4: Bandpass filters centered at 1 Hz (left) and 10 Hz (right). The red
curve shows the frequency response of a Gabor filter, while the blue curve shows
the response of a spherical filter.

In our procedure, we run the VS signals through a bank of band-pass spher-
ical quadrature filters [Guerrero, 2005] centered at intervals of 1 Hz and with
a bandwidth of about 2 Hz each. These filters have the following frequency
response:

Gωk,h(ω) =











1
2

[

1 + sin
(

(hk + 2(ω−ωk))π
2hk

)]

if ω ∈ [ωk − hk, ωk],

1
2

[

1 + sin
(

(h+ 2(ω−ωk))π
2h

)]

if ω ∈ [ωk, ωk + hk],

0 otherwise,

(5)

where ωk is the center frequency for the k-th filter, h is the bandwidth, and hk =
min{h, ωk}. These filters have a response that is almost identical to Gabor filters
at tuning frequencies higher than 6 Hz. At lower frequencies, the asymetrical
response of the spherical quadrature filters preserves their quadrature property,
which yields a correct phase estimation. Figure 4 shows the frequency response
for Gabor and spherical quadrature filters tuned at 1 Hz and 10 Hz.
The convolution kernel gωk,h of the filters is found as the inverse Fourier

transform of Gωk,h. The filtered signals Fj,ω,e can then be obtained as

Fj,ω,e(t) = (gω,h ∗ Sj,e)(t) = Aj,ω,e(t) exp[iφj,ω,e(t)], (6)

from which we can extract the instantaneous phase and amplitude given by

Aj,ω,e(t) =
√

ℜ2(Fj,ω,e(t)) + ℑ2(Fj,ω,e(t)) (7)

φj,ω,e(t) = atan2[ℑ(Fj,ω,e(t)), ℜ(Fj,ω,e(t))], φj,ω,e(t) ∈ [−π, π). (8)

Estimation of instantaneous phase-lock
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Let us consider the following synchrony criterion: two signals with instan-
taneous phases φ1(t) and φ2(t) are in synchrony when φ1(t) ≈ φ2(t) for all t in
a given time interval. A straightforward measure would be the magnitude of
the phase difference |φ1(t) − φ2(t)|. The phase difference can be wrapped be-
tween −π and π, thus its magnitude is bounded. This makes it easy to obtain
a normalized measure based on the phase difference:

µj,ω,e1,e2(t) = 1−
1

π
|wrap(φj,ω,e1(t)− φj,ω,e2(t))|, (9)

where wrap(φ) returns the angle φ wrapped to the interval [−π, π).
Since we are interested in event-related activity, we must determine how

significant are the changes of synchrony with respect to the pre-stimulus seg-
ment. Following the procedure introduced by Marroquin to estimate the relative
changes of EEG amplitudes [Marroquin et al., 2004], we substract the average
synchrony in the pre-stimulus segment in order to obtain the relative synchrony
Xj,ω,e1,e2 :

Xj,ω,e1,e2(t) = µj,ω,e1,e2(t)−
1

Ts

Ts
∑

t′ = 1

µj,ω,e1,e2(t
′), (10)

where Ts is the length of the pre-stimulus segment. Finally, we take the mean
relative synchrony across all trials:

Yω,e1,e2(t) =
1

Nr

Nr∑

j = 1

Xj,ω,e1,e2(t). (11)

Bayesian estimation of significant synchrony

We would like to classify each value of the mean relative synchrony in one
of three classes: significantly higher (class c = 1), significantly lower (class
c = −1), or equal (c = 0) to the pre-stimulus average. A common technique
for classification problems consists of Bayesian estimation with a prior Markov
Random Field (MRF) model [Marroquin, 1987]. With this method, one can
model the class field cω,e1,e2,t as a random field with a prior Gibbs distribution
of the form

PMRF (c) =
1

Z
exp

[

−λ
∑

C

VC(c)

]

, (12)

where Z is a normalizing constant and VC is a potential function that depends
only on the values of the sites belonging to the clique C (see [Marroquin, 1987,
2001] for more details). For a classification problem, where c is discrete, a
popular model is the Ising model which enforces c to be piece-wise constant.
If we consider a first-order neighborhood system, whose cliques are single sites
and nearest-neighbor pairs of sites, the Ising potentials are given by:

Vr,s(c) =

{

−1, if cr = cs
1, if cr �= cs

, (13)
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where r and s are nearest neighbors. In our case, r and s are generally 4-
tuples of the form r = (ω, e1, e2, t); however, at this point we are only interested
in modeling persistence in time, although persistence across frequencies and
spatial regularization could be taken into account to attempt an automated
segmentation process.
The distribution of a field c which is both Markovian (with a first-order Ising

model) and has prior probabilities αk = P (cr = k) is given by:

Pc(c) =
1

Z
exp

[

−λ
∑

<r,s>

Vr,s(c) +
∑

r

logαcr

]

,

where − logαcr can be seen as a zero-order potential Vr(c). Besides the prior
distribution of c, we also need the likelihood P (Y | c) which can be written as

P (Y | c) =
∏

r

P (Yr | cr) = exp

[

∑

r

logP (Yr | cr)

]

. (14)

Using Bayes rule, the posterior distribution of c given Y can be calculated as

P (c | Y ) =
1

Z ′
exp

[

−
∑

r

log hr(cr) + λ
∑

<r,s>

Vr,s(c)

]

, (15)

where Z′ is a normalization constant and hr(k) = P (Yr | cr = k)αk.
Given the estimator ĉ and the true (unknown) field c, one can define a cost

function C(c, ĉ) and find the optimal ĉ by minimizing the expected value of
C(c, ĉ). Since c is discrete, a suitable cost function given by Marroquin is

C(c, ĉ) =
∑

r

[1− δ(cr − ĉr)] , (16)

and its expected value would be given by

E [C(c, ĉ)] =
∑

c

C(c, ĉ)P (c | Y )

=
∑

c

∑

r

[1− δ(cr − ĉr)]P (c | Y )

= K −
∑

r

∑

c:cr = ĉr

P (c | Y ). (17)

The posterior marginal distribution for site r is defined as:

πr(k) =
∑

c:cr = k

P (c | Y ). (18)

Thus the optimal estimator ĉ (which minimizes E[C(c, ĉ)]) can be found by
maximizing πr(ĉr) for each r. This estimator is known as the Maximizer of Pos-
terior Marginals (MPM) estimator and is usually approximated using stochastic
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Markov-chain methods such as Metropolis or the Gibbs sampler. These algo-
rithms, however, are computationally expensive and require an unknown num-
ber of iterations, which makes them less than adequate for our multidimensional
data set. A better solution consists on approximating the posterior marginal
distributions with the empirical marginals pr(k) [Marroquin et al., 2001]. It can
be shown that the pr vectors form a MRF with the same neighborhood system
as c, thus the distribution of p is given by

Pp(p) =
1

Zp
e−U(p), (19)

where, for a first-order neighborhood system, U(p) can be written as

U(p) =
∑

r

|pr − p̂r|
2 + λ′

∑

<r,s>

|pr − ps|
2, (20)

with p̂r(k) = hr(k)/
∑

k ′ hr(k
′).

If c follows the Ising model, it can be shown that the field p can be modeled
as a set of decoupled membrane models p(k) = {pr(k), ∀r} for k = −1, 0, 1.
Therefore, the optimal p is obtained by minimizing, for each layer k, the energy
function Uk(p) given by

Uk(p) =
∑

r

(pr(k)− ˆpr(k))
2 + λ′

∑

<r,s>

(pr(k)− ps(k))
2. (21)

Since each p(k) is continuous, Uk(p) can be minimized by solving the linear
system obtained from equating the partial derivatives of Uk with respect to
pr(k) to zero. However, the optimal p(k) is a smoothed version of p̂(k), thus
one can achieve a similar result by simply low-pass filtering each p̂(k) with a
Gaussian kernel (for more details see [Marroquin et al., 1997]). Once we have p
we can obtain the approximated MPM estimator as

cr = argmaxk{pr(k)}. (22)

Estimation of prior distributions and likelihoods

For now, we are only interested in modeling persistence in time, thus we
may estimate the time series cω,e1,e2(t) = cω,e1,e2,t in a decoupled manner for
each ω, e1, and e2. To simplify things in this section, we will consider a fixed
frequency ω and electrode pair (e1, e2) and only keep the time subindex.
In order to calculate ht(k) (and thus pt(k)) we need the prior probabilities

αk = P (c = k) and likelihoods P (Yt | c = k). These can be estimated from the
data if we consider that the complete distribution PY (Yt) can be expressed as:

PY (Yt) =

1
∑

k = −1

αkP (Yt | c = k), (23)

and also consider the following assumptions:
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• P (Yt | c = 0) may be estimated empirically from the pre-stimulus data.

• P (Yt | c = 1) = 0 for Y ≤ 0.

• P (Yt | c = −1) = 0 for Y ≥ 0.

With these assumptions, we can obtain P (c = 0) from Equation (23) as
follows:

α0 =
PY (0)

P (0 | c = 0)
(24)

and also

ht(0) = α0P (Yt | c = 0) (25)

ht(1) =

{

PY (Yt)− ht(0), Yt > 0
0, Yt ≤ 0

(26)

ht(−1) =

{

PY (Yt)− ht(0), Yt < 0
0, Yt ≥ 0

(27)

PY (Yt) and P (Yt | c = 0) can be estimated from the data Y using non-
parametric kernel estimation. PY (Yt) is estimated using the full time segment,
whereas P (Yt | c = 0) considers only the pre-stimulus segment.
The actual classification procedure for significative synchrony changes is per-

formed (for each frequency ω and electrode pair (e1, e2)) as follows:

1. Estimate the pre-stimulus distribution P0(Y ) and the full distribution
PY (Y ) using kernel density estimation with bandwidth given by Silver-
man’s rule of thumb [Silverman, 1986].

2. Estimate α0 = P (c = 0) = P0(0)/PY (0).

3. For each t, calculate ht(k) for k = −1, 0, 1 as given by Equations (25, 26,
and 27).

4. Normalize ht to obtain p̂t.

5. Obtain p(k) by convolving p̂(k) with a Gaussian kernel g. The width σ of
the kernel controls the granularity of the c field (see below).

6. Approximate the MPM estimator by ct = argmaxkpt(k) for all t.

Granularity and choice of σ

When approximating p(k), we need to use an adequate width σ for the
Gaussian kernel to filter out shorter homogeneous segments which may not be
significant in terms of persistence, and would instead break a longer segment.
One approach consists on defining a granularity function G(σ) for a given EEG
dataset and see how it behaves with respect to σ. Our choice for G is defined
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Figure 5: Granularity as defined by Equation (29) for w = 20 ms.

as follows: for a class time series cω,e1,e2 = {cω,e1,e2(t)} we define the number
of homogeneous segments nω,e1,e2 as

nω,e1,e2 =
T
∑

t= Ts

I [cω,e1,e2(t) �= cω,e1,e2(t− 1)] , (28)

where I(P ) equals 1 if P is true and zero otherwise. Note that the sum is taken
only on the post-stimulus segment. This is because we consider the pre-stimulus
to be a single segment with class c = 0.
We also define mω,e1,e2(w) as the number of homogeneous segments whose

length is less than w. The granularity is then given by

Gw(σ) = E

[

mω,e1,e2(w)

nω,e1,e2

]

, (29)

where the expected value is estimated across all frequencies and electrode pairs.
Gw(σ) estimates the probability of having segments with length shorter than w
for a given value of σ. We have chosen to dismiss segments shorter than w = 20
ms by aiming for a granularity value of 0.05 or less. Figure 5 shows the graph
for G20(σ) where a granularity of less than 0.05 is reached with σ = 57.5 ms for
the Figures experiment.

Visualization

We use two types of display to represent the data. The first display shows,
for a fixed time t and frequency ω, the classification values cω,e1,e2,t for all
electrode pairs (e1, e2). This results in a multitoposcopic display ([Jimenez et
al., 1995]) of a synchrony pattern as shown in Figure 6.
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Figure 6: Multitoposcopic representation of synchrony patterns during the Fig-
ures experiment at t = 525 ms and f = 11 Hz estimated with potentials (left
image) and virtual cortical sources (right image). These graphs show signifi-
cant increments (red) or decrements (green) in synchrony with respect to the
pre-stimulus segment. Synchronous activity is smeared when using potentials:
sites P4 and Oz show a significant increment in synchrony with almost every
other site; however, most of these couplings do not show when using VS signals,
indicating that they were spurious.

Multitoposcopic displays are useful to show a detailed connectivity pattern
for a fixed time and frequency; however, it is important to visualize larger
regions of the time-frequency plane in order to localize zones of interest where
the synchrony pattern remains almost constant and might be related to specific
cognitive processes. Following the procedure given by [Marroquin et al., 2004] to
analyze relative amplitude changes, we can use a Time-Frequency-Topography
(TFT) display to present the data by reducing only one spatial dimension. We
do this not by averaging but counting, for each electrode e, the number of
electrodes that have significantly increased or decreased their synchrony with e.
In other words, we can build a synchrony increase histogram (SIH) given by

H +
ω,e(t) =

Ne∑

e ′ = 1

I(cω,e,e ′ ,t = 1), (30)

where I(X) = 1 only if X is true. H +
ω,e(t) is the number of significantly stronger

couplings (with respect to the pre-stimulus segment) for electrode e at time t
and frequency ω. This can be thought as a degree of connectivity involving
electrode e relative to the pre-stimulus.
Similarly, we can define a synchrony decrease histogram (SDH) as

H−
ω,e(t) =

Ne∑

e ′ = 1

I(cω,e,e ′ ,t = −1), (31)
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Figure 7: Synchrony histograms for the Figures experiment displayed as Time-
Frequency-Topography (TFT) maps. The left and right maps show synchrony
increase and decrease histograms, respectively. The scale represents the pro-
portion of electrodes whose synchronization with a given electrode e changes
significatively.

These histograms can be presented in a TFT display as shown in Figure 7.

Interactive segmentation

The TFT visualization system provides at the same time a detailed view
that shows which regions of the cortex are involved in synchronous processes
at any time and frequency, and also a condensed view where one can see larger
Time-Frequency regions which share the same synchronization pattern. This
allows one to easily perform a manual segmentation of the TF plane where each
region is assigned a representative multitoposcopic pattern. An example of a
segmented map is shown in Figure 13 for the Figures experiment.
It is also possible to produce an automated segmentation by frequency bands

at regular time intervals. An example of this is shown in Figure 8. The frequency
bands are delta (1 to 3 Hz), theta (4 to 7 Hz), alpha (8 to 12 Hz) and low beta
(13 to 18 Hz) with a segment interval of 300 ms. In the lower-left corner of each
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Figure 8: Automatically segmented synchrony maps for the Figures experiment.
The color scale represents an average of the relative synchrony between each
pair of sites within a time-frequency window: towards red means synchrony
increment while towards green means synchrony decrease. Regions with high-
variance can be subdivided into smaller, more consistent regions.

segment we show the estimated variance of cω,e,e ′ ,t. Those segments with high
variance can be subdivided for a more detailed analysis.

Other synchronization measures

We have tested other syncronization measures in order to make a thorough
comparison and determine each measure’s strengths and weaknesses. In order
to do a comparison following the same methodology, we have substituted the
Bayesian class estimation by significance indexes based on the p-values of the
mean relative synchrony Yω,e1,e2(t) with respect to the pre-stimulus distribution.
Synchrony can be defined in a very broad sense as a degree of similarity

between two signals. In general, we consider a synchrony measure either a func-
tion µj,ω,e1,e2(t) that estimates the similarity between Fj,ω,e1 and Fj,ω,e2 at each
time t for trial j, or a function µω,e1,e2(t) that estimates the average similarity
between Fj,ω,e1 and Fj,ω,e2 at each time t across all trials j = 1, . . . , Nr. When-
ever possible, we normalized each measure µ between 0 and 1 such that µ(t) = 1
means perfect synchrony.
For each measure we perform a statistical analysis to determine the signif-

icance of the changes with respect to the pre-stimulus segment. This analysis
involves the following steps:
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1. Estimate the average synchrony in the pre-stimulus segment and substract
it from the synchrony measure. We call this new variable the relative
synchrony.

2. Estimate the mean relative synchrony across all trials (if necessary).

3. Estimate the pre-stimulus distribution of the mean relative synchrony.

4. Perform non-parametric statistical tests to estimate the significance level
of the mean relative synchrony with respect to the pre-stimulus distribu-
tion.

The actual procedure for measures that are estimated for each trial is slightly
different for those which use all trials. For those measures of the form µj,ω,e1,e2
the relative synchrony Xj,ω,e1,e2 for each trial j is given by

Xj,ω,e1,e2(t) = µj,ω,e1,e2(t)−
1

Ts

Ts∑

t′ = 1

µj,ω,e1,e2(t
′), (32)

where Ts is the length of the pre-stimulus segment. On the other hand, for
measures of the form µω,e1,e2 the relative synchrony is

Xω,e1,e2(t) = µω,e1,e2(t)−
1

Ts

Ts∑

t′ = 1

µω,e1,e2(t
′). (33)

Next, we average the relative synchrony for those measures that are esti-
mated per trial. This yields the mean relative synchrony Yω,e1,e2 :

Yω,e1,e2(t) =
1

Nr

Nr
∑

j = 1

Xj,ω,e1,e2(t). (34)

For measures that depend on all trials we simply let Yω,e1,e2(t) = Xω,e1,e2(t).

Let PY be the density function of Yω,e1,e2 in the pre-stimulus segment for
given ω, e1, and e2. By construction we have that E[Yω,e1,e2(t)] = 0 for t ≤ Ts,
hence PY is centered at zero. A significative increase in synchrony is given by
a positive value of Yω,e1,e2(t) such that

PY (Y > Yω,e1,e2(t) | Y > 0) < α (35)

for a given significance threshold α > 0. Similarly, a significative decrease in
synchrony happens when

PY (Y < Yω,e1,e2(t) | Y < 0) < α. (36)

Based on this, we estimate the significance level Sω,e1,e2(t) of the mean
relative synchrony as follows:

Sω,e1,e2(t) =







1− PY (Y > Yω,e1,e2(t) | Y > 0) for Yω,e1,e2(t) > 0,

− (1− PY (Y < Yω,e1,e2(t) | Y < 0)) for Yω,e1,e2(t) < 0.
(37)
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Sω,e1,e2 ranges from -1 to 1. Positive values indicate an increase in synchrony
with respect to the pre-stimulus segment, while negative values indicate a de-
crease in synchrony. Values with a magnitude greater than (1 − α) are said to
be significant. Common values for α are 0.05 and 0.01.

We will now define the measures we have tested.

Phase locking statistic (PLS)

This measure estimates the instantaneous variability of the phase difference
of two signals across trials. Since we are working with a phase distribution, we
must use the concept of circular variance [Fisher, 1995] which can be estimated
as

Var(φ) ≈ 1−
1

N

∣

∣

∣

∣

∣

N
∑

n = 1

exp[iφn]

∣

∣

∣

∣

∣

, (38)

where φ1, . . . , φN is a sample from the distribution of φ. The circular variance
is always between 0 and 1 so 1 − Var(φ) can be used as a measure of phase
coherence. Lachaux et al. proposed as synchrony measure the circular variance
of phase differences across trials at instant t and called it phase locking statistic

(PLS) [Lachaux et al., 1999]:

µω,e1,e2(t) =

∣

∣

∣

∣

∣

∣

1

Nr

Nr∑

j = 1

exp[i(φj,ω,e1(t)− φj,ω,e2(t))]

∣

∣

∣

∣

∣

∣

, (39)

where Nr is the number of trials in the EEG experiment.

Single-trial phase locking statistic (STPLS)

In order to obtain a phase locking measure to single trials, Lachaux et al.
proposed a new measure based on the variance of the phase difference across a
time window centered at time t, for each trial j [Lachaux et al., 2000]:

µj,ω,e1,e2(t) =

∣

∣

∣

∣

∣

1

2w + 1

t+ w
∑

t′ = t−w

exp[i(φj,ω,e1(t
′)− φj,ω,e2(t

′))]

∣

∣

∣

∣

∣

, (40)

This measure follows this particular synchrony criterion: two signals with in-
stantaneous phases φ1(t) and φ2(t) when φ1(t)−φ2(t) is approximately constant
for all t in a given time window. We have used a window size of 100 ms (w = 10
samples) in all our tests.

Coherence

Statistical coherence is a measure of how closely two time series are related
by a linear transformation [Gardner, 1992] and it is widely used as a measure of
EEG synchrony [Bressler et al., 1993, 1995; Nunez, 1995; Gross et al., 2001]. For
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two zero-mean signals X and Y , coherence CXY is obtained as the magnitude
of their correlation:

CXY =
|RXY |

|RXXRY Y |1/2
(41)

with
RXY = E{XY

∗} (42)

where E{·} denotes expected value and Y ∗ is the complex conjugate of Y .
Coherence takes values between 0 and 1 where CXY = 1 means Y can be
obtained as a linear transform of X.
In order to estimate a coherence measure for a set of filtered EEG signals

Fj,ω,e we must first substract their mean across the whole time segment:

F ′
j,ω,e(t) = Fj,ω,e(t)−

Nt
∑

t′ = 1

Fj,ω,e(t
′). (43)

Then for each trial j we take the coherence on a time window around time t,
thus the coherence measure can be defined as

µj,ω,e1,e2(t) =
|Rj,ω,e1,e2(t)|

|Rj,ω,e1,e1(t)Rj,ω,e2,e2(t)|
1/2

(44)

where

Rj,ω,e1,e2(t) =
1

2w + 1

t+ w
∑

t′ = t−w

F ′
j,ω,e1(t

′)(F ′
j,ω,e2(t

′))∗, (45)

for each time t and electrode pair (e1, e2). A window size of 100 ms was also
used for coherence measures.

Cumulative probability of phase difference (CPPD)

An alternative to the measure defined by Equation (9) consists on estimating
the probability of the phase difference being smaller (in absolute value) than
some ǫ > 0. This probability can be estimated across trials and equals the
proportion of trials where the magnitude of the phase difference φj,ω,e1(t) −
φj,ω,e2(t) is less than ǫ for each t, ω, e1, and e2:

µω,e1,e2 =
1

Nr

Nr∑

j = 1

I(|wrap(φj,ω,e1(t)− φj,ω,e2(t))| < ǫ). (46)

where I(P ) equals 1 if P is true, and zero otherwise.
This measure allows a quantification of the degree of synchrony (by means

of ǫ), regardless of any further transformation applied to the measure (such as
the significance analysis we perform).

Mutual information and Generalized Synchronization
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Two other measures that are often mentioned in EEG synchrony literature
(i.e.- Quian-Quiroga et al., 2002; David et al., 2004) are Generalized Syncroniza-
tion (GS) and Mutual Information (MI).

GS relies upon vectors 2Xn = [xn, xn + τ , . . . , xn + (m−1)τ ] which are embed-
dings of the signal x in an m-dimensional space with a delay time τ . If pni
and qni, i = 1, . . . , k, denote the indices of the k nearest neighbors of 2Xn and
2Yn, respectively, then one can define a measure of closeness S

k
n(X|Y ) between

the true neighbors { 2Xpni
} of 2Xn and its mutual neighbors { 2Xqni

} (for more
details see [Quian-Quiroga, 2002]). The synchronization statistic is the average
of Skn(X|Y ) over a time window t− T ≤ n ≤ t+ T .
On the other hand, Mutual Information is a statistical measure which es-

timates, for two random variables X and Y , the amount of information in X
given that Y is known, and viceversa. It is defined as MI(X,Y ) = H(X) +
H(Y ) − H(X,Y ), where H(X) is the statistical entropy of X and H(X,Y ) is
the joint entropy of X and Y (see [David et al., 2004] for details). MI basically
measures the similarity between the histograms of X and Y (estimated, in our
case, across a time window) and it does not take into account any possible time
lag between both signals. This makes it unadequate as a phase-locking mea-
sure. It is possible, however, to apply time-embedding techniques (taking as

sample data the vectors 2Xn used in GS) to obtain a lag-sensitive MI measure
[Quian-Quiroga et al., 2002].
There are two aspects that make these measures inadequate for our proce-

dure: first, as a result of the time-embedding methods, these measures have low
time resolution (hundreds of milliseconds) and are better suited for the analy-
sis of stationary couplings. Second, they are computationally very demanding,
which makes them hard to integrate in an interactive TFT exploration system.
For these reasons we do not include them in the following comparison.

Comparison between synchrony measures

Figures 9 and 10 show the syncrony increase histograms for the CPPD, PLS,
STPLS, and coherence measures. It is clear that CPPD and PLS give very
similar results to the mean phase difference measure (Figure 7, left). On the
other hand, STPLS and coherence yield similar results themselves but different
from MPD. The estimated correlation between each pair of measures (Figure 11,
left) confirms what we see. It is worth noting that similar correlation results were
also obtained with five different experiments besides the Figures experiment
presented here (see Appendix A).

Seemingly, we have two groups of synchrony measures, thus it is important to
understand what kind of similarities between signals are being quantified by each
group, and how measures from the same group are related to each other. One
thing to note is that STPLS and coherence are defined across a time window,
while the other measures are instantaneous. Another issue is that in the STPLS
measure (Equation 40), if one of the phases remains fairly constant across the
time window, then this measure will be related to the circular variance of the
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Figure 9: Synchrony increase histograms for the Figures experiment using the
CPPD (left) and PLS (right).
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Figure 10: Synchrony increase histograms for the Figures experiment using the
STPLS (left) and coherence (right).

Figure 11: Correlation between pairs of synchronization measures (left), and
between synchronization measures and local phase dispersion (right). There are
clearly two groups of measures: those similar to the MPD, and those similar to
the STPLS. The latter group is characterized by a high correlation with LPD.
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other phase. To see how much this variance influences the STPLS we estimated
a local phase dispersion (LPD) measure given by

LPDj,ω,e(t) =
1

2w + 1

∣

∣

∣

∣

∣

t+ w
∑

t′ = t−w

exp [iφj,ω,e(t
′)]

∣

∣

∣

∣

∣

. (47)

Then we estimated a correlation between the LPD and the average synchrony
in each electrode for all the measures (Figure 11, right). Effectively, both STPLS
and coherence show a high correlation with LPD. This leads one to think that
these measures are not well-suited for detecting long-range synchronization, but
may in fact quantify some form of “local” synchrony . To explain this with
further detail we introduce a simple model.

EEG population model

This model is based on the assumption that the signal captured by each
electrode is the sum of the contributions of a population of neurons in the
cortical region corresponding to the virtual source. We see each neuron as a
simple sinusoidal oscillator whose frequency is fixed but whose phase can change
over time. For simplicity, we assume all neurons oscillate with amplitude 1. The
VS corresponding to each electrode e covers a population of Ne neurons, thus
the signal fe registered by the electrode and projected to the cortex can then
be obtained by

fe(t) =

Ne∑

j = 1

cos(ωejt+ φej(t)), (48)

where ωej and φej are the frequency and phase, respectively, of each oscillator
in the population. If we band-pass filter fe around center frequency ω and with
sufficiently narrow bandwidth, we can approximate the filtered signal fωe by

fωe(t) =

Nωe
∑

j = 1

cos(ωt+ φej(t)), (49)

where Nωe is the number of neurons oscillating at frequency ω in the population.
Suppose these neurons are divided in sub-populations that are in perfect

synchrony; that is, all neurons in each sub-population oscillate with the same
phase. The phases form a finite set {φ1, . . . , φK}, with K being the number
of sub-populations. We allow neurons to change their phase but they must
synchronize themselves with another sub-population. This translates into the
following model:

fωe(t) = Nωe

K
∑

k = 1

αkωe(t) cos(ωt+ φ
k),

K
∑

k = 1

αkωe = 1, αkωe ≥ 0, (50)

where αkωe(t) represents the proportion of neurons in sub-population k.
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Figure 12: Apparent amplitude and phase versus underlying phase difference
φ1 −φ2 and proportion α of oscillators with phase φ1 for a 2-population model.

We define the apparent amplitude A∗
ωe and phase φ

∗
ωe of fωe(t) as those that

would be obtained from passing f through a bandpass quadrature filter tuned
at ω. In the case of Gabor filters, they are given by

A∗
ωe exp[iφ

∗
ωe] = Nωe

n
∑

k = 1

αkωe exp[iφ
k]. (51)

In other words, the apparent amplitude and phase are those of the resultant of
the sum of vectors αkωe exp[iφ

k]. Particularly, for K = 2 we have that

(A∗
ωe)

2 = N2
ωe(a

2 + b2), (52)

tanφ∗ = b/a, (53)

with

a = αωe cosφ
1 + (1− αωe) cosφ

2, (54)

b = αωe sinφ
1 + (1− αωe) sinφ

2. (55)

Figure 12 shows (for K = 2) how the apparent amplitude and phase vary
with respect to the phase difference (φ1 − φ2) and proportion αωe. Note that
according to this model, a decrease of amplitude may be caused by a local
resynchronization process where a group of neurons change their phase resulting
in a more uniform proportion of sub-populations.
According to this, variations in the apparent phase may be related either to

variations in the phase of some sub-populations (lack of local synchronization),
or to changes in the size proportions (which may be considered as local resyn-
chronization processes). With this in mind, we could consider the local phase
dispersion (as defined by Equation 47) as a measure of local synchrony.
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Consistency of the proposed measure

By looking at Equation (39) one can see that PLS actually measures the
consistence of the phase difference across all trials. We have also shown that the
MPD and PLS measures are highly correlated. This suggests that the processes
that result in high synchronization (as measured by MPD) are fairly consistent
across trials and subjects, and thus may be related to the task.
Furhtermore, the CPPD measure is also highly correlated to the MPD, sug-

gesting that synchronization effectively happens with near-zero phase difference.
This is in accordance with the neural mass model proposed by David and Fris-
ton, where a bidirectional coupling of two remote cortical areas present a phase-
locking of zero or π radians [David and Friston, 2003]. Other works (Friston
et al., 1997; Rodriguez et al., 1999) have also found zero-centered phase differ-
ence distributions during synchronous episodes between two electrodes. These
findings lead us to believe the MPD is a suitable long-range synchronization
measure.

Example case

A full analysis of the Figures experiment is presented here as an example
of the methodology. The full segmented MPD map is presented in Figure 13
along with the corresponding SIH and SDH maps (Figures 14 and 15, respec-
tively). TFT maps of significant changes in amplitude and LPD are also shown
in Figures 16 and 17, respectively.
There are a few interesting correlations between MPD, amplitude, and LPD

taking place at different frequency bands. In the delta band (1 to 3 Hz) we first
see a pattern (50 to 400 ms) characterized by a desynchronization of frontal
and parietal sites and a synchronization mostly between O1 and O2. This is
accompained by an increase of amplitude in the frontal region and a decrease in
the temporal-occipital region. From 400 to 800 ms the syncrony with occipital
electrodes increases, particularly with Oz which acts as a nodal point (that is,
one that shows synchrony with a large cortical area); at the same time a power
increase takes place in an extended frontal-parietal region around 500 ms. After
800 ms the amplitude remains high only at Fp2 but the power decrease in the
occipital region remains. The MPD pattern shows a stable high synchrony of
every site with the temporal-occipital region.
In the theta band (4 to 7 Hz) we have an early pattern (0 to 150 ms) that

shows fronto-parietal synchrony with a significant power increase in every site.
From 300 to 600 ms there is a global synchrony increase with the temporal-
occipital sites and a power decrease in the same region. After 800 ms the
amplitude decreases in the parietal-occipital region with sporadic bursts in Fp2,
F3, Fz, Cz, and T4. Global synchrony with the temporal-occipital region is
also present, along with desynchronization between frontal and parietal areas.
There is an increase in the LPD measure (which means a decrease of local phase
variance) around 7 Hz, especially in occipital sites.
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Figure 13: Full manual segmentation for the Figures experiment. The color
scale indicates average synchrony increase (towards red) or decrease (towards
green) for each pair of sites across each time-frequency window.
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Figure 14: Full synchrony increase histogram for the Figures experiment.
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Figure 15: Full synchrony decrease histogram for the Figures experiment.
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Figure 16: Map of significant amplitude changes for the Figures experiment:
sites whose amplitude is significantly higher than the pre-stimulus average are
shown in red while those with significantly lower amplitud are shown in green.
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Figure 17: Map of significant LPD changes for the Figures experiment. Red
regions have significantly higher LPD measure (that is, less phase dispersion)
than the pre-stimulus average, and viceversa for green regions.
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Figure 18: TFT display of 15-nodal sites for the Figures experiment. Each site
which is not white is synchronized with at least 15 other sites.
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The alpha band shows a very consistent pattern from 200 ms until the end
of the experiment. There is a global decrease in amplitude and increased syn-
chrony with the temporal-occipital region. Frontal, central, and temporal areas
show a decrease in synchrony between themselves. We have found this charac-
teristic alpha-band pattern in other various experiments. Additionally, a highly
consistent (both in time and topography) increase of phase variance takes place
at 10 and 11 Hz.
Another early pattern takes place in the low beta band (15 to 20 Hz, 0 to 250

ms) showing frontal, parietal, and temporal increase in amplitude with occipital
power decrease, and a global increase of synchronization. After 250ms, this be-
havior changes to a pattern very similar to that of the alpha band, although not
as consistent in terms of synchrony. The upper beta band (20 to 30 Hz) shows
high synchrony from 100 to 250 ms with short burst of amplitude in various
electrodes at different frequencies. After 250 ms there is a global amplitude
drop and a characteristic synchrony increase with occipital sites (especially Oz
and O2) with extended synchronous activity in different TF windows (regions
17 and 18 in Figure 13). Phase variance decreases globally at 13 and 14 Hz, and
mainly in the occipital sites at 15 Hz.
Early activity in the gamma band (30 to 40 Hz) is very similar to the upper

beta band, with an increase of synchronous activity from 50 to 300 ms. Later
we find different synchronization patterns involving temporal-occipital areas
(regions 14 and 19), temporal-parietal-occipital (region 15), and all sites except
Fp2 (region 16).
There are a few interesting observations: first, the image gestalt formation

ocurring around 200 ms may be correlated with a significant increment in large-
scale, long-range synchrony, mainly in the beta and gamma range. This activity
is accompained by a significant power increase in the low beta band. Second, the
identification (naming) process might be characterized by a power increase in
theta (300 to 600 ms) and synchronous activity which involves occipital nodal
points. Third, the preparation of the motor response is probably related to
increased synchronous activity in the lower gamma range (around 34 Hz, 600 to
800 ms). Finally, the overall process from 200 ms until the end of the experiment
is characterized by synchronous activity with occipital nodes which also display
a power decrease in the theta, alpha, and beta ranges, and also later (from 800
ms) in the delta band.
We have also observed that for nodal points connected to sites that show

little or no synchronization among them, the relative increase in synchrony is
usually correlated with a significant power decrease. To study this in detail, we
define a site e as k-nodal at time t and frequency ω if it shows significant increase
in synchronization with at least k different sites. Figure 18 shows all 15-nodal
sites for the Figures experiment. Let Nk be the number of k-nodal points in
the TFT space and A−

k the number of k-nodal points that also show a power
decrease, then the conditional probability of significant power decrease given
that a site is k-nodal can be estimated by P−

k = A−
k /Nk. One may similarly

estimate the probability of amplitude increment P +
k . These probabilities are

shown in Figure 19, where it is clear that P−
k increases with the number of
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Figure 19: Conditional probabilities of amplitude increment (red) and decrease
(green) in k-nodal points.

couplings k.
This behaviour may be explained with the EEG population model: sup-

pose the population covered by the nodal point is divided into various sub-
populations, each one of which is coupled with a different site (see Figure 20).
If the sites to which the nodal point is connected are not in synchrony, the under-
lying sub-population phases may assumed to be fairly different. In other words,
the underlying phases {φj} will show high dispersion, which will be reflected
as a low apparent amplitude A∗

ωe (Equation 51). Figure 21 shows a synthetic
example which simulates a nodal point placed at O2. The particular model for
each virtual source V Se is given by

V Se(t) =

Nk∑

k = 1

αe,k cos(ωt+ φk) + ǫe(t), ǫe(t) ∼ N (0, σǫ) (56)

with Nk = Ne, ω = 10 Hz (for this example), σǫ = 0.02, and underlying phases
φk ∼ U (−π, π), k = 1, . . . , Nk. In the pre-stimulus segment, neurons under site
e oscillate predominantly with phase φe, thus there is little synchronous activity.
This may be accomplished by assigning αe,e a higher value than αe,k, k �= e for
each e = 1, . . . , Ne. Specifically, we have that

αe,k =







|ηe,k|, ηe,k ∼ N (0, σ) if k �= e,

1−
∑

k �= e αe,k if k = e.
(57)

with σ = 0.01 for this particular example.
In the post-estimulus we model site e n od as a nodal point by increasing the

proportion of sub-populations with phases φk, k �= en od (at the expense of a
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Figure 20: Population model applied to a nodal point: each sub-population un-
der the nodal site is coupled with a different site (shown in blue). The blue sites
show no interaction between themselves thus the phases {φj} may be different
enough to originate a drop in the nodal point’s apparent amplitude.

lower αenod,enod
). This will also cause a drop in the nodal site’s amplitude, just

as expected. The αenod,k’s in our example are almost uniformly distributed:

αenod,k =







| 1
Ne
+ η′enod,k|, η

′
enod,k

∼ N (0, σ) if k �= en od ,

1−
∑

k �= 1 αenod,k if k = en od .
(58)

Additionally, we have modeled a syncrony decrease among all non-nodal sites
by halving the variance of the αek’s in Equation (57) (only for non-nodal sites
in the post-estimulus segment). This can be seen as a resynchronization process
where half the neurons of each sub-population k under site e change their phase
from φk to φe, which results in a decrease in synchrony with site k.

Conclusion

Brain electroencephalographic activity changes as a function of state. During
the performance of different tasks, several neuronal assemblies become active
simultaneously. These neuronal networks are not necessarily contiguous and
may occupy different cortical areas producing complex spatiotemporal patterns
of synchronization or desynchronization in relation to a previous state. Zero
phase measurements between leads indicate that the EEG recorded in such
leads became highly synchronized and may be integrating a network related
to a particular psychophysiological process. Thus, phase relationships between
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Figure 21: Synthetic example of a nodal point generated (O2) with the popula-
tion model. The left graph represents the average synchrony pattern obtained
in the alpha band for the post-stimulus segment. The right graph shows the
amplitude map from -100 to 300 ms (0 ms being the time of stimulus onset)
where there is a clear amplitude drop in the nodal site.

regions may give important information about the dynamics of different cell
assemblies.
The detection of these phase relationships must be performed with care:

some of the common methods such as CSD estimation and coherence may intro-
duce artifacts in the phase and/or synchrony measurements, and thus may not
be the most adequate for detecting long-range synchrony. Our procedure effec-
tively avoids these problems by combining a cortical projection technique, spher-
ical quadrature filters, and Bayesian classification of an instantaneous phase-lock
measure. On the other hand, TFT visualization techniques have proven to be
very useful for the analysis of cognitive tasks as they allow for a quick and in-
teractive exploration of the TF plane while still providing spatial detail. The
new insights in the Figures experiment and the nodal sites are examples of the
usefulness of these tools.

Appendix A

We have tested our method with five other experiments besides the Figures
experiment. Here we present the following maps (post-stimulus segments only)
for each experiment: automatically segmented synchrony map, SIH, SDH, am-
plitude map, and LPD map (Figures 22 through 46). Detailed analysis for some
of these experiments will be presented in forthcoming papers.

Words experiment. This is similar to the Figures experiment (Harmony et
al., 2001) with the exception that words instead of figures are presented on the
screen. The subjects are instructed to press one button if the word corresponds
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to an animal and starts with a consonant, and another button if the word does
not correspond to an animal and starts with a consonant. If the words starts
with a vowel, the subject must not respond.

3-digit and 5-digit Sternberg experiments [Harmony et al., 2004]. A visual
warning stimulus (lasting 300 ms) is presented at the start of each trial. After
two seconds, a set of three or five digits (memory set) is presented for 1500
ms. Two seconds later, a single digit (probe stimulus) is displayed for 300 ms.
The subject must respond with one button if the probe was in the memory
set, and with another button if it was not. In 50% of the trials, the number
belonged to the memory set. The EEG was sampled each 5 ms with reference
to linked ears from Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4,
T5, T6, Fz, Cz, Pz, and Oz. Segments of 1280 ms were selected immediately
before the memory set was presented (pre-segment) and immediately before the
presentation of the probe stimulus (post-segment). Only correct responses and
artifact-free segments were analyzed.

Letters experiment. This task is designed to study the inhibition of the
motor response. A series of uppercase letters are shown, one at a time, on the
screen. The interval between the presentation of one letter and the next one is
two seconds. The subject is instructed to respond with a button only if a ’X’
that has been preceded by an ’O’ appears. This is the Go condition. Any letter
different than ’X’ which has been preceded by an ’O’ accounts for the NoGo
condition, as it may originate the inhibition of the motor response. EEG was
recorded each 5 ms from Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3,
T4, T5, T6, Fz, Cz, and Pz. Each segment was selected from 1 s immediately
before the presentation of each letter (pre-segment) to 1560 ms immediately
after (post-segment).
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Figure 22: Full automatic segmentation for the Words experiment.
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Figure 23: Full synchrony increase histogram for the Words experiment.
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Figure 24: Full synchrony decrease histogram for the Words experiment.
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Figure 25: Map of significant amplitude changes for the Words experiment.
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Figure 26: Map of significant LPD changes for the Words experiment.
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Figure 27: Full automatic segmentation for the 3-digit Sternberg experiment.
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Figure 28: Full synchrony increase histogram for the 3-digit Sternberg experi-
ment.
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Figure 29: Full synchrony decrease histogram for the 3-digit Sternberg experi-
ment.
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Figure 30: Map of significant amplitude changes for the 3-digit Sternberg ex-
periment.
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Figure 31: Map of significant LPD changes for the 3-digit Sternberg experiment.
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Figure 32: Full automatic segmentation for the 5-digit Sternberg experiment.
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Figure 33: Full synchrony increase histogram for the 5-digit Sternberg experi-
ment.
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Figure 34: Full synchrony decrease histogram for the 5-digit Sternberg experi-
ment.
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Figure 35: Map of significant amplitude changes for the 5-digit Sternberg ex-
periment.
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Figure 36: Map of significant LPD changes for the 5-digit Sternberg experiment.

51



Figure 37: Full automatic segmentation for the Letters (Go condition) experi-
ment.
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Figure 38: Full synchrony increase histogram for the Letters (Go condition)
experiment.
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Figure 39: Full synchrony decrease histogram for the Letters (Go condition)
experiment.
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Figure 40: Map of significant amplitude changes for the Letters (Go condition)
experiment.
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Figure 41: Map of significant LPD changes for the Letters (Go condition) ex-
periment.
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Figure 42: Full automatic segmentation for the Letters (NoGo condition) ex-
periment.
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Figure 43: Full synchrony increase histogram for the Letters (NoGo condition)
experiment.
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Figure 44: Full synchrony decrease histogram for the Letters (NoGo condition)
experiment.
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Figure 45: Map of significant amplitude changes for the Letters (NoGo condi-
tion) experiment.
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Figure 46: Map of significant LPD changes for the Letters (NoGo condition)
experiment.
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