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Abstract

In the above mentioned paper, some errors were found in the expressions given for the distri-

bution of a linear combination of Normal and Laplace random variables, Z, given in formulae (3,

Theorem 1), (6), and (7) that can lead to obtaining negative values for the mentioned distribution.

The corrected versions for these expressions are presented here. In addition, the density function

of Z is also provided.

Keywords: Complementary error function; density function of linear combinations of Laplace

and Normal variables; Laplace distribution; Normal distribution.

1 Introduction

Nadarajah (2006) provides expressions for the exact distribution of Z = αX +βY where X and Y are

independent random variables distributed as Normal and Laplace, respectively. The corresponding

density functions are

fX (x) =
1√
2πσ

exp

[
− (x− µ)2

2σ2

]
, (1)
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and

fY (y) =
1
2ϕ

exp
(
−|y − λ|

ϕ

)
, (2)

where σ and ϕ are scale parameters, therefore positive, and µ and λ are location parameters, thus

µ, λ ∈ R. To derive his Theorem 1 where the expression for the cdf F (z) is given, Nadarajah uses a

formula, presented in Prudnikov et al. (1986, 2.8.9.1, p.110) which is also given in his Lemma 1, for

calculating integrals of the form
∫ ∞

0

exp(−px)erfc(cx + b)dx, (3)

where p > 0, and erfc is the complementary error function

erfc (x) = 2√
π

∫ ∞

x

exp
(−t2

)
dt.

The crucial point is that the formula provided in Prudnikov et al. is only valid for c > 0. When c is

negative, some limits of integration must be modified in a change of variable required in the derivation

of this formula that lead to a different expression. Furthermore, if the corrections presented here are

not considered, the original expression of Theorem 1 in Nadarajah (2006) can provide negative results

for F (z). As an example of this situation, consider the case of α = 5, β = −5, µ = 0, σ = λ = ϕ = 1

that yields a negative value of F (z = 0) = −9.065, while the correct value is 0.741.

2 Correction

The central correction is contained in the appropriate calculation of the integral (3). The following

lemma addresses this.

Lemma 1. The following integral can be expressed as:
∫ ∞

0

exp(−px) erfc(cx + b)dx =
1
p

erfc(b)

+




− 1

p exp
(

bp
c + p2

4c2

)
erfc

(
b + p

2c

)
, if c > 0,

1
p exp

(
bp
c + p2

4c2

)
erfc

(−b− p
2c

)
, if c < 0.

(4)

Proof. The detailed proof is given in the Appendix.

Note that the first row of (4) is a special case of Prudnikov’s formula for c > 0. The second row

of (4) constitutes the correction presented here.

Therefore, depending on whether the value of c is positive or negative, the corresponding row in (4)

must be considered when solving Nadarajah’s two integrals given in his formula (5). This formula can

2



 
 
be derived from Proposition 6.1.12 in Laha and Rohatgi (1979) and was rewritten here in a convenient

way in order to facilitate obtaining the correct version of Theorem 1,

F (z) =
1
4ϕ

{∫ ∞

0

exp
(
−w

ϕ

)
erfc

[(
β

α

)
1√
2σ

w +
βλ + αµ− z√

2ασ

]
dw (5)

+
∫ ∞

0

exp
(
−w

ϕ

)
erfc

[
−

(
β

α

)
1√
2σ

w +
βλ + αµ− z√

2ασ

]
dw

}
. (6)

Let

p = 1/ϕ > 0, b =
βλ + αµ− z√

2ασ
, c1 =

(
β

α

)(
1√
2σ

)
, and c2 = −

(
β

α

)(
1√
2σ

)
.

Note that p is always positive because ϕ is a scale parameter. Note also that the sign of c1 and c2 is

determined by the sign of α/β. Without loss of generality, α will always be considered positive.

The following version of Theorem 1 is thus obtained.

Theorem 1. Suppose X and Y are Normal
(
µ, σ2

)
and Laplace (λ, ϕ) distributed, respectively. Then,

the cdf of Z = αX + βY can be expressed depending on the sign of α/β as follows:

If α/β > 0, then

F (z) =
1
4

[
2 erfc

(
βλ + αµ− z√

2ασ

)

− exp
(

βλ + αµ− z

βϕ
+

α2σ2

2β2ϕ2

)
erfc

(
βλ + αµ− z√

2ασ
+

ασ√
2βϕ

)

+exp
(
−βλ + αµ− z

βϕ
+

α2σ2

2β2ϕ2

)
erfc

(
−βλ + αµ− z√

2ασ
+

ασ√
2βϕ

)]
. (7)

If α/β < 0, then

F (z) =
1
4

[
2 erfc

(
βλ + αµ− z√

2ασ

)

+exp
(

βλ + αµ− z

ϕβ
+

α2σ2

2β2ϕ2

)
erfc

(
−βλ + αµ− z√

2ασ
− ασ√

2βϕ

)

− exp
(
−βλ + αµ− z

βϕ
+

α2σ2

2β2ϕ2

)
erfc

(
βλ + αµ− z√

2ασ
− ασ√

2βϕ

)]
. (8)

Proof. The proof is a direct application of (4) to the integrals in (5) and (6). For solving the first

integral (5), the values of (p, b, c1) will be used, but depending on the sign of c1, either the first or

second row of (4) must be used. For solving the second integral (6) the values of (p, b, c2) will be used,

but again, depending on the sign of c2 one or the other row of (4) must be used.

Also, Corollaries 1 and 2 should be corrected as follows:
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Corollary 1 Suppose that X and Y are distributed according to (1) and (2) , respectively. Then the

cdf of Z = X + Y can be expressed as:

F (z) =
1
4

[
2 erfc

(
λ + µ− z√

2σ

)

− exp
(

λ + µ− z

ϕ
+

σ2

2ϕ2

)
erfc

(
λ + µ− z√

2σ
+

σ√
2ϕ

)

+exp
(
−λ + µ− z

ϕ
+

σ2

2ϕ2

)
erfc

(
−λ + µ− z√

2σ
+

σ√
2ϕ

)]
.

Proof. The proof is a direct application of (7) in Theorem 1 in the case of α = β = 1, (α/β) > 0.

Corollary 2 Suppose that X and Y are distributed according to (1) and (2) , respectively. Then the

cdf of Z = X − Y can be expressed as:

F (z) =
1
4

[
2 erfc

(−λ + µ− z√
2σ

)

+ exp
(
−−λ + µ− z

ϕ
+

σ2

2ϕ2

)
erfc

(
−−λ + µ− z√

2σ
+

σ√
2ϕ

)

− exp
(−λ + µ− z

ϕ
+

σ2

2ϕ2

)
erfc

(−λ + µ− z√
2σ

+
σ√
2ϕ

)]
.

Proof. The proof is a direct application of (8) in Theorem 1 in the case of α = 1, β = −1, with

(α/β) < 0.

Finally, the density function of Z is presented in the following theorem.

Theorem 2. Suppose X and Y are Normal
(
µ, σ2

)
and Laplace (λ, φ) distributed, respectively. Then,

the density function of Z = αX + βY can be expressed depending on the sign of α/β as follows:

If α/β > 0, then

f (z) =
1

4βϕ
exp

(
α2σ2

2β2ϕ2

)[
exp

(
βλ + αµ− z

βϕ

)
erfc

(
βλ + αµ− z√

2ασ
+

ασ√
2βϕ

)

+exp
(
−βλ + αµ− z

βϕ

)
erfc

(
−βλ + αµ− z√

2ασ
+

ασ√
2βϕ

)]
.

If α/β < 0, then

f (z) = − 1
4βϕ

exp
(

α2σ2

2β2ϕ2

){
exp

(
βλ + αµ− z

βϕ

)
erfc

(
−βλ + αµ− z√

2ασ
− ασ√

2βϕ

)

+exp
(
−βλ + αµ− z

βϕ

)
erfc

(
βλ + αµ− z√

2ασ
− ασ√

2βϕ

)}
.

Proof. Noting that
d

dx
erfc (ax + d) = − 2a√

π
exp

[
− (ax + d)2

]
, (9)

the expression for the density function of Z is obtained by differentiating the distribution F (z) in (7)

and (8) in Theorem 1 with respect to z.
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Appendix

The integral (3) can be solved by integration by parts and considering formula (9) .

Therefore,
∫ ∞

0

exp(−px) erfc(cx + b)dx = lim
x→∞

[
−1

p
exp(−px) erfc (cx + b)

]
+

1
p

erfc (b)

− 2c

p
√

π

∫ ∞

0

exp
[
− (cx + b)2 − px

]
dx. (10)

The limit in the first term in the right side above, is zero since p > 0 and

lim
x→∞

erfc (cx) =





0, if c > 0,

2, if c < 0.

The integral in the last term in the right side of (10) yields different results depending on the sign

of c as will be shown below. This integral can be expressed as
∫ ∞

0

exp
[
− (cx + b)2 − px

]
dx = exp

(
bp

c
+

p2

4c2

) ∫ ∞

0

exp
[
−

(
cx + b +

p

2c

)2
]

dx.

Making the following change of variable in this last integral, w = cx+b+p/(2c), yields different limits

of integration depending on the sign of c :

w ∈




(
b + p

2c ,∞)
, if c > 0,

(
b + p

2c ,−∞)
, if c < 0.

(11)

The more general formula (2.8.9.1) of Prudnikov et al. (1986, p.110) provides the correct result

for the integral (3) but only for positive values of c. Nadarajah (2006) apparently overlooked the fact

that for c < 0 a different result had to be used, noting the different limits of integration given in (11)

that must be considered when c < 0. Therefore (10) can be solved as
∫ ∞

0

exp(−px) erfc(cx + b)dx =
1
p

erfc (b)− 2c

p
√

π

∫ ∞

0

exp
[
− (cx + b)2 − px

]
dx

=
1
p

erfc (b) +




− 1

p exp
(

bp
c + p2

4c2

)
2√
π

∫∞
b+p/(2c)

exp
(−w2

)
dw, if c > 0,

1
p exp

(
bp
c + p2

4c2

)
2√
π

∫ b+p/(2c)

−∞ exp
(−w2

)
dw, if c < 0,

=
1
p

erfc (b) +




− 1

p exp
(

bp
c + p2

4c2

)
erfc

(
b + p

2c

)
, if c > 0,

1
p exp

(
bp
c + p2

4c2

)
erfc

(−b− p
2c

)
, if c < 0,

(12)

noting that
2√
π

∫ b+p/(2c)

−∞
exp

(−w2
)
dw = 2− erfc

(
b +

p

2c

)
= erfc

(
−b− p

2c

)
.

The expression (12) was given in (4) and is the formula that should be used to obtain the correct

version of Theorem 1 provided here.
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