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Abstract

Motivated by a classical control problem from actuarial mathematics, we study
smoothness and convexity properties of q-scale functions for spectrally negative Lévy
processes. Continuing from the very recent work of [2] and [24] we strengthen their
collective conclusions by showing, amongst other results, that whenever the Lévy mea-
sure has a non-increasing density which is log convex then for q > 0 the scale function
W (q) is convex on some half line (a∗,∞) where a∗ is the largest value at which W (q)′

attains its global minimum. As a consequence we deduce that de Finetti’s classical
actuarial control problem is solved by a barrier strategy where the barrier is positioned
at height a∗.

AMS 2000 Mathematics Subject Classification: Primary 60J99; secondary 93E20,

60G51.
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1 Introduction

This paper follows in the tradition of a growing body of literature concerning actuarial

mathematics which explores the interaction of classical models of risk and subtle properties

of Lévy processes with a view to gaining new results on both sides (see for example [2, 9,

17, 18, 20, 21, 22, 24, 26, 30]). Specifically we shall push further recent results given in
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[2, 24, 23] regarding the analytical properties of scale functions for spectrally negative Lévy

processes and their relevance to solving the natural generalization of de Finetti’s classical

control problem. For the remainder of this introduction we shall elaborate on the latter in

more detail before moving on to our results and their proofs.

Henceforth we assume that X = (Xt : t ≥ 0) is a spectrally negative Lévy process with

Lévy triplet given by (γ, σ,Π), where γ ∈ R, σ ≥ 0 and Π is a measure on (0,∞) satisfying∫ ∞
0

(1 ∧ x2)Π(dx) <∞.

The Laplace exponent of X is given by

ψ(θ) = log(E(eθX1)) = γθ +
1

2
σ2θ2 −

∫ ∞
0

(1− e−θx − θx1{0<x<1})Π(dx).

Let Φ(0) be the largest real zero of ψ and recall that Φ(0) > 0 if and only if X drifts to

−∞, or equivalently ψ′(0+) < 0. The restriction ψ : [Φ(0),∞)→ [0,∞) is a bijection whose

inverse will be denoted by Φ.

Let φ be the Laplace exponent of the descending ladder height subordinator Ĥ = (Ĥs, s ≥
0) associated to X. Standard theory dictates that φ and ψ are related by the Wiener-Hopf

factorization

ψ(θ) = (θ − Φ(0))φ(θ), θ ≥ 0,

where φ satisfies

φ(θ) = κ+ dθ +

∫ ∞
0

(1− e−θx)Υ(x)dx, θ ≥ 0, (1.1)

with d = σ2/2, κ ≥ 0, κΦ(0) = 0 and Υ : (0,∞) → (0,∞) a function such that
∫∞

0
(1 ∧

x)Υ(x)dx <∞. Moreover,

Π(x) :=

∫ ∞
x

Π(dx) and Υ(x) :=

∫ ∞
x

Υ(z)dz = eΦ(0)x

∫ ∞
x

e−Φ(0)zΠ(z)dz, x > 0

where the last equality is also a well established fact. The Wiener-Hopf factorization for ψ,

in its Laplace transform form also states that ψ, Φ and the Laplace exponent of the bivariate

descending ladder processes, say κ̂ : R+ × R+ 7→ R, are related by the equation

κ̂(α, β) = c
α− ψ(β)

Φ(α)− β
, α, β ≥ 0, (1.2)

where c > 0 is an arbitrary constant depending on the normalization of local time at the

infiumum. Without loss of generality we can and will suppose that it is equal to 1.

A key object in the fluctuation theory of spectrally negative Lévy processes and its

applications is the scale functions. For each q ≥ 0 the so called q-scale function of X,
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W (q) : R → [0,∞), is the unique function such that W (q)(x) = 0 for x < 0 and on [0,∞) is

a strictly increasing and continuous function whose Laplace transform is given by∫ ∞
0

e−θxW (q)(x)dx =
1

ψ(θ)− q
, θ > Φ(q).

In the last 10 years or so the use of scale functions has proved to be of great importance

in a wide variety of applied probability models driven by spectrally negative Lévy processes.

We refer to [19], [16] and [23] for a recent overview of their presence in the literature. As

alluded to above, we are concerned here in particular with their importance in one of the

most classical problems of modern actuarial mathematics: de Finetti’s control problem.

Recall that the classical Cramér-Lundberg risk process corresponds to a spectrally nega-

tive Lévy process X taking the form of a compound Poisson process with arrival rate λ > 0

and negative jumps, corresponding to claims, having common distribution function F with

finite mean 1/µ as well as a drift c > 0, corresponding to a steady income due to premiums.

It is usual to assume the net profit condition c − λ/µ > 0 which says nothing other than

ψ′(0+) > 0.

An offshoot of the classical ruin problem for the Cramér-Lundberg process was introduced

by de Finetti [6]. His intention was to make the study of ruin under the Cramér-Lundberg

dynamics more realistic by introducing the possibility that dividends are paid out to share

holders up to the moment of ruin. Further, the payment of dividends should be made in

such a way as to optimize the expected net present value of the total dividends paid to

the shareholders from time zero until ruin. Mathematically speaking, de Finetti’s dividend

problem amounts to solving a control problem which we state in the next paragraph but

within the framework of the general Lévy insurance risk process. The latter process is

nothing more than a general spectrally negative Lévy process which respects the analogue

of the net profit condition, namely ψ′(0+) > 0 (although the latter is not necessary in what

follows).

Suppose that X is a general spectrally negative Lévy process (no assumption is made

on its long term behaviour) with probabilities {Px : x ∈ R} such that under Px we have

X0 = x with probability one. (For convenience we shall write P0 = P). Let ξ = {Lξt : t ≥ 0}
be a dividend strategy consisting of a left-continuous non-negative non-decreasing process

adapted to the (completed and right continuous) filtration {Ft : t ≥ 0} of X. The quantity

Lξt thus represents the cumulative dividends paid out up to time t by the insurance company

whose risk process is modelled by X. The controlled risk process when taking into account

of the dividend strategy ξ is thus U ξ = {U ξ
t : t ≥ 0} where U ξ

t = Xt − Lξt . Write σξ =

inf{t > 0 : U ξ
t < 0} for the time at which ruin occurs when the dividend payments are

taking into account. A dividend strategy is called admissible if at any time before ruin a

lump sum dividend payment is smaller than the size of the available reserves; in other words

Lξt+ − L
ξ
t ≤ U ξ

t for t < σξ. Denoting the set of all admissible strategies by Ξ, the expected
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value discounted at rate q > 0 of the dividend policy ξ ∈ Ξ with initial capital x ≥ 0 is given

by

vξ(x) = Ex

(∫ σξ

0

e−qtdLξt

)
,

where Ex denotes expectation with respect to Px and q > 0 is a fixed rate. De Finetti’s

dividend problem consists of solving the following stochastic control problem: characterize

v∗(x) := sup
ξ∈Ξ

vξ(x) (1.3)

and, further, if it exists, establish a strategy ξ∗ such that v∗(x) = vξ∗(x).

This problem was considered by Gerber [12] who proved that, for the Cramér-Lundberg

model with exponentially distributed jumps, the optimal value function is a result of a barrier

strategy. That is to say, a strategy of the form Lat = a ∨ X t − a for some a ≥ 0, in which

case the controlled process Ua
t = Xt − Lat is a spectrally negative Lévy process reflected in

the barrier a.

This result has been re-considered very recently in [3] for Cramér-Lundberg processes

with a general jump distribution. In the latter paper it was shown that for an appropriate

choice of jump distribution, the above described barrier strategy is not optimal. In much

greater generality, the paper [2] focuses on the spectrally negative case and finds sufficient

conditions for the optimal strategy to consist of a simple barrier strategy. It is in the latter

paper that we first begin to see the connection with scale functions as the sufficient conditions

given in [2] are phrased in terms of a variational inequality involving the value of a barrier

strategy which itself can be expressed in terms of the associated scale function W (q). In a

remarkable development shortly thereafter, Loeffen [24] made a decisive statement connecting

the shape of the scale function W (q) to the existence of an optimal barrier strategy. Loeffen’s

result begins by requiring that the scale function W (q) is sufficiently smooth meaning that

it belongs to C1(0,∞) if X is of bounded variation and otherwise belongs to C2(0,∞).

Loeffen’s theorem reads as follows.

Theorem 1.1. Suppose that X is such that its scale functions are sufficiently smooth. Let

a∗ = sup{a ≥ 0 : W (q)′(a) ≤ W (q)′(x) for all x ≥ 0},

(which is necessarily finite) where we understand W (q)′(0) = W (q)′(0+). Then the barrier

strategy at a∗ is an optimal strategy if

W (q)′(a) ≤ W (q)′(b) for all a∗ ≤ a ≤ b <∞. (1.4)

The condition (1.4) is tantamount to saying that the scale function W (q) is convex beyond

the global minimum of its first derivative. An intriguing result in itself, it is however arguably
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not a particularly practical condition to verify. None-the-less [24] makes one further striking

step by providing a very natural class of Lévy risk processes for which (1.4) holds. More

precisely, it is shown that (1.4) holds when the Lévy measure Π is absolutely continuous

with a completely monotone density.

Thanks then to Theorem 1.1 a clear mandate is set with regard to finding as broad a class

of Lévy processes as possible for which the barrier strategy is optimal through smoothness

and convexity properties of the scale functions W (q). Motivated by this problem this paper

serves a twofold purpose. Firstly to establish results which discuss the issue of smoothness

and convexity of scale functions and secondly, using some of the latter results, to return

to de Finetti’s control problem and establish a larger class of Lévy processes for which the

barrier strategy is optimal.

The remainder of the paper is structured as follows. In Section 2 we present an ensemble of

results which provide sufficient conditions for smoothness, concavity and (ultimate) convexity

of scale functions. In Section 3 we give our main result on de Finetti’s control problem: when

the Lévy measure of the underlying process has a non-increasing and log convex density, the

solution to de Finetti’s control problem is a barrier strategy. We then make a few remarks

about this result and the main issues involved in the proof of this result. Also in this section

we explain why this is a broader class of Lévy processes by giving some explicit examples.

In Section 4 we use the results of Section 2 to prove our main result on de Finetti’s control

problem. We are not able to apply Theorem 1.1 verbatim for the present case however.

Instead we must revisit its proof in order to weaken the meaning of ‘sufficiently smooth’ in

its statement. Ultimately this requires the involvement of stochastic calculus which appeals

to both semi-martingale local time and Markov local time. Some of the proofs of Section 2

are left to an Appendix.

2 Convexity and Smoothness of Scale Functions

We will first deal with 0-scale functions for spectrally negative Lévy processes that do not

drift to −∞, that is, processes for which Φ(0) = 0. Unless otherwise stated throughout this

section we will assume that the measure Π has a strictly positive density π(x), x > 0, with

respect to the Lebesgue measure. In this case,

Υ(x) = Π(x,∞) := Π(x) =

∫ ∞
x

π(y)dy, x > 0.

Before stating our first result we recall that a subordinator H is said special if there exists

another subordinator H∗, the so-called conjugate, such that if h and h∗ are their respective

Laplace exponents then

θ = h(θ)h∗(θ), θ ≥ 0.
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We refer to [29] for a recent account of properties of this subclass of subordinators.

Our first result is on the concavity of the 0-scale function which, for convenience, we

henceforth denote by W instead of W (0).

Theorem 2.1. Assume that Φ(0) = 0. If the function x 7→ Υ(x) :=
∫∞
x

Υ(z)dz is log convex

on (0,∞), then the scale function W is concave on (0,∞).

Proof. It follows from the log convexity of Υ and Theorem 2.4 of [29] that Ĥ is a special

subordinator and the renewal function of Ĥ has a decreasing derivative u which is also called

the potential density of Ĥ. Since W ′(x) = u(x), we know that W is concave. 2

The next theorem is one of our main results of this section.

Theorem 2.2. Assume that Φ(0) = 0. If the function x 7→ Π(x) =
∫∞
x
π(s)ds is log convex

on (0,∞), then the function W ′ is convex on (0,∞). Furthermore, if X has a Gaussian

term or equivalently the drift of the descending ladder height process is strictly positive then

W ∈ C2(0,∞).

Proof. By our assumption, we know that the function

Υ(x) =

∫ ∞
x

Π(s)ds, x > 0

is in C1(0,∞). It follows from the first paragraph in the proof of Theorem 2 in [13] that

this function is also log convex. Therefore it follows from Theorem 2.4 of [29] that Ĥ is a

special subordinator and the renewal function of Ĥ has a decreasing derivative u which is

also called the potential density of Ĥ. It follows from [28] that the function u satisfies the

following equation

du(t) +

∫ t

0

Υ(t− s)u(s)ds = 1, t > 0,

where d ≥ 0 is the drift of Ĥ. Now when d = 0 we can apply Theorem 3 of [14] to conclude

that the function u is convex. When d > 0 we can apply Theorem 2 of [13] combined with

the first two sentences of Section 4 in [13], to conclude that u is convex and in C1(0,∞).

Now the conclusion follows since W ′(x) = u(x). 2

The two theorems above and the arguments used in their proofs have several conse-

quences, the first of which can be summarized as follows. If Π(s), s > 0, is a log convex

function, then Υ(s), s > 0, is also log convex and W ′ is a decreasing and convex function

which implies that the subordinator Ĥ with the tail of its Lévy measure given by Υ is special,
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and thus there exists a subordinator Ĥ∗, with the tail of its Lévy measure denoted by Υ
∗
(x),

such that

W ′(x) = W ′(∞) + Υ
∗
(x), x > 0,

and as a consequence Υ∗ has a decreasing density in (0,∞). Then Theorem 2 and Corollary

1 in [23] imply in turn that there exists a spectrally negative Lévy process that does not

drift to −∞ such that its scale function W ∗ satisfies

W ∗′(x) = κ+ Υ(x), x > 0

and therefore W ∗′ is log convex.

Another interesting consequence provides a sufficient condition in terms of the potential

density to guarantee that a subordinator has a Lévy measure with a decreasing density. This

may be useful in the cases where a subordinator is characterized by its potential measure,

as in the case of subordinators arising in the random covering of the positive reals, see e.g.

[10].

Corollary 2.3. Let H be a subordinator such that its potential measure has a density, say

W ′, in (0,∞) such that W ′ is non-increasing and −W ′′ is non-increasing and log convex.

Then the Lévy measure of H has non-increasing density.

Proof. Since the potential measure of H has a non-increasing density, we know that H is

a special subordinator whose conjugate we will denote by H∗. Furthermore, the tail of the

Lévy measure of H∗ equals W ′(x)−W ′(∞), x > 0, and then its density is given by −W ′′. We

now argue as in Theorem 2.2 to ensure that the potential measure of H∗ admits a decreasing

and convex density in (0,∞). This finishes the proof since the tail of the Lévy measure of

H equals the density in (0,∞) of the potential measure of H∗. 2

An interesting question is whether a given function is the scale function of a spectrally

negative Lévy process. It has been proved in Corollary 2 in [23] that a sufficient condition is

that such a function is a Bernstein function. In the next result we provide a weaker sufficient

condition.

Corollary 2.4. Suppose that W is a function on R such that W (x) = 0 for all x < 0 and

that W is positive and continuous on [0,∞). If W is a concave non-decreasing function on

[0,∞) such that W ′ is non-increasing on (0,∞) with a := limx↓0 xW
′(x) < ∞ and −W ′′ is

non-increasing and log convex on (0,∞), then there exists a spectrally negative Lévy process

such that W is its 0-scale function.

Proof. We claim that −W ′′ is the Lévy density of some subordinator, that is,

−
∫ ∞

0

(1 ∧ x)W ′′(x)dx <∞ (2.1)
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In fact, since W ′ is non-increasing, we have

−
∫ ∞

1

W ′(x)dx = W ′(1)−W ′′(∞) <∞.

On the other hand, since W ′′ is non-decreasing, we have for any x ∈ (0, 1),

−
∫ 1

x

yW ′′(y)dy = −
∫ 1

x

ydW ′(y) = xW ′(x)−W ′(1) +

∫ 1

x

W ′(y)dy

= xW ′(x)−W ′(1) +W (1)−W (x)

≤ W (1)−W (0)−W ′(1) + lim
x↓0

xW ′(x)

≤ W (1)−W (0)−W ′(1) + a.

Thus the claim is valid. Now we can follow the proof of Corollary 2.3 to finish the proof this

result. 2

As we mentioned before the conditions in Corollary 2.4 are weaker than those in Corollary

2 in [23], because every Bernstein function f is a non-decreasing concave function, and f ′

and −f ′′ are completely monotone functions with limx↓0 xf
′(x) = 0.

Corollary 2.5. Let H be a subordinator whose Lévy density, say Υ(x), x > 0, is non-

increasing and log convex then the restriction of the potential measure to (0,∞) has a non-

increasing and convex density. If furthermore, the drift of H is strictly positive then the

density is in C1(0,∞).

Proof. As above, using the arguments in the first paragraph in the proof of Theorem 2 in

[13] we get that Υ(x) =
∫∞
x

Υ(y)dy, x > 0, is log convex. Then by Theorem 2.4 in [29] we

know that H is a special subordinator and therefore the restriction of its potential measure

to (0,∞) has a non-increasing density. Now, we can simply repeat the arguments in the

proof of Theorem 2.2 to obtain the convexity and C1(0,∞) result. 2

The following result is the analogue of Theorems 2.1 and 2.2 for q-scale functions for

q > 0 if Φ(0) = 0 and q ≥ 0 if Φ(0) > 0.

Theorem 2.6. If the function

Π(x) :=

∫ ∞
x

π(s)ds, x > 0

is log convex, then for any q > 0 if Φ(0) = 0, and q ≥ 0 if Φ(0) > 0, the function gq(x) :=

e−Φ(q)xW (q)(x), x > 0, is concave. If furthermore, the function π is non-increasing and log
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convex then Π(x) is log convex, the first derivative of gq is non-increasing and convex and

the functions W (q) and W (q)′ are strictly convex in the interval (a∗,∞), where

a∗ = sup
{
a ≥ 0 : W (q)′(a) ≤ W (q)′(y) for all y ≥ 0

}
<∞.

Finally, if the latter assumption is satisfied and the Gaussian coefficient is strictly positive

then W (q) ∈ C2(0,∞).

The proof of this theorem relies on the following technical lemmas. Their proofs will be

postponed to the Appendix. Note that in the first lemma below, the term q/Φ(q) is to be

understood in the limiting sense, namely ψ′(0+), when q = 0 and Φ(0) = 0.

Lemma 2.7. For each q ≥ 0, the function κ̂(q, ·) is a Bernstein function and its killing term

is given by

κ̂(q, 0) =
q

Φ(q)
,

its drift term is given by

lim
θ→∞

κ̂(q, θ)

θ
= d

and the tail of its Lévy measure is given by

Υq(x) := eΦ(q)x

∫ ∞
x

e−Φ(q)yΠ(y)dy, x > 0.

Furthermore, if π is non-increasing then for q ≥ 0, the Lévy density associated to κ̂(q, ·) is

non-increasing.

Lemma 2.8. If π is non-increasing and log convex, then for every q ≥ 0 the function

Π(x)− Φ(q)eΦ(q)x

∫ ∞
x

e−Φ(q)yΠ(y)dy, x > 0,

is log convex.

Proof of Theorem 2.6. We have by assumption that the function Π is log convex, which

implies that e−Φ(q)xΠ(x) x > 0 is also log convex. Hence it follows from the first paragraph

in the proof of Theorem 2 in [13] that the latter implies that the functions∫ ∞
x

e−Φ(q)sΠ(s)ds, eΦ(q)x

∫ ∞
x

e−Φ(q)sΠ(s)ds x > 0,

are log convex. It follows that the function Υq as defined in Lemma 2.7 is log convex and

thus by Theorem 2.4 in [29] we have that the potential density associated to the Bernstein

function κ̂(q, ·) has a non-increasing density in (0,∞) that we will denote by uq. It follows
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from Lemmas 1 and 2 in [23] that the function κ̂(q,Φ(q) + ·) still is a Bernstein function

such that its potential measure admits the function e−Φ(q)xuq(x) as its density in (0,∞). It

now follows that the later function is non-increasing and limx→∞ e
−Φ(q)xuq(x) = 0.

It is well known that the q-scale function W (q) satisfies W (q)(x) = eΦ(q)xWΦ(q)(x), x > 0,

where WΦ(q) is the 0-scale function of the spectrally negative Lévy process with Laplace

exponent given by ψq(θ) = ψ(θ + Φ(q))− q, θ ≥ 0, see e.g. Lemma 8.4 in [19] for a proof of

this fact. By the Wiener-Hopf factorization we have that ψq is given by

ψq(θ) = θκ̂(q,Φ(q) + θ), θ ≥ 0.

This implies in turn that

θ

ψq(θ)
=

1

κ̂(q,Φ(q) + θ)
= d∗q +

∫ ∞
0

e−θxe−Φ(q)xuq(x)dx, θ ≥ 0,

where d∗q = limθ→∞ 1/κ̂(q,Φ(q)+θ) ≥ 0. By the definition of 0-scale functions and integration

by parts in the latter equation it follows that

1

ψq(θ)
=

∫ ∞
0

e−θxWΦ(q)(x)dx =

∫ ∞
0

e−θx
(

d∗q +

∫ x

0

e−Φ(q)zuq(z)dz

)
dx, θ ≥ 0.

Thus the uniqueness of the Laplace transform implies that

WΦ(q)(x) = d∗q +

∫ x

0

e−Φ(q)zuq(z)dz, x ≥ 0.

Now the first claim immediately follows. The claim about Π is proved in the proof of Lemma

2.8. To prove the third claim we recall that under the assumption that π is non-increasing

and log convex Lemmas 2.7 and 2.8 imply that the Lévy density of the Bernstein function

κ̂(q, ·) is non-increasing and log convex. Hence the hypotheses of Corollary 2.5 are satisfied

and therefore uq is a non-increasing convex function and, whenever the Gaussian coefficient,

equivalently the linear term in κ̂, is strictly positive we have uq ∈ C1(0,∞). By elementary

arguments it follows that e−Φ(q)xuq(x), x > 0, satisfies the same properties. Thus gq is a

concave function whose first derivative is convex and continuous in (0,∞).

To prove the claim about the convexity of W (q) and W (q)′, we observe that as W (q)′ is

given by

W (q)′(x) = Φ(q)W (q)(x) + uq(x), x > 0; (2.2)

and since uq is convex, we will automatically get that W (q)′ is ultimately convex once we

have proved that W (q) is ultimately convex. Indeed, we have that

W (q)′′(x) = (Φ(q))2W (q)(x) + Φ(q)uq(x) + u′q(x), a.e. x > 0. (2.3)
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Then as u′q increases and W (q) grows exponentially fast it follows that ultimately W (q)′′ > 0.

Hence W (q) and W (q)′ are ultimately strictly convex. Furthermore, because W (q)′ tends to

infinity as x tends to ∞, it follows that a∗ < ∞. Now, let α1 < α2 be points at which

W (q)′ reaches a local minimum. Because of the convexity of uq we know that the right and

left derivatives of uq exist everywhere and they satisfy that u′−q (α1) ≤ u′+q (α1) ≤ u′−q (α2) ≤
u′+q (α2). As a consequence the right and left derivatives of W (q)′ exist everywhere and satisfy

W (q)′′−(αi) = Φ(q)W (q)′(αi) + u′−q (αi) ≤ 0, W (q)′′+(αi) = Φ(q)W (q)′(αi) + u′+q (αi) ≥ 0,

for i = 1, 2. These facts together imply that

0 ≤ Φ(q)
(
W (q)′(α1)−W (q)′(α2)

)
+ u′+q (α1)− u′−q (α2),

and hence W (q)′(α1)−W (q)′(α2) ≥ 0. This implies that the last place where W (q)′ reaches a

local minimum is also the last place where it hits its global minimum. Moreover, for x > 0

we have that W (q)′(a∗) ≤ W (q)′(x). It thus follows that the following inequalities

0 ≤ Φ(q)W (q)′(a∗) + u′+q (a∗) ≤ Φ(q)W (q)′(x) + u′−q (x) ≤ Φ(q)W (q)′(x) + u′+q (x),

hold for x > a∗. Actually, the second inequality is a strict one. Indeed, if there would exist

x∗ > a∗ such that Φ(q)W (q)′(a∗) + u′+q (a∗) = Φ(q)W (q)′(x∗) + u′−q (x∗), then since u′−q (x∗) −
u′+q (a∗) ≥ 0, we would have that W (q)′(a∗) ≥ W (q)′(x∗), which would be a contradiction to

the fact that a∗ is the largest value where W (q)′ attains its global minimum. It follows that

W (q)′ is strictly increasing for x > a∗. That is W (q) is strictly convex in (a∗,∞) and, from

equation (2.2), we deduce that W (q)′ is also strictly convex for x > a∗. Finally, the equation

(2.3) proves also that when furthermore the Gaussian coefficient is strictly positive then

W (q) ∈ C2(0,∞) as in this case we already proved that uq ∈ C1(0,∞). 2

We now leave behind the assumption that Π has a strictly positive density and allow Π

to be any Lévy measure. The following result provides necessary and sufficient conditions

for a scale function associated to a spectrally negative Lévy process of bounded variation to

be in the class C1(0,∞).

Theorem 2.9. Assume that X is a spectrally negative Lévy process of bounded variation.

The following conditions are equivalent

(i) W ∈ C1(0,∞);

(ii) W (q) ∈ C1(0,∞) for all q ≥ 0;

(iii) Π ∈ C0(0,∞).
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Proof. First we prove that (i) and (iii) are equivalent. As X is assumed to be of bounded

variation it follows that Xt = δt − St, where δ > 0 and S is a subordinator. Let n be the

excursion measure of X reflected at its supremum. For background on the excursion theory

of Lévy processes reflected at their supremum, see e.g. [4], [8], [19]. A standard result, see

e.g. Lemma 8.2 in [19], says that W ∈ C1(0,∞) if and only if the law of the height of the

excursion process has no atoms, that is, the measure

n

(
sup

0≤s≤ζ
ε(s) ∈ dx

)
, x > 0

has no atoms; where ε and ζ denotes the generic excursion process and its lifetime respec-

tively. The proof of the equivalence of (i) and (iii) will be obtained as a consequence of the

fact above and the identity

n

(
sup

0≤s≤ζ
ε(s) > z

)
=

1

δ
Π(z,∞) +

1

δ

∫ z

0

Π(dx)

(
1− W (z − x)

W (z)

)
, z > 0. (2.4)

If we take this identity for granted, then we have that

n

(
sup

0≤s≤z
ε(s) = z

)
=

1

δ
Π{z}+

1

δ
Π{z}

(
1− W (0)

W (z)

)
, z > 0. (2.5)

It follows then that n(sup0≤s≤ζ ε(s) ∈ dx) has atoms if and only if Π does. This proves the

equivalence of (i) and (iii).

We will now prove the identity (2.4). It is known from [27] and Proposition 5 in [31] that

when X is of bounded variation the excursion measure of X reflected at its supremum can

be described by the formula

n (F (ε(s), 0 ≤ s ≤ ζ)) =
1

δ

∫ ∞
0

Π(dx)ÎEx

(
F (Xs, 0 ≤ s ≤ τ−0 )

)
,

where F is any nonnegative measurable functional on the space of cadlag paths, ÎEx denotes

the law of the dual Lévy process X̂ = −X and τ−x = inf{s > 0 : Xs < x}, x ∈ R. We will

also denote by τ+
z = inf{s > 0 : Xs > z}, z ∈ R. Hence, it follows that

n

(
sup

0≤s≤ζ
ε(s) > z

)
=

1

δ

∫ ∞
0

Π(dx)ÎPx

(
sup

0≤s≤τ−0

Xs > z

)

=
1

δ
Π(z,∞) +

1

δ

∫ z

0

Π(dx)ÎPx

(
τ+
z < τ−0

)
=

1

δ
Π(z,∞) +

1

δ

∫ z

0

Π(dx)ÎP
(
τ+
z−x < τ−−x

)
=

1

δ
Π(z,∞) +

1

δ

∫ z

0

Π(dx) IP
(
τ−x−z < τ+

x

)
=

1

δ
Π(z,∞) +

1

δ

∫ z

0

Π(dx)

(
1− W (z − x)

W (z)

)
,
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where in the last equality we have used Takac’s solution to the two sided exit problem for

spectrally negative Lévy processes, see e.g. [4] Theorem VII.8.

To complete the proof we show that (ii) and (iii) are equivalent. There is very little work

to do as soon as one recalls the fact stated earlier that for q > 0

W (q)(x) = eΦ(q)xWΦ(q)(x),

where WΦ(q) is the 0-scale function of the spectrally negative Lévy process whose Laplace

exponent is given by ψ(θ + Φ(q)) − q. The latter process has a Lévy measure ΠΦ(q) given

by ΠΦ(q)(dx) = e−Φ(q)xΠ(dx) on (0,∞). It follows that Π has no atoms if and only if ΠΦ(q)

has no atoms. Consequently the arguments above leading to the equivalence of (i) and (iii)

show that WΦ(q) belongs to C1(0,∞) or equivalently (ii) holds, if and only if (iii) holds. 2

Note that another proof of the last result may be implicitly extracted from Lemma 1 (iii)

in [7]. In essence that would again necessitate the observation that the entrance law of

excursions begin with a jump whose intensity is given by δ−1Π.

3 De Finetti’s control problem

In this section we shall discuss an important consequence of Theorem 2.6 pertaining to de

Finetti’s control problem. In particular we shall prove the following result.

Theorem 3.1. Suppose that X has a Lévy density π that is non-increasing and log convex

then the barrier strategy at a∗ is optimal for (1.3).

Before proceeding to the proof of Theorem 3.1, let us first make some remarks.

1. In principle the proof of Theorem 3.1 follows directly from Theorem 2.6 and Theorem

1.1 if one can verify that W (q) is sufficiently smooth. This is possible in most cases, but

not all. The outstanding case is the focus of the proof of Theorem 3.1 and we identify

it below by excluding the cases for which sufficient smoothness can be established.

If a∗ = 0 then necessarily, either σ > 0, or σ = 0 and Π(0,∞) < ∞ simultaneously.

Other types of spectrally negative Lévy processes are not possible when a∗ = 0 since

then necessarily W (q)(0+) = ∞. In the case σ > 0 we see that W (q) ∈ C2(0,∞) by

Theorem 2.6 and when σ = 0 and Π(0,∞) < ∞ simultaneously we see from (2.2)

W (q) ∈ C1(0,∞). Thus when a∗ = 0 we have that W (q) is sufficiently smooth.

Suppose now that a∗ > 0. If X is of bounded variation or σ > 0 then, similar to the

previous paragraph we may again deduce from Theorem 2.6 and (2.2) that W (q) is

sufficiently smooth.

The outstanding case is thus given by a∗ > 0, X is of unbounded variation and σ = 0.
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2. Recall that Theorem 3 of [24] states that if X has Lévy density π which is completely

monotone then W (q)′ is convex on (0,∞) and hence the barrier strategy at a∗ is an

optimal strategy. Theorem 3.1 is an improvement on this result on account of the fact

that any completely monotone function density is both non-increasing and log convex.

Below are two some examples of Lévy densities which meet the criteria of Theorem 3.1

but not Theorem 3 of [24].

Suppose that f and g both map (0,∞) to [0,∞) and that they are both non-increasing

and log convex. Suppose moreover that for some (and hence every) ε > 0,
∫ ε

0
x2f(x)dx <

∞ and
∫∞
ε
g(x)dx <∞. Further, for some fixed α > 0 we have f(α) = g(α) and

f ′−(α)

f(α)
≤ g′+(α)

g(α)
.

Then

π(x) :=

{
f(x) x ∈ (0, α)
g(x) x ∈ [α,∞)

is an example of a decreasing, log convex function which is not completely monotone

in general. Specific cases in which π is not completely monotone may be taken to be

(i) f(x) = x−(1+λ1), g(x) = x−(1+λ2), α = 1 where 0 < λ2 < λ1 < 2,

(ii) f(x) = e2−x, g(x) = e1−λx, α = 1/(1− λ) where 0 < λ < 1.

3. It is also worth noting that if the Lévy density π meets the conditions of Theorem 3.1

but is not completely monotone as in Theorem 3 of [24], then the behaviour of the scale

function W (q) on (0, a∗) is not necessarily concave as is the case in the aforementioned

theorem.

4. The proof of Theorem 3.1, given in the next section, is lengthy requiring some auxiliary

results first. Scanning the proof it is not immediately clear where the need for convexity

on (a∗,∞) is needed. The precise point at which this property is required is embedded

in the proof of Lemma 4.3 below and we have indicated as such in the proof.

4 Proof of Theorem 3.1

Following the first remark in the previous section, we shall assume throughout this section

that a∗ > 0, X is of unbounded variation and σ = 0. Moreover we shall assume that the

conditions of Theorem 3.1 are in force.

We define an operator (Γ,D(Γ)) as follows. D(Γ) stands for the family of functions

f ∈ C1(0,∞) such that the integral∫
(0,∞)

[f(x− y)− f(x) + yf ′(x)1{y≤1}]Π(dy)

14



 
 

is absolutely convergent for all x > 0. For any f ∈ D(Γ), we define

Γf(x) = γf ′(x)(x) +

∫
(0,∞)

[f(x− y)− f(x) + yf ′(x)1{y≤1}]Π(dy).

Recall that for any a > 0, the expected value discounted at rate q > 0 of the barrier

strategy at level a is given by

va(x) := Ex

(∫ σa

0

e−qtdLat

)
=

{
W (q)(x)/W (q)′(a), −∞ < x ≤ a,
x− a+W (q)(a)/W (q)′(a), ∞ > x > a.

where σa = inf{t > 0 : Ua
t < 0}. The second equality is taken from [2].

Lemma 4.1. For any a > 0, va ∈ D(Γ). Furthermore, the function x 7→ Γva(x) is continu-

ous in (0, a).

Proof. We have proved in Section 2 that W (q) is in C1(0,∞), hence we know that va is in

C1(0,∞). To show that va ∈ D(Γ), we only need to show that the integral in the definition

of Γva is absolutely convergent for all x > 0. It is easy to check that this is true for x > a,

so we are going to concentrate on x ∈ (0, a). Note that it suffices to consider W (q) instead

of va. For each x ∈ (0, a) we may write the integral in the definition of ΓW (q) as∫
(ε,∞)

(W (q)(x− y)−W (q)(x) + yW (q)′(x)1{y≤1})Π(dy)

+

∫
(0,ε)

(W (q)(x− y)−W (q)(x) + yW (q)′(x))Π(dy) (4.1)

where the value of ε = ε(x) ∈ (0, 1) is chosen for each x such that x− 2ε > 0. The absolute

convergence of the first integral as well as its continuity in x follows in a straightforward

way as a consequence of the continuity and boundedness of W (q)′ on bounded intervals and

dominated convergence in the case of continuity. With regard to the second integral, recall

that W (q)′(x) = Φ(q)W (q)(x) + uq(x). Using the mean value theorem and the fact that uq is

convex and decreasing, we get that for all y ∈ (0, ε)

|W (q)(x− y)−W (q)(x) + yW (q)′(x)|
= y|W (q)′(x)−W (q)′(x− ξ(y))| where ξ(y) ∈ (0, y)

≤ Φ(q)y|W (q)(x)−W (q)(x− ξ(y))|+ y|uq(x)− uq(x− ξ(y))|

≤ Φ(q)y2 sup
z∈[−ε,ε]

W (q)′(x+ z) + y

∫ x

x−ξ(y)

|u′q(y)|dy

≤ Φ(q)y2 sup
z∈[−ε,ε]

W (q)′(x+ z) + y2|u′q(x− ε)|

≤ y2 sup
z∈[−ε,ε]

(Φ(q)W (q)′(x+ z) + |u′q(x+ z)|).
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This estimate shows both that the second integral is uniformly integrable in (4.1) and con-

tinuous in x by dominated convergence. 2

Lemma 4.2. For any a > 0 we have

(Γ− q)va(x) = 0, x ∈ (0, a).

Proof. It is well known that e−qtW (q)(Xt∧τ+
a ∧τ−0

) is a Px-martingale for each x ∈ (0, a) (cf.

[1])), thus e−qtva(Xt∧τ+
a ∧τ−0

) is a Px-martingale for each x ∈ (0, a). Appealing to the Meyer-Itô

formula (cf. Theorem 70 of [25]) we have on {t < τ+
a ∧ τ−1/n}

e−qtva(Xt)− va(x) = mt,+

∫ t

0

(Γ− q)va(Xs)ds+

∫
R
v′′a(x)`(x, t)dx (4.2)

where `(x, ·) is the semi-martingale local time at x of X and, with X(1) as the martingale

part of X consisting of compensated jumps of size less than or equal to unity,

mt =
∑
s≤t

[∆va(Xs)−∆Xsv
′
a(Xs−)1{|∆Xs|≤1}]

−
∫ t

0

∫
(0,∞)

[va(Xs− − y)− va(Xs−) + yv′a(Xs−)1{y≤1}]Π(dy)ds

+

∫ t

0

v′a(Xs−)dX(1)
s

is a local martingale which is also a true martingale on account of the fact that W (q)′ is

bounded on [1/n, a]. Note that we have used that the integral part of Γva(x) is absolutely

convergent for each x ∈ (0, a) in order to meaningfully write down the compensation in the

expression for the martingale mt. The occupation formula for the semimartingale local time

of X says that ∫
R
`(x, t)g(x)dx = σ2

∫ t

0

g(Xs)ds,

where g is a bounded Borel measurable function. This implies that for Lebesgue almost

every x, `ξ(x, ·) is identically zero almost surely. Taking this into account the last integral in

(4.2) is almost surely zero. As n is arbitrarily large, the last conclusion forces us to conclude

that on {t < τ+
a },

∫ t
0
(Γ− q)va(Xs)ds is almost surely zero.

Now suppose that l(x, ·) is Markov local time of X at x (which necessarily exists as X is

a spectrally negative Lévy process of unbounded variation, cf. [4]). The occupation density

formula for Markov local time tells us that for n ≥ 1, on {t < τ+
a∗ ∧ τ−1/n}

0 =

∫ t

0

(Γ− q)va(Xs)ds =

∫
R
(Γ− q)va(x)l(x, t)dx.
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In other words, for Lebesgue almost every x we have that (Γ− q)va(x) = 0. However, from

Lemma 4.1 we know that (Γ− q)va(x) is continuous on (0, a), so we deduce that in fact the

equality with zero is valid for all x ∈ (0, a). 2

For convenience, we use v to denote the function va∗ , U to denote Ua∗ and L to denote

La
∗
. Then we have the following result.

Lemma 4.3. For any x > 0 we have (Γ− q)v(x) ≤ 0.

Proof. There is nothing to prove when x ∈ (0, a∗) because of Lemma 4.2 applied to the

case a = a∗. Thanks to the continuity given by Lemma 4.1, this maybe extended to (0, a∗].

Finally the inequality can be proved to hold on (a∗,∞) by following verbatim the arguments

in the proof of Theorem 2 in [24], although it is not necessary to replicate the behaviour of

second derivatives in that proof, since we have σ = 0.

It is important to note that the use of the convexity of W (q) on (a∗,∞) appears in

Theorem 2 of [24] and therefore in this paper the use of convexity is hidden in the latter

part of the proof. 2

Now we are in a position to prove Theorem 3.1.

Proof of Theorem 3.1. Recall that we are assuming that a∗ > 0, X is of unbounded variation

and σ = 0. The idea of the proof are similar to that of [2] and [24], however it is necessary to

revisit the main line of reasoning and provide more sensitive arguments that accommodate

for the fact that in the present case W (q) is not sufficiently smooth, it is twice continuously

differentiable almost everywhere but is not in C2(0,∞).

Fix ξ ∈ Ξ. Since Lξ is left continuous, it is predictable and since X is quasi-left continu-

ous, we know from Chapter 4 of [15] that X and Lξ have no common jumps. Now let L
ξ

be

the cadlag modification of the process Lξ, then X and L
ξ

have no common jumps.

Since the integral in the definition of Γv is absolutely convergent for every x > 0 and

second derivative of v is well defined Lebesgue almost everywhere, we can apply the Meyer-

Itô formula (cf. Theorem 70 of [25]) to the process v(U
ξ
) where U

ξ
= X −Lξ to get that on

{t < σξ},

v(U
ξ

t )− v(x) = M ξ
t +

∫ t

0

Γv(U
ξ

s−)ds+
∑
s≤t

1{∆Lξs>0}∆v(U
ξ

s)

−
∫ t

0

v′(U
ξ

s−)dL
ξ,c

s +
1

2

∫
R
v′′(x)`ξ(x, t)dx (4.3)
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such that

M ξ
t =

∑
s≤t

1{|∆Xs|>0}[∆v(U
ξ

s)−∆Xsv
′(U

ξ

s−)1{|∆Xs|≤1}]

−
∫ t

0

∫
(0,∞)

[v(U
ξ

s− − y)− v(U
ξ

s−) + yv′(U
ξ

s−)1{y≤1}]Π(dy)ds

+

∫ t

0

v′(U
ξ

s−)dX(1)
s

is a local martingale with M ξ
0 = 0 where X(1) the martingale part of X consisting of com-

pensated jumps of size less than or equal to unity. Moreover L
ξ,c

is the continuous part of

L
ξ

and `ξ(x, ·) is the semi-martingale local time at x of U
ξ
. We have used in particular the

absolute convergence of the integral part of Γv in order to make sense of M ξ
t as a compen-

sated stochastic integral. Similarly to before, the occupation formula for the semimartingale

local time of U
ξ

reads ∫
R
`ξ(x, t)g(x)dx = σ2

∫ t

0

g(U
ξ

s)ds,

where g is a bounded Borel measurable function. Also similarly to before, since σ = 0 this

implies that for Lebesgue almost every x, `ξ(x, ·) is identically zero almost surely. Taking

this into account the last integral in (4.3) is almost surely zero. Stochastic integration by

parts now gives us on {t < σξ}

e−qtv(U
ξ

t )− v(x) = Λξ
t +

∫ t

0

(Γ− q)v(U
ξ

s−)ds+
∑
s≤t

e−qs1{∆Lξs>0}∆v(U
ξ

s)

−
∫ t

0

e−qsv′(U
ξ

s−)dL
ξ,c

s , (4.4)

where Λξ
t =

∫ t
0
e−qsdM ξ

s is a local martingale.

Now note that by inspection we see v′(x) ≥ 1 and moreover, since on {∆Lξs > 0},
∆v(U

ξ

s) = [v(U
ξ

s−−∆L
ξ

s)−v(U
ξ

s−)] = −
∫ Uξs−
U
ξ
s−−∆L

ξ
s

v′(x)dx ≤ −∆L
ξ

s. Recalling the assumption

that (Γ − q)v ≤ 0 for all x > 0, it follows that for any appropriate localization sequence of

stopping times {Tn : n ≥ 1} we have

v(x) ≥ Ex

(∫ σξ∧Tn

0

e−qsdL
ξ

s

)
+ Ex(e

−q(σξ∧Tn)v(U
ξ

σξ∧Tn)) ≥ Ex

(∫ σξ∧Tn

0

e−qsdL
ξ

s

)
,

where σξ = inf{t > 0 : U
ξ
< 0}. Taking limits as n ↑ ∞ and recalling that ξ is an arbitrary

strategy in Ξ, we thus deduce that

v(x) ≥ sup
ξ∈Ξ

Ex

(∫ σξ

0

e−qtdL
ξ

t

)
= sup

ξ∈Ξ
Ex

(∫ σξ

0

e−qtdLξt

)
= v∗(x).
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Note that the second equality above is thanks to the fact that the modification of the process

U ξ does not affect the net present value of dividends until ruin. On the other hand, thanks

to the expression

v(x) := Ex

(∫ σa
∗

0

e−qtdLa
∗

t

)
,

the upper bound is attained by the barrier strategy at a∗ and the proof is complete. 2

Appendix: Proof of Lemmas 2.7 and 2.8

Proof of Lemma 2.7. We recall that the right continuous inverse of the local time at 0 for X

reflected at its supremum, L−1, and that of X reflected at its infimum, say L̂−1, are possibly

killed subordinators whose Laplace exponents are given by Φ(·), and κ̂(·, 0) respectively. It

follows by the time-space Wiener-Hopf factorization that

q = Φ(q)κ̂(q, 0), q ≥ 0,

see e.g. [4] Chapter VII. Thus κ̂(q, 0) = q/Φ(q), q ≥ 0. We recall that κ̂(·, ·) is the Laplace

exponent of the bivariate descending ladder subordinator, and hence it can be represented

as

κ̂(λ, β) = κ(λ, 0) + d1β +

∫
(0,∞)2

µ−(dt, dh)
(
e−λt − e−λt−βh

)
, β, λ ≥ 0,

where d1 ≥ 0 and µ− is the Lévy measure of the bivariate descending ladder subordinator.

It follows that for q ≥ 0 fixed κ̂(q, ·) is a Bernstein function. Since κ̂(0, β) = φ(β) for β ≥ 0

and the formula in the last display holds for every λ ≥ 0, we get that d1 = d. That is, the

drift term of the Bernstein function κ̂(q, ·) is equal to d. Moreover, it has been proved in

Corollary 6 in [9] that the measure µ− can be written as

µ−(dt, dh) =

∫
[0,∞)

U+(dt, ds)Π(dh+ s), t, h > 0,

where U+ denotes the potential measure of the ascending ladder subordinator. In our case X

is spectrally negative and hence due to the absence of positive jumps this formula becomes

µ−(dt, dh) =

∫
[0,∞)

U+(dt, ds)Π(dh+ s) =

∫
[0,∞)

ds IP
(
L−1
s ∈ dt

)
Π(dh+ s),
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see e.g. Exercise 7.5 in [19]. This allows us to write∫
(0,∞)2

µ−(dt, dh)
(
e−qt − e−qt−βh

)
=

∫∫∫
(0,∞)3

ds IP
(
L−1
s ∈ dt

)
Π(dh+ s)

(
e−qt − e−qt−βh

)
=

∫∫
(0,∞)×(0,∞)

dsΠ(dh+ s)
(
e−sΦ(q) − e−sΦ(q)−βh)

=

∫ ∞
0

(1− e−βh)
∫ ∞

0

e−sΦ(q)Π(dh+ s)ds, β ≥ 0.

As a consequence, for q ≥ 0 fixed, the tail of the Lévy measure of κ̂(q, ·) is given by

Υq(z,∞) :=

∫ ∞
z

∫ ∞
0

e−sΦ(q)Π(dh+ s)ds = eΦ(q)z

∫ ∞
z

due−Φ(q)uΠ(u,∞), z > 0.

This proves the claim about the tail of the Lévy measure. Using it we get that the Lévy

measure of κ̂(q, ·) has a density given by

υq(x) := Π(x)− Φ(q)eΦ(q)x

∫ ∞
x

e−Φ(q)yΠ(y)dy, x > 0.

To prove that υq is non-increasing we observe first that an integration by parts leads to the

equality

υq(x) = Π(x)−
(

Π(x)− eΦ(q)x

∫ ∞
x

e−Φ(q)zπ(z)dz

)
= eΦ(q)x

∫ ∞
x

e−Φ(q)zπ(z)dz, (4.5)

for x > 0. Owing to the fact that π is assumed to be non-increasing we have that for

0 < x < y

υq(x)− υq(y) = Φ(q)eΦ(q)x

∫ y

x

e−Φ(q)zπ(z)dz +
(
eΦ(q)x − eΦ(q)y

)
Φ(q)

∫ ∞
y

e−Φ(q)zπ(z)dz

≥ π(y)eΦ(q)x
(
e−Φ(q)x − e−Φ(q)y

)
+ π(y)

(
eΦ(q)x − eΦ(q)y

)
e−Φ(q)y = 0,

that is, υq is non-increasing. 2

Proof of Lemma 2.8. By assumption π is non-increasing and log convex and then by the

first paragraph of the proof of Theorem 2 in [13] we know that for β ≥ 0, the functions

x 7→ e−βxπ(x), and
∫∞
x
e−βzπ(z)dz, for x > 0, are log convex. Hence, by taking β = 0

we prove the claim about Π in Theorem 2.6. Furthermore, it then follows that the function

x 7→ eβx
∫∞
x
e−βzπ(z)dz, for x > 0, is log convex. We deduce the result claimed in Lemma 2.8

by taking β = Φ(q) and using the characterization of the Lévy density of κ̂(q, ·) obtained in

(4.5). 2
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