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Abstract. We propose a numerical method for the inverse
scattering problem. The method is based on linearization and
continuation; it iterates over frequency-increasing scattering
data. Initial guesses are determined at low frequency using
the convex scattering support theory of Kusiak et al [5]. In
this paper we deal with the case a sound soft obstacle in
two dimensions. The proposed method can be extended in
a straightforward manner to other boundary conditions.

1. Introduction

The propagation of acoustic waves in an homogeneous isotropic
medium with constant speed of sound is governed by the linear
wave equation

(1) Utt = c2∆U

for a velocity potential U . For time-harmonic waves with frequency
ω we have

(2) U(x, t) = Re(eiωtu(x)),

where the space dependent part u(x) satisfies the Helmholtz equa-
tion

(3) ∆u + k2u = 0, for k =
ω

c
.

Given an obstacle of compact support D ⊂ R
n (n = 2, 3), its for-

ward scattering problem is governed by the Helmholtz equation in
R

n − D̄. The total wave u(x) = exp(ikx · d) + us(x) is a superposi-
tion of the incident wave exp(ikx · d) and the scattered wave us(x),
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and is subject to a boundary condition on Γ = ∂D. The boundary
condition can be of type

(4) u = 0 Dirichlet,

(5)
∂u

∂ν
= 0 Neumann or,

(6)
∂u

∂ν
+ ikλu = 0 impedance.

Scattered waves us satisfying the Sommerfeld radiation condition

(7) lim
r→∞

r(n−1)/2

(

∂us

∂r
− ikus

)

= 0, r = ‖x‖2

are referred to as radiating solutions of the Helmholtz equation. It
is known that the direct obstacle scattering problem (3)–(7) is well
posed for Γ ∈ C2, see [3], [4]. Given an incident wave exp(ikx · d),
the obstacle boundary Γ uniquely determines the scattered wave
us(x), which in turn uniquely determines the far field u∞(x̂), where
(x̂ = x

||x||). We denote by F the boundary-to-far-field mapping

(8) F (Γ) = u∞(x̂).

In this paper we consider the inverse problem of recovering the
obstacle boundary Γ from u∞(x̂), and deal with the two dimensional
case with Dirichlet boundary condition. Other boundary conditions
can be treated similarly.

Numerous approaches have been proposed to solve this inverse
problem (see [2] or [6] for an overview). Among those, a classi-
cal approach is Newton method. Researchers have established the
convergence of Newton method, see [8]. However, it is well known
that problem (8) may have multiple local solutions. We propose
a numerical method based on merging linearization of the prob-
lem (Newton method) with continuation on wavenumber. Initial
guesses are chosen using the theory of the convex scattering sup-
port of Kusiak et al [5]. This is accomplished by determining the
center and radius of a disk that supports the far field pattern of the
scatterer boundary Γ at low wavenumber. In a second stage, the
approximate solution is recursively refined at increasing wavenum-
bers. The paper is organized as follows. In section 2, we describe
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how to construct an initial guess. In section 3 we describe the
method based on continuation and discuss frequency stepping and
regularization. In section 4 we offer numerical evidence of the per-
formance of the proposed method. Finally, we summarize this paper
in section 5.

2. Initial guess

The following results of inverse scattering theory from [5] are
required for our discussion

Definition 1. A domain D with boundary Γ supports the far
field pattern u∞ if and only if there is a radiating solution us of the
Helmholtz equation in the exterior of D̄ such that u∞ corresponds
to us.

Definition 2. The intersection of all convex domains that sup-
port u∞ is a convex domain that supports u∞. It is called the
convex scattering support of u∞ and is denoted cSksupp(u∞).

Let SD
∞ be the far field pattern operator defined by equation (34)

acting on D.
According to [1], the theory of the convex scattering support is

partially based on the following theorem

Theorem 3. If the wavenumber k is such that the homogeneous
Dirichlet problem for the Helmholtz equation inside D admits only
the trivial solution, SD

∞ is a compact, injective operator with dense
range. Furthermore, D supports the far field pattern u∞ if and only
if

(9)
∞

∑

p=1

|〈u∞, gp〉|2
σ2

p

< ∞,

where {σp, fp, gp} is a singular system for SD
∞

2.1. Determination of the location of D(x0, ρ). Bourgeois et

al [1] study (9) for the case where D is a disk D(x0, ρ) with center
x0 and radius ρ through the following propositions
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Proposition 4. If D = D(x0, ρ), then gp(θ) = φm(θ) = e
imθ√
2π

for

m ∈ Z, while the singular values σm are

(10) σm =

√

πρ

2k
|Jm(kρ)|,

where Jm is the classical Bessel function of the first kind

Proposition 5. If Sx0

∞ and ux0

∞, respectively, denote the boundary-
to-far-field mapping and the far field with source in x0, then

(11) u∞ ∈ Range(S0
∞) if and only if ux0

∞ ∈ Range(Sx0

∞ )

Further, [1] establishes that if the scattering obstacle is a disk
D(x0, ρ) with x0 = (x, y) the criterion becomes: D(x0, ρ) supports
a given far field pattern u∞ if and only if

(12)
∞

∑

−∞

|cm|2
σ2

m

< ∞,

where

(13) cm =
1√
2π

∫ 2π

0

eimθeik(x cos(θ)+y sin(θ))u∞(θ)dθ.

|Jm(z)| is a bounded oscillating function of m for m ≪ z, and
rapidly goes to zero when m ≫ z. The moduli |cm| of the Fourier
coefficients have the same behavior. Let m−,m+ ∈ Z such that
|cm| is nearly zero for indices outside the interval (c−, c+). Then,
we have the following remark

Remark 6. D(x0, ρ) supports u∞ if and only if kρ ≥ max(|c−|, |c+|).

If we assume that the scattering obstacle D with far field pat-
tern u∞ is contained inside a large disk D(x1, ρ1), then we can
readily use remark (6) to determine the center and radius of a disk
that supports u∞ and approximates its convex scattering support
cSksupp(u∞) at low frequency.

3. A method based on continuation

The approximate solution is recursively refined by adaptive wavenum-
ber stepping. Let Γj be the refinement obtained at wavenumber kj.
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Denote by

(14) δΓj = Γj+1 − Γj

the improvement due to the wavenumber stepping from kj to kj+1.
It satisfies the linear equation

(15)
∂F

∂Γ
(kj+1; Γj)δΓj = u∞(kj+1; x̂) − F (kj+1; Γj)

to the second order of δΓj. Here, ∂F
∂Γ

(kj+1; Γj) is the Fréchet deriv-
ative of the boundary-to-far-field mapping. The algorithm to solve
the inverse scattering problem is as follows:

i) Set δk, δ1, δ2

ii) Initialize Γ0, k0

iii) While ||F (Γj) − u∞(x̂)||/||u∞(x̂)|| > δ1

1. Evaluate F (kj+1; Γj),
2. Evaluate ∂F (kj+1; Γj)/∂Γ,
3. Solve equation (15) to determine δΓj

4. If ||F (Γj + δΓj) − u∞(x̂)||/||u∞(x̂)|| < δ2

Update Γj+1 = Γj + δΓj.
Update kj+1 = kj + δk

else
Update kj+1 = kj + 1

2
δk

Remark 7. Throughout this paper we assume that the obstacle
boundary Γ consists of one connected component. We assume that
scattering data is available at all the required wavenumbers.

3.1. Evaluation of the boundary-to-far-field mapping. We
use standard layer potentials to evaluate to boundary-to-far-field
mapping. Let

(Sϕ)(x) = 2

∫

Γ

Φ(x, y)ϕ(y)ds(y), x, y ∈ Γ,(16)

(Kϕ)(x) = 2

∫

Γ

∂Φ(x, y)

∂ν(y)
ϕ(y)ds(y), x, y ∈ Γ,(17)

(K
′

ϕ)(x) = 2

∫

Γ

∂Φ(x, y)

∂ν(x)
ϕ(y)ds(y), x, y ∈ Γ,(18)
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denote the single- and double-layer potentials, and the derivative

of the single-layer potential, where Φ(x, y) = i
4
H

(1)
0 (k‖x − y‖) is

the Green’s function of the Helmholtz equation. For simplicity, we
formulate the forward scattering problem as a boundary integral
equation of the first kind

(19) S(ϕ)(x) = −2eikx·d,

where the single-layer density ϕ gives rise to the scattered wave us

in R
2 − D

(20) us(x) =

∫

Γ

Φ(x, y)ϕ(y)ds(y), x ∈ R
2 − D.

Now, using the asymptotic formula for the Hankel function

(21) H
(1)
0 (z) =

√

2

πz
ei(z−π/4)

{

1 + O

(

1

z

)}

, z → ∞,

the expansion

(22) ‖x− y‖ =
√

‖x‖2 − 2x · y + ‖y‖2 = ‖x‖ − x̂ · y + O

(

1

‖x‖

)

,

and the definition of the far field pattern u∞(x̂)

(23) us(x) =
eik‖x‖
√

‖x‖

{

u∞(x̂) + O

(

1

‖x‖

)}

, ‖x‖ → ∞.

The boundary-to-far-field mapping may be written as

(24) F (Γ) = u∞(x̂) =
eikπ

√
8πk

∫

Γ

e−ikx̂·yϕ(y)ds(y),

where the unit vector x̂ is the outgoing direction.

3.2. Evaluation of the derivative of the boundary-to-far-
field mapping. Let x = x(s) be a parametrization with respect
to arc-length s ∈ [0, L] of the smooth simple closed curve Γ in R

2.
Let τ(x) and ν(x) be its tangent and outward normal vectors at
the point x(s) respectively. Perturbing Γ at each point x ∈ Γ by
an amount δν(x) in the normal direction gives

(25) Γ̃ = {x̃ ∈ R
2 | x̃ = x + δν(x)ν(x), x ∈ Γ}.
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Suppose further that Γ̃ is a smooth simple closed curve in R
2

parametrized by its arc-length s̃ ∈ [0, L̃]; consequently, there is a
mapping η : Γ → Γ̃ defined by the formula

(26) η(x) = x̃ + δν(x)ν(x).

For an element ds on Γ with endpoints x(s) and x(s + δs), the
corresponding element ds̃ in Γ̃ is defined as the element with end-
points η(x(s)) and η(x(s + δs)).

Lemma 8. Suppose Γ and Γ̃ are two smooth simple closed
curves, and κ(x) is the curvature of Γ at x(s) defined by κ(x) =
ν(x(s))⊥ · τ(x(s)). Suppose further that Γ̃ is close to and nearly
parallel to Γ; namely

(27) κ(x)δν(x) ≪ 1,
d(δν)

ds
(x) ≪ 1,

then, to the second order of κ(x)δν(x), the perturbation of the
density function δν

′

(x) satisfies

(28) ds̃ = (1 + κ(x)δν(x))ds

Proof. See [7] ¤

Now, let us assume that each point x(s) on the boundary Γ is
perturbed along the normal direction to the point x̃ = η(x). As-
sume further that the perturbation is small enough to satisfy the
conditions from equation (27), and denote by ϕ̃ the solution to the
integral equation on Γ̃

(29)

∫

Γ̃

Φ(x̃, ỹ)ϕ̃(ỹ)ds̃(ỹ) = −eikx̃·d.

Lemma 9. Suppose under the conditions of lemma 8 that for
x ∈ Γ

(30) δ(x) = max{| κ(x)δν(x) |, |d(δν)

ds
(x)|}
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then

(31) δϕ(x) = ϕ̃(x̃) − ϕ(x)

is of the first order of δ(x). Furthermore, to the second order of
δ(x), δϕ(x) satisfies the equation

(32)
S(δϕ+κδνϕ)(x)+K(δνϕ)(x)+δν(x)K ′(ϕ)(x) = −2ikν(x)·deikx·dδν(x)

Proof. See [7] ¤

The same perturbation analysis can be applied to the far field
pattern. Let ũ∞(x̂) be the far field pattern generated by the density
function ϕ̃ on Γ̃ so that

(33) ũ∞(x̂) =

∫

Γ̃

eikπ

√
8πk

e−ikx̂·ỹϕ̃(ỹ)ds̃(ỹ),

and define

(34) S∞(ϕ)(x̂) =
eikπ

√
8πk

∫

Γ

e−ikx̂·yϕ(y)ds(y)

Lemma 10. Under the conditions of lemma 8, suppose ϕ and ϕ̃
are the density functions induced by Γ and Γ̃ respectively. Suppose
further that u∞ and ũ∞ are the corresponding far field patterns.
Then

(35) δu∞(x̂) = ũ∞(x̂) − u∞(x̂)

is of the first order of δ(x), and to the second order of δ(x)

(36) δu∞(x̂) = S∞(−ikx̂ · νδνϕ + δϕ + κδνϕ)(x̂).

Proof. See [7] ¤

Remark 11. In order to evaluate the Fréchet derivative of
the obstacle-to-far-field mapping. We need to determine δϕ from
equation (32) and substitute into equation (36).
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3.3. Regularization of the linear problem. Discretization of
equation (32), leads to dense linear systems

(37) Ax = b,

where A is a complex matrix with condition number κ(A) ≫ 1.
We propose a dynamical system approach to regularize the linear
system (37) arising from the discretization of (32). Consider the
dynamical system

(38) ẋ = b − Ax,

(if A is not square positive definite we solve ż = A∗b − A∗Az in-
stead). Applying the implicit Euler method leads to

(39) xn = (I+hA)−1(xn−1+hb) = (I+hA)−nx0+
n

∑

j=1

(I+hA)−jhb

where I is the identity matrix and h > 0 is arbitrary.

Theorem 12. Suppose A is a square, positive definite matrix.
Let I be the identity matrix and h > 0 arbitrary. Then, the iterative
scheme

(40) xn = (I + hA)−nx0 +
n

∑

j=1

(I + hA)−jhb

converges unconditionally

Proof. Let A = UTU∗ be the Schur factorization of A where U is
an unitary matrix and the upper triangular matrix T has diagonal
elements Tii = λi > 0, i = 1, ...,m (λi are the eigenvalues of A
in descending order). If h > 0, the eigenvalues of (I + hA)−1 are
0 < (1 + hλi)

−1 < 1 and (I + hA)−j → 0 as j → ∞. We conclude
that the iterative scheme (40) converges unconditionally.

¤

Also, we conclude that the limit of xn as n → ∞ does not depend
on the initial condition x0.
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Taking limit over the number of iterations we obtain

x∗ = lim
n→∞

n
∑

j=1

(I + hA)−jhb(41)

= (I + hA)−1(I − (I + hA)−1)−1hb(42)

The following lemma holds

Lemma 13. Let A be a square positive definite matrix and
h > 0, then

(43) A−1 = h(I + hA)−1(I − (I + hA)−1)−1

Remark 14. Let σ1 ≥ .. ≥ σn > 0 be the singular values of
A. Since A is ill-conditioned, the smaller singular values of I + hA
accumulate around 1. For computational purposes we like to take
h > 0 as large as possible. On the other hand, we must choose
h > 0 small enough to guarantee I + hA is well conditioned.

Remark 15. If the right hand side of the linear system (37) is
noisy we implement a discrepancy principle rule (Morozov) to stop
the iteration.

4. Numerical Examples

In this section we offer numerical evidence of the performance of
the method. Since a single plane incident wave will not illuminate
the entire obstacle, particularly for large wavenumbers, several in-
cident plane waves ui

1, ui
2, ..., ui

l, with incident directions d1, d2, ...,
dl must be employed. The resulting linear systems











∂F
∂Γ

(d1; kj+1; Γj)
∂F
∂Γ

(d2; kj+1; Γj)
...

∂F
∂Γ

(dl; kj+1; Γj)











δΓ =









u∞(d1; kj+1; Γ) − F (d1; kj+1; Γj)
u∞(d2; kj+1; Γ) − F (d2; kj+1; Γj)

...
u∞(dl; kj+1; Γ) − F (dl; kj+1; Γj)









are simultaneously solved.
Synthetic scattering data was produced solving the direct prob-

lem with a combined potential method. We used the Nystrom
method to discretize the integral equations arising throughout the
numerical simulations.
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Figure 1. Five iterations suffice to reconstruct the
kite-shaped obstacle although the scattering data has
1% of noise
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4.1. Example. The test consists of iterations with white noise
added to the scattering data. For this example, we use a kite-
shaped obstacle with boundary Γ described by the parametric rep-
resentation

(44) x(t) = (cos(t) + 0.65 cos(2t) − 0.65, 1.5 sin(t)), 0 ≤ t ≤ 2π.

In figure 1, plots were produced adding 1% of noise to the syn-
thetic scattering data; the wavenumber of the iteration is indicated
in each plot. Five steps suffice to reconstruct this kite-shaped obsta-
cle within two significant digits. Iterations with low wavenumbers
locate the scatterer while iterations with higher wavenumber recon-
struct its fine details. The obstacle was probed using three incident
waves with equidistant incident angles.
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5. Conclusions

The numerical method introduced in this paper represents an ef-
ficient method to solve the inverse scattering problem since it can
be easily modified to impedance or Neumann boundary conditions.
Compared with other iterative methods it can reconstruct obsta-
cles with high resolution at the expense of using scattering data at
multiple frequencies.
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