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Abstract

In this paper, we determine the symmetrised density of a nonsingular dou-
bly noncentral matrix variate beta type I and II distributions under different
definitions.
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noncentral distribution, matrix variate beta.

1 Introduction

In the univariate case, the doubly non-central beta type II distribution (also termed
doubly non-central F distribution) has been studied by Searle (1971, p. 53) and Tiku
(1965). This distribution has been utilized to find power functions for the analysis
of variance tests in the presence of an interaction for the two-way model layout with
one observation per cell (see Bulgren (1971)). It has also been used in engineering
problems in the context of information theory to calculate the error probability
for a particular binary signalling system in which the receiver tries to learn the
state of a multiple parallel link noise perturbed channel (see Price (1962)). Doubly
non-central distributions have also been applied to problems in communications, in
signals captured through radar, and pattern recognition where quadratic forms on
Normal data are involved (see, for example, Turin (1959), Kailath (1961), Sebestyen
(1961) and Wishner (1962)).

In the multivariate case, the matrix variate beta type I and II distributions for the
central, non-central and doubly non-central cases have been studied by different au-
thors from diverse approaches, see Olkin and Rubin (1964), Khatri (1970), Chikuse
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(1980), Muirhead (1982), Cadet (1996), Gupta and Nagar (2000), Dı́az-Garćıa and
Gutiérrez-Jáimez (2001), among many others. In particular, doubly non-central
distributions play a very important role in testing the power of hypotheses in the
context of multivariate analysis, such as canonical correlation analysis and general
linear hypothesis in MANOVA, see Muirhead (1982) and Srivastava (1968). More-
over, the univariate problems mentioned above, in the context of the theory of infor-
mation and communication have recently been studied in the multivariate case, and
doubly non-central matrix variate distributions have again featured in these studies,
see Ting et al. (2004) and Ratnarajah and Vaillancourt (2005), among many others.

In general, the use of non-central, doubly non-central and, especially, beta-type
distributions has not been developed as much as could be desired, due particularly to
the fact that these distributions depend on hypergeometric functions whith matrix
argument, zonal or invariant polynomials. Until very recently, such functions were
quite complicated to evaluate. Studies have recently appeared describing algorithms
that are very efficient in their calculations, both of zonal polynomials and of hyper-
geometric functions with a matrix argument. These algorithms enable a broader
and more efficient use of non-central distributions in general, see Gutiérrez et al.
(2000), Sáez (2004), Demmel and Koev (2004), Koev (2004), Koev and Demmel
(2004) and Dimitriu et al. (2005).

In statistical literature, as well as the classification of the beta distribution as
beta type I and type II (see Gupta and Nagar (2000) and Srivastava and Khatri
(1979)), two alternative definitions have been proposed for each of the latter. Let
us refer initially to the beta type I distribution. If A and B have a central Wishart
distribution, i.e. A ∼ Wm(r, I) and B ∼ Wm(s, I) independently, then the beta
matrix U can be defined as

U =
{

(A + B)−1/2A((A + B)−1/2)′, Definition 1 or,
A1/2(A + B)−1(A1/2)′, Definition 2,

(1)

where C1/2(C1/2)′ = C is a reasonable non-singular factorisation of C, see Gupta
and Nagar (2000), Srivastava and Khatri (1979) and Muirhead (1982). It is apparent
that under Definitions 1 and 2, its density function is given and denoted as

BIm(U ; r/2, s/2) =
1

βm[r/2, s/2]
|U |(r−m−1)/2|Im − U |(s−m−1)/2, (2)

0 < U < Im, denoting as U ∼ BIm(r/2, s/2), with r ≥ m and s ≥ m; where
βm[r/2, s/2] denotes the multivariate beta function defined by

βm[b, a] =
∫

0<S<Im

|S|a−(m+1)/2|Im − S|b−(m+1)/2(dS) =
Γm[a]Γm[b]
Γm[a + b]

,

where Γm[a] denotes the multivariate gamma function and is defined as

Γm[a] =
∫

R>0
etr(−R)|R|a−(m+1)/2(dR),

Re(a) > (m− 1)/2 and etr(·) ≡ exp(tr(·)).

2



An alternative definition for the beta type I matrix was proposed by Srivastava
and Khatri (1979, pp. 94-95), Srivastava (1968), Muirhead (1982, pp. 451-452) and
Gupta and Nagar (2000); it is formulated as follows:

Let B ∼ Wm(s, I) and let us state A = Y ′Y donde Y ∼ Nr×m(0, Ir⊗Im), m > r,
independently of B. Then U = Y (Y ′Y + B)−1Y ′ = Y (A + B)−1Y ′. Moreover,
U ∼ BIr(m/2, (s + r −m)/2).

However, note that in the central and non-central cases, the density, the proper-
ties and the associated distributions can be obtained from the definitions in (1) by
replacing m by r, r by m and s by s + r −m, i.e., by making the substitutions

m → r, r → m, s → s + r −m, (3)

see Srivastava and Khatri (1979, p. 96) or Muirhead (1982, eq. (7), p. 455). For
this reason, we shall focus our attention on the definitions stated in (1).

In an analogous way for the beta type II distributions, the following definitions
have been proposed:

V =





B−1/2A(B−1/2)′, Definition 1,
A1/2B−1(A1/2)′, Definition 2,
Y 1/2B−1Y ′, Definition 3.

(4)

The distribution is denoted by V ∼ BIIm(r/2, s/2). In a similar way to the case
of the beta type I distribution, the results under Definition 3 can be obtained from
the results of Definition 2 and applying the transforms (3), see James (1964) and
Muirhead (1982, pp.451-455).

In this case, the central beta type II density under definitions 1 and 2 is denoted
and defined as

BIIm(V ; r/2, s/2) =
1

β[r/2, s/2]
|V |(r−m−1)/2|I + V |−(r+s)/2, V > 0.

When these ideas are extended to the doubly non-central case, i.e. when A ∼
Wm(r, I,Ω1) and B ∼ Wm(s, I,Ω2), strictly speaking, we have not found the den-
sities of the beta types I and II distributions under Definitions 1 or 2. Rather,
for the case of the beta type II distribution, Chikuse (1980) found the distribu-
tion of Ṽ = B̃−1/2Ã(B̃−1/2)′ where Ã = H ′AH y B̃ = H ′BH, H ∈ O(m), with
O(m) = {H ∈ <m×m|HH ′ = H ′H = Im}. It is straightforward to show that the
procedure proposed by Chikuse (1980) is equivalent to finding the symmetrised
density defined by Greenacre (1973), Greenacre (1973), see also Roux (1975).

In this paper we find the symmetrised density function of the doubly non-central
matrix variate beta types I and II under the three definition proposed in the liter-
ature. Moreover, we find the densities corresponding to the eigenvalues of the beta
distribution types I and II. It is immediately apparent that the central and non-
central distributions are found as particular cases of the distributions being stud-
ied. We propose this as a solution to the problem of determining the non-central
beta densities, as described by Constantine (1963), Khatri (1970) and reconsidered
in Farrell (1985, p. 191) and Gupta and Nagar (2000), see also Dı́az-Garćıa and
Gutiérrez-Jáimez (2006).
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2 Preliminar results

Given a function f(X), X : m×m, X > 0, Greenacre (1973) (see also Roux (1975))
proposes the following definition:

fs(X) =
∫

O(m)
f(HXH ′)(dH), H ∈ O(m) (5)

where O(m) = {H ∈ <m×m|HH ′ = H ′H = Im} and (dH) denotes the normalised
invariant measure on O(m) (Muirhead, 1982, p. 72). This function fs(X) is termed
the symmetrised function. The approach we adopt is to apply this idea of Greenacre
(1973) to find the densities of the symmetrised doubly non-central beta distributions.
To do so, let us consider the following:

Theorem 2.1. Let X > 0, E > 0 matrices m×m, a ≥ (m− 1)/2, b ≥ (m− 1)/2
and

g(X) =
∫

E>0
|E|a+b−(m+1)/2 etr (−Q(X)E) Cκ

(
ΘE1/2R(X)(E1/2)′

)

× Cλ

(
ΞE1/2S(X)(E1/2)′

)
(dE)

where Q(X) > 0, R(X) > 0 and S(X) > 0 are m ×m matrix functions of matrix
X such that, Q(HXH ′) = HQ(X)H ′, H ∈ O(m), with the same property for
R(X) and S(X); Cκ(M) is the zonal polynomial of M corresponding to the partition
κ = (k1, . . . , km) of k with

∑m
i=1 ki = k and Cλ(N) is the zonal polynomial of N

corresponding to the partition λ = (l1, . . . , lm) of l with
∑m

i=1 li = l. Then

gs(X) =
∑

φ∈κ·λ

Γm[a + b](a + k)φ

|Q(X)|
Cκ,λ

φ (Θ, Ξ)Cκ,λ
φ (R(X)Q(X)−1, S(X)Q(X)−1)

Cφ(I)
,

where Q(X)−1 denotes the inverse of matrix Q(X) (not the inverse function of
Q(·)), Cκ,λ

φ (·) is the invariant polynomial with two matrix arguments, (t)τ is the
generalised hypergeometric coefficient or product of Pochhammer symbols.

Proof. We have

g(X) =
∫

E>0
|E|a+b−(m+1)/2 etr (−Q(X)E) Cκ

(
ΘE1/2R(X)(E1/2)′

)

× Cλ

(
ΞE1/2S(X)(E1/2)′

)
(dE).

Consider the symmetrised function g and the transform E = HEH ′, noting that
(dE) = (dHEH ′). Then

gs(X) =
∫

E>0

|E|a+b−(m+1)/2 etr (−Q(X)E)
∫

O(m)

Cκ

(
ΘHE1/2R(X)(E1/2)′H ′

)

× Cλ

(
ΞHE1/2S(X)(E1/2)′H ′) (dH)(dE),

from Davis (1980, equation (4.13)) (see also Chikuse (1980, equation (2.2))) and
thus

4



gs(X) =
∑

φ∈κ·λ

∫

E>0
|E|a+b−(m+1)/2 etr (−Q(X)E)

×
Cκ,λ

φ (Θ, ∆)Cκ,λ
φ (R(X)E, S(X)E)

Cφ(I)
(dE).

Now, from Davis (1980, pp. 297-298)

gs(X) =
∑

φ∈κ·λ

Γ[(a + b), φ]m
|Q(X)|a+b

Cκ,λ
φ (Θ,∆)Cκ,λ

φ (R(X)Q(X)−1, S(X)Q(X)−1)

Cφ(I)
,

where Γm[(a + b), φ] = (a + b)φΓm[(a + b)], see Constantine (1963).

3 Doubly noncentral beta type I distribution

Theorem 3.1. Suppose that U has a doubly non-central matrix variate beta type I
under the definition 1, which is denoted as U ∼ BI1(r/2, s/2,Ω1, Ω2). Then, using
the notation for the operator sum as in Davis (1980) we have that its symmetrised
density function is

fs(U) = BIm(U ; r/2, s/2) etr
(−1

2(Ω1 + Ω2)
)

×
∞∑

κ,λ; φ

1
2(r + s)φ(

1
2r

)
κ

(
1
2s

)
λ
k! l!

Cκ,λ
φ (1

2Ω1,
1
2Ω2)C

κ,λ
φ (U, (I − U))

Cφ(I)
, 0 < U < I.

Proof. By independence, the joint density of A and B is

fA,B(A,B) = c|A|(r−m−1)/2|B|(s−m−1)/2 etr
(−1

2(A + B)
)

× 0F1

(
1
2r; 1

4Ω1A
)

0F1

(
1
2s; 1

4Ω1B
)
, (6)

where

c =
etr

(−1
2 (Ω1 + Ω2)

)

2m(r+s)/2Γm[r/2]Γm[s/2]
. (7)

By performing the transforms C = A+B with (dA)∧ (dB) = (dA)∧ (dC) and then
the transform A = C1/2U(C1/2)′ with (dA)∧ (dC) = |C|(m+1)/2(dC)∧ (dU), we find
that the joint density of C and U is given by

fC,U (C,U) = c|U |(r−m−1)/2|I − U |(s−m−1)/2|C|(r+s−m−1)/2 etr
(−1

2C
)

× 0F1

(
1
2r; 1

4Ω1C
1/2U(C1/2)′

)
0F1

(
1
2s; 1

4Ω1C
1/2(I − U)(C1/2)′

)
,

From which, by expanding the hypergeometric functions in infinite series of zonal
polynomials and integrating with respect to C, the desired result now follows with
the assistance of Theorem 2.1. Note that in this case Q(·) = 1

2I, R(·) = U and
S(·) = (I − U) in Theorem 2.1.

Similarly, under Definition 2, we have:
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Theorem 3.2. Suppose that U has a doubly non-central matrix variate beta type I
distribution under Definition 2, which shall be denoted as U ∼ BI2(r/2, s/2, Ω1, Ω2).
Then, its symmetrised density function is the same as in Theorem 3.1.

Proof. By independence, the joint density of A and B is given by (6). Let C = A+B
with (dA) ∧ (dB) = (dA) ∧ (dC) and consider the transform C = (A1/2)′U−1A1/2

with (dA) ∧ (dC) = |A|(m+1)/2|U |−(m+1)(dA) ∧ (dU). Then, the joint density of A
and U is given by

fA,U (A,U) = c|U |−(s+m+1)/2|I − U |(s−m−1)/2|A|(r+s−m−1)/2 etr
(−1

2AU−1
)

× 0F1

(
1
2r; 1

4Ω1A)′
)

0F1

(
1
2s; 1

4Ω1A
1/2(I − U)U−1(A1/2)′

)
.

The result follows from integrating with respect to A, taking Q(·) = 1
2U−1,

R(·) = I and S(·) = (I − U)U−1 and C = A in Theorem 2.

Corollary 3.1. Let U ∼ BIj(B)(s/2, r/2, Ω1,Ω2), j = 1 or 2, then the joint density
function of the eignvalues Λ = diag(u1, . . . , um), 1 > u1 > · · · > um > 0 of U is

f(u1, . . . , um) =
πm2/2 etr

(−1
2(Ω1 + Ω2)

)

Γm[m/2]βm[r/2, s/2]

m∏

i=1

{
u

(r−m−1)/2
1 (1− ui)(s−m−1)/2

}

×
m∏

i<j

(ui − uj)
∞∑

κ,λ;φ

1
2(r + s)φ(

1
2r

)
κ

(
1
2s

)
λ
k! l!

Cκ,λ
φ (1

2Ω1,
1
2Ω2)C

κ,λ
φ (Λ, (I − Λ))

Cφ(I)
,

Proof. The proof follows immediately by applying the Theorem 3.2.17 in Muirhead
(1982, p. 104) to the beta type I density in Theorem 3.1, using the equation (3.12)
in Chikuse (1980).

4 Doubly noncentral beta type II distribution

Theorem 4.1. Suppose that F > 0 has a doubly non-central matrix variate beta type
II distribution under Definition 1, denoted as F ∼ BII1(r/2, s/2, Ω1,Ω2). Then,
using the notation for the operator sum as in Davis (1980), we have that its sym-
metrised density function is

gs(F ) = BIIm(F ; r/2, s/2) etr
(−1

2(Ω1 + Ω2)
)

×
∞∑

κ,λ;φ

1
2(r + s)φ(

1
2r

)
κ

(
1
2s

)
λ
k! l!

Cκ,λ
φ (1

2Ω1,
1
2Ω2)C

κ,λ
φ ((I + F )−1F, (I + F )−1)

Cφ(I)
.

Proof. The joint density function of A and B is given by (6). Transforming F =
B−1/2A(B−1/2)′ and noting that (dA) ∧ (dB) = |B|(m+1)/2(dB) ∧ (dF ), the joint
density of B and F is

gF,B(F,B) = c|F |(r−m−1)/2|B|(r+s−m−1)/2 etr
(−1

2B1/2(I + F )(B1/2)′
)

× 0F1

(
1
2r; 1

4Ω1B
1/2F (B1/2)′

)
0F1

(
1
2s; 1

4Ω1B)′
)
,

From which, by expanding the hypergeometric functions in infinite series of zonal
polynomials and integrating with respect to B, and then taking Q(·) = 1

2(I + F ),
R(·) = F and S(·) = I in Theorem 1, the result is obtained.
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From Definition 2, we have:

Theorem 4.2. Suppose that F has a doubly non-central matrix variate beta type II
distribution under Definition 2, which shall be denoted as F ∼ BI2(r/2, s/2, Ω1, Ω2).
Then, its symmetrised density functions is the same as in Theorem 4.1.

Proof. By independence the joint density function of A and B is given by (6). Now,
we make the change of variable F = (A1/2)′B−1A1/2 observing that (dA) ∧ (dF ) =
|A|(m+1)/2|F |−(m+1)(dA) ∧ (dF ). The joint density of A, F is then

gA,F (A,F ) = c|F |−(s+m+1)/2|A|(r+s−m−1)/2 etr
(−1

2A(I + F−1)
)

× 0F1

(
1
2r; 1

4Ω1A)′
)

0F1

(
1
2s; 1

4Ω1A
1/2F−1(A1/2)′

)
.

Integrating with respect to A using the Theorem 3.1 with Q(·) = 1
2(I + F−1),

R(·) = I and S(·) = F−1 gives the stated marginal density for F .

Corollary 4.1. Let F ∼ BIIj(B)(s/2, r/2, Ω1,Ω2), j = 1 or 2, then the joint
density function of the eignvalues Υ = diag(f1, . . . , fm), f1 > · · · > fm > 0 of F is

g(f1, . . . , fm) =
πm2/2 etr

(−1
2(Ω1 + Ω2)

)

Γm[m/2]βm[r/2, s/2]

m∏

i=1

{
f

(r−m−1)/2
1 (1 + fi)−(s+r)/2

}

×
m∏

i<j

(fi − fj)
∞∑

κ,λ;φ

1
2(r + s)φ(

1
2r

)
κ

(
1
2s

)
λ
k! l!

Cκ,λ
φ ((I + Υ)−1Υ, (I −Υ)−1)
[
Cκ,λ

φ (1
2Ω1,

1
2Ω2)

]−1
Cφ(I)

,

Proof. The proof follows immediately by applying Theorem 3.2.17 in Muirhead
(1982, p. 104) to the beta type II density in Theorem 3.1, using equation (3.12) in
Chikuse (1980).

Remark 4.1. Note that when Ω1 = Ω2 = 0 in Theorem 3.1, the central matrix
variate beta type I symmetrised or nonsymmetrised distribution is obtained (in this
case, the two coincide).

Similarly, note that when Ω1 = 0, we obtain the symmetrised noncentral matrix
variate beta type I(A) distribution, see Greenacre (1973) and Gupta and Nagar
(2000, p. 188), given by

fs(U) = BIm(U ; r/2, s/2) etr
(−1

2Ω2

)
1F

(m)
1

(
1
2(r + s); 1

2s; 1
2Ω2, (I − U)

)
. (8)

However, from (8) it is possible to propose an expression for the nonsymmetrised
density of U ; this is done by inversely applying the definition of symmetrised density
given by Greenacre (1973). This way observing that
∫

H∈O(m)
1F1

(
1
2(r + s); 1

2s; 1
2Ω2H(I − U)H ′) (dH) =

1F
(m)
1

(
1
2(r + s); 1

2s; 1
2Ω2, (I − U)

)

we obtain

fU (U) = BIm(U ; r/2, s/2) etr
(−1

2Ω2

)
1F1

(
1
2(r + s); 1

2s; 1
2Ω2(I − U)

)
. (9)
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Of course, densities (8) and (9) are still invariant under definitions 1 and 2. Note,
moreover, that from (9) we have indirectly reached a solution to the integral proposed
by Constantine (1963), Khatri (1970) and reformulated by Farrell (1985, p. 191)
and Gupta and Nagar (2000, pp. 188-189); see also Dı́az-Garćıa and Gutiérrez-
Jáimez (2006).

Analogous particular results are straightforwardly obtained for the noncentral
matrix variate type I(B) distribution from Theorem 3.1 and for the noncentral matrix
variate type II(A) and II(B) distributions from Theorem 4.1, see Gupta and Nagar
(2000) and Greenacre (1973). Finally, note that the densities of the eigenvalues of
the central and noncentral beta type I and II distributions in all their variates are
found as particular cases of Corollaries 3.1 and 4.1.

5 Conclusions

In this paper, we show that the densities of doubly non-central matrix variate beta
type I distributions, obtained under Definitions 1 and 2, coincide. An analogous
result is obtained for the case of the doubly non-central beta type II distribution,
and therefore we need not concern ourselves with which definition to adopt, as
either will serve our purpose. Note, furthermore, that both in the case of the
beta type I distribution and in that of type II, when we take Ω1 = Ω2 = 0, the
corresponding central distributions are obtained (these being symmetrised or non-
symmetrised, as in this case, they coincide). In addition, when we assume Ω1 = 0,
we obtain beta type I(A) and II(A) non-central distributions (symmetrised and
non-symmetrised), see Gupta and Nagar (2000, pp. 188 and 190) or Greenacre
(1973). Otherwise, if Ω2 = 0, the distributions obtained are beta type I(B) and
beta type II(B) symmetrised and non-symmetrised, see Gupta and Nagar (2000, p.
189-192) or Greenacre (1973). In the case of the non-central distributions obtained,
intrinsically the problem presented by Constantine (1963) and by Khatri (1970), and
reconsidered in Farrell (1985, p. 191) and Gupta and Nagar (2000, pp. 188-189),
see also Daz-Garca and Gutirrez-Jimez (2006) is resolved.

Acknowledgment

This research work was partially supported by IDI-Spain, grant MTM2005-09209,
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