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Abstract

The Elitist Convergent Estimation of Distribution Algorithm (ECEDA),
is a definition of a class of EDA which guarantees convergence to the op-
timum. This paper introduces the conceptual ECEDA and a practical
approach derived from it, called the Boltzmann Univariate Marginal Dis-
tribution Algorithm (BUMDA). The BUMDA uses a Gaussian model to
approximate the Boltzmann distribution, requiring only one user given pa-
rameter: the population size. Several experiments and statistical analysis
are used to contrast the BUMDA with state of the art EDAs.

Keywords: estimation of distribution algorithms, Boltzmann distribution,
Kullback-Leibler divergence, statistical performance analysis.

1 Introduction

The Estimation of Distribution Algorithms (EDAs) were first introduced for
global optimization in discrete spaces [12] [1], then several approaches were
extended to continuous domains [9], [6]. Researchers have proposed general
conceptual frameworks as basis for designing EDAs [10], [2]. Every framework
alludes particular operating conditions, however, the quest for solutions is for the
frequent question: When will an EDA perform successfully? The Elitist Con-
vergent Estimation of Distribution Algorithm (ECEDA) is a framework defining
a class of EDA which converges to the optimum assuming infinity population
and generations.

The main goal of an optimizer is to find the maximum or minimum of a
objective function, say g(x). Population based algorithms intend to approxi-
mate the optimum by proposing a set of candidate solutions, and then spawn
new individuals from a selected subset to improve the current best approxi-
mation. EDAs are population based algorithms equipped with a technique to
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learn a probability distribution whose main objective is to improve the optimum
approximation by simulating better samples each generation.

Hereafter, without loss of generality consider a maximization problem. In
order to find better solutions at each generation, a logical requirement is to in-
crease the expectation of the objective function. This is established in Definition
1.1. Note that

∫
X

becomes a
∑

in discrete cases. The ECEDA does not spec-
ify a density or probability distribution function, neither a selection method,
it states that the convergence to the optimum can be achieved by increasing
or maintaining the expectation of the objective function every generation.The
ECEDA is called elitist because the probability of sampling the region con-
taining the highest objective value is increased or at least maintained at every
generation. The convergent characteristic is given by the Theorem 1.3.

Definition 1.1 Consider an objective function g(x), a density function f(x),
and sequences of consecutive generations t = 1, 2, 3..N , and non-consecutive
generations τ = τ1, τ2...τM . An Estimation of Distribution Algorithm which
fulfills: ∫

X

g(x)f(x, t)dx ≤
∫

X

g(x)f(x, t + 1)dx (1)

and ∫

X

g(x)f(x, τi)dx <

∫

X

g(x)f(x, τi+1)dx (2)

For all t ∈ N and τi < τi+1 ∈ N, is called an Elitist Convergent EDA
(ECEDA).

Definition 1.2 The Gibbs or Boltzmann distribution of an objective function
g(x) is defined by:

p(x) :=
∫

X

exp (β · g(x))
Z

(3)

Theorem 1.3 Consider a sequence τ = τ1, τ2, ..., τM . An Elitist Convergent
EDA fulfills that:

lim
M→∞

E(g(x), τ) = max g(x) (4)

Proof.
By definition

E(g(x), τ) =
∫

X

g(x)f(x, τ)dx, (5)

for any density function f(x). By definition 1.1 the sequence of {Eτ = E(g(x), τ)}
is non decreasing. Also it is bounded above, with a supremum:
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sup Eτ = max g(x) = g(x∗).

We claim that limM→∞Eτ = g(x∗). If ε > 0, there is some ET satisfying
g(x∗)− ET < ε, since g(x∗) is the least upper bound of Eτ . Then if τ > T we
have

Eτ ≥ ET , so g(x∗)− Eτ ≤ g(x∗)− ET < ε.

This proves that limM→∞Eτ = g(x∗). Observe that any random global op-
timizer which fulfills Equation (1) also fulfills the Equation (4). And as a con-
sequence of Equation (4), if the maximum is unique:

lim
M→∞

P (x∗ − ε < X < x∗ + ε, τM ) = 1, (6)

and
lim

M→∞
var(x, τM ) = 0, (7)

According to Definition 1.1 the ECEDA follows the steps in Figure 1.

Conceptual ECEDA

1. Assign t = 0, and initialize a model of probability density function
(PDF) f(x, t).
Repeat

(a) Sample N candidates according f(x, t).

(b) Evaluate the candidates in the objective function g(x), and
choose the candidate y with the maximum objective value as
an approximation to the optimum, g(y) ≈ g(x∗).

(c) Update f(x, t + 1) such that E(g(x), t + 1) ≥ E(g(x), t + 1).

Until termination condition is true.

2. Return y as the best approximation to the optimum.

Figure 1: The Elitist Convergent Estimation of Distribution Algorithm
(ECEDA).

By using the ECEDA framework we can derive a Boltzmann based EDA
by substituting the Boltzmann probability density function, Equation (3), into
Equation (1). Several well known characteristics of the Boltzmann distribution
which are important when it is used in an EDA are the following:

1. When the objective function g(x) increases/decreases, the probability
density function (PDF) exponentially increases/decreases.
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2. If f(x, t) is the PDF, and x∗ is the unique maximum, then f(x∗, t) >
f(x, t), for any generation t, and x 6= x∗.

3. The probability mass could be increased/decreased around the maxima
points by simply modifying the β value.

Nevertheless, it is not possible to built efficient EDAs based on the Boltz-
mann distribution because in general g(x) is unknown, or the cost of determining
the exact Boltzmann PDF is equivalent to that of finding the optimum by ex-
haustive search. A common strategy to circumvent this issue is to approximate
the Boltzmann PDF through a parametric PDF. For instance, Yunpeng et al.
[14], approximate the integral operations by discrete summations of the vari-
able. Thus, to compute the Kullback-Leibler divergence (KLD), the sample
points are weighted by e(β·g(x)), with the corresponding function value g(x) of
each point. In Gallagher and Frean proposal [3], the goal is to find the mean of
a Normal distribution (µ parameter) with fixed variance that approximates a
Boltzmann with fixed temperature. They developed the analytical minimization
of the KLD, and found the direction of a gradient step to be applied at every
iteration. A weakness of this approach is the lack of a method to compute the
variance. They used a fixed user-defined variance instead. In contrast to the
mentioned approaches, particularly Yunpeng et al. work [14], we use a different
KLD form. They use KLD(Px||Qx) and we use KLD(Qx||Px). Thus, in our
approach is possible to analytically minimize the KLD, resulting in non expo-
nential weights for the sample points which means less drastic changes during
the computation of the mean and the variance. In contrast with the work of
Gallagher and Frean [3], is worth notice the following differences: 1) In our
approach we analytically found the expression to compute the mean which min-
imizes the KLD at every iteration. As mentioned, they use gradient steps to
approximate the mean. 2) For our proposal the variance is not fixed, whereas
theirs is fixed and user defined. We took a different approach to solve the
problem and found the expression for the variances which minimizes the KLD
at every iteration. The resulting proposal is called the Boltzmann Univariate
Marginal Distribution Algorithm (BUMDA).

The organization of this paper is the following. Section 2 develops the formu-
lae to approximate the Boltzmann PDF with a Normal. Section 3 explains the
algorithm BUMDA. A short account of related work is given in Section 4. The
Section 5 provides test problems and performance analysis for comparison with
state of the art EDAs. Section 6 presents the main conclusions and discussion
about the proposal presented.

2 Approximating the Boltzmann PDF with a
Gaussian Model

The PDF model for independent variables is given by Equation (8). The advan-
tages of this model are simplicity and low computational cost, not to mention
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the promising results reported, such as the UMDAG
c [6], PBIL [1], BG-UMDA

[14], etc. A payoff for the low computational cost is the bias of the univariate
model to solve problems which present weak variable correlation.

Q(x) =
n∏

i=1

Qi(xi) (8)

In order to avoid the complexity of computing the exact Boltzmann distri-
bution, we aim to approximate it by using the univariate normal distribution,
presented in Equation (9).

Qx = N(µ, v) =
1

(2πv)1/2
e

»
− (x−µ)2

2v

–

(9)

A widely used measure of the difference between two distributions P (x) =
Px and Q(x, µ, v) = Qx is the Kullback-Leibler divergence given in Equation
(10). To approximate the normal distribution Qx to the Boltzmann distribution
Px, we minimize the Kulback-Leibler divergence with respect to the normal
parameters (µ, v).

KQ,P =
∫

x

Qx log
Qx

Px
dx (10)

Deriving KQ,P with respect to a model parameter θ:

∂KQ,P

∂θ
=

∫

x

[
1 + log

Qx

Px

]
∂Qx

∂θ
dx (11)

And,

log Qx = − (x−µ)2

2v − log(2πv)1/2, log Px = − log Z + βg(x)

Substituting the logarithms into (11), we get:
∫

x

[
1− (x− µ)1/2

2v
− log 2πv1/2 + log Z − βg(x)

]
∂Qx

∂θ
dx (12)

The derivative of Qx with respect µ, is:

∂Qx

∂µ
= Qx

(x− µ)
v

(13)

By substituting (13) into (12) we get Equation (14).

∂KQ,P

∂µ
=

∫

x

[
1− ((x− µ)2)

2v

]
Qx

(x− µ)
v

dx

−
∫

x

[
log 2πv1/2 − log Z + βg(x)

]
Qx

(x− µ)
v

dx. (14)
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The fact that (x−µ) is odd about µ becomes useful to evaluate the integrals,
which become equal to 0. We get:

∂KQ,P

∂µ
= −β

v

∫

x

Qx(x− µ)g(x)dx ≈ −β

v

∑

xi∈X

(xi − µ)g(xi). (15)

Gallagher and Frean [3] used that gradient approximation and µt to compute
µt+1. In this work we propose to directly compute the µ value which best fits
the data distribution, as shown in Equation (16):

β
v

∑
xi∈X(xi − µ)g(xi) = 0,

µ ≈
∑

i g(xi)xi∑
i g(xi)

. (16)

In the same way we propose to estimate the variance, as follows:

∂Qx

∂v
= Qx

(
(x− v)2

2v2
− 1

2v

)
. (17)

Substituting (17) into (11):

∂KQ,P

∂v
=

∫

x

[
1 + log

Qx

Px

]
Qx

(
(x− v)2

2v2
− 1

2v

)
dx =

∫

x

[
1 + log(2πv)1/2

]
Qx

[
(x− µ)2

2v2
− 1

2v2

]
dx +

∫

x

[
− (x− µ)2

2v
+ log Z − βg(x)

]
Qx

[
(x− µ)2

2v2
− 1

2v2

]
dx (18)

By using the equalities:
∫

x
Qx(x− µ)2dx = v,

∫
x

Qxdx = 1, and
∫

x
(x− µ)4Qxdx = 3

√
2

8 v2,

the Equation (18) can be reduced to Equation (19). It is equal to 0 for
minimization.

−3
√

2
32v

− β

2v2

∫

x

g(x)Qx(x− µ)2dx +
1
4v

+
β

2v

∫

x

g(x)Qxdx = 0 (19)

Finally the expression to compute the variance is given by the next equation:

v =

∫
x

g(x)(x− µ)2Qxdx

3+4
√

2
8
√

2β
+

∫
x

g(x)Qxdx
(20)

The numerical approximation used by BUMDA for Equation (20) is the
following:
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v ≈
∑

i g(xi)(xi − µ)2

T ′ +
∑

i g(xi)
(21)

Where:

T ′ =
(3 + 4

√
2)

8
√

2β
n (22)

In Equation (22) n is the sample size (selected set), it becomes involved
when the integrals are approximated by summations.

3 The Boltzmann Estimation of Distribution Al-
gorithm (BUMDA)

As mentioned in Section 1, the characteristics of an ECEDA are: the increasing
expectation, and the convergence to the optimum. A simple way to ensure
convergence is to apply a truncation method which increases the mean of the
population, such as explained in algorithm in Figure 2.

Truncation Method

• For the initial generation t = 0, let be g(xi, 0) for i = 1..N , the
objective values of the initial population. Define: θ0 = min g(xi, 0).

• For t > 0, set:
θt = max (θt−1, min(g(xi, t)|g(xi, t) ≥ θt−1)).

• If for the decreasingly sorted individuals g(xN/2) ≥ θt, set θt =
g(xN/2). Where N is the population size.

• Truncate the population such that g(xs, t) ≥ θt. Where xs are all the
individuals which objective values is equal or greater than θt.

Figure 2: Truncation method to ensure convergence in a population based al-
gorithm.

We must ensure that there is always at least one element in the selected
set by preserving the elite individual. Now, we have all the elements needed to
introduce the BUMDA, in Figure 3. A simplification for the variance computing
was done by setting T ′ = 1. This means that the Boltzmann distribution is used
with a fixed temperature. The reader must observe that the fixed temperature
does not imply a fixed distribution, because of the following reasons:

1. The data (selected set) comes from the probability distribution we are
approximating;

2. If the data change, then the underlying distribution we are approximating
changes;
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3. The population size and truncation method affect the magnitude of the
changes of the data.

BUMDA

1. Give the parameter and stop criterion:
nsample ← Number of individuals to be sample.
minvar ← minimum variance allowed.

2. Uniformly generate the initial population P0, set t = 0.

3. While v > minvar for all dimensions

(a) t← t + 1

(b) Evaluate and truncate the population according algorithm in Fig-
ure 2.

(c) Compute the approximation to µ and v (for all dimensions) by
using the selected set (of size nselec), and Equations (16) and
(21), as follows:

µ ≈
Pnselec

1 xiḡ(xi)Pnselec
1 xiḡ(xi)

,

v ≈
Pnselec

1 ḡ(xi)(xi−µ)2

1+
Pnselec

1 ḡ(xi)
,

where ḡ(xi) = g(x)− g(xnselec) + 1.

Note: the individuals can be sorted to simplify the com-
putation, and g(xnselec) is the minimum objective value of the
selected individuals.

(d) Generate nsample − 1 individuals from the new model Q(x, t).
And insert the elite individual.

4. Return the elite individual as the best approximation to the optimum.

Figure 3: Pseudo-code for BUMDA

Several non-reported experiments, suggest that the performance is more im-
pacted by the change of the population size than the change in the fixed value
of the T ′ parameter.

The BUMDA presents the follow interesting advantages:

1. It converges to the best approximation to the optimum.

2. The variance tends to 0 for a large number of generations.

3. It only needs one parameter (population size).
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4. The estimation of the parameters results in a fast automatic adaptation.
The variance could be increased or decreased, according the solutions in
the selected set and their objective values, and the mean moves faster to
the region with best solutions found.

The first advantage listed is related with the mean of the selected set, it
is lower bounded by θt, and upper bounded by the best approximation to the
maximum x̂∗, as θt tends to x̂∗, then the mean converges to x̂∗. The second is
a consequence of the first. The last advantage is shown in Figure 4. This fig-
ure compares the Normal PDF parameters returned by our approach BUMDA
(black line), and the Normal PDF parameters computed via the standard for-
mulas (dashed line). The population is split into two clusters shown on the
objective function. The first cluster contains most of the population (around
x = −1), while the elements of the second cluster are several new promising
solutions (around x = 6). When computing the normal parameters by using
the maximum likelihood estimators of the mean and variance, we get the Gaus-
sian density shown in Figure 4 (dashed line), which as expected has condensed
the probability mass on the main cluster. This is the estimation proposed by
UMDAG

c [6]. On the other hand, when computing the parameters with the
Equations (16) and (21) of the BUMDA, we get the density function plotted
with the black line. Observe how the mean computed by BUMDA (vertical
line) is closer to the best solutions, and the variance is larger (which improves
exploration).

−4 −2 0 2 4 6 8

0.
0

0.
5

1.
0

1.
5

2.
0

x

y

mean= −0.587 , computed using
max. likelihood formula

mean= −0.0391
computed with BUMDA

variance= 2.42 , computed using
max. likelihood formula

variance= 5.48
 computed with BUMDA

objective functionsample point

Figure 4: Comparison of BUMDA vs UMDA: the BUMDA quickly adapts its
parameters to improve the exploration, when new promising solutions are found.
The mean moves to promising regions and the variance is increased.
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4 Related Work

Two important issues related with this work have been assessed by researchers:

1. Convergence of EDAs.

2. EDAs based on the Boltzmann distribution, and

3. parameter and structure learning.

Several lanes of work have been applied in order to obtain a convergent
EDA [11, 7, 15, 5]. For example, Mühlenbein et al. [11] proposed to increase
the sampling probability of the optimum. They proved the convergence of the
algorithm for a specific distribution and selection in discrete spaces. Zhang and
Mühlenbein [15] carried out the analysis of convergence for different selection
methods. Grahl et al. [5], identified three phases during the convergence of the
algorithm. For each phase they proposed an approach for the optimal sampling
variance which maximizes the proportion of solutions in the optimal region.

An earlier approach of discrete EDAs based on the Boltzmann distribution,
was the Boltzmann Estimation of Distribution Algorithm (BEDA) [11]. Impor-
tant remarks about this work are the convergence properties, and the derivation
of practical approaches such as the Factorized Distribution Algorithm (FDA)
[11, 8]. The BEDA based approaches as well as the BGUMDA [14] are based
on the so called Boltzmann Selection; they need an annealing schedule for the
adjustment of the β parameter in Equation 1.2. Then, we can discern two main
parameter learning strategies:

1. Truncation methods. They can be seen as an indicator assignment pro-
cedure: the solutions have a weight of 1 in the parameter (and structure)
computing if they were selected, and 0 if they were truncated.

2. Weighting methods. Each solution have a non-binary weight for the pa-
rameter computing (this weights can be seen as an a priori probability).
Normally the weights are related with the objective function.

The proposals based on the Boltzmann selection are in the second group,
and the weights of the solutions are dependent on the objective function as well
as the β value. The βt+1 = βt + ∆βt will determine the weight of the solutions
in the new distribution. To compute ∆β researchers [8] have proposed schemes
such as Equation 23.

∆β(t) = β(t + 1)− β(t) =
Wnew

f (t)−Wf (t)
σ2

f (β(t))
(23)

Where Wf is the fitness average, and σ2
f the fitness variance. A similar

schedule for continuous variables was proposed in [14]. These models manage
the selection pressure by proposing a desired fitness mean for the next genera-
tion. The weighting methods can regulate slow or premature convergence, while
the truncation methods usually ensures convergence and avoid extra parameter
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setting. Our proposal uses both methods, the solutions are weighted according
their objective function, but also we truncate the population to compute the
parameters. This strategy has reduced the number of parameters without badly
impacting the performance of BUMDA. A more complex strategy could be used
by searching for a β value in Equation 20.

5 Test Problems and Performance Analysis

This section presents experiments and comparison among state of the art EDAs
proposed by different researchers and the BUMDA. These problems test different
characteristics of a continuous EDA, such as:

• The capability to find a minimum/maximum which requires a high preci-
sion, as the Sum Cancellation-like problems.

• The capability to escape from local maxima/minima, such as the presented
in the Griewangk and Ackley functions.

• The capability to converge to the optimum in a low number of evaluations
in convex problems such as the sphere, ellipsoid, etc. functions.

• The scalability of the algorithm, that is, how much varies the number of
evaluations, or the population size when the dimensionality of the prob-
lems is increased or decreased.

The Test 1 compares the precision achieved by algorithms in the state of
the art and the BUMDA. The Test 2 compares multi-modal functions and the
Sum Cancellation function with well performed continuous EDAs. The Test 3
is a general comparison, they are multi-modal functions, and convex functions
(sphere) to test convergence speed, and they are solved in different dimensions
(10 and 50). The comparison for the third set is performed among BUMDA,
the best performed EDA in other comparison (EMNA-B, [14]), and the BG-
UMDA, a similar approach which uses an univariate normal distribution and
the Boltzmann function. Finally the Test 4 compares principally the scalability,
by plotting how the number of evaluations changes versus the dimensionality of
the problem. It is important to remark that the plots and data of the algorithms
we are comparing with, as well as statistical comparisons, are done considering
the information in the papers where the other algorithms were introduced. The
reader must take into account, that even if there are several cases when we can
not (statistically) say that the BUMDA performs better, it does not mean that
it performs worse.

5.1 Problem Test 1.

The first test problem set is taken from [13], in order to compare the results
of BUMDA with a novel strategy which uses the Boltzmann distribution called
BG-UMDA, and other state of the art continuous EDAs [14]. The mean and
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standard deviation are presented in Table 2, taken from reference [14]. The
BUMDA results are added at the end of the table for comparison. The three
functions of this test are similar to the Sum Cancellation problem, with the
optimum on a high peak surrounded by a low gradient plane. These problems
need high precision to get the optimum value of 1× 107. The functions F1 and
F2 have a strong variable correlation, and F3 have weak variable correlation, it
means that if all variable values are maintained but one, the function could be
minimized with respect the variable which is changing. Thus, as BUMDA uses
a univariate model, we expect a competitive performance in F3. The results are
summarized in Table 2. Note that sc-PBIL and BG-UMDA also use univariate
models.
Stopping Criterion. All the algorithms were tested for 2× 105 function eval-
uations.
BUMDA Parameter Setting. The unique BUMDA parameter is the popu-
lation size, it is 2500 for F1 and F2, and 250 for F3.
Statistical test. Considering the number of runs for each algorithm (20), the
lack of data (we only know the sample mean and standard deviation). We used
the z test to find out if the BUMDA reports a better mean value of the objective
function than the other approaches presented in this test. Thus, with a signif-
icance α = 0.05 we test the null hypothesis H0 : F̄BUMDA = F̄other algorithm,
and alternative hypothesis H1 : F̄BUMDA > F̄other algorithm. The t-test was
not used because we can not assume variance homogeneity, according with the
Fmax test. The results of the test are presented in Table 2. If the alternative
hypothesis H1 is accepted, the BUMDA is better. Otherwise the null hypothesis
is not rejected, therefore, there is not enough statistical evidence to say which
algorithm is better.

Name Definition Value
to reach

F1 1/
`
10−5 +

Pn
i=1 |yi|

´
where: y1 = x1 and y = xi + yi−1, for i ≥ 2 105

F2 1/
`
10−5 +

Pn
i=1 |yi|

´
where: y1 = x1 and, y = xi + sin yi−1, for i ≥ 2 105

F3 1/
`
10−5 +

Pn
i=1 |yi|

´
where: y = 0.024(i + 1)− xi, for i ≥ 1 105

Table 1: Test 1: Functions and values to reach.

5.2 Problem Test 2.

The second test is taken from [14], it was also used in [6] for testing continu-
ous EDAs. This test presents a variety of characteristics, the Sum Cancellation
function needs a large precision, the Schwefel function is a multimodal func-
tion with many local minima and maxima, with valleys of different sizes. The
Griewangk function have many local minima and maxima, produced by a cosine
mounted on a parabolic surface. The SumCan can not be precisely compared
because the standard deviation is not reported in the original work.
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H1 : F̄BUMDA > F̄other

Algorithm F1 F2 F3 F1 F2‘ F3

sc-PBIL 4.43± 0.4 7.54± 0.36 18.7± 0.63 no no yes, p=0
(10-50)-ES 2.91± 0.45 7.56± 1.52 399.07± 6.97 no no yes, p=0
PBILc 4.76± 0.78 10.99± 1 4083± 4986 no no yes, p=0
BG-UMDA 4.83± 0.57 11.32± 0.72 107 ± 0.0002 no no no
EMNA-B 337± 110 326± 79 5.80± 0.99 no no yes, p=0
BUMDA 1.7± 0.15 4.94± 0.226 107 ± 0.003

Table 2: Comparison for 100-dimensional problem test (Test 1), for 20 indepen-
dent runs.

Name Definition Value
to reach

SumCan 1/
`
10−5 +

Pn
i=1 |yi|

´
where: y1 = x1 and y = xi + yi−1, for i ≥ 2 105

Schewel
Pn

i=1{(y1 − x2
i )2 + (xi − 1)2} 0

Griewangk 1 +
Pn

i=1
x2

i
4000 +

Qn
i=1 cos

“
xi√

i

”
0

Table 3: Test 2: Functions and values to reach.

H1 : F̄BUMDA better than F̄other

Algorithm SumCan Schwefel Griewangk SumCan Schwefel Griewangk

PBIL 91002± 28611 unstable 0.11± 0.57 no NP yes, p=0.027
ES 5910 0 0.034477 NP NP NP
UMDAc 53460 0.13754 0.011076 NP NP NP
EGNA 1E5 0.0250 0.008175 NP NP NP
BG-UMDA 8E4± 1.8E4 0.009± 0.003 0.001± 0.0056 no no yes, p=0.037
EMNA-B 1E5± 0 2.7E-31± 1E-31 5.8E-5± 5.8E-4 no no no
BUMDA 7.6E3± 7.9E3 0.233± 1.9E-2 0± 0

Table 4: Comparison for 10-dimensional problem test (Test 2), for 100 indepen-
dent runs.

The weakest variable correlation is given by the Griewangk function, observe
that the weight of the cosines become important when the solutions are close
to 0. Thus, we expect a good performance of the univariate EDAs in this prob-
lem. As shown in Table 4 the BUMDA reports the best performance for the
Griewangk problem.
Stopping Criterion. All the algorithms were tested for 3× 105 function eval-
uations.
BUMDA Parameter Setting. The population sizes for this test are 3000 for
the Sum Cancellation and Schwefel functions,and 300 for Griewangk.
Statistical test. The z − test with α = 0.05 is used to compare the objective
values means. The rightmost column of Table 4 shows the z − test results.
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5.3 Problem Test 3.

The third set of problems compares the BUMDA with the algorithms EMNA-B
and BG-UMDA reported in [14] (BG-UMDA also uses a univariate Gaussian
functions to approximate a Boltzmann distribution). This set of functions have
been widely used to compared EDAs [7]. Some of these functions have many
local maxima/minima. Also, as the functions are defined for any dimension,
this set could be used to analyze the scalability of the algorithms. For this set
of problems we imitate the conditions of the experiments reported in the refer-
ence [14]. The BUMDA is the most competitive approach for three problems of
this set, as shown in Table 5. The BUMDA finds the best average value of the
objective functions in most of the cases, but as we are using the solution error
as stopping criterion, the real comparison is given by the number of function
evaluations. The BUMDA uses the less average number of evaluations for all
cases when it finds the solution. Observe that there is not a great difference
between the number of evaluations for 10 dimensions and 50 dimensions. Even
though the dimensionality was increased 5 times, the number of evaluations in-
creased less than 3 times (when the optimum was found by BUMDA).
Stopping Criteria. All the algorithms were tested for 3× 105 function evalu-
ations or when they found a solution with an error less or equal to 10−6.
BUMDA Parameter Setting. The population sizes for this test are 3000 for
the Sum Cancellation, and 300 for all the other functions.
Statistical test. The z − test with α = 0.05 is used to compare both, objec-
tive values and function evaluations. This is the recommendable test because
the only data available are the means and standard deviations. The t − test
should not be used, because in general the variances could not be considered
homogeneous, according with the Fmax test. The rightmost column of Tables
5 and 6 show the z − test results. If the alternative hypothesis H1 is accepted,
the BUMDA is better. Otherwise the null hypothesis is not rejected, therefore,
there is not enough statistical evidence to say which algorithm is better.

H1 : F̄BUMDA better than F̄other

Function BUMDA EMNA-B BG-UMDA EMNA-B BG-UMDA

SumC 10d 7.5E3± 8.4E3 1E5± 1.1E-7 5.8E4± 2.3E4 no no
SumC 50d 2.07± 0.12 99910± 160 1.39± 0.1 no yes
Griew. 10d 7.3E-7± 1.7E-7 7.4E-7± 1.1E-7 1.27E-4± 4E-4 no no
Griew. 50d 9E-7± 8.4E-8 9.2E-7± 5E-8 8.8E-7± 7E-8 no no
Sphere 10d 7E-7± 1.6E-7 7.5E-7± 2.1E-7 5.9E-7± 1.8E-7 no no
Sphere 50d 8.7E-7± 8.1E-8 8.8E-7± 1.1E-7 8.4E-7± 8E-8 no no
Rosen. 10d 8.1± 0.08 6.33± 0.37 7.74± 0.08 no no
Rosen. 50d 47.7± 0.18 47.08± 0.44 47.54± 0.07 no no
Ackley 10d 8.3E-7± 1.2E-7 8.4E-7± 1E-7 8.3E-7± 1.6E-7 no no
Ackley 50d 9.3E-7± 4.3E-8 9.42E-7± 4E-8 9.6E-7± 4E-8 no yes

Table 5: Mean and standard deviation of best function value found in 20 runs
for the Test 3.
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H1 : N̄eval
BUMDA < N̄eval

other
Function BUMDA EMNA-B BG-UMDA EMNA-B BG-UMDA

SumCan 10d 3E5± 0 92520± 840 300400± 0 NP NP
SumCan 50d 3E5± 0 301000± 0 300400± 0 NP NP
Griewangk 10d 17262± 384 134000± 47000 229E3± 64E3 yes, p=5.8E-29 yes, p=7.8E-50
Griewangk 50d 39675± 342 170100± 1700 71880± 420 yes, p=0 yes, p=0
Sphere 10d 14541± 261 35200± 420 35720± 840 yes, p=0 yes, p=0
Sphere 50d 40695± 325 192900± 1600 82400± 460 yes, p=0 yes, p=0
Rosenbrock 10d 3E5± 0 300400± 0 300400± 0 NP NP
Rosenbrock 50d 3E5± 0 301000± 0 300400± 0 NP NP
Ackley 10d 23257± 287 43560± 610 44000± 530 yes, p=0 yes, p=0
Ackley 50d 58850± 348 231800± 4300 98920± 530 yes, p=0 yes, p=0

Table 6: Average and standard deviation of evaluations for Test 3.

5.4 Problem test 4

This set of problems is taken from [4]. All the functions are convex and have
been generalized for any number of dimensions. Most of these problems can
be solved by well performed EDAs as the presented in [4]. Then, an objective
comparison of scalability must relate the number of evaluations with problem
dimensionality.

(a) (b)

Figure 5: (a)CMA-ES plot for Average Number of Evaluations vs Dimensional-
ity. (b)CT-AVS-IDEA plot for Average Number of Evaluations vs Dimension-
ality.

For these problems we report a plot of the problem dimensionality (2, 4,
8, 10, 20, 40, 80) versus the average number of evaluations (to preserve the
experimental conditions of the results presented in [4], and because of numer-
ical results were not reported). The comparison includes well performed algo-
rithms reviewed in [4]: the Evolution Strategy with Covariance Matrix Adapta-
tion (CMA-ES), and the Correlation-Triggered Adaptive Variance Scaling IDEA
(CT-AVS-IDEA). The BUMDA successfully solves 30 independent consecutive
runs for all the test problems except the Rosenbrock. Figure 5(a) presents the
results of the CMA-ES, as shown the number of evaluations are in the range
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of 1 × 102 < evaluations < 1 × 106. They are linearly proportional to the
dimensionality in the log scale, and sub-quadratically in the linear scale. Fig-
ure 5(b) shows that the number of evaluations of CT-AVS-IDEA exponentially
grows with the dimensionality. On the other hand, the BUMDA plot in Figure
6 shows linear behavior. Although BUMDA uses an univariate model the linear
behavior is not necessarily expected. Because the data are projected in each
dimension, and the objective function on the projected data becomes noisy, and
the noise increases when the dimensionality is increased. The symbols used to
represented the different test problems are: Cigar + , Cigar tablet ×, Dif-
ferent powers *, Ellipsoid ¤, Parabolic Ridge ¥, Rosenbrock ◦(not
presented for BUMDA) , Sharp Ridge •, Sphere 4, Tablet N, Two
axes O.
Stopping Criteria. All the algorithms use the closeness to the optimum as
termination criterion, it was set in 10−10 for all the functions except the differ-
ent powers function which optimum closeness was set in 10−15.
BUMDA Parameter Setting. The population sizes for this test are 3000 for
the Sum Cancellation,and 300 for all the other functions.

|
|

| |

|

|

|

x
x

x
x

x

x
x

* * *
*

*
*

*

1 10 100
100

1000

10000

100000

1e+06

1e+07

Dimensionality

A
ve

ra
ge

 n
um

be
r 

of
 e

va
lu

at
io

ns

Figure 6: BUMDA plot for Average Number of Evaluations vs Dimensionality.

Parameter Setting and Comments about Tests. As expected the BUMDA
performs very well in the problems which presents a weak variable correlation.
When comparing the BUMDA with similar approaches (as BG-UMDA) it is
very competitive (or the best in many cases as shown in Test 3). In addition,
when BUMDA is compared with approaches that uses multivariate models as
EMNA-B or CT-AVS-IDEA it is competitive or better as in Test 3 and 4 for
most of the cases. Observe that BUMDA have a low computational cost (linear),
and for the set of problems presented here, the number of evaluations needed
to find the optimum grows slow with respect to the number of dimensions. The
BUMDA only needs the population size as user given parameter. In the case
when the optimum is known, this parameter could be set in a straightforward
way, increasing the population size until the best optimum approximation is
found or the performance does not change. When the optimum is not known a
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good indicator of the population size needed is the number of selected individuals
by the truncation method: if less than the 50% of the population is selected
in most of the generations, then the population size must be increased. The
algorithm in Figure 3 uses a minvar value as stop criterion, this value stops the
algorithm when a poor exploration is detected, and the optimum approximation
difficultly will be improved.

6 Conclusions

This paper presents a novel proposal for designing EDAs called the Elitist Con-
vergent EDA (ECEDA), this conceptual proposal principally indicates the char-
acteristics of a successful EDA, such as: convergence to the optimum, high
probability of return solutions very closed to the optimum for a large number
of generations, and the tendency of the variance to 0. These characteristics are
achieved if we ensure that the expectation of the objective function is main-
tained/increased every generation. As it is not possible to built efficient ideal
ECEDAs, we present a practical proposal: the Boltzmann Univariate Marginal
Distribution Algorithm (BUMDA), which ensures convergence to the best so-
lution found for a large number of (increasing-expectation) generations. This
proposal uses a Gaussian model to approximate a Boltzmann distribution which
is one of the most important functions in global random optimization, because
its special characteristics mentioned in Section 1. The BUMDA algorithm can
solve an extensive type of problems with a very competitive effort (number of
evaluations). Also, the computational cost required to calculate the parameters
of the probabilistic model is O(nm) (linear) with the number of dimensions n,
and the population size m. One of the most important goals of the Estima-
tion of Distribution Algorithms is the reduction of user-given parameters, the
BUMDA requires just one user-given parameter which can be easily tuned: the
population size. We suggest to use a minimum variance as stopping criterion,
this value detects when the algorithm have a poor exploration and the optimum
approximation could be rarely improved. The Test problems presented in Sec-
tion 5, are used to contrast BUMDA with many other approaches in the state
of the art, the results indicate that the BUMDA is a very competitive algorithm
when it is compared with different approaches which use univariate models such
as BGUMDA, PBILc, and sc-PBIL presented in Test 1,2 and 3, as well as mul-
tivariate models such as: EMNA-B, CT-AVS-IDEA and CMA-ES, presented in
Test 3 and 4 respectively. Future work will contemplate the approximation of
the Boltzmann distribution by more complex model which capture dependencies
among variables.
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